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Abstract

The gradual accumulation of plastic waste in marine environments threatens biodiversity and human welfare. Moni-
toring this waste can inform policy evaluation and support waste recovery efforts. While remote sensing studies have
primarily focused on detecting marine debris (MD), a proxy for plastic waste, in isolated satellite scenes, tracking MD
agglomerations (patches) over time remains unexplored. This study presents the Double Acquisition Neural Network
(NN), designed to match MD patches across PlanetScope (PS) and Sentinel-2 (S2) imagery captured within a one-hour
interval. A new dataset of 3,445 annotated PS-S2 MD patch pairs was compiled to support the model development.
The study systematically examined different designs of similarity estimation frameworks, conducted a hyperparameter
search, and further investigated retrieval performance gains from restricting the candidate search scope, aided by varying
prior knowledge on local drift. The optimal model, featuring two platform-specific ResNet-18 encoders initialised with
pre-trained weights and trained with contrastive loss, achieved 37% top-1 and 57% top-3 retrieval accuracies under a local
(bound to a study event) candidate selection regime. Incorporating drift knowledge into the candidate selection process
significantly improved performance: the top-1 accuracy reached 62% and the top-3 accuracy reached 88%. The mean
retrieval position of the true match was reduced from 12.6 to 1.9. These findings demonstrate that the proposed Double
Acquisition NN can reliably match MD patches within two retrieval attempts, aided by drift knowledge. This work lays

the foundation for automating MD patch tracking and enabling time-aware monitoring of marine plastic pollution.
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1. Introduction

1.1. Marine Plastics Pollution

Plastic production has increased disproportionately
since its invention, reaching over 410 million metric tons
(Mt) in 2023 alone (Plastics Europe, 2024). However, only
a small portion of the generated plastic is recycled, leav-
ing millions of metric tons as waste. Lebreton and An-
drady (2019) estimated that in 2015, 60 to 99 Mt of plastic
waste was improperly disposed of, some of which eventu-
ally found its way into the ocean. In 2010, an estimated
4.8 to 12.7 Mt of plastic waste entered the ocean (Jambeck
et al., 2015), primarily via rivers, which are estimated to
transport 1.15 to 2.41 Mt of plastic to the ocean each year
(Lebreton et al., 2017).

Due to the long lifespan of plastic materials (Chamas
et al., 2020), once plastic waste enters the ocean, it per-
sists and accumulates, contributing to long-term pollution
(Barnes et al., 2009; Andrady, 2015). This persistent pol-
lution is a growing concern due to its potential direct and
indirect adverse effects on marine biodiversity, ecosystems,
and human well-being (Gall and Thompson, 2015; Carbery
et al., 2018; Waring et al., 2018). Entanglement, inges-
tion, and laceration from plastic can lead to inflamma-
tion, starvation, and death in marine organisms (Gall and
Thompson, 2015; Carbery et al., 2018). Moreover, plastic
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can enter food chains, posing broader risks across trophic
levels (Waring et al., 2018). Furthermore, toxic additives
used initially to improve plastic properties may be released
into the water through degradation processes such as UV
photo-oxidation, chemical and bacterial weathering, and
abrasion from water and wind (Carbery et al., 2018; War-
ing et al., 2018).

The scale and persistence of marine plastic pollution
call for urgent strategies to mitigate its harmful impact.
Although reducing plastic production, consumption, and
waste generation is the most direct solution to the plas-
tic waste crisis, even substantial reductions will not elim-
inate the large quantities of plastic already discarded in
the ocean (Barnes et al., 2009).

Monitoring is considered a key strategy for managing
existing marine plastic pollution, as it advances our un-
derstanding of the global plastic inventory, its spatial dis-
tribution, and dispersal patterns (Maximenko et al., 2019;
Karakus, 2023). This knowledge is essential for supporting
targeted waste recovery operations, identifying pollution
sources, and enabling effective law enforcement (Kikaki
et al., 2020; Karakusg, 2023). Moreover, long-term moni-
toring is critical for evaluating the effectiveness of mitiga-
tion policies and international agreements (Eriksen et al.,
2023).
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1.2. In Situ Monitoring and Plastic Dispersal Modelling

In situ monitoring through shipboard sampling or trawl
studies provides direct and accurate measurements of plas-
tic waste presence and concentration. However, these
methods are expensive and require extensive human re-
sources. Consequently, in situ efforts are spatially and
temporally sparse and are often restricted to coastal ar-
eas (van Sebille et al., 2015; Kikaki et al., 2020; Salgado-
Hernanz et al., 2021; Goddijn-Murphy et al., 2024).

