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Abstract

The rapid expansion of insect farming as a sustainable approach for protein production has led to an accumulation
of published research on the use of low-value substrates as insect feed. However, compared to conventional
livestock, there is a lack of fundamental knowledge about the nutritional physiology and requirements of insects.
Such knowledge can lead to the development of optimised feeding substrates that boost insect performance and
nutrient composition. In this chapter, the current knowledge on the nutritional requirements of the most relevant
insects produced for food and feed is reviewed, and the methods and assays used to investigate the specific
requirements are presented. This description of current knowledge on nutritional requirements of edible insects
can be used to design suitable rearing diets and as a foundation to further our understanding of insect nutrition.
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1 Introduction: background andmotivation

Edible insects can play a pivotal role in recycling organic
by-products and biowastes, and their products provide
useful raw materials for various applications in the bioe-

conomy (Kee et al., 2023). Examples include the pro-
duction of whole insects, insect protein, fat, and spe-
cific functional extracts for use in food (de Carvalho
et al., 2020), feed and pet food (Gasco et al., 2020),
the use of lipids as biofuels (Li et al., 2011), chitin
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and its derivatives in packaging materials, and frass
as plant fertiliser (Beesigamukama et al., 2022; Le et
al., 2023). While up to 2,000 species of insects are
described as edible (Kim et al., 2019), production of
edible insect species focusses on a limited number of
species. Currently in focus are: the black soldier fly (Her-
metia illucens (L.); Diptera: Stratiomyidae), the house-
fly (Musca domestica (L.); Diptera: Muscidae), the silk-
worm (Bombyx mori (L.); Lepidoptera: Bombycidae),
the yellow mealworm (Tenebrio molitor (L.); Coleoptera:
Tenebrionidae), the house cricket (Acheta domesticus
(L.); Orthoptera: Gryllidae), and the migratory locust
(Locusta migratoria (L.); Orthoptera: Acrididae), with
the last three being approved as “Novel Foods” in the EU
(EFSA et al., 2021a,b, 2022). They can reduce the envi-
ronmental impact of human diets if consumed directly
as an alternative to conventional livestock products (van
Huis and Oonincx, 2017), and their ability to acquire
their nutrients from low-value substrates is fundamen-
tal to their sustainability (Smetana et al., 2019).

Feedstock supply is an important driver of envi-
ronmental impact and currently makes up 50-70% of
the operational costs in conventional livestock farm-
ing (Spring, 2013). Production efficiency in these sys-
tems has increased considerably over the last decades,
due to improved, genetics, nutrition, and disease con-
trol (Thornton, 2010). This progress was partially due
to the characterisation of feed ingredients via standard-
ised protocols, combined with improved understand-
ing of animal physiology, digestive systems, the micro-
biome, and metabolism. This included determining feed
digestibility metrics per species, and nutrient require-
ments per breed and development phase. By match-
ing the knowledge on feed characteristics with nutri-
tional requirements of target animals, the performance
of livestock can now be predicted with high accuracy.
Similar to conventional livestock farming the feed used
in insect farms has a tremendous impact on the eco-
nomic performance, and on the zootechnical and envi-
ronmental efficiency of the production (Oonincx, 2021).
Conversely, feedstock formulation for edible insects is
in its infancy. While requirements for macronutrients
(proteins, lipids, carbohydrates) received some atten-
tion (Bellezza Oddon et al., 2022, 2024), little informa-
tion is available on vitamins and micronutrients. More-
over, the lack of standardisation of methodologies for
assessing nutrient utilisation in edible insects is a key
challenge (Bosch et al., 2020; Deruytter et al., 2025). This
is complicated by the diversity of feedstocks, feeding
environments, digestive physiology and capacities, and
plasticity among edible insect species often intertwined

with microbial processes (Auger et al., 2025). Feeding
insects with high proportions of nutrient-rich human-
edible ingredients would support high productivity, as
was the case for conventional livestock. However, this
practice should not be replicated in insect production as
it is unsustainable. Instead, the focus should be on max-
imising nutrient utilisation of by-products and available
biowastes.

The goal of this article is to summarise best practices
and methods used to determine nutritional require-
ments, and the nutritional value of ingredients and diets
for edible insects. Such methods are required to gener-
ate data that can form the foundation of feed evaluation
systems as well as formulating diets for edible insect
production. It focuses on the larval and nymphal life
stages, with some links to adult insects. However, the
field of edible insect nutrition is rapidly developing. The
methods described below provide a current summary
and directions for further method development.

2 Basics of nutritional requirements of animals

Animals require nutrients and energy for various meta-
bolic processes in the body throughout the different
phases of life. These are used to maintain body func-
tioning (‘maintenance processes’), whereas additional
nutrients and energy are needed for ‘production pro-
cesses’ such as the larval growth and egg production in
adults (Cheeke and Dierenfeld, 2010). In general, insects
require the same ten amino acids considered essential
for mammals (arginine, lysine, leucine, isoleucine, tryp-
tophan, histidine, phenylalanine, methionine, valine,
and threonine). Moreover, sterols, various minerals, and
eight B-complex vitamins (thiamine, riboflavin, nicoti-
namide, pyridoxine, pantothenate, folic acid, biotin,
and choline) are essential parts of insect diets (Cohen,
2003). Furthermore, vitamin C is required by many
insects consuming fresh plant matter, and for some
species also carotenoids are needed. Animal species
obviously differ in their dietary requirements and tol-
erances as their digestive and metabolic capacities have
adapted to their ecological niche throughout evolution.
Within species, requirements can further depend on
genetic variation, life stage, body weight, and sex. More-
over, as the environment (e.g. temperature, sanitation,
space) can have a profound impact on animal function-
ing, it follows that the quantitative requirements of ani-
mals are actually not fixed but are conditional for the
specific situation in which the requirements were quan-
tified for a given population.
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The nutrients and energy that farmed animals require
to optimally perform with minimal impact on the envi-
ronment should be supplied via the diet or feed. Feed
evaluation methods have been developed to match
nutrient supply with requirements. Such methods aim
to quantify the bioavailable energy and nutrients in
feeds and feed ingredients. Bioavailability is defined as
the amount of a nutrient released from ingested feed,
hydrolysed, absorbed by the gut epithelium and dis-
tributed to body tissues in a chemical form that can
be used for the metabolism of the animal (Grundy et
al., 2024). The content of bioavailable energy and nutri-
ents of raw materials largely determine their feeding
value, but it is tedious and costly to assess. Bioavailabil-
ity is generally approximated via digestibility, which is
defined as the amount of ingested energy or nutrients
that disappears in the gastrointestinal tract (Grundy
et al., 2024). Other aspects of feeding value are poten-
tial anti-nutritional factors that might negatively impact
digestive processes and, therefore, bioavailability. Data
on the nutritional value of raw materials can ultimately
be transferred to feeding tables combined with costs,
and used to formulate complete diets for supporting
optimal performance of the target animals in their spe-
cific environment at minimum costs. Apart from being
complete and balanced, diets can be formulated to opti-
mise raw material use, while minimising costs and envi-
ronmental impact (Van Lingen et al., 2018). For exam-
ple, although amino acids can be metabolised to yield
energy, this is generally undesirable as proteins are a
more expensive source of energy than carbohydrates
and lipids, and their metabolism yields in nitrogen-
containing metabolites that when excreted pollute the
environment (Castillo et al., 2000). Hence, nutrition-
ists typically aim to balance amino acids and energy
in formulated diets. Hence, the importance of having
methods to quantify animal requirements and to eval-
uate the nutritional value of raw materials is apparent.
The nutritional value depends on chemical composition
(i.e. nutrients and anti-nutritional factors), and physical
properties like particle size, water-holding capacity, sub-
strate texture, and water content.

