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Abstract: Assessing nitrogen (N) status in potato (Solanum tuberosum L.) during the grow-
ing season is crucial for optimizing fertilizer application, aligning it with crop demand,
and improving N use efficiency, particularly in Western Canada, where extensive potato
cultivation supports the agricultural industry. This study evaluated the performance of
three machine learning (ML) models—Random Forest (RF), Support Vector Machine (SVM),
and Gradient Boosting Regression (GBR)—for predicting potato N status and examined the
impact of feature selection techniques, including Partial Least Squares Regression (PLSR),
Boruta, and Recursive Feature Elimination (RFE). A field experiment was conducted in
2023 and 2024 near Carberry, Manitoba, Canada, with plots receiving different N rates
from various fertilizer sources. Multispectral drone imagery was collected throughout the
growing seasons, and key vegetation indices (VIs) related to plant N concentration were
extracted for model training. Among the VIs, Cl green exhibited the highest correlation
with petiole NO3-N concentration (PNC). The results indicate that RF outperformed SVM
and GBR, achieving the highest coefficient of determination (R? = 0.571) and the lowest
mean absolute error (MAE = 0.365%) using the RFE feature selection method. Feature
selection enhanced model performance in specific cases, notably RF with RFE, and both
SVM and GBR with Boruta. These findings highlight the potential of ML-based approaches
for in-season potato N monitoring and emphasize the importance of feature selection in
enhancing predictive accuracy.

Keywords: feature selection; machine learning models; precision agriculture; remote
sensing; vegetation indices

1. Introduction

To meet future food demands driven by population growth without increasing crop-
land or environmental risks, potato, the fourth most important food crop, could play a
crucial role [1]. A hectare of potatoes can generate two to four times the caloric output
compared with the same area of grain crops [2]. However, maximizing potato productivity
requires effective nitrogen (N) management, as N is the primary limiting nutrient in potato
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cropping systems [3]. Potato crops typically exhibit low N uptake efficiency, ranging from
40% to 60% [4] because they have a shallow rooting system that limits their ability to fully
absorb N, making them susceptible to losses through immobilization, volatilization, leach-
ing, and runoff, especially with poor agronomic practices [5]. Insufficient N causes early
canopy senescence and reduced yield, whereas excessive N leads to excessive vine growth,
reduced tuber yield, and delayed maturity [6]. Therefore, a well-planned N fertilizer
application strategy supports the normal growth of potato plants and prevents increased
production costs and environmental pollution from excessive N, which is crucial for the
sustainable development of the potato industry [7].

Petiole nitrate-N (NOj3-N) concentration (PNC) is currently used to guide N fertilizer
applications in potato production, but this approach is limited by point sampling and does
not capture fine-scale spatial variability within the field [8]. To address this limitation,
precision farming has gained attention for its ability to manage crop and soil variability
at a finer scale, helping farmers optimize yield, reduce costs, and increase profitability [9].
Remote sensing (RS) offers a cost-effective, non-destructive method to estimate plant
N concentration by analyzing canopy reflectance, which is influenced by chlorophyll
levels, thus improving nutrient management by addressing spatio-temporal variability [10].
Chlorophyll content, as a key indicator of photosynthetic activity, is closely related to N
concentration in green vegetation and has therefore been widely used as an indirect proxy
for assessing plant N status [11]. Unmanned aerial vehicles (UAVs), also known as drones,
are valuable in RS for precision agriculture (PA), providing high-resolution data that are
crucial for monitoring N levels [12,13]. Drones, as a type of UAV, offer distinct advantages
in PA by providing high-resolution multispectral imagery with greater flexibility in timing
compared with manned aircraft [14]. A study conducted in Denmark showed that UAV-
based multispectral data outperformed satellite (Sentinel-2) and handheld (RapidScan)
sensors in assessing potato N status, primarily due to the higher spatial resolution of
the UAV images [10]. Potato leaf chlorophyll content could be reliably estimated using
reflectance near the 700 nm red-edge position, achieving an R? value of approximately
0.86 [15]. Spectral reflectance-based vegetation indices (VIs) from crop canopies are widely
used in RS to monitor N content in crops [16]. VIs are created to emphasize specific
characteristics of vegetation while minimizing the influence of other factors [17]. Numerous
VIs (including ratio, normalization, and derivative indices) and crop growth indices (such
as crop N/ chlorophyll concentration, crop N/chlorophyll accumulation, leaf area index
(LAI), and biomass) have been developed globally to diagnose crop N status by identifying
sensitive bands in the canopy reflectance spectrum [18]. Among these VIs, the ratio
vegetation index (RVI) and Normalized Difference Vegetation Index (NDVI) are the most
common [19]. UAV monitoring has been used to assess the N status of Ranger Russet
potatoes across N rates from 0 to 449 kg ha™!, demonstrating that NDVI can predict leaf
chlorophyll content with an R? of up to 0.85. However, NDVI often saturates at high
canopy densities due to red reflectance saturation [12]. Red edge-based VIs are resistant to
saturation and provide reliable information on crop chlorophyll and N concentrations [20].