To address the scarcity of direct measurements and ob-
tain global estimates of plastic waste quantities, accumula-
tion zones, and dispersal patterns, researchers employ the
physical ocean drift models to simulate plastic movement
(van Sebille et al., 2015; Lermusiaux et al., 2019; Bajon
et al., 2023; Zhang et al., 2023). The resulting plastic
dispersal models integrate oceanographic parameters such
as currents and wind with available plastic concentration
data to model the probable transport and fate of plastic.

Although these dispersal models are valuable tools,
their accuracy is limited by multiple factors. Firstly, avail-
able in situ plastic measurement datasets often lack inter-
operability due to inconsistent methodologies (Goddijn-
Murphy et al., 2024), hindering their integration and use
for model calibration and validation. Secondly, this accu-
racy depends on the quality of the incorporated drift mod-
elling approaches, which often rely on coarse-resolution
oceanographic parameter inputs (Maximenko et al., 2019;
Eriksen et al., 2023; Zhang et al., 2023) and may use sim-
plifications within drift modelling frameworks (e.g., ne-
glecting Stokes drift; Bosi et al. (2021)). Furthermore,
drift model calibration often leverages tracked data from
surface drifter buoys, which do not fully represent floating
plastics due to differences in size, shape, density (Pereiro
et al., 2018), and drag properties, particularly due to the
presence of drogues (Béchaz, 2024). These limitations re-
strict the applicability of drift models for simulating plas-
tic waste dispersal and trajectory forecasting, especially
in complex coastal environments (Pereiro et al., 2018; Li
et al., 2020).

Several studies have stressed the need for more obser-
vational data on plastic waste quantity and movement be-
haviours to improve the calibration and validation of plas-
tic dispersal models and to enable more reliable monitoring
and forecasting of plastic waste for various applications,
yet collecting such data through in situ methods alone re-
mains severely limited (van Sebille et al., 2015; Cézar et al.,
2021; Zhang et al., 2023; Béchaz, 2024).

1.3. Remote Sensing Monitoring

An alternative data source to resource-intensive and
sparse in situ observations is satellite-based Remote Sens-
ing (RS), which has the potential to provide addi-
tional data for model calibration and validation. The
high-resolution RS provides non-intrusive, repeatable and
global measurements that offer extensive insights into spa-
tial and temporal patterns of marine plastic waste (Bier-

mann et al., 2020; Salgado-Hernanz et al., 2021; Topouzelis
et al., 2021; Karakus, 2023).

Although using RS for marine plastic waste monitor-
ing is a relatively recent development (Salgado-Hernanz
et al., 2021), several RS-based methods have been pro-
posed for detecting marine plastic waste in satellite im-
agery. These include spectral indices (e.g., Themisto-
cleous et al. (2020); Cézar et al. (2024)), classical machine
learning algorithms (e.g., Basu et al. (2021); Duarte and
Azevedo (2023)), emerging deep learning approaches (e.g.,
Mifdal et al. (2021); Rufiwurm et al. (2023); Shen et al.
(2024); Dalsasso et al. (2025)), and combinations of these
techniques (e.g., Biermann et al. (2020); Lavender (2022);
Sannigrahi et al. (2022); Kikaki et al. (2024)).