Nutrient requirements of animals in various develop-
mental stages have been studied in particular between
the 1940s and 1970s. Typically, synthetic diets contain-
ing relatively pure chemical components were used to
allow controlled changes in the provision of the indi-
vidual nutrient of interest and determine its threshold
values. Outcomes of these studies are collated in sev-
eral nutrition reference books of the National Research
Council (e.g., NRC, 1994, 2012). Various national insti-

tutes and companies have complemented the knowl-
edge with that of data obtained under more practical
conditions leading to more detailed estimates for use in
practice. Feed evaluation systems are available for live-
stock animals at various life-stages with those for pigs
being highly developed. For pigs, nutrient and energy
requirements are known both for maintenance and
production processes including requirements for the
specific stages of growth in young animals, as well as
how living conditions like sanitary status might affect
requirements. Tolerances for components potentially
present in raw materials that might impair perfor-
mance are known and controlled for by setting maxi-
mum inclusion levels. Feeding tables include nutrient
bioavailability estimate values for the vast majority of
available raw materials. Methods to approximate nutri-
ent bioavailability such as the ileal digestibility assay for
amino acids have been developed (Stein et al., 2007) and
are widely used e.g. INRAE-CIRAD-AFZ (2024). Equa-
tions have been developed to approximate the energy
value of feedstuffs based on their organic components
including digestible and fermentable carbohydrates,
digestible proteins and digestible lipids.

The steps described above and approaches used in
research on other animal species are instrumental to
design studies to advance insect nutrition. Moreover,
considering that insects often live directly in the sub-
strates they consume and these substrates harbour
active microbiota that change the chemical composi-
tion, approaches from other fields such as industrial
biotechnology (e.g. bioprocess engineering) are relevant
as well.

3 Current knowledge on nutritional
requirements of edible insects

Insects exhibit enormous genetic diversity, and the
genetic distance between different insect orders is
considered greater than between vertebrate species
(Trautwein et al., 2012). This diversity reflects on their
nutritional physiology and requirements. This review,
therefore, focuses on species of three orders relevant for
applications in food or feed.

Diptera: Black soldier fly and housefly
The housefly and the black soldier fly (BSF) are currently
the most important Diptera for application as food, feed,
waste treatment, and production of other high-value
applications (Kaczor et al., 2023; Sanchez et al., 2022;
van Huis et al., 2020; Van Zanten et al., 2015). Past stud-
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ies have suggested that research on the well-studied
common fruit fly (Drosophila melanogaster, Diptera:
Drosophilidae) and other less-studied flies such as the
green bottle fly larvae (Lucillia sericata, Diptera: Cal-
liphoridae) and stable fly larvae (Stomoxys calcitrans,
Diptera: Muscidae) can provide insights into nutrient
requirements of the most important Diptera in insects
as food and feed (Gold et al., 2018). At the same time,
while general trends on nutritional requirements may
apply, differences in ecological niches and evolutionary
history suggests differences between dipteran species.
Research on the nutritional requirements first started
in the 1950s for housefly larvae by evaluating amino
acid and vitamin needs (Chang and Wang, 1958; House
and Barlow, 1958). As interest in the use of BSF grew
in the last two decades, so did the number of studies
in their dietary requirements. Studies on their nutri-
tional requirements first focused on macro-nutrients
(Barragan-Fonseca et al., 2021; Oonincx et al., 2015) fol-
lowed by more in depth studies on amino acid require-
ments (Lemme and Klüber, 2024). In both species,
studying nutritional requirements is challenging com-
pared to conventional livestock as they live within
their moist feed and interact with the present micro-
biota (Wynants et al., 2019). For an in depth discus-
sion on microbial interactions see (Auger et al., 2025).
While these interaction with bacteria, viruses, fungi,
and archaea are recognised, their specific contribu-
tion to larval nutrition is yet to be quantified under
various biotic and abiotic conditions. These microbes
can be a direct nutrient source for Dipteran larvae,
pre-digest nutrients and produce essential nutrients,
or compete for nutrients with larvae (Pisa et al., 2024;
Storelli et al., 2011, 2018). Together the larval and micro-
bial metabolism continuously changes substrate char-
acteristics such as pH (Klammsteiner et al. 2020, Gold
et al., 2020), moisture content, chemical composition,
temperature, and both the larvae, and the microbial
community themselves (Wynants et al., 2019).

Dipteran larvae are currently farmed for use as feed
ingredients. In order for this practice to be sustainable
and economically viable, their substrate would need to
consist of by-products with a low value, and with no
or limited direct application as livestock feed ingredi-
ents. About 16-20% crude protein on a dry matter (DM)
basis facilitates the most efficient and fastest growth in
BSF (Barragan-Fonseca et al., 2021; Bellezza Oddon et
al., 2022). Lower dietary protein concentrations allow
BSFL growth, albeit slower (Ewusie et al., 2018). Higher
protein concentrations, such as those found in meat
and slaughterhouse waste, limit growth and develop-

ment (Gobbi et al., 2013; Gold et al., 2020). While these
animal-derived ingredients are unsuitable as complete
diets, animal-derived protein is often more suitable
than plant-derived protein due to a more favourable
amino acid profile (Woods et al., 2019). Indeed, under-
standing protein requirements, requires qualitative and
quantitative insight in essential amino acid require-
ments. While for the housefly the aforementioned ten
amino acids were shown to be essential, further quan-
titative understanding is still needed as larval growth
was retarded when only those were provided (Chang
and Wang, 1958). For BSF larvae the first steps towards
determining amino acid requirements have been taken.
For instance, Sandrock (2024) identified lysine as the
first limiting amino acid and arginine, isoleucine, tryp-
tophan and threonine as co-limiting in neonatal diets
based on chicken feed. While protein content did not
influence their survival, the study showed the rele-
vance of physical properties beyond equal particle size
(≤1 mm), such as structural components and water-
holding capacity. Similar results on amino acid require-
ments were reported for fattening BSF larvae, includ-
ing a rather indifferent role of methionine (Berggreen,
2024). Yet somewhat conflicting results in growing
BSF larvae, particularly for lysine, might indicate dif-
ferences between developmental stages (Koethe et al.,
2022). Indeed requirements of neonate larvae (1st/2nd
instar) might differ from growing and fattening larvae as
reflected in changes in body composition during larval
development (Liu et al., 2017). Additionally, factors such
as the conspecific genetic diversity can also influence
quantitative requirements (Sandrock et al., 2022)

