
Hegedűs et al. Genetics Selection Evolution           (2025) 57:39  
https://doi.org/10.1186/s12711-025-00976-0

RESEARCH ARTICLE Open Access

© The Author(s) 2025. Open Access  This article is licensed under a Creative Commons Attribution 4.0 International License, which 
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the 
original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or 
other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line 
to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory 
regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this 
licence, visit http://​creat​iveco​mmons.​org/​licen​ses/​by/4.​0/. The Creative Commons Public Domain Dedication waiver (http://​creat​iveco​
mmons.​org/​publi​cdoma​in/​zero/1.​0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

Genetics Selection Evolution

Genetic parameters and potential 
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Abstract 

Background  Ear and tail biting are behaviours in pigs that cause both welfare problems and financial losses. Data 
collection of behaviour is difficult at the large scale needed for breeding. The damage inflicted on victims can, how-
ever, serve as a proxy for animal breeding. Here, we analysed tail and ear damage scores on their original scale, binary 
scale, and summed versions of these damage traits to investigate which trait definition is best for genetic selection. 
Using data from six purebred lines (33,329 animals in total) we aimed to (1) estimate genetic parameters for ear 
and tail damage using direct genetic models, (2) estimate the genetic correlation between tail and ear damage, (3) 
compare different trait definitions and their impact on accuracy, dispersion, and bias of estimated breeding values 
(EBV), and (4) compare expected responses to selection for each trait definition.

Results  The heritability of the damage traits ranged from 0.04 to 0.06. Ear and tail damage were moderately cor-
related (0.41–0.45), meaning that the genetic propensity of being a victim is a different trait for tail versus ear biting. 
Estimates of the accuracy of the EBV for the traits with a five-fold cross-validation and the linear regression method 
based on pedigree relationships ranged from 0.27 to 0.57, the dispersion from 0.91 to 1.18, and the bias was negli-
gible. With a selected proportion of 5%, genetic progress of ~ 0.20–0.78 genetic standard deviations per generation 
can be reached, depending on the trait. It was trait dependent whether direct or indirect selection yielded the most 
response.

Conclusions  Ear and tail damage are heritable traits and are moderately positively correlated. The EBV for the evalu-
ated traits related to ear and tail damage showed moderate accuracies, minor dispersion, and no bias. We hypoth-
esize that from a welfare perspective, ear and tail damage on the original scale are the relevant breeding goal traits. 
For ear damage on the original scale, the highest response to selection can be expected when selecting on the trait 
itself, whereas for tail damage on the original scale, selection on summed damage showed the highest gain. Results 
from this study show that genetic improvement of the direct genetic effect of ear and tail damage is possible.

Background
Pigs rank as the second largest livestock population in 
the EU, entailing 141 million animals in 2021 [1], result-
ing in an annual production of around 23 million tonnes 
of meat in 2021 [2]. As most pigs are housed in groups 
[3], their productivity and welfare depend on social inter-
actions between pen mates. Thus, positive and harmful 
interactions among pigs are an important aspect to con-
sider, both in animal husbandry and breeding. Examples 
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of harmful interactions are tail and ear biting, which are 
frequent welfare problems in group-housed pigs [4, 5].

Tail biting is the dental manipulation of another pig’s 
tail, which can start off gently but can later result in more 
severe biting. As tail biting can cause stress and wounds, 
it has a negative effect on the welfare of the receiver. 
Moreover, tail biting may also reflect an underlying wel-
fare problem in the biter [5]. Tail biting, however, not 
only affects the welfare of the animals, but also results in 
economic losses due to reduced body weight gain, car-
cass condemnation, treatment cost, and even death of the 
victims [6–9]. Tail biting has also been associated with 
disease transmission and poor health [5, 10]. Many risk 
factors for tail biting have been identified, such as diet, 
stocking density, and lack of enrichment, and other fac-
tors may also play a role, such as sex and health [11, 12]. 
Routine tail docking as a preventive measure against tail 
biting is banned in the EU [3], however, it is still widely 
used in most EU countries [13]. This illustrates the urgent 
need for other preventive measures, such as deacreasing 
tail damage prevalence by means of genetic selection.

Data on the prevalence of tail biting behaviour on a 
large number of animals is difficult to obtain because 
recording tail biting currently requires laborious human 
observation. The presence of tail damage is easier 
to records and its reported prevalence varies largely 
between studies, ranging from 0.26 to 59.1% [8, 9, 14–
17]. This large variation could be due to differences in the 
exact definition and scoring of tail damage between stud-
ies, as well as the tail length (docked vs. non-docked tails) 
of the pigs under study [4, 11].

Ear biting is a behaviour similar to tail biting and 
involves manipulation of another individual’s ear, includ-
ing chewing, pulling, or quickly biting [18]. Ear biting has 
been associated with ear necrosis [19], which involves 
lesions on the pinna and may also involve infections [20]. 
Compared to tail biting, less information is available 
on ear biting behaviour and the prevalence of ear dam-
age. Nonetheless, some studies show the importance of 
ear damage. In Ireland, van Staaveren et  al. [21] found 
a median prevalence of ear lesions of 9% for the 8 to 13 
week age group, and 3% for the 13 to 23 week age group. 
Smulders et al. [16] reported that 14.9% of the pens had 
at least one animal with ear damage in a sample of 3590 
pens from 59 farms in Belgium.

There are only a few studies on the genetic back-
ground of tail biting behaviour [12, 22]. Breed differ-
ences were found in some studies, but not in others 
[12]. Breuer et  al. [22] estimated the heritability to be 
0.05 in Landrace pigs but found no significant herit-
ability in Large White pigs. As tail biting and ear bit-
ing behaviours are difficult to measure on a large scale, 
tail and ear damage recorded on the victims are often 

used as proxies to study these traits. It should be noted 
that a classical genetic analysis of tail or ear damage 
only provides information on the receiver, leaving the 
genetic effects of the biter unidentified. Recent studies 
estimated the heritability of the receiver component of 
tail biting by analysing tail damage data using differ-
ent trait definitions [23–25]. The estimated heritabili-
ties based on linear mixed models ranged from 0.06 to 
0.08 for binary tail damage in [23], was 0.09 based on 
tail damage medication records in [24], and was slightly 
higher (0.16) for tail damage on a three-point scale in 
[25]. For ear damage, the one available estimate of herit-
ability is 0.46 based on a three-point scale [25]. Gors-
sen et al. [25] further estimated the genetic correlation 
between ear and tail damage to be 0.32. To our knowl-
edge, heritability estimates of ear biting behaviour have 
not been reported, although between breed differences 
have been published [26]; observations of 100 pigs per 
breed showed that Landrace pigs performed less ear 
biting compared to Large White and Duroc pigs [26]. 
In addition, higher estimated breeding values for litter 
birth weight and test daily gain were associated with 
increased ear biting behaviour, suggesting genetic cor-
relations with ear biting behaviour [27].