The primary goal of PA in cropping systems is to enhance decision-making by pro-
viding spatial and temporal information, enabling targeted management of plant health
and nutrient levels [21]. Machine learning (ML) offers a valuable and supplementary
method to crop simulation models by integrating a range of factors affecting crop growth,
bypassing the need for intricate plant physiological details [22]. ML resolves complex
nonlinear problems by integrating data from multiple sources, as evidenced by its suc-
cessful application to agricultural RS inversion [23]. Effective N management necessitates
a robust correlation between RS data and crop N status, and Random Forest (RF) pro-
vides a flexible, non-parametric approach that avoids overfitting and is simpler compared
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with other methods like artificial neural networks [10]. Several studies have compared
various ML models for predicting N levels in crops, consistently finding that RF delivers
superior performance [24-26]. The Support Vector Machine (SVM) is another widely used
ML approach for N status prediction. SVM has been successfully applied in agricultural
research, such as predicting soil moisture and nitrate-N content in time-series data [27],
estimating canopy N weight in corn using UAV multispectral images [28], and evaluating
soil nutrient levels alongside artificial neural networks [29]. Gradient Boosting is another
ensemble learning technique that sequentially builds weak learners to minimize errors.
While Gradient Boosting has been widely applied in agricultural modeling tasks such as
yield prediction [30,31], studies focusing specifically on N status prediction remain limited.

A critical scientific question in PA is how to optimize ML models for accurate and
efficient prediction of PNC using high-resolution remote sensing data. Feature selection in
ML algorithms helps reduce data redundancy and prevent overfitting, thereby enhancing
the accuracy of predictions for crop parameters such as yield and leaf chlorophyll con-
centration [32]. The process of feature selection involves choosing a subset of the original
features by evaluating their importance, aiming to enhance both model performance and
interpretability [33].

Despite growing interest in UAV-based remote sensing and ML approaches for crop N
management, few studies have comprehensively evaluated the effectiveness of different
ML models and feature selection techniques for in-season potato N prediction using high-
resolution drone imagery. In particular, there is a lack of research focused on Canadian
agroecosystems, where site-specific nutrient management strategies are essential due to
spatial variability in the soil and climate conditions [34]. In addition, our study introduces
a broader spectrum of N management strategies compared with previous research. By
incorporating 15 distinct N fertilization treatments, including various rates, sources, and
application timings, we aimed to capture a wider range of in-field N variability. This
diversity improves model learning and allows for more nuanced exploration of the rela-
tionship between RS signals and PNC. This study addresses this gap by (1) investigating
the relationships between drone-derived VIs (as proxies for chlorophyll content) and PNC
in potato, (2) developing and comparing the performance of three supervised ML models
(RE, SVM, and Gradient Boosting Regression (GBR)) for predicting in-season PNC using
high-resolution multispectral imagery, and (3) systematically evaluating the effectiveness
of three distinct feature selection techniques—Partial Least Squares Regression (PLSR),
Boruta, and Recursive Feature Elimination (RFE)—in improving model accuracy and in-
terpretability across various ML algorithms. By achieving these objectives, this research
aimed to improve N management in potato cultivation through PA in Western Canada.
Furthermore, the drone-based modeling framework developed in this study provides a
scalable pathway for applying similar methodologies to large-scale nutrient monitoring
using high-resolution satellite imagery across diverse agricultural systems.

2. Materials and Methods

To illustrate the comprehensive approach of this research, Figure 1 provides a
schematic representation of the study’s workflow. This flowchart details the sequence
of the methodologies employed, including data acquisition and the supervised ML ap-
proaches utilized for N status prediction.
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Figure 1. Workflow for petiole NO3-N concentration (PNC) prediction using multispectral drone
imagery and machine learning (ML). PCC, Pearson’s correlation coefficient; PLSR: Partial Least
Squares Regression; RFE, Recursive Feature Elimination; RF, Random Forest; SVM, Support Vector
Machine; GBR, Gradient Boosting Regressor; VIs, vegetation indices.