However, most studies face the challenge of insuffi-
ciently detailed RS data for direct plastic detection and
therefore use Marine Debris (MD) as a proxy for plastic
waste. Plastic has a weak and highly variable spectral
signal ascribed to low concentrations, diverse plastic ma-
terial types, degradation, and biofouling effects (Garaba
et al., 2018; Cézar et al., 2021; Politikos et al., 2023).
These factors make it challenging to distinguish plastic
waste from other MD materials such as sea foam, seaweed,
plankton, and other natural and non-natural debris (Bier-
mann et al.; 2020; Topouzelis et al., 2020, 2021; Mikeli
et al., 2022; Karakus, 2023). These materials, includ-
ing plastic waste, often cluster into agglomerations—MD
patches—that form more detectable targets for satellite
sensors due to their larger size, which is sufficient for iden-
tification from space (Biermann et al., 2020). Moreover,
plastic is often the most common non-natural component
of MD patches, making these agglomerations particularly
relevant for plastic waste detection (Biermann et al., 2020;
Cézar et al., 2021).

Current RS approaches for plastic waste monitoring via
MD patch detection rely on sensors aboard satellite mis-
sions such as Sentinel-1, Sentinel-2 (S2), Landsat, Plan-
etScope (PS), and WorldView-3 (Salgado-Hernanz et al.,
2021; Karakus, 2023; Politikos et al., 2023). Among these,
S2 is the most commonly used due to its free availabil-
ity, relatively high spatial resolution (up to 10 m) and
abundant spectral information (in 13 spectral channels),
which together enable the detection of small MD aggre-
gations (Topouzelis et al., 2019; Biermann et al., 2020;
Kikaki et al., 2020; Themistocleous et al., 2020; Topouzelis
et al., 2020). In contrast, the PS platform offers scenes at
a higher spatial resolution (3 m), but with fewer spectral
channels (4, and 8 since 2020), making detecting plastic
waste within MD patches more challenging. Moreover, as
PS data is commercial, it has been used less frequently in
MD detection studies (e.g. Kikaki et al. (2020); Shen et al.
(2024); Dalsasso et al. (2025)).

While both S2 and PS platforms are effectively used
to detect MD patches in individual scenes, each presents
limitations for continuously tracking these patches across
multi-temporal imagery. The five-day revisit time of S2
constrains its ability to re-detect MD patches on short



timescales. In contrast, despite its near-daily coverage,
PS is limited by its spectral richness, reducing its stand-
alone reliability. These limitations constrain the use of
either platform alone for monitoring dynamic processes of
the MD drift and dispersal over time.

Temporally coordinated overpasses of PS and S2 mis-
sions present a notable opportunity for time-aware MD
monitoring, facilitated by frequent, near-simultaneous
(typically within a one-hour interval) imagery acquisitions.
These PS-S2 scene pairs, referred to as ”double acqui-
sitions”, offer a unique opportunity to complement S2’s
spectral richness with PS’s temporal frequency and spa-
tial details. Kikaki et al. (2020) has noted the potential to
leverage multiple satellite platforms for MD patch moni-
toring and tracking over time.

1.4. Tracking Through Double Acquisitions

Despite the potential of using multi-temporal satellite
imagery for MD tracking, its implementation is largely
underexplored. Although a few studies have attempted
to manually infer MD patch trajectories and drift veloc-
ities from multi-temporal scenes from various platforms
(Matthews et al., 2017; Kikaki et al., 2020; Weif et al.,
2022), to the best of the author’s knowledge, no study has
yet exploited the opportunity of using the PS-S2 double
acquisitions to develop an automated MD patch tracking
system. Furthermore, since neither the individual plat-
forms nor their combination has previously been applied to
track MD patches, no platform-specific or multi-platform
dataset of MD patch annotations from double acquisitions
currently exists.

This study draws inspiration from established object
tracking pipelines commonly used in other domains to ad-
dress the lack of time-aware monitoring and to leverage
double acquisitions for automated MD patch tracking. For
example, Ahn et al. (2023) proposed a traffic surveillance
pipeline consisting of three modules: an object detection
module (i.e., for cars), an object association module to
match the same objects across video frames, and a trajec-
tory estimation module.

Inspired by Ahn et al. (2023), an MD patch tracking
pipeline could consist of: MD patch detectors for PS and
S2 scenes, an MD object association module for match-
ing detected MD patches across PS-S2 double acquisitions,
and a trajectory estimation module (see Figure A.1 for
the tracking pipeline composition illustration). Building
on the extensive efforts toward addressing the MD detec-
tion problem, this study assumes the availability of reliable
detectors for both PS and S2 imagery and focuses exclu-
sively on the next step of the tracking pipeline: developing
an object association module for MD patches detected in
double acquisitions.