Knowledge of the genetic parameters of tail and ear 
damage and of the genetic correlation between these 
two traits is limited [23–25], and the two traits have 
been analysed using different trait definitions. However, 
the impact of the trait definition on genetic parameter 
estimates, on accuracies of estimated breeding values, 
and on expected responses to selection have not been 
reported. Therefore, the aim of this study was to (1) esti-
mate genetic parameters for ear and tail damage using 
direct genetic models, resulting in genetic estimates for 
the recipient component of ear and tail biting, (2) esti-
mate the direct genetic correlation between tail and ear 
damage, (3) compare different trait definitions and their 
impact on accuracy, dispersion and bias of estimated 
breeding values, and (4) compare expected responses to 
selection for each trait definition.

Methods
Dataset
The dataset used for this study was recorded and pro-
vided by Topigs Norsvin. The population consisted of 
33,329 animals descending from 522 sires and 6656 
dams. All animals were born and raised in 13 nucleus 
farms located in Norway, Germany, and Canada. Most 
farms only housed one line but three farms housed two 
lines. The data included three sire lines and three dam 
lines of Yorkshire, Large White, Landrace, Pietrain, or 
Duroc origin (Table  1). All pigs were fed ad  libitum. 
Pens contained animals of a single line only. The dataset 
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contained information on sex (intact boars vs. gilts; no 
barrows were included), litter (8673 levels), heard-year-
season of birth (508 levels), date of birth (2021 May–2022 
October), line (6 levels), litter size (min = 1, mean = 12.5, 
max = 30), number of pen mates at the start of the test-
ing period (min = 6, max = 16, mean = 12.1), date when 
damage was scored (2021 November–2023 February), 
the technician who scored the damage (23 levels), age at 
scoring (min = 119 days, mean = 153.5 days, max = 221 
days), and heard-year-season of scoring (64 levels). Most 
animals (32,490) were housed in groups of pigs originat-
ing from more than one litter. A total of 546 animals were 
kept in mixed sex groups, while the remaining pigs were 
in single sex groups. Mixed sex groups were not excluded 

from the dataset. The pedigree file used to calculate the 
relationship matrix (A) included 50,644 relationship 
records dating back three generations from phenotyped 
animals.

The pigs were phenotyped for tail and ear damage at 
the end of the testing period. This was a convenient time 
to phenotype the damage scores as the animals were 
also individually weighed at this time. The range of the 
variable age at scoring was the result of between animal 
differences in reaching the goal end weight for the test-
ing period. The animals were scored for both tail and 
ear damage on a scale of 0 to 3, where 0 means no dam-
age and 3 is severe damage. There was no differentiation 
made between damage due to biting or due to necrosis. 
Figure  1 shows examples of each score. Figure  2 shows 
the distribution of the scores on the original scale. Com-
pared to the other lines, sire line 3 had the highest inci-
dence of tail damage, while dam line 1 had the highest 
incidence of ear damage.

Trait definitions
The original scale of the damage traits was used to cre-
ate five additional traits (Table 2). Both for ear and tail 
damage, a binary alternative was created (ED01 and 
TD01), where 0 meant no damage and damage scores 
of 1 to 3 were encoded as 1. A binary trait was also 

Table 1  Number of phenotyped animals by line

Line Breed of origin Number of 
phenotypes

Dam line 1 Yorkshire and Large White 5920

Dam line 2 Landrace 1391

Dam line 3 Yorkshire and Large White 11,689

Sire line 1 Duroc 1435

Sire line 2 Yorkshire and Piétrain 11,231

Sire line 3 Piétrain 1663

Fig. 1  Scoring for tail and ear damage. Description of scoring of tail and ear damage. The damage score for the ears corresponds to the score 
of the worst ear. Note that damage resulting from biting and necrosis are not distinguished in the scoring. Pictures by Stefanie Nuphaus
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created for both traits together (any damage, AD01), 
here 0 means neither ear nor tail damage and 1 means 
that at least one of these body parts had damage. The 
trait number of body parts affected (NBP) describes no 
damage (0), damage on only tail or ears (1), or damage 
on both tail and ears (2). Finally, SD06 is the sum of 
the original damage scores over both traits.

Fig. 2  Distributions of phenotypic values. Distribution of tail (a) and ear damage (b) on the original 0 to 3 scale

Table 2  Trait definitions with their abbreviations

ED03 Ear damage on original scale (scale: 0–3)

TD03 Tail damage on original scale (scale: 0–3)

ED01 Binary ear damage (scale: 0–1)

TD01 Binary tail damage (scale: 0–1)

AD01 Any damage binary (scale: 0–1)

NBP Number of body parts affected (scale: 0–2)

SD06 Sum of damage on the original scale (scale: 0–6)
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Animal model for variance component estimation
We used an animal model to estimate the genetic 
parameters for the different traits. We used linear mod-
els instead of threshold models as they are easier to 
implement in practice. We fitted all models both on the 
whole dataset and for each line separately, to determine 
whether genetic parameters differ between lines. First, 
the following univariate model was fitted.

where y is a vector of phenotypic observations for the 
trait, b is a vector of fixed effects, with incidence matrix 
X , a is a vector of random animal effects, with incidence 
matrix Za , l is a vector of random litter effects, with 
incidence matrix Zl, g is a vector of random pen-group 
effects, with incidence matrix Zg, and hys is a vector of 
random herd-year-season effects of the time of scoring, 
with incidence matrix Zhys. The fixed effects included sex, 
line, the interaction of sex and line, scorer, and the age at 
scoring in days. Age at scoring was fit as a covariate; the 
other fixed effects were fit as factors. Group composition 
(mixed-sex vs. single-sex) was included as a fixed effect 
in a preliminary model but was not significant and there-
fore removed.