2.1. Study Area and Field Trials

The experiment was carried out during the 2023 (49°55'53.33”N, 99°23/21.20""W)
and 2024 (49°55'53.85"'N, 99°23'26.67""W) growing seasons in adjacent fields in Carberry,
Manitoba (Figure 2). The primary crop rotation in this area includes wheat, canola, and
potato. The study area is located in the prairie ecozone of Canada, part of North Amer-
ica’s Great Plains. The climate in the region is characterized as a subhumid to semiarid,
featuring short, warm summers and long, cold winters, with low levels of precipitation
and high evaporation.
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Figure 2. Study site and field trial layouts. (A) Location of the experimental site in Carberry,
Manitoba, Canada, marked with a red “*”. (B) Plot arrangement for the 2023 field trial. (C) Plot
arrangement for the 2024 field trial, with labeled plots (A, B, C, etc.) representing different nitrogen
(N) treatment levels.

The experiment was designed using a Randomized Complete Block Design (RCBD)
to randomly assign treatments to the experimental units, thereby minimizing potential
bias. Each treatment plot measured 12 m (m) in length and consisted of four rows, 4 m in
width, with 1 m between rows. Russet Burbank, a leading potato cultivar in North America,
widely cultivated and stored for both fresh market sales and frozen processing [35], was
used in this study.
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In 2023, the crop was grown under 6 N fertilization treatments and 1 unfertilized con-
trol, with 5 replicates per treatment, totaling 35 experimental plots. This initial trial served
as a preliminary study to evaluate the feasibility of using UAV-based multispectral imaging
for in-season PNC prediction. On the basis of the insights gained, the 2024 experiment
was expanded to include 15 N fertilization treatments, each with 4 replicates, resulting in
60 experimental plots. This expansion allowed for a broader assessment of treatment effects
and improved model robustness by capturing greater variability in plant responses. This
study investigated N treatments using urea, environmentally smart N (ESN), ammonium
sulfate (AS), and super urea (SuperU), applied at various rates and timings, including
pre-planting and top-dressing, as detailed in Table 1.

Table 1. Nitrogen application rates and sources for the 2023 and 2024 field trials.

2023 2024
Treatment
Source Rate (kg/ha) Source Rate (kg/ha)

A Control 0 AS 105
B ESN 112 Urea + AS* 168
C ESN 168 Urea + AS 197
D ESN 313 Urea + AS* 168
E SuperU 112 Urea + AS 235
F SuperU 168 ESN + AS 156
G SuperU 313 SuperU + AS 156
H - - ESN + AS * 235
I - - ESN + AS* 235
J - - SuperU + AS 235
K - - Control 0

L - - ESN 112
M - - ESN 168
N - - SuperU 112
O - - SuperU 168

Fertilizer sources: environmentally smart nitrogen (ESN), ammonium sulfate (AS), urea, and SuperU (a stabilized
urea containing urease and nitrification inhibitors). * In 2024, Treatments B and D received the same pre-fertigation
nutrient applications but differed in fertigation strategies, as they were part of separate experimental trials.
Treatments H and I received the same total nitrogen rate by row closure; however, Treatment H received 70% at
pre-planting and 30% at top-dressing, whereas Treatment I received the full amount at pre-planting.

Soil properties such as organic matter, pH, cation exchange capacity, and macronutrient
levels of nitrogen (N), phosphorus (P), potassium (K), and sulfur (S) were analyzed to
characterize the experimental sites and are summarized in Table 2. All plots were provided
with adequate irrigation and essential nutrients, including P, K, S, and calcium (Ca), to
prevent nutrient deficiencies. Soil and petiole samples were collected using standardized
procedures to ensure consistency and representativeness across all plots. Soil samples
were taken at standard depths commonly used for nutrient analysis. Petiole samples were
collected at the row closure stage to assess plant nutrient status. The fourth petiole from
the top of each plant was selected, leaflets were removed, and 30 petioles were collected
per plot (not assigned individual geo-referencing) to ensure representative sampling of
the plot, as recommended for potato nutrient monitoring [36]. All samples were properly
labeled and packaged for analysis at Agvise Laboratories (USA), where the soil and petiole
samples were analyzed for nutrient status using standardized laboratory protocols [37].
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Table 2. Soil analysis results for the experimental field before planting.