Carbohydrates are typically the largest constituent of
larval diets (Gold et al., 2018). These can be divided into
digestible and non-digestible carbohydrates (fibres).
Currently utilised biowastes are particularly high in
fibres (Peguero et al., 2021). These are indigestible, as lar-
vae lack the enzymes to break the linkage bonds. Hence,
large amounts of fibres reduce nutrient density, which
can reduce larval growth. Conversely, digestible car-
bohydrates (for instance starch) contain bonds which
can be digested by enzymes such as amylases, present
in the digestive tract of Dipteran larvae (Bonelli et
al., 2019; Pimentel et al., 2018). These then provide
energy, which can be stored as lipids. Hence, larvae
produced on diets low in protein and high in carbo-
hydrates will have a higher lipid content than those
produced on diets more balanced in carbohydrates and
proteins (Barragan-Fonseca et al., 2018). Besides chemi-
cal composition, also larval performance is influenced
by the ratios between of proteins and carbohydrates
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(Barragan-Fonseca et al., 2019; Cammack and Tomber-
lin, 2017; Eggink et al., 2023).

Specific requirements for lipids are understudied in
houseflies and BSF. In many natural diets (e.g. fruit
and vegetables, manures) lipids are a minor constituent.
Larvae can acquire energy and synthesise lipids from
digestible carbohydrates and proteins. Hence, they can
thrive on low-lipid substrates, if sufficient digestible car-
bohydrates are available (Oonincx et al., 2015). Inclu-
sion of varying levels of alpha-linoleic acid (2.5–30% of
total fatty acids) in diets influences body composition
of BSF, but does not impact survival or rate of develop-
ment (Oonincx et al., 2020). Whether larvae require a
minimum dietary concentration of this omega 3, or for
omega 6 fatty acids, requires further investigation. Also,
requirements for other micronutrients, such as miner-
als and vitamins are understudied. Historical literature
indicates that b-vitamins such as thiamine, riboflavin,
pantothenic acid, nicotinic acid, choline, pyridoxine,
and biotin are required by housefly larvae (House and
Barlow, 1958). While most of these are needed during
early larval development, choline and pyridoxine are
required for successful pupation (House and Barlow,
1958).

Coleoptera: Yellowmealworm and the lessermealworm
The yellow and lesser mealworm (Alphitobius diaperinus
(Panzer); Coleoptera: Tenebrionidae) are the commer-
cially most interesting species within the Tenebrionidae.
Both species are pests in grain storage and processing
facilities, while the lesser mealworm is also considered
a pest in poultry stables (Veldkamp et al., 2021).

Nutritional requirements of yellow mealworm lar-
vae were first reported in 1950 and highlighted their
preference for carbohydrate rich diets (80–85% DM)
(Fraenkel, 1950). Two decades later this was followed
by more detailed studies on protein and carbohydrate
requirements (Davis, 1969, 1970, 1971a). More recently,
further studies addressing protein and carbohydrate
requirements of yellow mealworm larvae were pub-
lished. Some used by-products as ingredients (Mancini
et al., 2019; Oonincx et al., 2015; Rumbos et al., 2020,
2021; Urrejola et al., 2011; Van Broekhoven et al., 2015),
while others used synthetic diets (Morales-Ramos et al.,
2010, 2011, 2013; Rho and Lee, 2014). Wheat bran is com-
monly used as a diet for yellow mealworm. Gradually
replacing this by pea or rice protein, creating diets rang-
ing in protein content (10-80% DM), showed reduced
growth when the substrate had >20% protein (Kröncke
and Benning, 2023). Similarly, yellow mealworm larvae
fed legume flours with protein contents ranging from 23

to 42% (DM) grew poorly, while durum wheat flour or
white flour with protein contents of 11–14% (DM), and
high in digestible carbohydrates more efficiently sup-
ported larval development (Rumbos et al., 2020). In a
study comparing two sets of compound diets (either
17 or 20% protein (DM)) apparent differences in larval
survival and development were unexplained by the dif-
ference in dietary protein content (Rumbos et al., 2022).
In the aforementioned study replacing wheat bran with
rice or pea protein, rice protein resulted in better perfor-
mance than pea protein (Kröncke and Benning, 2023).
Clearly, high dietary protein does not necessarily guar-
antee good larval performance and other factors such
as protein digestibility, and presence of antinutritional
factors can affect larval growth and development.

Besides protein content, the ratio between protein
and metabolisable energy is an important factor in ani-
mal performance. Digestible carbohydrates are a pri-
mary energy source for yellow mealworm larvae. The
optimal protein-to-carbohydrate ratio lies between 1:1
and 1:3, whereas larval growth is reduced in heavily
protein- or carbohydrate-biased diets (Morales-Ramos
et al., 2020b; Rho and Lee, 2022). The nutritional
requirements of adults and dietary effects on survival
and reproductive output is less studied. A slightly
carbohydrate-biased ratio seems preferred by adults
(Rho and Lee, 2014, 2016).

Similar to housefly larvae, the same 10 amino acids
essential for growth in rats and other vertebrates are
essential for yellow mealworm larvae (Davis, 1969, 1971b,
1974; John et al., 1978, 1979). The amino acids showed
that serine, tyrosine, glutamic acid and possibly glycine
are non-essential for growth, while alanine, cystine, pro-
line and aspartic acid are partly indispensable (Davis,
1975). The optimal dietary concentration of essential
amino acids reflects the amino acid profile of the lar-
vae, except for phenylalanine which sufficed at a lower
relative concentration (50%), and threonine and tryp-
tophan which seem to be required at a higher concen-
tration (>200%) (John et al., 1979). Contrary to yellow
mealworms, studies on nutrient requirements of lesser
mealworm larvae are scarce. In general, a dietary protein
content above 20% favours larval growth (Kotsou et al.,
2021; Ricciardi and Baviera, 2016). Adding dry instant
yeast to wheat bran, and thereby elevating protein con-
tents from 17 to 30%, increased larval growth, weight,
and feed efficiency (Kotsou et al., 2021).
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Orthoptera: Themigratory and desert locusts, and the
house cricket
The nutrition of herbivorous orthopterans such as crick-
ets and locusts has received considerable attention in
the past. For locusts, most early studies were conducted
in the light of targeted pest management strategies and
the prediction of outbreaks (Cease, 2013). These studies
included aspects such as nutritional requirements and
feeding behaviour. Based on this information, colonies
could be setup and management strategies could be
tested. Similarly, the basis of cricket nutritional studies
was laid in the sixties and seventies of the last cen-
tury. There are a few general considerations relevant
for studying Orthopteran nutrition. For instance, locusts
and crickets cannibalise on each other if, in addition to
other factors, diets are insufficient or unsuitable which
could potentially mask nutrient deficiencies in individ-
uals (Dadd, 1961a). Moreover, given that water is often
provided separately when conducting trials, it is rele-
vant to use proper materials. Water can be provided
via a water pad filled with cotton wool, or a metal
sponge (Dadd, 1960a). The cotton wool might be par-
tially consumed providing nutrients while the metal
sponge might leach minerals into the water, hence the
method of water provision should be made based on the
nutrient(s) under study. While crickets and locusts are
both Orthoptera, there are large apparent differences.
For instance, their moment of activity, social behaviour,
and feed preferences. Hence, locust and cricket nutri-
tion are discussed separately.