The covariance structure of the random effects in the 
model was assumed to be as follows:

where A is the relationship matrix based on pedigree, σ2a 
is the additive genetic variance, I is an identity matrix, σ2l  
is the variance of the litter effects, σ2g is the variance of the 
group effects, σ2hys is the variance of the heard-year-sea-
son effects of scoring, and σ2e is the residual variance. The 
pedigree did not contain across-line relationships.

Next, bivariate models were used for all pairwise trait 
combinations to estimate genetic correlations. The ini-
tial values for the variance components for these mod-
els were the results from the univariate models. The 
fixed and the random effects were the same as in the 
univariate models.

We fitted the models in ASReml-R version 4.1 [28]. 
The analysis did not converge and the correlation 
between the litter effects was close to one for two bivar-
iate models (TD01-TD03 and NBP-AD01) when using 
the whole dataset. For these analyses, we used ASReml-
SA 4.2 [29] and fixed the litter correlation at 0.99, which 
solved the convergence issue. This was necessary as the 

(1)y = Xb+ Zaa + Zll + Zgg + Zhyshys+ e
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two traits were too similar and the genetic correlation 
was not estimable without fixing the litter correlation.

Comparison of trait definitions
Validation—accuracy, dispersion, and bias
We estimated different validation metrics to compare 
the trait definitions. We estimated the accuracies of EBV 
based on two types of cross-validations and on model 
derived standard errors. The last method was added 
to see whether the accuracies of individual animals, i.e. 
model derived accuracies, give similar results to cross-
validation methods.

Model derived accuracy
The accuracy of the estimated breeding values (EBV) was 
calculated based on the standard error derived for the 
BLUP by ASReml-R Eq. (2):

where PEV(âi) is the prediction error variance of an indi-
vidual pig’s EBV (i.e., the square of the standard error 
reported by ASReml-R [28]) and σ̂2a is the estimated addi-
tive genetic variance. The model derived accuracy was 
calculated for each phenotyped animal and each trait. In 
the results section, we will report averages over animals 
and the distribution of accuracies for each trait definition.

Five‑fold cross‑validation
Accuracy and dispersion of the EBVs were estimated 
based on a five-fold cross-validation using univariate 
models. The dataset of the phenotypes of all lines was 
divided into five sets by randomly allocating all records 
to one of five groups. Two additional masking strategies 
were also used: one where full-sibs were always in the 
same group (FS scenario) and one where half-sibs were 
always in the same group (HS scenario). The data from 
four groups (prediction set) were used to predict the 
breeding values of the remaining group (validation set), 
and this was replicated five times, using each group once 
as the validation set. Allocation of individuals to groups 
was replicated 100 times, so all together we had 100 rep-
licates of five-fold cross-validation for each scenario. For 
each scenario, the mean accuracy and dispersion were 
saved for each of the 500 cross-validations.

Accuracy of EBVs in each validation data set was esti-
mated as

(2)ri =

√√√√1−
PEV

(
âi
)

σ̂2a

(3)ρâ,a =
ρyv,âv

h
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where â is the EBV, a is the true breeding value, ρyv,âv is 
the correlation between adjusted phenotypes and EBV 
of the validation individuals, and h is the square root of 
the heritability estimated from the univariate model. For 
this purpose, the phenotypes of the validation set were 
adjusted for all fixed and random effects, except for the 
animal effect. These effects were estimated on the whole 
dataset using a model with all random effects, i.e., includ-
ing the animal effect (Eq. (1)). Hence, adjustments were 
estimated from the full model, but phenotypes of the val-
idation set were not adjusted for the animal effect.

Dispersion of the EBVs was evaluated by the regres-
sion coefficient of the adjusted phenotypes in the valida-
tion set on the EBVs estimated from the prediction set. 
A regression coefficient of one indicates the correct dis-
persion, while a value greater (smaller) than one indicates 
under (over) dispersion of the EBVs.

LR validation
Forward validation using the linear regression method 
[30] was also used to compare the prediction accuracy 
and dispersion of the different trait definitions. The data-
set including all lines was divided into two parts; a train-
ing set, containing animals born between 2021 May and 
2022 April and a validation set, containing animals born 
between 2022 May and 2022 October. Breeding values 
of the validation animals were estimated both with the 
complete dataset ( EBVc ) and with the partial dataset, 
i.e., without the records of the validation animals ( EBVp ). 
To compare the different trait definitions with regard to 
variance component and breeding value estimation, the 
following three metrics were computed for the validation 
animal: prediction accuracy, bias, and dispersion follow-
ing the methods described in [30] Eqs. (4) to (6). 

where σ̂2a is the estimate of the additive genetic variance 
based on the univariate models and F is the average 
inbreeding coefficient of the validation animals, calcu-
lated as the mean of the diagonal elements of the pedi-
gree relationship matrix minus one. In addition to the 
joint analysis across all lines mentioned here, we also 
estimated the metrics from Eqs. (4) to (6) for the four 
lines with the most data separately.