Parameters 2023 Results 2024
Sandy loam-sand Sandy loam-sand
Texture c?iay loam ! cﬁay loam '
Organic matter 1.8% 1.7%
pH 54 6

Cation exchange capacity, mEq-L. ! 8.4 8.4
Available N (0-30 cm), kg-ha~! 10.3 30.4
Available K (0-15 cm), kg-ha™! 467.1 191.9
Available Olsen P (0-15 cm), kg-ha ™! 74.0 61.9
Available S (0-30 cm), kg-ha~! 29.8 84.2

2.2. Image Acquisition and Management

The multispectral images were captured 37 days after emergence in the 2023 growing
season and 42 days after emergence in 2024, both during the vegetation growth phase. These
imaging dates were aligned with petiole sampling to ensure consistency in data collection.
The images were acquired under cloudless weather conditions using a DJI Mavic 3M
drone (DJI Group, Ltd., Shenzhen, China), equipped with four SMP multispectral cameras
(green (G): 560 £ 16 nm; red (R): 650 = 16 nm; red edge (RE): 730 & 16 nm; near-infrared
(NIR): 860 £ 26 nm) and a sunlight sensor to enhance the accuracy and consistency of
the data under dynamic field conditions. Each camera has a native sensor resolution of
approximately 4.4 mm per pixel.

To maximize image quality and spatial detail, all flights were conducted at a consistent
altitude of 15 m above ground level, with a flight speed of approximately 5 m/s to minimize
motion blur. The along-track (front) and cross-track (side) overlaps were set to 80% and 70%,
respectively, to ensure comprehensive image coverage and enable accurate mosaicking. The
camera was oriented at a nadir (90° downward) angle for vertical image capture. Under
these acquisition settings, the effective ground sampling distance (GSD) was approximately
1.27 cm/pixel for the multispectral imagery and 0.58 cm/pixel for RGB imagery. This
distinction between the sensor’s native resolution and the GSD reflects the influence of
flight parameters on the spatial resolution of the ortho-mosaicked images used for analysis.
For centimeter-precise results, the real-time kinematics (RTK REACH RS2+) provided
accurate geolocation data for the drone imagery, ensuring precise field mapping and in situ
measurements. The drone raster images were ortho-mosaicked using DJI Terra (version
3.9.4, DJI, Shenzhen, China).

2.3. VI Extraction from Multispectral Images

Spectral VIs have been the primary and most commonly used method for estimating
variable parameters [38]. In this study, 11 commonly used VIs were calculated using
multispectral raster calculator tools in QGIS (version 3.28.3, QGIS Development Team,
Open Source Geospatial Foundation, Washington, DC, USA) (Table 3). For each plot, the
average pixel value of each VI was calculated using manually drawn plot boundaries,
ensuring that each VI represented the mean canopy reflectance within the defined area.
These indices—NDVI, GNDVI, RNIR, GNIR, RVI, GRVI, SAV], Cl green, TCARI, MCARI,
and SRRE—were selected according to their relevance in previous studies [39-41].
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Table 3. Extracted vegetation indices (VIs), used as proxies for chlorophyll content, to estimate petiole
NO3™-N concentration (PNC) in potato crops.

VIs Description Formula Reference
NDVI Normalized Difference Vegetation Index (% § ﬁ;g) [42]
GNDVI Green Normalized Difference Vegetation Index m [43]
RNIR Ratio between red and near-infrared % [44]
GNIR Ratio between green and near-Infrared @ [45]
RVI Ratio vegetation index o [46]
GRVI Green ratio vegetation index Eg;gg [47]
SAVI Soil adjusted vegetation index (1? Hfg [48]
Cl green Green chlorophyll index NT -1 [49]
TCARI Transformed chlorophyll absorption ratio index 3((RE —R) —0.2)(RE — G) ( RE [11]
MCARI Modified chlorophyll absorption ratio index  ((NIR — R) — 0.2(NIR — G)) (%) [50]
SRRE Red-edge simple ratio OIR [51]

2.4. Correlation Analysis of VIs and N Levels Using Pearson’s Correlation Coefficient (PCC)

To evaluate the relationships between various VIs and plant N levels, a PCC anal-
ysis was conducted. The PCC quantifies the linear correlation between two variables,
calculated as

r(xi—%)(yi—9)
Yxy = s (1)
L VR

where 7y, is the PCC between variables x and y, x; and y; are individual data points,

and x and ¥ are the means of the variables. PCC values range from —1 to 1, indicating a
perfect negative correlation and a perfect positive correlation, respectively, with 0 indicating
no correlation.

The analysis was used to identify and quantify the strength of the linear relationships
between VIs and N levels. A heatmap of the correlation matrix, with the upper triangle
masked, was created to highlight unique pairwise correlations, providing a clear overview
of the interrelationships among the variables and aiding decision-making in the modeling
process. Separate heatmaps were generated for each growing season (2023 and 2024) rather
than combining data into a single matrix. This was carried out to account for interannual
variability in environmental and agronomic conditions, which can significantly influence
the relationship between VIs and PNC.