In the early sixties a basic artificial synthetic diet
was developed for migratory locusts and desert locusts
(Schistocerca gregaria (Forskål); Orthoptera: Acrididae)
(Dadd, 1960a). This diet consisted of cellulose, sucrose,
dextrin, a salt mixture, cholesterol, linoleic acid, casein,
peptone, egg albumen, ascorbic acid, and ten water sol-
uble vitamins of the B complex. It was then used to test
various aspects of locusts nutrition. For example, estab-
lishing minimal requirements of vitamins for desert
locusts. While both species are foliage feeders, they do
not require chlorophyl (Dadd, 1961b). Given that locusts
do not live in their substrate, real-time observation of
their diet preference and feeding behaviour are more
possible. The amount of feed consumed can vary based
on its nutrient concentration. For instance, fifth instar
nymphs of the migratory locust provided with a diet
based on casein, sucrose and cellulose increased their
feed intake by 44% on a diet with 14% protein, com-
pared to one with 28% protein content (Simpson and
Abisgold, 1985). This increased feed intake was primar-
ily due to a shorter time between feedings and not by

increasing the amount eaten per feeding. In the same
study, digestible carbohydrates were replaced by cellu-
lose, but this did not affect feed intake. While in the-
ory several ingredients can serve as a protein source,
not all have proven to suffice. For instance, casein as
a sole source of protein did not allow proper growth
in desert locusts and addition of single amino acids,
or nucleic acids, did not solve this issue (Dadd, 1961a).
However, when egg albumin with peptone were used,
proper growth was attained.

Available carbohydrates are another important ele-
ment of locust diets. In their absence, locusts fail
to develop even when an energy source in the form
of fatty acids and glycerol is available (Dadd, 1960c).
While 13% of sucrose or glucose support growth dur-
ing the early instars, for further development at least
26% of digestible carbohydrates is needed for adequate
growth and development. This suggests that carbohy-
drate requirements differ quantitatively over nymphal
stages. Clearly, the form of carbohydrates affects their
suitability; most hexoses, dextrin, oligosaccharides, and
starches, suffice, while some pentoses do not. More-
over, there seem to be differences between migratory
and desert locusts; for instance galactose and lactose
work poorly in migratory locusts but better in desert
locusts. A balanced (1:1) carbon-to-protein ratio has
been described to be optimal as described for the
migratory locust (Chambers et al., 1995). In addition to
digestible carbohydrates, fibres (e.g. cellulose) seem to
be an important additive to artificial diets for their role
as a bulking agent (Dadd, 1960a)

The lipid requirements for developing to adulthood
of both locust species can be fulfilled with a combina-
tion of cholesterol and either linoleic acid (C18:2 n6) or
linolenic acid (C18:3 n3) (Dadd, 1960a; b). Arachidonic
acid (C20:4 n6) can be utilised to support growth, but
leads to wing deformations. While qualitatively similar,
migratory locusts are more prone to deficiency symp-
toms than desert locusts.

Vitamin A, as such, is not required by locusts. Pro-
vitamin A carotenoids, however, do play a relevant
role. Beta-carotene, for instance, is required for pig-
mentation in desert locusts and improves growth and
development (Dadd, 1957, 1960a). The provision of car-
rots increases the contents of α- and β-carotene in
nymphs of the migratory locust, whereas this effect
seems absent or negligible in adults (Oonincx and Van
der Poel, 2011). Locusts also require various B-vitamins;
that is, thiamine, riboflavin, nicotinic acid, pyridoxine,
folic acid, meso-inositol, calcium pantothenate, biotin,
and choline chloride are dietarily required to facilitate

Journal of Insects as Food and Feed 0 (2025) 1–20



Bugbook: nutritional requirements for edible insect rearing 7

growth and development (Dadd, 1960a). Moreover, vita-
min C (ascorbic acid) is an essential nutrient for desert
locusts (Dadd, 1957, 1960a). In its absence these locusts
often die during moulting. No dietary requirement for
vitamin D is established for locusts. At least migratory
locusts can synthesise it de novo when exposed to UVb
radiation (Oonincx et al., 2018). Vitamin E (Tocopherol)
does not seem to be required by desert or migratory
locusts (Dadd, 1960a).

Also house cricket nutrition was historically studied.
They can develop on artificial diets consisting of casein,
glucose, cholesterol, a mixture of inorganic salts, and a
combination of B-vitamins (McFarlane, 1964). Dietary
protein levels between 20 and 30%, and carbohydrate
levels between 32 and 47% yield the best growth out-
comes (Patton, 1967). House crickets can distinguish
between sucrose and amino acids, and after a period of
amino acid deprivation they will try to increase their
amino acid intake (Tierney et al., 2023). High con-
centrations (>10%) of simple sugars reduce successful
development to the adult stage, with effects of fructose
being more pronounced than glucose (Francikowski et
al., 2021). Trehalose is the dominant sugar in cricket
haemolymph and could be preferable in diets (Wang
and Patton, 1969). Besides carbohydrates and protein,
the house cricket requires dietary lipids for success-
ful reproduction (Meikle and McFarlane, 1965). Early
studies indicated that the provision of wheat germ oil,
especially rich in linoleic acid, but also linolenic acid,
improves early growth compared to pure linoleic acid
(Ritchot and McFarlane, 1962). Moreover, egg hatchabil-
ity increased from 1.1 to 53.6% which could be due to
linolenic acid, or another component in the wheat germ
oil, such as vitamin E.

As house crickets can convert oleic acid (C18:1n9) to
linoleic acid, they might not have a specific require-
ment for the latter, but can suffice with either of
these fatty acids (Crippsc and De Renobales, 1988).
The cricket Teleogryllus commodus (Walker); Orthope-
trea: Gryllidae)can elongate linoleic acid to arachi-
donic and eicosadienoic acid (C20:2 n6), and can elon-
gate linolenic acid to eicosapentaenoic acid (C20:5 n3)
(Jurenka et al., 1988). This might well be true for house
crickets as well. While the house cricket can synthe-
sise various fatty acids, including linolenic acid, palmitic
acid, and stearic acid (Crippsc and De Renobales, 1988),
a dietary source of linolenic acid, could still be advanta-
geous.

The aforementioned artificial diet was used to deter-
mine vitamin requirements of house crickets. They
require choline and vitamin B1, B3, B5, B6, and B7 for

optimal growth and survival, with the latter being essen-
tial for nymphal development (Ritchot and McFarlane,
1961). Dietary carotenoids are poorly retained, and are
seemingly not required by house crickets (Ogilvy et
al., 2012) (Veenenbos and Oonincx, 2017). Vitamin E is
needed for reproduction (e.g. spermiogenesis and sperm
motility (McFarlane, 1974) and fecundity (Prévost and
McFarlane, 1980). Increasing levels of vitamin E (4.3-
86 mg/kg) can cause dose dependent albinism in adult
males on a low copper diet (McFarlane, 1972). Female
house crickets require 2 mg of copper/kg, while males
require 10 mg/kg (McFarlane, 1974). A recent study that
used self-selection of various by-products indicates that
vitamin C, manganese and sterols are important for
maximising growth, whereas higher levels of vitamins B1
and, B5, can limit growth (Morales-Ramos et al., 2020a).
More quantitative studies on requirements for amino
acids, B-vitamins, and minerals are needed to further
understand the nutrient requirements of house crick-
ets.