(4)accuracy =

√√√√cov
(
EBVp,EBVc

)

(
1− F

)
σ̂2a

(5)bias = EBVp − EBVc

(6)dispersion factor =
cov

(
EBVp,EBVc

)

var
(
EBVp

)

Selection intensity
As the traits in our study are either binary or have a 
limited number of levels, we expected some deviations 
of the EBVs from normality. Such deviations from nor-
mality can lead to realized selection intensities (i.e., the 
deviation of the mean of the standardized EBVs from 
the population mean) that deviate from the those calcu-
lated based on selected proportions as tabulated, e.g. in 
[31]. To illustrate this issue, imagine damage as a binary 
quantitative trait with a prevalence of p = 0.1. Suppose 
we select against this trait simply based on an individu-
al’s own phenotype. Then we cannot differentiate among 
the top 90% of the individuals, i.e., the animals that show 
no damage. Hence, all selected proportions smaller than 
0.9 will result in the same selection differential as all the 
top 90% of the animals have the same phenotype. Thus, 
the selection intensity will be much lower for this binary 
trait than for a trait with a more continuously distributed 
phenotype. While the EBVs for such traits will be less dis-
crete than the phenotypes, the discrete nature of pheno-
types can carry over to the EBVs to some degree, and the 
consequences for selection intensity may differ between 
damage trait definitions. To take this issue into account, 
we derived the realized selection intensities when select-
ing the top 5% based on the EBV for each trait by divid-
ing the resulting selection differential, computed as the 
difference in average EBV of the top 5% from that of all 
selection candidates, by the standard deviation of the 
EBV. For this purpose, we used the EBV from the univari-
ate models in Eq. (1) adjusted for the herd-year-season of 
scoring in an additional linear model to adjust for genetic 
trend. We derived the realized selection intensity by 
combining all lines in a joint analysis and also for the four 
lines with the most data available separately.

Response to selection
To compare trait definitions in terms of response to 
selection, accounting for differences in both accuracy and 
selection intensity, we calculated the expected direct and 
correlated responses to selection per generation for each 
trait definition (Table  2). We predicted genetic gains in 
genetic standard deviation units to facilitate comparison 
between traits. To calculate the genetic gain, we used the 
realized selection intensities for 5% selected, as derived 
previously, estimates of the additive genetic standard 
deviations from the univariate models, and the accuracies 
from the LR cross-validation. The accuracies from the LR 
validation method were used as they represent forward 
cross-validation which is relevant in breeding programs. 
Responses to selection were derived following:

Rdirect = idirect*rdirect
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where Rdirect is the direct response, i.e. the response in 
the trait that is being selected for, Rcorrelated is the indirect 
response, i.e. the response in the correlated traits, idirect 
is the selection intensity for the selected trait, rdirect is 
the accuracy of the selected trait, and rg is the estimate 
of the genetic correlation between the traits from the 
across-line models. Note that genetic standard devia-
tions were left out of the formulas because we show the 
results in genetic standard deviation units for compara-
bility. In addition to the joint analysis, we also calculated 
the response to selection in the four lines with the most 
data separately.

Results
In the following sections, we will first present the esti-
mates of the genetic parameters for the seven trait defi-
nitions, both from the within and across-line analyses. 
Then, we will use model derived and cross-validation 
accuracy, dispersion, selection intensity, and predicted 
response to selection to compare the trait definitions.

Genetic parameters
Across line analysis
Table 3 shows the estimates of heritabilities and genetic 
and phenotypic correlations for the seven trait defini-
tions. The heritability estimates ranged from 0.036 to 
0.061, with the lowest estimate for TD01 and the high-
est for SD06. Heritability estimates were larger for the 
original 0–3 scale and for the summed traits than for 
the binary traits, but these differences were not statisti-
cally significant. The phenotypic variances for the traits 
were estimated by summing the estimates for all the vari-
ance components, including herd-year-season of scoring. 
Other studies might choose to include herd-year-season 
effects as fixed and therefore exclude this variance from 
the phenotypic variance. To aid comparison with future 

Rcorrelated = Rdirect*rg studies, heritability estimates where the herd-year-
season of scoring is left out of the phenotypic variance 
can be found in Additional file  1 Table  S1. Estimates of 
the genetic correlation between ear damage (ED01 and 
ED03) and tail damage (TD01 and TD03) ranged from 
0.41 and 0.45, i.e. these two traits are moderately corre-
lated. Estimates of the genetic correlation between ear 
damage and the summed traits (AD01, NBP, and SD06) 
were high (> 0.83). The estimates of the genetic correla-
tion between tail damage and the summed traits were 
slightly lower (> 0.73). The estimate of the genetic cor-
relation between the binary and the original scale traits 
was 0.97 for ear damage and 0.85 for tail damage. The 
estimates of the genetic correlation between the summed 
traits were greater than 0.95. Estimates of phenotypic 
correlations were lower than those of genetic correla-
tions, with one exception (TD03-TD01).

Within line analysis
Table  4 shows estimates of heritabilities based on the 
within-line analyses. The estimates ranged from 0.00 to 
0.10. Traits and lines with higher incidences tended to 
have higher heritability estimates (compare Table  4 and 
Fig. 2). The magnitude of the within-line heritability esti-
mates were in line with those of of the across-line analy-
ses but the standard errors of the estimates were larger 
for the within-line analyses. The estimates for multilevel 
traits were generally lower or similar to the correspond-
ing estimates for the binary traits.

The results of within-line bivariate analyses of the 
four largest lines are in Additional file  1 Tables S2 to 
S5. Some of these analyses showed convergence prob-
lems, as indicated in the corresponding tables, and, 
therefore, some components were constrained. Esti-
mates of the genetic correlation between ear damage 
and tail damage traits ranged from 0.29 to 0.67 for the 
lines for which estimates were obtained (dam line 1, 

Table 3  Estimates of genetic parameters and their standard errors for all the trait definitions from the across-line analyses

Diagonals are the heritabilities, above the diagonals are the genetic correlations, and below the diagonals are the phenotypic correlations. Trait definitions are as 
in Table 2. Note that the values for the two bivariate models (AD01-NBP and TD01–TD03) were estimated while fixing the correlation for litter effects at 0.99 to help 
convergence

ED03 ED01 TD03 TD01 AD01 NBP SD06

ED03 0.050 (0.007) 0.971 (0.010) 0.444 (0.099) 0.409 (0.103) 0.835 (0.040) 0.846 (0.036) 0.893 (0.026)

ED01 0.909 (0.001) 0.044 (0.007) 0.448 (0.103) 0.418 (0.106) 0.847 (0.036) 0.876 (0.030) 0.880 (0.032)

TD03 0.088 (0.007) 0.089 (0.007) 0.046 (0.008) 0.849 (0.033) 0.808 (0.050) 0.779 (0.052) 0.800 (0.043)

TD01 0.083 (0.008) 0.093 (0.008) 0.878 (0.009) 0.036 (0.006) 0.824 (0.043) 0.804 (0.044) 0.730 (0.056)

AD01 0.685 (0.004) 0.755 (0.004) 0.578 (0.005) 0.675 (0.004) 0.048 (0.007) 0.994 (0.002) 0.960 (0.014)

NBP 0.698 (0.004) 0.769 (0.003) 0.617 (0.004) 0.708 (0.004) 0.976 (0.003) 0.051 (0.007) 0.952 (0.013)

SD06 0.798 (0.003) 0.731 (0.003) 0.670 (0.004) 0.581 (0.006) 0.856 (0.003) 0.889 (0.003) 0.061 (0.008)
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dam line 3, and sire line 2). Whether ear or tail damage 
was more correlated with the summed damage traits 
differed between lines.