2.5. Feature Selection for Enhanced Prediction Accuracy

To improve the accuracy of plant N status predictions, PLSR, Boruta, and RFE were
individually employed (using Jupyter Notebook (version 6.0.3) with Python (version 3.8.5))
to identify and eliminate VIs that contributed minimally to the prediction models. PLSR
was used to reduce dimensionality, Boruta was applied to determine the most relevant
features, and RFE was utilized for feature selection, ensuring that only the most significant
VIs were retained. Although certain ML models—such as RF—are inherently capable of
handling redundant or less informative features due to their internal feature selection
mechanisms, we applied all three feature selection techniques (PLSR, Boruta, and RFE)
uniformly across the ML models to allow for a consistent and comprehensive evaluation of
their influence on model performance.

PLSR, a multivariate statistical technique, was employed to reduce the dimensionality
of the VI dataset by projecting the original predictor variables onto a set of orthogonal
latent components that maximize the covariance with the response variable (PNC). This
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transformation enhances model robustness by minimizing collinearity and capturing the
most relevant spectral features. The PLSR decomposition can be expressed as

X = TP'+E, 2)

where X is the matrix of predictor variables, T is the matrix of latent scores, P! is the matrix
of loadings, and E is the matrix of residuals. The optimal number of components was
selected via 10-fold cross-validation based on the highest coefficient of determination (R?).
VIs with minimal explanatory power were identified and excluded to enhance model
performance and interpretability [52].

Boruta is a feature selection algorithm that works by comparing the importance of
each feature with that of randomly generated shadow features. It iteratively removes less
relevant features and retains only the most significant ones. The algorithm evaluates feature
importance using a RF classifier and determines which features are statistically significant
by comparing their importance with the shadow features. The decision process can be
represented as

Importance; = RF pportance(Xi), 3)

where Importance; is the importance of the feature (X;), and RF Importance T€pTEsents the
importance score from the RF model. Features with an importance score higher than the
shadow features are retained, and irrelevant ones are discarded. Boruta’s ability to identify
important features helps improve the predictive accuracy of ML models for plant N status
prediction [53].

RFE is a feature selection technique that recursively eliminates less important features
on the basis of their contribution to model performance. It works by training a model,
ranking the features according to their importance, and removing the least important
feature in each iteration until the optimal subset is achieved. In this study, RFE was
applied using RF as the base estimator to ensure that the feature ranking was based on Gini
importance, consistent with the decision-tree-based structure used in Boruta selection. The
RFE elimination process at each iteration t can be expressed as

Xj = argmintlt(Xi) 4)

X;€F,
where F; is the set of features at iteration ¢, and I;(X;) is the importance of feature X;. By
recursively applying this process, RFE identifies the most influential features, which helps
improve model accuracy and reduce overfitting [54].

2.6. Supervised ML Approach for N Status Prediction

To enhance the prediction accuracy of plant N levels, three supervised ML models,
RF, SVM, and GBR were employed. The dataset comprised 95 samples, including 35
observations from the 2023 growing season and 60 from 2024. To mitigate overfitting
and ensure robust model evaluation, a 10-fold cross-validation approach was applied
across the entire dataset. In this process, the model is trained on nine folds (serving as
the training set) and tested on the remaining fold (acting as the validation set). This is
repeated 10 times so that each data point is used for both training and validation. Such
an approach yields unbiased out-of-fold predictions and provides a reliable estimate
of the model’s generalization performance. No separate test set was reserved; instead,
the model evaluation was based entirely on cross-validation results. The models were
trained and tested using two distinct approaches: one involving all VIs and another after
feature selection.
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The RF model, an ensemble learning method, operates by constructing multiple
decision trees during training and averaging their outputs for prediction. Mathematically,
the RF prediction for N, g, can be expressed as

Ure = %Ztllht(x)/ ()

where T is the total number of trees, and h;(x) represents the prediction from the ¢-th tree
for input feature x [55].

The SVM model, though primarily designed for binary classification, can be seamlessly
extended to regression problems, enhancing its applicability in various predictive modeling
scenarios [56]. The SVM prediction for N, fsny, can be represented as

Jsvm = Wix+b, (6)

where W is the weight vector, x represents the feature vector, and b is the bias term [57].

The GBR model is a popular ML technique for regression tasks that combines multiple
weak learners (typically decision trees) to form a strong predictive model [58]. The GBR
prediction for N, §spr, can be represented as

YoBr = Fo(x;) + ZtT_l Yehi(x;), 7)

where Fy is the initial model vector, 11;(x;) is the t-th weak learner (tree) applied to the input
(xi), 7t is the step size or learning rate for the ¢-th tree, and T is the number of trees [59].