4 Methods to assess nutrient requirements of
edible insects

Nutritional requirements can pertain to different func-
tions and life stages. For instance, during the growth
phase parameters of relevance are weight gain and feed
efficiency, while in the reproductive phase egg produc-
tion, egg eclosion rates, and neonate survival are more
relevant (Pascual, 2024). Especially in holometabolous
insects, adult fitness depends on nutrients stored dur-
ing immature stages and mobilised in the adult stage
(Arrese and Soulages, 2010). Thus, studies on nutrient
requirements and their methodological approaches can
differ depending on the aim of experiments.

Nutrient requirements by function
Maintenance requirements
Maintenance requires certain nutrients for basal meta-
bolism and activity. These can be determined or esti-
mated by different methods. One method is partial
or total fasting trials of the nutrient under study to
determine the amount of nutrient used when supply is
limited, which helps to estimate maintenance require-
ments (McDonald et al., 2022). For example, provid-
ing a nitrogen-free diet for a short period to determine
maintenance protein requirement from the observed
protein balance. As the fasting evolves, interactions of
amino acid metabolism must be considered (D’mello
and Lewis, 1970). Maintenance energy requirements
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can be determined by balances, or direct and indirect
calorimetry (Tartes and Kuusik, 1994). For example, Roe
et al. (1985) determined these for female house cricket
nymphs based on the balance between metabolisable
and production energy using an equation proposed by
Harris (1966) based on O2 consumption, CO2 produc-
tion, and excretion of N in uric acid. While the most
common approach is to determine the overall growth,
or reproductive requirements of insects, it may be useful
to distinguish between maintenance and production.

Reproduction requirements
Feeding behaviour of hemimetabolous nymphs often
resemble those of adults. However, holometabolous
insect larvae often exhibit fundamentally different feed-
ing behaviour than adults, as seen in the BSF and yel-
low mealworms. In these species, larvae are voracious
feeders species, while their adults display contrasting
feeding behaviours. Historically, adult BSF were consid-
ered non-feeding, but it is now well established that
they do feed and use extra-oral digestion (Lemke et
al., 2023). Currently, adult BSF are rarely fed in farm-
ing systems, as this is perceived to not contribute sig-
nificantly to egg production, whereas the contrary is
true for yellow mealworm beetles (Rho and Lee, 2014).
This difference is likely due to divergent reproductive
strategies; BSF females lay a large egg clutch a few days
after adult emergence (Oonincx et al., 2016), sometimes
followed by a second smaller clutch, whereas yellow
mealworm females continuously lay eggs. Hence, the
overall reproductive output correlates with longevity
and nutritional status in the latter species. Provision of
sugar and/or protein to adult BSF increases longevity,
however, reported effects on fecundity vary between no
effect, and increased fecundity (Bertinetti et al., 2019;
Klüber et al., 2023; Lupi et al., 2019). In adult yellow
mealworms, the protein-to-carbohydrate ratio is a sig-
nificant factor in optimising longevity and total fecun-
dity (Rho and Lee, 2016). While this phase has a minor
impact on overall feed consumption, understanding the
underlying mechanisms, including the timing of nutri-
ent provision, is essential to optimise reproduction. This
pertains to egg production, hatching rates and offspring
health, and thereby the economic and environmen-
tal sustainability of insect farming. Studies varying the
nutrient of interest, while providing adequate levels of
other nutrients, to determine the optimal level of the
target parameter can be used to establish the nutritional
requirements of adults. In doing this, the paramount
importance of larval nutrition on adult reproductive
fitness should be acknowledged (Laursen et al., 2024).

Moreover, providing an optimal diet to the breeding
population can hamper genetic selection for traits such
as larval growth and bioconversion efficiency on effec-
tive barely suitable side-streams due to genotype-by-
diet interactions (Sandrock and others, (In Press)).

Growth requirements
Over 96% of the feed utilised in insect farms is con-
sumed during the larval or nymphal stages. Hence,
meeting the nutritional requirements during the growth
phase considerably impacts development time, compo-
sition, insect health and welfare, feed costs, environ-
mental impact, and ultimately farm profitability.

One method that can be used to determine the net
nutritional requirements for growth of a given nutri-
ent, is the comparative slaughter technique (Chung and
Baker, 1992). Here, the dietary level of the nutrient
under study is provided at varying levels, with suffi-
cient levels for other nutrients during a specific growth
period. By comparing concentrations in animals sam-
pled at the onset of such a trial, with concentrations
of animals sampled at the end of the trial. The amount
of that nutrient retained per day can then be quanti-
fied, and by dividing it by the body weight gained, the
amount needed for that growth can be estimated

Generally, determining maintenance and growth
requirements together is more practical. Quantification
of required nutrients to optimise productivity at each
stage of growth can be done via a factorial study, varying
the level of the nutrient in question and harvesting at
different time points to evaluate the dietary treatments.
A growth trial can then be performed for the period of
interest. The overall requirements then correspond to
the lowest dietary concentration that maximises the tar-
get trait (for instance growth, or number of eggs) during
the tested period. Once the levels of macro-nutrients
are identified, detailed investigations can identify: (i)
the first limiting amino acids in each species and their
appropriate, eventually stage-specific, level in the diet
(Koethe et al., 2022; Sandrock, 2024; Spranghers et al.,
2024); (ii) effects and types of fibre in the diet; and
(iii) requirement levels of minerals and micronutrients
(Frooninckx, 2023; McFarlane, 1991). When doing such
studies, potential interactions between nutrients should
be taken into account (McFarlane, 1974).

Nutrient depletion/replacement studies and
Dose-Response Studies
Nutrient depletion/replacement studies can identify
whether a dietary constituent (e.g. an amino acid) is
essential or not. The principle is to feed diets that are
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identical except for the inclusion of one investigated
constituent, and asses its importance based on a specific
read-out parameter (e.g. growth, survival, etc.). It is spe-
cific for the diet used under the tested conditions. Then,
using dose-response studies, the requirement level of
the essential nutrient for optimal performance can be
determined. This approach works best using purified
ingredients, with a known nutrient content, so that
only the targeted nutrient content varies over treat-
ments. For instance, sugar (i.e. sucrose), starch, protein
concentrates (e.g. casein, peptone, or albumin), syn-
thetic amino acids, fatty acids, vitamins, minerals, or
sterols. For studies with larvae that live in their feeding
substrate, providing a suitable structure of the diet is
important. Semi-artificial diets, for instance wheat bran
for mealworms or the Gainesville diet for Dipteran lar-
vae (Hogsette, 1992) can be supplemented with purified
ingredients (Barragan-Fonseca et al., 2021; Clark et al.,
2015; Spranghers et al., 2024).