Effect of sex
A significant interaction between line and sex was found 
both for ear and tail damage. To study this effect, we fit-
ted the model (Eq. (1)) separately for each line. For tail 
damage, only sire line 3 showed a significant sex effect 
(p < 0.001), with gilts having less tail damage than boars, 
with an estimated effect of − 0.181 on the 0–3 scale 
(TD03) and − 0.087 on a binary scale (TD01). For ear 
damage, only dam line 3 showed a significant sex effect (p 
< 0.001), with gilts having more ear damage than boars, 
with an estimated effect of 0.214 on the 0–3 scale (ED03) 
and 0.076 on a binary scale (ED01). Based on these 
results, we conclude that the effect of sex on ear and tail 
damage is line dependent.

Effect of age at scoring
The linear effect of age at scoring was significant for 
all traits, except for ED03, for which it was nearly sig-
nificant (p = 0.051). Table  5 shows the estimates of 
the age effect for each trait definition, with the cor-
responding standard errors. We also fitted a quadratic 
effect of age at scoring on the damage traits. However, 
because the differences between the quadratic and lin-
ear models were minimal for the range of scoring ages 
in our dataset and the estimates of genetic parameters 
did not change, we kept the model with a linear effect.

Validation
Model derived accuracy
The mean accuracies of EBVs based on the reported 
standard errors from the univariate models ranged from 
0.430 to 0.488. Model derived accuracies were lowest for 
TD01 and highest for SD06 (see boxplots in Fig. 3).

Five‑fold cross‑validation
Table  6 shows the mean accuracies and dispersion esti-
mated based on the five-fold cross-validation with ran-
dom group assignment. The mean accuracy ranged from 
0.409 to 0.572 and the mean dispersion ranged from 
0.974 to 1.038. ED03 had the highest accuracy, followed 
by SD06. The tail damage traits (TD03 and TD01) had 
the lowest accuracy. The mean accuracies were lowest for 
the binary definitions. The mean dispersion was close to 
one for all traits, so the EBVs were not under- or overd-
ispersed. The results of cross-validation scenarios based 
on grouping full-sibs or half-sibs into the same predic-
tion and validation groups are in Additional file 1, Tables 
S6-7. The mean accuracy ranged from 0.357 to 0.539 for 
the full-sib grouping and from 0.142 to 0.371 for the half 
sib grouping. Most of the traits showed an overdispersion 
of EBVs with the half-sib grouping.

LR validation
In the forward validation, the bias was negligible and 
ranged from − 0.042 to 0.024 genetic standard deviation 
units, the accuracy ranged from 0.273 to 0.357, and the 
dispersion ranged from 0.907 to 1.178 (Table  7). SD06 
had the highest accuracy and TD01 the lowest. For all 
trait definitions, the accuracies were lower for the binary 

Table 4  Estimates of heritabilities and their standard errors based on the within-line analysis

Trait definitions are as in Table 2. Note that in sire line 3 the prevalence of ear damage was very low (5/1663), therefore no genetic parameters were estimated for the 
ear damage traits

Dam line 1 Dam line 2 Dam line 3 Sire line 1 Sire line 2 Sire line 3

ED03 0.071 (0.020) 0.050 (0.043) 0.024 (0.008) 0.014 (0.024) 0.010 (0.006) –

ED01 0.077 (0.021) 0.050 (0.043) 0.024 (0.008) 0.014 (0.024) 0.018 (0.008) –

TD03 0.044 (0.014) 0.023 (0.035) 0.010 (0.006) 0.010 (0.031) 0.030 (0.009) 0.096 (0.057)

TD01 0.045 (0.015) 0.028 (0.034) 0.015 (0.007) 0.001 (0.023) 0.039 (0.009) 0.051 (0.046)

AD01 0.083 (0.021) 0.063 (0.043) 0.015 (0.007) 0.009 (0.024) 0.043 (0.011) 0.040 (0.046)

NBP 0.095 (0.023) 0.080 (0.044) 0.025 (0.009) 0.009 (0.024) 0.033 (0.009) 0.027 (0.044)

SD06 0.086 (0.022) 0.070 (0.044) 0.026 (0.009) 0.005 (0.023) 0.020 (0.007) 0.099 (0.058)

Table 5  Effect of age at scoring on the different trait definitions

Trait definitions are as in Table 2. The effects in the table refer to the estimated increase in the damage score per increase in age at scoring in days. The results shown 
here are based on combining all lines in one analysis

ED03 ED01 TD03 TD01 AD01 NBP SD06

Effect (s.e.) 0.00107 (0.0005) 0.00076 (0.00023) 0.00126 (0.00041) 0.00068 (0.00021) 0.00113 (0.00029) 0.00139 (0.00033) 0.00224 (0.00067)
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trait definitions than their multilevel equivalents. Esti-
mates for bias, accuracy, and dispersion for the lines with 
more data are in Additional file 1 Tables S8–11.