2.7. Model Performance Evaluation

The study compared model performance with and without reduction in the VIs to
assess how dimensionality reduction affects the accuracy of N status prediction. This
comparison provides valuable insights into which approach is better for selecting features
to optimize N management in potato crops. During model evaluation, three metrics,
namely the coefficient of determination (R?), root mean squared error (RMSE), and mean
absolute error (MAE), were used to compare the N content of plants predicted by the model
with the measurements obtained in the field. It should be noted that these criteria have
been commonly applied in earlier studies [60,61]. R?, RMSE, and MAE were calculated
with the following equations

MSE = \/iZ:‘_l(Nl?"—Nf)z )

MAE = %Z?: 1‘ (Ni’” - Nf)‘ (10)

where N" represents the actual potato N data (%) of the i-th sample, N;' is the mean of the
actual potato N data, N f represents the potato N data (%) of the i-th sample predicted by
the N estimation model, # is the sample size, and i is the sample number.

3. Results
3.1. PNC Across Treatments and Growing Years

The PNC varied across treatments, reflecting the influence of different N applications
(Figure 3). The control treatments (Treatment 1 in 2023 and Treatment 11 in 2024) had the
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lowest PNC values, showing minimal variation among replicates. This confirms that plants
in these plots relied solely on the native soil N, which was insufficient to support higher
N accumulation. The narrow distribution of PNC values in these treatments suggests a
consistent N deficiency across the plants.

PNC by Treatment and Year

(2

2.5

- - g1
o ﬁ

i = -

2023 2024
Year

PNC
o

¢

IDDQIQ!DIQIDDDI§

0.0

Figure 3. Distribution of petiole NO3-N concentration (PNC) across treatments in 2023 and 2024. The
boxplots display the variability in PNC, with the boxes representing the interquartile range (IQR)
and the horizontal line inside each box indicating the median. Treatments correspond to the nitrogen
fertilizer types and rates described in Table 1. Diamond-shaped points represent statistical outliers.

In contrast, N-fertilized treatments exhibited a wider range of PNC values, with
some showing significantly higher concentrations. This variation is likely influenced
by differences in N uptake efficiency, soil properties, plant health, and microclimatic
conditions. Some treatments displayed stable PNC distributions, while others showed
greater fluctuations, indicating potential effects of N formulation, application timing, or
interactions with environmental factors. The presence of outliers in multiple treatments
suggests localized variability in soil fertility or differences in individual plant responses.

From a modeling perspective, the diversity in N concentrations across treatments is
beneficial for training ML models. A well-distributed dataset, containing both low and
high PNC values, ensures that the models can capture the full spectrum of N variability
in plants. This improves the ability of predictive models to generalize across different
conditions, making them more robust for real-world applications. Treatments with distinct
N responses provide valuable data points for developing accurate models that can predict
N status on the basis of RS inputs.

3.2. Correlation Analysis of VIs with PNC

The correlation analysis revealed that certain VIs maintained a strong relationship with
PNC across both years (Figure 4). In 2023, Cl green exhibited the highest correlation with
PNC (r = 0.75), followed closely by GRVI (r = 0.72). Other indices, such as NDVI (r = 0.64)
and GNDVI (r = 0.63), also showed moderate positive correlations, while GNIR and RNIR
displayed negative associations, indicating an inverse relationship with PNC.
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Figure 4. Pearson’s correlation matrix between petiole NO3-N concentration (PNC) and vegetation
indices (VIs). (A) Correlation matrix for the 2023 season; (B) correlation matrix for the 2024 season. The
matrices illustrate the strength and direction of linear relationships between PNC and spectral indices.
Blue circles represent positive correlations, while red circles indicate negative correlations. The size
and color intensity of each circle reflects the magnitude of the Pearson correlation coefficient (r), with
larger and more saturated circles denoting stronger correlations.

In 2024, the strongest correlations were observed with GNDVI (r = 0.73) and GNIR
(r = —0.73), the latter showing a strong negative relationship with PNC. CI green (r = 0.71)
and RNIR (r = —0.71) also exhibited high correlations, with RNIR again displaying a
negative association. Notably, MCARI and TCARI showed relatively strong correlations at
0.67 and 0.63, respectively, indicating their potential for PNC estimation. Although some
indices varied in strength between years, the overall trends suggest that multiple Vs can
serve as effective indicators of PNC.