When using starch as an ingredient, it must be
digestible (non-resistant), but during diet preparation
potential alterations of its structure and viscosity should
be taken into account. For instance, boiling can lead to
gelatinisation, which can affect free larval movement.
Cellulose can be added as a bulking agent, and to pro-
vide volume for burrowing. Other physical properties,
such as water holding capacity should also be taken
into account, especially for semi-solid dipteran diets,
as it affects their structure which can alter larval perfor-
mance (Yakti et al., 2023a).

Agar can be used to provide moisture ad libitum to
mealworms and can be enriched with micronutrients
(required in very low amounts) to ensure consumption,
and avoid self-selection (see below) (Barragan-Fonseca
et al., 2021; Spranghers et al., 2024).

When conducting studies beyond protein and energy
requirements, isoenergetic and isonitrogenous diets
should be used. This can be attained by including cel-
lulose, starch or sugar, or bulk amino acids to replace
other compounds. For example, when testing varying
concentrations of the essential amino acid lysine, non-
essential glutamic acid can be used as a substitute. In
this example, both the nitrogen content and the molec-
ular weight of the amino acids should be accounted for.

Methods to assess the nutritional value of feed
ingredients and complete diets
Nutrient and energy digestibility of ingredients can vary
greatly, and can be approached in different ways. For
instance, apparent digestibility, initially developed in
mammals, is defined as the difference between nutri-

ents ingested and excreted through faeces, divided by
ingested nutrients. The derived apparent digestibility
coefficient, indicates how well the ingested nutrient is
absorbed in the digestive system. Insects excrete a mix-
ture of faeces and nitrogenous compounds (metabolic
end-products such as uric acid), preventing direct asse-
ssment of apparent digestibility. Hence, the term ‘appro-
ximate digestibility’ is better fitting when using a mass
balance approach based on ingested and excreted
weights (Waldbauer, 1968). This approximation is suit-
able for species that feed on solid materials and pro-
duce solid excreta separable from residual feed, such as
mealworms, crickets, and locusts. Frass can contain exu-
viae, which decreases the accuracy of the digestibility
coefficient. Moreover, microbiota in the insect’ intesti-
nal tract can utilise or synthesise nutrients like amino
acids, which hampers exact quantification of approxi-
mate digestibility values.

Moreover, endogenous secretions are excreted toge-
ther with the microbiota and undigested dietary resi-
dues as part of the faeces. Hence, in pigs and poultry,
digestibility is assessed at the ileum at the end of the
small intestine. Ileal digestibility bypasses the impact of
microbial activity on the accuracy of digestibility coef-
ficients. Inaccuracies caused by endogenous secretions
in the faeces can be overcome by quantifying these
and correct digestibility coefficients to come to true
digestibility coefficients. Methods for such advanced
evaluations of digestibility are currently unavailable in
insect studies. However, it is relevant to be aware that
digestibility coefficients are confounded by microbial
activity and endogenous secretions.

A few studies on yellow mealworms used the mass
balance method to determine approximate digestibil-
ity coefficients. For instance, approximate digestibility
for gross energy, dry matter, crude protein ash, ether
extract, and acid detergent fibre was determined for a
set of six raw materials for yellow mealworms (Pascual
et al., 2024). Similarly, approximate digestibility coeffi-
cients for ash, crude protein, and energy of wheat bran-
based diets supplemented with fresh carrots and wet
brewer’s grains have been determined for yellow meal-
worms (Fasce et al., 2022). Also in yellow mealworms,
the dry matter digestibility coefficient of complete diets
made from by-products with three levels of starch and
protein was determined (Montalbán et al., 2022, 2023).

More studies on the digestive utilisation of raw mate-
rials in yellow mealworm larvae and standardised meth-
ods for determining approximate digestibility coeffi-
cients across different conditions are needed. Often,
such studies use plastic boxes or trays as the experimen-
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tal unit, with variable numbers of insects. Trials are then
conducted 1.5-2 months post-eclosion, allowing a con-
stant feeding behaviour (Fasce et al., 2022). For species
that live inside their feed, a robust and reproducible
method to quantify feed intake and produced excreta is
needed to avoid under-estimation of digestibility coef-
ficients. One approach is a progressive daily inclusion
of feed ingredients followed by a 2-day period without
feeding (Pascual et al., 2024). In this way, practically
all offered feed is ingested by the larvae, and contami-
nation of the collected excreta is limited. In the latter
experiment with six ingredients, only 1-2% (barley and
soybean meal) was not ingested, which could be man-
ually separated from the excreta. Another approach is
the use of a uric acid complementary assay as described
by Van Broekhoven et al. (2015) where the uric acid con-
tent of pure faeces is determined, and used to determine
the fraction of pure faeces in a feed and faeces mix-
ture allowing subsequent calculations of approximate
digestibility coefficients (Montalbán et al., 2022, 2023).
For this, additional replicates are set up and provided
with a restricted amount of feed and the animals are
weighed frequently until they reach a constant weight.
It is then assumed that the remaining substrate consists
of pure faeces. Alternatively, the insects are separated
from their feed and placed in an empty container to col-
lect pure faeces. A downside of these methods is that
frequent weighing, or moving the animals to an empty
container, might influence their feeding behaviour or
physiology (for instance, gut motility). Moreover, it does
not take the possibility of coprophagy into account.

Yet another method, used in Orthopterans, is taking
a subsample of feed, weighing the feed provided, weigh-
ing unconsumed feed and the excreta, and subsequent
drying of these fractions to determine feed intake and
faeces excretion on a DM basis (Oonincx et al., 2010;
Yakti et al., 2023b). While the effect might be minor, this
method disregards DM losses due to respiration of the
provided leaves (Loon, 2005).

For crickets and mealworms choice-feeding experi-
ments, based on self-selection as described by Wald-
bauer and Friedman (1991), can be used. Remaining
food can then be separated from excreta by sifting the
remaining mixture. The difference between ingested
feed and excreta has been named assimilated feed
(Morales-Ramos et al., 2020a; Morales-Ramos et al.,
2020b). This method requires a larger particle size of
the feed than of the faeces, and disregards the option
that feed was reduced in size, but not ingested, similar
to bread crumbs.

For dipteran larvae, which live in and feed on a semi-
solid substrate, a precise assessment of the amount of
feed ingested is still to be developed and would require
a way to separate excreta from non-ingested feed and
exuviae in the frass. An alternative approach to cal-
culate estimated digestibility considers the weights of
distributed feed and frass. Complete ingestion of dis-
tributed feed can be assumed when working either
with high larval density (Guillaume et al., 2023), or an
extended feeding time (Guillaume, 2024). The asymp-
totic estimated digestibility value can then serve as a
proxy for the maximum collective digestive efficiency
of larvae and surrounding microbiota. When using at
least four treatments with either varying density or feed-
ing time, and three of these treatments yield similar
digestibility coefficients, this indicates an asymptotic
value has been reached (Guillaume et al., 2024, 2023).
This method was developed for BSF larvae, but might
also be suitable for other Diptera, such as the housefly.