Selection intensity
Table  8 shows the realized selection intensities for a 
lower-tail selected proportion of 5% based on combining 

all the lines. For 5% selected, the selection intensity 
based on the standard normal distribution is 2.063. For 
three traits (ED03, ED01, and SD06) the realized selec-
tion intensity was greater than the tabulated value. This 
is due to a positive excess kurtosis of the distribution of 
the EBVs of these traits. For the other traits, the real-
ized selection intensities were lower than the tabulated 
values. Table  8 also shows that binary traits had lower 

Fig. 3  Boxplots of model derived accuracies by trait. Trait definitions are as in Table 2. Values that are 1.5 times the inter quartile range lower 
(higher) than the first (third) quartile are shown as outliers. The results shown here are based on combining all lines in one analysis

Table 6  Mean accuracies and dispersions and their standard 
errors based on 100 replicates of five-fold cross-validation

Trait definitions are as in Table 2. All standard errors were smaller than 0.01. The 
results shown here are based on combining all lines in one analysis

Accuracy Dispersion

ED03 0.572 1.038

ED01 0.502 1.008

TD03 0.415 0.975

TD01 0.409 0.974

AD01 0.469 0.988

NBP 0.484 0.993

SD06 0.541 1.016

Table 7  Results from forward validation

Trait definitions are as in Table 2. Bias is expressed in genetic standard deviation 
units. The results shown here are based on combining all lines in one analysis

Bias Accuracy Dispersion

ED03 − 0.042 0.350 1.178

ED01 − 0.040 0.318 1.112

TD03 0.024 0.281 0.985

TD01 0.019 0.273 0.907

AD01 − 0.025 0.305 0.949

NBP − 0.016 0.317 0.975

SD06 − 0.021 0.357 1.071
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selection intensities than their more continuous coun-
terparts. Realized selection intensities for within-line 
analyses for the lines with more data available are in 
Additional file  1 Table  S12. Note that direct compari-
son of selection intensities for the binary and multilevel 
traits is not always straightforward, as the multilevel 
trait might lead to a distribution with a longer upper tail, 
which leads to fewer animals in the lower tail of the dis-
tribution. This effect was most visible for the tail damage 
traits in sire line 3, which had better differentiation of 
estimated breeding values on the right side of the distri-
bution for TD03. However, since the desired direction of 
selection is towards less damage, the selection intensity 
was higher for the binary trait TD01 in this line.

Response to selection
Table  9 shows the predicted direct and correlated 
responses to selection, expressed in genetic standard 
deviation units. To calculate these, we used the following 
estimates from the across-line analyses: realized selec-
tion intensities from Table 8, accuracies from the forward 
validation of Table 7, and the estimated genetic correla-
tions from Table  3. For the ear damage traits, selection 
on ED03 showed the highest response. For all other 
traits, selection on SD06 showed the highest response. 
This shows that the differences in accuracy and selection 
intensity, in combination with high genetic correlations, 
favours indirect selection for most of the studied traits. 
Estimates of responses to selection in the four lines with 
the most data are in Additional file 1 Tables S13 to 16.

Discussion
Heritability
In this study, we have shown that ear and tail damage 
traits are lowly heritable, with heritability estimates rang-
ing from 0.04 to 0.06 (Table 3), when all lines were ana-
lysed jointly, and from 0.00 to 0.10 for the within-line 
analyses (Table  4). These estimates are similar to those 
reported for binary tail damage in the Tai Zumu line (a 
Meishan-Large White composite line) [23, h2 = 0.06], for 
binary tail damage in purebred German Landrace and 
German Landrace x Pietrain crosses from different mod-
els [32, h2 = 0.01–0.46], and based on medication reports 
for tail biting injuries in a Large White population [24, 
h2 = 0.09]. Our heritability estimates are much smaller 
than estimates of ear (h2 = 0.46) and tail (h2 = 0.16) dam-
age reported by Gorssen et  al. [25], possibly due to the 
difference in the setup of the two studies. In the study of 
Gorssen et  al. [25], individuals were evaluated multiple 
times for ear and tail damage throughout the finishing 
phase and the pens were composed of full- or half-sibs. 
In such a setup, the heritability estimate also captures 
part of the social genetic variance [33, 34] and, as a result, 
their heritability estimates are expected to be between 
the direct heritability (h2) and the total heritable variance 
as a proportion of the phenotypic variance (T2) [35].

Genetic correlations
The estimates of genetic correlations between tail and ear 
damage based on the across-line analyses ranged from 
0.41 to 0.45 (Table  3), meaning that these are different 

Table 8  Realized selection intensities based on the actual distribution of EBVs for a lower-tail selected proportion of 5%

Trait definitions are as in Table 2. The corresponding selection intensity from the standard normal distribution is 2.063. The results shown here are based on combining 
all lines in one analysis

Trait ED03 ED01 TD03 TD01 AD01 NBP SD06

Intensity 2.237 2.071 1.904 1.788 2.036 1.963 2.137

Table 9  Predicted direct and correlated response to selection

Selection was based on the traits mentioned in the columns. The rows show the response in all the traits. For example 0.760 is the correlated response in ED01 when 
selecting on ED03. The diagonals are direct responses, and the off diagonals are correlated responses. Trait definitions are as in Table 2.The highest value per row is 
bold. The results shown here are based on combining all lines in one analysis

Selection trait

ED03 ED01 TD03 TD01 AD01 NBP SD06

Response trait ED03 0.783 0.639 0.237 0.199 0.519 0.527 0.681

ED01 0.760 0.658 0.240 0.204 0.526 0.545 0.671

TD03 0.347 0.295 0.535 0.414 0.502 0.485 0.610
TD01 0.320 0.275 0.454 0.488 0.512 0.501 0.557
AD01 0.654 0.558 0.432 0.402 0.621 0.618 0.732
NBP 0.663 0.577 0.417 0.393 0.617 0.622 0.726
SD06 0.699 0.579 0.428 0.356 0.596 0.592 0.763
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traits. Although the genetic correlation estimates varied 
largely between lines in the within-line analyses, positive 
estimates were also observed in the lines with most data 
available (see Additional file 1 Tables S2 to S5). Gorssen 
et al. [25] reported a genetic correlation between ear and 
tail damage of a similar magnitude (0.32). However, we 
emphasize that the genetic difference between ear and 
tail damage, both scored at the receiver level, does not 
imply that ear and tail biting behaviours themselves are 
genetically different traits. In other words, the genetic 
propensity to perform tail vs. ear biting might still be 
very similar. Some studies have reported that pigs that 
display more tail biting also perform more ear biting 
[27, 36]. Goossens et  al. [37] showed that more ear bit-
ing behaviour occurred on farms with pigs with shortly 
docked tails, indicating that the motivation to perform 
the behaviour could be similar for ear and tail biting. 
Future studies on large scale behaviour recordings could 
answer whether tail biting and ear biting indeed have a 
similar genetic basis.