3.3. Feature Selection for PNC Prediction

Feature selection using PLSR, Boruta, and RFE identified subsets of VIs for predicting
PNC. PLSR selected seven VlIs, including NDVI, RNIR, and SAVI, among others. Boruta re-
tained six VIs, such as GNDVI, GNIR, and GRVI. RFE identified five VIs, including GNDVI,
GRVI, and CI green. All methods consistently selected CI green, TCARI, and MCAR]I,
indicating their strong relevance for PNC prediction. The selected VIs are summarized in
Table 4, with their impact on model performance evaluated in Section 3.4.

Table 4. Vegetation indices (VIs) selected for machine learning modeling by three feature selection
methods: Partial Least Squares Regression (PLSR), Boruta, and Recursive Feature Elimination (RFE).

Feature Selection Method

Vis
PLSR Boruta RFE

NDVI Selected - -
GNDVI - Selected Selected

RNIR Selected - -

GNIR - Selected -

RVI - - -
GRVI - Selected Selected

SAVI Selected - -
Cl green Selected Selected Selected
TCARI Selected Selected Selected
MCARI Selected Selected Selected

SRRE Selected - -
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3.4. Comparative Assessment of N Status Prediction Models

The performance of three ML models—RE, SVM, and GBR—was evaluated for PNC
prediction using different feature selection methods, as shown in Figure 5. Scatter plots
compare the actual and predicted values for each model, considering the original dataset
and three feature selection techniques: PLSR, Boruta, and RFE. The RF model achieved the
highest accuracy with features selected by RFE, whereas SVM and GBR performed best
with features identified by the Boruta method.
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Figure 5. Scatter plots illustrating the relationship between actual and predicted petiole NO3-N
concentration (PNC) using three machine learning models: Random Forest (RF), Support Vector
Machine (SVM), and Gradient Boosting Regressor (GBR). The black dashed line indicates the ideal
1:1 correspondence between the actual and predicted values. Model predictions are based on different
feature selection methods: the original feature set (blue), Partial Least Squares Regression (PLSR)
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(red), Boruta (green), and Recursive Feature Elimination (RFE) (purple).

RF predictions show that the original dataset yielded an R? of 0.564, an RMSE of 0.463%,
and an MAE of 0.370%. PLSR decreased model performance (R? = 0.550, RMSE = 0.471%,
MAE = 0.378%), indicating that some important features were likely discarded. In contrast,
Boruta marginally improved the results compared with the original dataset (R? = 0.569,
RMSE = 0.461%, MAE = 0.366%). The best performance was achieved with RFE, which
provided the highest R? (0.571) and the lowest MAE (0.365%), and a competitive RMSE,
indicating that this method effectively retained the most relevant predictors for optimal

predictive performance.
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SVM results show that the original dataset resulted in an R? of 0.512, an RMSE of
0.490%, and an MAE of 0.386%. PLSR improved the model’s performance, raising the R
to 0.520 and reducing the RMSE and MAE to 0.486% and 0.381%, respectively. Boruta
achieved the best performance (R? = 0.546, RMSE = 0.472%, MAE = 0.371%), while RFE
showed slightly lower performance (R2 = 0.544, RMSE = 0.473%, MAE = 0.370%). Overall,
Boruta provided the highest predictive accuracy among the feature selection methods.

GBR predictions reveal that the original dataset produced an R? of 0.530, an RMSE
of 0.481%, and an MAE of 0.382%. PLSR led to a substantial drop in accuracy (R? = 0.497,
RMSE = 0.498%, MAE = 0.400%), highlighting the loss of critical features. In contrast, Boruta
improved the performance, achieving the best overall results (R? = 0.569, RMSE = 0.461%,
MAE = 0.366%). RFE produced moderately weaker results (R?> = 0.541, RMSE = 0.475%,
MAE = 0.377%). These findings indicate that GBR’s performance was highly sensitive to
feature selection, with Boruta proving the most effective method.

4. Discussion

The integration of UAV-based multispectral imagery with ML models presents a
practical and adaptable framework for in-season PNC monitoring in potato crops, as
evidenced by this study conducted in Manitoba, Canada, during the 2023 and 2024 growing
seasons. A key strength of this study lies in the inclusion of a broader and more diverse N
treatment structure than that commonly reported in the literature. This expanded treatment
range across multiple years improved the dynamic range of PNC in the dataset, thereby
supporting more generalizable and accurate model development. By simulating practical
nutrient management scenarios, the approach offers higher relevance for real-world PA
applications. The results demonstrate that Vs, notably Cl green and GNDVI, are strongly
correlated with PNC, achieving Pearson correlation coefficients (r) of up to 0.75 and 0.73,
respectively. The comparative analysis of ML models—RF, SVM, and GBR—paired with
feature selection techniques (PLSR, Boruta, and RFE) highlights the robustness of model-
specific preprocessing in enhancing predictive accuracy.