Another method involves the use of indigestible
markers in digestibility studies. This avoids both tedious
ingesta quantification, and complete faeces collection.
Approximate digestibility is calculated as the differ-
ence of concentration of an indigestible marker in
excreta and in the feed, divided by the concentration
in excreta. This only requires a sample of pure exc-
reta. However, this method relies on analytical quan-
tification procedures, which are costlier than a simple
mass balance approach. A marker method is especially
suitable in digestibility assays for species for which
excreta can be easily collected, such as most Lepi-
doptera, for instance silkworms (Bombyx moryi), most
Orthoptera, and quite possibly Coleoptera (Matsura and
Matsuda, 1993; McGinnis and Kasting, 1964). This indi-
rect method was recently tested on BSF larvae, with 1%
(DM) chromic oxide as a marker, using specific adapta-
tions for excreta sampling. After three days of feeding
with marked substrate, larvae were rinsed and placed
in an empty crate for 24 hours (Guillaume, 2024). Exc-
reta were then collected by dilution in distilled water
using a micropipette, and subsequently the water was
evaporated. An alternative to 1% (DM) chromic oxide is
with 0.5% dry matter titanium dioxide (Veldkamp, per-
sonal communication). Suitable markers remain inert in
the digestive tract, and do not interfere with ingestion,
digestion, or growth processes. These can be artificially
incorporated in experimental diets, such as metal oxides
or stable isotopes, or can be endogenous, such as lignin
or silicon (Van Loon, 2017).
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Choice/self-selection experiments
Choice experiments have been conducted on insects to
understand various aspects of the ecology and phys-
iology aspects including mating choices (Cease, 2013;
Latchininsky et al., 2016), olfactory clues (Dadd, 1961a),
and nutritional preferences (Dadd, 1960a). In contrast
to no-choice experiments in which insects are provided
and “forced” to feed on one diet, choice experiments
have been widely used to explore and better under-
stand their nutritional requirements. The idea behind
this approach is that there is a species-specific bal-
ance of nutrients that they aim to attain through their
feed choices to optimise their growth and development.
Different feed ingredients are simultaneously offered
to insects in specially constructed multiple-choice are-
nas and the relative consumption of each ingredient is
determined to calculate the chosen consumption ratio.
This ability to select and consume different types of
feed to regulate their nutrient intake has been defined
as dietary self-selection (Behmer, 2009; Waldbauer and
Friedman, 1991). Nutrient self-selection has been used
for various edible insect species. A downside of this
approach for investigating insects’ nutritional require-
ments is that insects’ attraction in general can be gov-
erned by various factors, for instance, sensory ques
(Cease, 2013). These should be critically considered
when interpreting the observed effects (Dadd, 1961a).
For instance, the particle size of the diet may affect the
preference and choice of crickets, as they tend to reject
large particles despite the fact that they may contain
essential nutrients (Van Peer et al., 2024). This indi-
cates that the provided ingredients in choice experi-
ments should be of small and similar particle size. Sim-
ilarly, the attractiveness of a diet and subsequently the
insect feeding choices in self-selection experiments may
also be influenced, apart from the diet nutritional con-
tent and value, by its texture (Cohen, 2003). Therefore,
special care should be taken when conducting choice
experiments to minimise the impact of other param-
eters that may affect the attractiveness of the tested
ingredients and diets, in order to be able to attribute the
observed results solely to their nutritional value.

Dietary self-selection has been used in yellow meal-
worm larvae to determine digestible protein and carbo-
hydrate intake. For instance, Morales-Ramos et al. (2011)
evaluated four diets composed of two components, i.e.,
wheat bran and dry potato flakes, at different ratios (9:1,
8:2, 7:3 and 6:4) in a no-choice and a two-choice exper-
iment, with the 8:2 self-selected ratio resulting in the
best larval development. In a similar follow-up study,
six feed ingredients, i.e., dry potato flour, dry egg white,

soy protein, peanut oil, canola oil and salmon oil, were
offered at different ratios in a self-selection experiment
to yellow mealworm larvae to produce a dietary sup-
plement (Morales-Ramos et al., 2013). A similar study
with yellow mealworms offered various food products
and agricultural by-products and quantified the opti-
mal macronutrient ratios for proteins (23%), lipids
(6%), and carbohydrates (71%) (Morales-Ramos et al.,
2020b). In a multiple-choice arena with pelleted feed,
highly similar optimal levels (protein (20–23%), lipids
(9-10%), and carbohydrates (67–72%)) were suggested
(Kröncke and Benning, 2022). In the latter study, nutri-
ent self-selection was also used to reveal age-specific
differences in nutritional requirements, that younger
larvae (6 weeks) prefer more carbohydrates for growth
than older ones (10 weeks) while protein and lipid
intake increase within this period, possibly to prepare
for the energy demanding metamorphosis. While less
commonly studied, self-selection studies can also be
applied for adult nutrition (Rho and Lee, 2014, 2016,
2022).

Feeding choices of locusts are complex behavioural
processes, influenced by swarming and mass cohe-
sion (Cease, 2013; Latchininsky et al., 2016), olfactory
clues (Dadd, 1961a) and visual memory (Dadd, 1960a,b)
amongst other factors. Such experiments can signifi-
cantly contribute to understand their nutritional needs.
For instance, the feeding choices of migratory locusts
subjected to diets deficient in available carbohydrates,
protein, or both, or a control diet and subsequently
allowed to self-select, selected for the nutrient they
lacked (Simpson et al., 1988). Besides selecting for
macro-nutrients, migratory locusts nymphs can also reg-
ulate salt intake by self-selection (Trumper and Simp-
son, 1993). Similarly, house cricket self-regulate intake
of macro and micro-nutrients, elucidating their nutri-
ent requirements (Morales-Ramos et al., 2020a).

Indirect calorimetry
Indirect calorimetry is used to determine energy expen-
diture and substrate utilisation. Two important met-
rics in the context of edible insects are the Specific
Metabolic Rate (SMR) and the Respiratory Exchange
Ratio (RER), also called the Respiratory Quotient (RQ).
Specific metabolic rate is a physiological concept that
quantifies energy expenditure per mass unit, typically
expressed in watts per kilogram (W/kg). It helps under-
standing how different organisms utilise energy and
how their metabolic processes are influenced by factors
such as body size, environmental conditions, and physi-
ological state. Heat production can be determined with
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a calorimeter allowing calculation of the SMR with the
following equation:

SMR = −(heat released from asample − heat released from blank)

Weight of larvae

In BSFL the SMR decreases from approx. 12 μW/mg in
the 3rd instar to 2 μW/mg in the non-feeding 7th instar
(Gligorescu et al., 2019).