Phenotype definition
In this paper, we assume that damage is the result of 
harmful behaviour performed by pen mates. However, 
the phenotype we observe is a combination of different 
origins of damage, as we also included necrosis. Necrosis 
can occur independent of harmful behaviour (reviewed 
by [20, 38]). Furthermore, necrosis is hypothesised to 
promote biting behaviour, as the victims might find it 
relieving when other pigs manipulate their lesions [39]. 
Therefore, the cause and effect relationship between bit-
ing behaviour and damage is not fully clear and may go in 
both directions. In addition, ears or tails can occasionally 
also be damaged for other reasons.

Effect of sex on damage
Studies comparing the occurrence of tail damage in 
female and intact male pigs, either in mixed-sex or sin-
gle-sex groups have yielded inconsistent results [5, 40]. 
In this study, sex affected tail damage in one (boar) line 
only, with higher damage scores for boars than for gilts. 
This boar line contained both mixed-sex and single-sex 
groups and it is, therefore, difficult to disentangle who 
the biters were. We tested pen composition as a fixed 
effect, but it was not significant and left out of the final 
models. Conversely, in one of the dam lines, ear damage 
was higher for gilts than for boars. In other lines, the sex 
effect on ear damage was not significant.

Comparison of trait definitions
One of the aims of this study was to compare trait defi-
nitions to help breeders decide which trait(s) to meas-
ure and obtain EBVs for. We base our recommendations 

on the assumption that ED03 and TD03 are the traits 
in the breeding goal and, therefore the traits for which 
genetic gain should be maximized. This was based on the 
assumption that the difference between the phenotypes 1 
and 3 on the original scale for ear and tail damage is rele-
vant for animal welfare and this difference between levels 
would be lost when using binary trait definitions.

The across-line analyses showed that multilevel traits 
are superior compared to their binary counterparts with 
regard to heritability, accuracy, and selection intensity. 
However, for breeders, the most important criterion 
is response to selection. Table  9 shows that the highest 
response in ED03 can be achieved by direct selection, as 
ED03 had the overall highest selection intensity and its 
accuracy and heritability estimates were very close to 
those of SD06. For TD03 the highest gain was achieved 
by selecting on the summed trait SD06. For TD03 indi-
rect selection based on SD06 outperformed direct selec-
tion because TD03 had lower accuracy, heritability, 
and selection intensity than SD06 and it also had a high 
genetic correlation with SD06. The response in ED03 
when selecting on SD06 was 87% of the response possible 
when selecting on the trait itself. Thus, selecting on SD06 
instead of ED03 might be satisfactory for breeding com-
panies, especially if there is interest to limit the number 
of traits in the genetic evaluation. In conclusion, in case 
only one trait is chosen for genetic evaluation, we recom-
mend using SD06. However, selection on the summed 
trait SD06 does not allow breeders to weigh traits inde-
pendently in an index. To optimize response in both tail 
and ear damage, EBVs for both traits should ideally be 
included in a weighted index, rather than selecting for the 
summed records for both traits. In addition, the weights 
for ear and tail damage could be different if they are only 
based on economic values. Tail damage is associated with 
carcass condemnation [8–10, 41], resulting in a loss of 
revenue and, therefore, has a higher economic value than 
ear damage. However, as the damage traits in question 
are welfare traits, their weights should not be based on 
profit only. The objective of this paper was to investigate 
how the summed traits behave in comparison to the indi-
vidual traits, rather than giving recommendations about 
index weights on ear damage versus tail damage.

Current and future phenotyping
The phenotyping protocol used in this study was on a 
0 to 3 scale, measured at the end of the testing phase. 
This scale allows for quick phenotyping on farms. We 
used this scale and also created some combinations and 
simplifications of it to compare trait definitions. When 
using a linear model for phenotypes on the 0 to 3 scale, 
we assumed that the difference between scores 0 and 1 is 
the same as between 1 and 2, which may not be correct 
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from a welfare point. Refining the scale with a more 
strict phenotyping protocol could make the scale more 
fair and linear. However, this refinement could make the 
phenotyping more difficult, and as a result, no longer be 
feasible in practice. Computer vision could provide an 
alternative that requires less labour. In that case, not just 
the victims but also the performers of harmful behaviour 
could be identified, and longitudinal data throughout the 
testing phase could be obtained. Some developments 
have already been made in this area. For example, an 
algorithm is available for tail biting detection when the 
victim reacts by moving away [42]. However, tail biting 
can result in different reactions of the victims and often 
victims do not visibly react at all (see ethogram in [36]). 
Therefore, future algorithms must be able to detect tail 
biting regardless of the victim’s reaction. Apart from 
behaviour detection, (re)identification of individual pigs, 
which is required for phenotyping, is challenging [43].

Validation methods
In this study, we used two types of validation of EBV, a 
five-fold cross-validation and the LR forward valida-
tion. The main difference between these two methods is 
the way the animals are divided between the validation 
and the test set. In the five-fold cross-validation, all age 
groups can end up in the validation set, whereas in the 
LR method, the validation set only includes the youngest 
animals. As a result, animals in both sets do not have the 
same random pen-group or herd-year-season effects in 
the LR method, while this does not hold for the five-fold 
cross-validation. Therefore, we adjusted the validation 
phenotypes in the five-fold cross-validation for all ran-
dom effects, except for the EBV. Results without adjust-
ment showed strong underdispersion of EBVs (results 
not shown). Furthermore, we used the full genetic model 
to estimate the random effects we adjusted for, to mini-
mize the confounding of especially the pen-group effect, 
which explained the most variance, and the genetic 
effect. A similar method of correcting for random effects 
in the validation phenotypes was used by García-Balles-
teros et al. [44] in endurance horses and by Gorssen et al. 
[45] in pigs. This illustrates the importance of choices 
when adjusting the raw phenotypes for random effects in 
k-fold cross-validations. The comparison of the forward 
and the random five-fold cross-validation shows that the 
dispersion was close to one for both validation methods. 
However, the estimated accuracies were lower with the 
forward validation. This difference is probably due to the 
presence of sibs of validation individuals in the training 
data with random five-fold cross-validation, which is lim-
ited in the forward validation. To verify this, we ran two 
additional five-fold cross-validation scenarios: one where 
all full-sibs were in the same group (FS scenario) and one 

where all half-sibs (HS scenario) were in the same group 
(Additional file 1 Tables S6 to S7). Thus, the information 
for EBV in validation comes from half-sib and weaker 
relationships in the FS scenario and from relationships 
weaker than half-sib relationships  in the HS scenario 
comes. The accuracy of the LR validation was between 
these two extra scenarios for all traits, except for ED03, 
which is reasonable as the validation and training indi-
viduals had 66 sires in common in the LR validation.

