

Assessing the impact of extensive husbandry conditions on broiler meat quality using machine learning

MAGENINGEN Z. Fendor,

H. Louton,

wageningen S. Erasmus,

WAGENINGEN A.J. Carnoli,

L. Quirin,

S. Yigitturk,

MAGENINGEN R.G. Hobé,

INSTITUTE OF GENETICS
AND ANIMAL BIOTECHNOLOGY of the Politic Academy of Sciences

J. Marchewka,

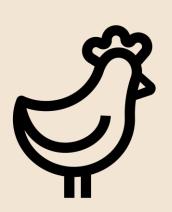
M. Schou Grønbeck,

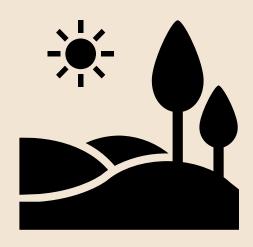
A WAGERING BEN W. Hoenderdaal, & RETURN OF CHARLES AND P. Sztandarski,

wageningen E.D. van Asselt

MAGENINGEN I.C. de Jong,

POZNAN POZNAS A. Ludwiczak,

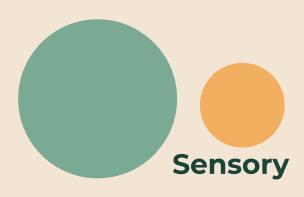




"Linking extensive husbandry practices to the intrinsic quality of broiler meat"

S
(1)
Ü
-
7
\approx
0
Q
>
2
dry
ndry
andry
bandry
sbandry
usbandry
lusbandry
Husbandry

Space allowance	Low density (≤ 35 kg/m2)	High density (≥ 38 kg/m2)	
Diet	Roughage	No added roughage	
Genetics	Slow-growing, male-layer, dual- purpose	Conventional fast- growing	
Quality of Space	Enrichment (barrier, perch, straw/lucerne bale, dust bath)	No added enrichment	
Welfare	High	Low	



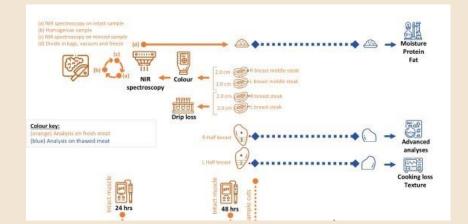
Husbandry practices

- Space allowance
- Diet
- Genetics
- Quality of Space

Welfare score

- Cleanliness
- Gait score
- Hock burn
- Skin condition

Intrinsic meat quality

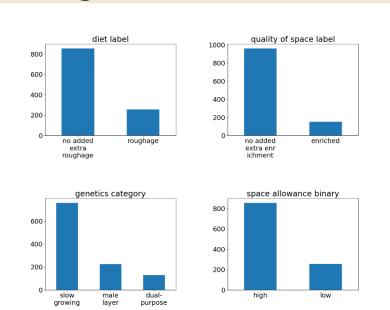

Chemical

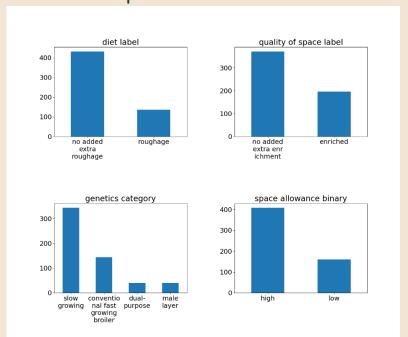
 Trained sensory panel (8 panelists)

 Appearance, odour, flavour, texture and aftertaste pH, texture analysis, L*a*b* values, moisture content...

Data processing

80% train set (with cross-validation)


20% test set

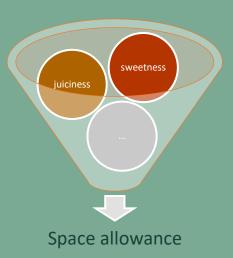

Chemical

- Min-max scaling
- MICE imputation

Sensory

Panelist-wise z-score scaling

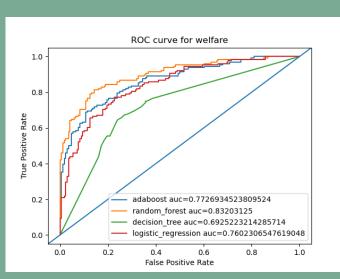
mEAT



Machine learning (ML) methodology

Can we trace back the extensiveness of a condition from the quality of meat?

- 1) Train ML models to classify husbandry conditions and welfare
- 2) Performance assessment (ROC-AUC)
- 3) Feature importance analysis



Performance assessment quality

Architecture space:

AdaBoost, Random Forest, Logistic Regression, Decision Tree

Best results:

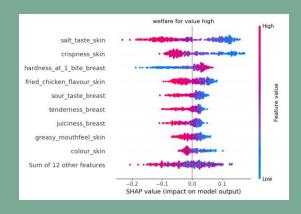
	Sensory		Chemical	
	ROC-AUC	Model	ROC-AUC	Model
Genetics	0.77	Random Forest	0.94	AdaBoost
Welfare	0.83	Random Forest	0.92	Random Forest

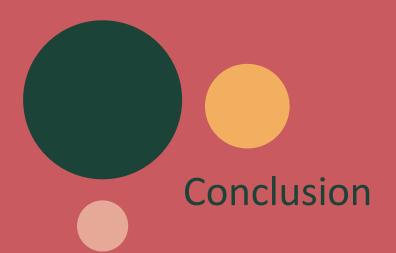
Feature importance analysis

SHAP value-based explanations

Genetics:

sensory: crispiness skin, colour skin, and saltiness skin chemical: colour (a*, b*) and texture (BMORS shear energy)


Welfare:


sensory: saltiness of skin, crispiness of skin and hardness at first bite

chemical: colour (a*b*), cooking loss, and texture(BMORS shear energy)

Genetics and **welfare** have the strongest link to meat quality

Upcoming...

- Publication of "Assessing the impact of husbandry factors on poultry meat quality using a machine learning approach"
- Data available at request*

DANISH **TECHNOLOGICAL INSTITUTE**

Zuzanna Fendor

zuzanna.fendor@wur.nl