The RER can be calculated based on the ratio of
CO2 produced to O2 consumed and indicates which
macronutrient (carbohydrate, protein, and fat) is pre-
dominantly utilised for energy (Brouwer, 1965) using the
following equation:

RER
RQ =

VCO2

VO2

An RER of 1 indicates an organism uses carbohydrates
as energy source, for fats this is approx. 0.7, and for
proteins it is 0.9. An RER above 1.0 indicates CO2 is pro-
duced without oxygen consumption, for instance due
to anaerobic fermentation or de novo synthesis of fatty
acids from carbohydrates (Gerrits et al., 2015). While
informative in controlled experimental settings, RER
values should be interpreted with caution in practical
settings. As organisms would utilise multiple nutrient
types simultaneously if available, the calculated RER, is
an average pertaining to the nutrients in concert. More-
over, CO2 and O2 measurements include the metabolic
activity of the insects, but also their associated micro-
biome and the microbiome in the substrate. Hence,
the RER can be used to better understand the role
of microbes in nutrient conversion. The RER can also
provide insight in optimising dietary formulations for
promoting or limiting fat storage, thereby influencing
growth, production efficiency, and insect composition.
applied This method has been applied in BSFL (Parodi
et al., 2020) and in the locust Schistocerca cancellata
(Serville); Orthoptera: Acrididae) (Talal et al., 2021).

Additional information can originate from also mea-
suring NH4, N2O and CH4 (Coudron et al., 2024; Parodi
et al., 2021). This information is valuable as it consid-
ers gaseous metabolic products, ignored in other meth-
ods such as raw material digestibility indicators, which
combines estimates of nutrient assimilation, thermo-
genesis, energetics of physical activity and GHG emis-
sions. Moreover, indirect calorimetry is typically non-
destructive and can produce results in second resolu-
tion. It is a relatively rare in edible insect research and
considered challenging as it requires a well-built respi-

ratory chamber, an accurate data collection setup, and
a suitable data analysis pipeline (Gerrits et al., 2015,
2019; Parodi et al., 2020; Parodi et al., 2021). For insects
that live in their feeding substrate, the contribution of
substrate and gut microbiome to gaseous emissions is
difficult to determine, and larval handling (transferring
them from their substrate to a respiratory chamber) can
alter larval activity, leading to the generation of non-
representative data.

Metabolic studies (e.g. stable isotope tracing)
Most elements of biological interest (e.g., carbon, nitro-
gen, hydrogen) have several isotopes, with the lighter
form generally present in greater abundance (for exam-
ple abundance of 12C in terrestrial ecosystems is 98.9%
and for 13C this is 1.1%; for 14N this is 99.6% and for 15N
it is 0.4%) (Criss, 1999). Relative natural abundances of
isotope forms, usually expressed as (δ) delta values as
parts per thousand, are usually unique to organisms and
ecosystems. In fact, the isotopic composition of organ-
isms can be used as a “signature” to understand nutrient
flows in various ecological studies (see Quinby et al.
(2020) for an overview of insect-related studies) as it
reflects the isotopic composition of their diets.

Besides naturally-occurring isotopes, artificially-
enriched stable isotopes can be added as tracers to
assess the digestion and metabolism of a compound
of interest. For instance L-arginine consisting of 15N
instead of 14N, or glucose consisting of 13C instead of
12C) are chemically and functionally identical to their
naturally occurring counterpart (the tracee), but can
be detected and tracked in body tissues, excreta, or
respired air due to their higher atomic mass of 15N or
13C. Isotopic tracers allow quantification of nutrient
absorption, body stores, fluxes and elimination, and can
thereby indicate nutrient metabolism of humans and
livestock alike (Gerrits and Labussière, 2023; Schoeller,
2002). There are multiple metrics to quantify isotopic
enrichment when using tracers (Table 1). This method
does require knowledge on the background isotopic
abundance (without enrichment).

While stable isotopes have been used to assess the
dietary ecology of insects relevant for agriculture (e.g.,
pests, pollinators) (Snart et al., 2015), in nutritional stud-
ies on edible insects it is still scarce. Recently, Parodi et
al. (2022) used the stable isotope 15N in NH3 to explore
whether this N can be incorporated into BSFL body
mass during pig manure bioconversion and found that
at least 13% of pig manure NH3-N can be incorporated
into BSFL body mass.
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Table 1 Common metrics to express isotopic enrichment

Unit Description Example
Tracer-to-tracee ratio (TTR) Amount of tracer relative to to the

amount of tracee.
A TTR of 0.05 indicates that the
amount of tracer is 5% of the amount
of tracee.

Mole percent (mol%) or
atom percent (at %)

Molar ratio of the tracer molecule or
atom and the sum of the tracer plus
the tracee molecule or atom.

A mol% or at% of 0.05 indicates that
the amount of tracer is 5% of the
amount of tracer plus tracee.

Mole percent excess (MPE,
mol%) or atom percent
excess (APE, at%)

Similar to mol% and at% but
subtracting the natural isotopic
abundance.

A MPE mol% or APE at% of 0.05
indicates the amount enriched
molecule or atom is exceeded by 5%
compared to the natural isotopic
abundance of the same molecule or
atom (without tracer)

Delta value (δ) relative to an
international standard
(PDB)

Delta values represent the ratio
between a heavy and a lighter isotope
(e.g., 13C/12C) but expressed in parts
per thousand (�). A PDB consists of
the delta value of a sample relative to
an international standard.
International standards have high
delta values, and therefore most PDB
are negative.

If the 13C/12C ratio of a sample is
0.010743 and the 13C/12C ratio of the
international standard is 0.112372, the
delta value relative to the
international standard would be
–44� ((0.010743–0.112372)/0.112372)
* 1000

Hence, this method offers great potential to better
understand the metabolic fate of dietary components.

In summary, indirect calorimetry allows estimation
of macronutrient (e.g., fats, carbohydrates) oxidation,
while isotopic studies allows quantification of the oxi-
dation of specific components (e.g., a certain fatty acid,
or monomer) by measuring rates of 13CO2 expiration.
In combination with the measurement of 13C in body
stores and excreta, these methods can help reconstruct
the fate of specific components.

5 Conclusion and future outlook

Insect farming is rapidly growing as an approach for
sustainable protein production for food and feed appli-
cations, addressing global food security challenges and
contributing to circularity in food production systems.
Advancing knowledge of the nutrient requirements of
farmed insect species will help improve their perfor-
mance and enhance farming productivity by developing
precise and cost-effective feed formulations that meet
their dietary needs. This chapter summarises the cur-
rent knowledge on the nutrient requirements for the
most commonly produced insects used as food or feed.
It provides a synthesis of the in-depth studies conducted

during the fifties, sixties and seventies of the last cen-
tury, with the most recent studies on the topic of nutri-
ent requirements. Furthermore, it identifies both gaps
in knowledge, such as micronutrient requirements, spe-
cific amino acid requirements, the interaction between
diet and microbiota, and between diets and genotypes,
as well as ways to fill these gaps. Moreover, it describes
various methodologies hitherto used to determine these
requirements and directions for further method devel-
opment. As the field of edible insect nutrition is rapidly
developing, it is to be expected that interdisciplinary
studies will contribute to the expansion of knowledge
on nutrient requirements and the further development
and application of suitable experimental methods. This
will lead to the creation of feed evaluation systems, and
consequently the formulation of efficient diets for opti-
mal edible insect production. Valorisation of these ele-
ments will contribute to sector development and allow
effective use of insects to increase the circularity of our
food system.
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