Joint analysis of six lines
This study highlights the challenge of dealing with small 
datasets. Our dataset consisted of around 33 K animals 
from six lines, with unequal distribution of the num-
ber of animals between the lines (Table 1). We chose to 
combine all lines in one analysis and to correct for a line 
effect. Hence, we assumed that all lines had the same 
genetic variance. We used pedigree relationships that did 
not include across-line relationships. If we had used a 
genomic relationship matrix, then relationships between 
lines could have been included. However, in that case, we 
would have had to either assume that the SNP effects are 
the same for all lines or estimate the genetic correlation 
between the lines or between SNP effects in the differ-
ent lines. Furthermore, the use of a genomic relationship 
may bias the heritability estimates if there is selective 
genotyping [46]. Therefore, we do not expect that using 
a genomic relationship matrix would yield more accurate 
variance component estimates than the ones we present 
here.

The current method of combining all lines assumes 
that the genetic parameters are the same for all lines and 
that there are differences only in trait means between 
the lines. However, lines could have different variances, 
as they have different selection histories. However, the 
within-line analyses showed only small differences in the 
heritability estimates between lines. Counterintuitively, 
in the within-line analyses, we observed lower heritability 
estimates for the multilevel traits compared to the binary 
ones, though the differences were not statistically signifi-
cant. In addition, the bivariate models had convergence 
problems for several trait combinations, which makes 
drawing conclusions from the current within-line models 
difficult.

Realized selection intensity
Our results show that traits differ not only in accuracy of 
EBV, but also in selection intensity, and that this has to be 
considered when choosing the optimal trait. Using traits 
with a few levels can result in selection intensities when 
selecting on EBV to differ from those expected based 
on the standard normal distribution. For some traits, 
such as ED03, the realized selection intensity was higher 
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than expected. However, for other traits, like TD03, the 
realized selection intensity and thereby the potential 
to improve the trait was lower than expected. Realized 
selection intensities that are higher than expected are 
in our case probably an artefact of treating the lines as 
one population with a single genetic variance. Based on 
EBV derived using the within-line analyses, the realized 
intensities never exceeded the theoretical expectation, 
although the differences between trait definitions were 
also present within the lines. However, the differences in 
realized selection intensities between traits of different 
number of levels, i.e. binary or multilevel, were not large 
and not always consistent with the across-line analysis. 
Whether the multilevel or the binary trait has a higher 
selection intensity is probably dependent on the preva-
lence of damage. In our study, selection was towards the 
less differentiated side of the trait, i.e. towards no dam-
age. In case the direction of selection is towards the more 
differentiated side of the scale, the comparison of selec-
tion intensities of binary and multilevel traits might give 
different results.

Social genetic effects
An important aspect that this study has not taken into 
account is the role of social or indirect genetic effects on 
the evaluated traits. The damage phenotypes we meas-
ured here are the result of an interaction between pigs 
and are thus affected by both the tendency of the victim 
to be bitten and by the tendency of pen mates to perform 
biting. Therefore, two genetic effects that affect tail and 
ear damage can be distinguished, a direct genetic effect 
(DGE) and a social genetic effect (SGE) [47, 48]. The DGE 
represents the effects of the genes of the focal individual 
(i.e. the victim) on the damage of its own tail and ears, 
whereas the SGE represents the genetic effects of the pen 
mates on the damage phenotype of the focal individual, 
which reflects the damaging behaviour of the pen mates. 
Social genetic models are a statistical solution to evalu-
ate the biting behaviour without having observations 
on the actors themselves. Past studies have used social 
genetic effect models to estimate genetic parameters of 
harmful behaviours. For example, Leite et al. [49] used a 
binary skin damage score, Angarita et  al. [50] looked at 
skin lesion count 24 h post mixing, and Canario & Fla-
tres-Grall [23] used binary tail damage. In the models 
used in the current study, the SGE are mostly captured 
by the random pen-group effect, as the pen-group effect 
also absorbs the social environment that the pen mates 
share. Thus, we do not expect that the presence of SGE 
will have a had large effect on the estimates for DGE. 
Nevertheless, we did not capture the heritable variance in 
tail and ear damage due to SGE in the current analysis. In 
a future study, we will include SGE, to estimate the total 

heritable variation that is available for breeding for lower 
tail and ear damage. The use of social genetic models will 
also allow us to estimate the genetic correlation between 
the direct and the social genetic effect (e.g., [51]), which 
quantifies whether selecting on the DGE also leads to a 
correlated response in the SGE. In case of a positive cor-
relation, selecting against damage would also reduce the 
harmful behaviour. In case of a negative correlation, how-
ever, individual selection against damage using groups 
composed at random with respect to relatedness is 
expected to increase the harmful behaviour [51, 52].

Conclusions
Tail and ear damage in pigs are heritable traits with herit-
ability estimates ranging from 0.04 to 0.06 based on the 
across-line models. Tail and ear damage were estimated 
to have a moderate genetic correlation, ranging from 0.41 
to 0.45 based on the across-line models, indicating that 
they are genetically distinct. The accuracy of EBVs was 
moderate and mostly higher for the traits on the original 
0–3 scale compared to their binary versions. The disper-
sion error of the EBVs was minor and there was no evi-
dence of bias with the current models. For ear damage on 
the original scale the highest response to selection can be 
expected when selecting on the trait itself, whereas for 
tail damage on the original scale, selection on summed 
damage showed the highest gain. Altogether, results from 
this study show that genetic improvement of the direct 
genetic effect of ear and tail damage is possible.
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