The strong correlations between Cl green and PNC in both 2023 (r = 0.75) and 2024
(r=0.71), alongside GNDVI in 2024 (r = 0.73), underscore their utility as proxies for N status.
These findings align with studies demonstrating CI green’s sensitivity to chlorophyll and
N content in crops. For example, Cl green was found to accurately estimate corn canopy
N content (RZ = 0.91, RMSE = 0.63 g m~2) due to its focus on green reflectance, which is
strongly linked to the chlorophyll concentration [62]. Similarly, Cl green was identified as a
key predictor of sugarcane leaf N, improving the accuracy of RF and SVM models [63]. The
consistent selection of CI green, TCARI, and MCARI across all feature selection methods
further supports their relevance, as these VIs capture spectral signatures associated with
N-related physiological traits. However, the interannual variability in VI-PNC correlations
(e.g., GNDVTI'’s stronger correlation in 2024) suggests that environmental factors, such
as soil properties or weather conditions, may influence Vis’ performance, necessitating
multi-season validation.

The superior performance of RF with RFE (R? = 0.571, MAE = 0.365%) compared with
SVM and GBR reflects RF’s ability to handle nonlinear relationships and high-dimensional
data, consistent with its widespread use in agricultural RS [64]. RFE’s effectiveness in
optimizing RF stems from its iterative elimination of low-importance features, retaining
only those with high predictive power, such as Cl green and GNDVI. This is consistent with
findings that RFE enhanced RF-based alfalfa yield predictions by minimizing feature redun-
dancy [65]. Conversely, SVM and GBR performed best with Boruta (R? = 0.546 and 0.569,
respectively), likely because Boruta’s feature importance ranking preserves the variables
that complement their learning mechanisms. Our findings indicate that the integration of
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Boruta for feature selection enhances the performance of the SVM model, which aligns with
previous research in the context of winter wheat yield prediction [66]. GBR’s sensitivity to
Boruta-selected features reflects its iterative error correction, which benefits from a curated
feature set, as supported by studies on boosting models in agronomic applications [58,67].

PLSR, however, reduced RF’s and GBR'’s performance, likely due to its linear assump-
tions, which may discard nonlinear relationships that are critical for tree-based models.
This contrasts with SVM, where PLSR improved performance (R? = 0.520), suggesting that
SVM benefits from dimensionality reduction in high-collinearity datasets. These model-
specific responses emphasize the need for tailored feature selection, as a one-size-fits-all
approach can compromise accuracy. The observed variability in PNC across treatments
provided a diverse dataset, enabling robust model training, but outliers in the fertilized
plots indicate potential influences from soil heterogeneity or application timing, which
warrant further investigation.

This study advances PA applications for Canadian potato production by using UAV
imagery for site-specific N monitoring. However, limitations include the reliance on a lim-
ited number of spectral bands, which may constrain physiological insights compared with
hyperspectral approaches [68]. Despite the moderate R? values, the modeling framework
demonstrated consistent, interpretable patterns aligned with crop physiology, offering
practical value for mid-season N management and a foundation for more scalable appli-
cations. The dataset, while diverse (95 samples across two seasons), is relatively small,
and the models’ transferability to other agroecosystems remains untested. Interannual
variability in soil properties and climate conditions may also affect VI-PNC relationships.
Future research should explore the use of hyperspectral imaging to capture finer spectral
details and integrate radiative transfer or crop growth models for enhanced physiological
relevance [69,70]. Scaling the framework with larger, multi-regional datasets could support
real-time decision-making tools, aligning with global efforts toward sustainable N man-
agement. Finally, incorporating temporal dynamics through time-series UAV data could
improve model robustness by capturing N uptake patterns across growth stages.

5. Conclusions

This study examined the potential of integrating UAV-based multispectral imaging
with ML models and feature selection techniques for in-season monitoring of PNC in potato
crops. Over two growing seasons in Manitoba, VIs extracted from UAV imagery showed
moderate to strong correlations with PNC, with Cl green being consistently influential.
Among the ML models tested, RF combined with RFE produced slightly better prediction
metrics compared with the other model-feature selection pairings. SVM and GBR showed
improved performance with the Boruta technique. These results suggest that aligning
feature selection methods with the structure of specific ML models can help improve
predictive consistency.

While the findings are based on a limited dataset, they provide a practical framework
that could be further explored in similar PA contexts. This approach may be applicable to
other crops in the region but would benefit from additional validation across different con-
ditions and scales. Rather than proposing a one-size-fits-all method, this study emphasizes
the value of modest, model-specific adjustments in preprocessing and variable selection to
support more informed nutrient management decisions using UAV imagery.
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