The association step addresses a fundamental retrieval
problem: how to accurately retrieve the relevant candidate
among a set of supplied candidates for each query. For
this study, it can be reframed as a multi-platform retrieval
task: for each MD patch detected in the PS scene (the

query), the objective is to find (retrieve) its corresponding
match in the S2 scene (the relevant candidate) from a set
of detected MD patches (the candidate set).

In Ahn et al. (2023), object association is performed by
ranking candidates using deep-learning-based similarity
estimates between the query and each candidate. The
retrieval process is further facilitated by constraining the
candidate set to reduce the risk of false positives. This
study adopts a similar two-factor strategy for the MD
patch matching task by implementing candidate selection
regimes to reduce the number of potential candidates and
ranking candidates using similarity scores derived from
the proposed Double Acquisition Neural Network (NN).

This study offers two key contributions. First, this
study compiled the first dataset of tracked MD patches
derived from double-acquisition imagery pairs of PS and
S2, as outlined in Section 2. This dataset enabled the sec-
ond contribution: developing a Double Acquisition Neural
Network (NN) to match MD patches across PS and S2 dou-
ble acquisition scenes (Section 3 outlines its architecture
and training procedures). The latter contribution involved
answering the following research questions (RQs):

RQ1 Which of the similarity estimation frameworks (out-
lined in Sections 3 and 4) performs the best for the
MD patch matching task?

RQ2 What are the optimal training hyperparameters for
the Double Acquisition NN in terms of batch size,
augmentation strategies, base encoder depth, and
pre-trained weight initialisation?

RQ3 How can the retrieval performance of the Double Ac-
quisition NN be improved by restricting the candi-
date search space?

2. Dataset

2.1. Study Events

The MD patches in the curated dataset were annotated
based on MD events previously reported in the literature
and general media, which, upon inspection, were found
to have PS-S2 double acquisitions (see Appendix B for
specific scene IDs). The selected MD events include:

e Bay Islands, Honduras, 2017-10-09. Kikaki et al.
(2020) noted a floating plastic debris event validated
by in situ measurements on 2017-10-17.

e Venice, Italy, 2018-06-30 from Mifdal et al. (2021)
study.

e Calabria, Italy, 2018-10-22. The MD patches formed
following a severe flooding and outwash of trash into
the ocean. Sannigrahi et al. (2022) found an agree-
ment of spectral response curves for suspected plastic
presence.



e Accra, Ghana 2018-10-31. According to Biermann
et al. (2020), the MD patches captured in these
scenes are primarily composed of macroalgae and
spume, with some exhibiting the spectral signature
of plastic. RuBBwurm et al. (2023) has previously
noted the existing PS-S2 double acquisition pair.

e Venice, Italy, 2018-10-31. MD patches visible just
outside the Venetian Lagoon can be linked with a
storm-induced flooding event in Venice at the end of
October, 2018 (The Guardian, 2018).

e Lagos, Nigeria, 2019-01-01 from Mifdal et al. (2021).

e Durban, South Africa, 2019-04-24. It was reported
that large amounts of plastic were washed out follow-
ing a flood. The plastic presence was confirmed in
situ (Biermann et al., 2020). Unfortunately, due to
large cloud coverage, only a few double acquisition
annotations of MD patches were possible.

e Thassos, Greece, 2021-04-30. The PS-S2 double ac-
quisition pair was found based on Cézar et al. (2024)
MD presence predictions.

e Marmara, Turkey, 2021-05-19 from Rulwurm et al.
(2023). MD patches are relics of a large mucilage
bloom, which, just like plastic, pose severe harm con-
cerns (Yagci et al., 2022).

2.2. Data Acquisition and Pre-processing

Satellite scenes were retrieved for each reported MD
event to enable the annotation of MD patches and provide
data for the model training.

PlanetScope Scenes

PS scenes were manually downloaded from the Planet
website by requesting analytical products filtered by MD
event date and location. The downloaded scenes have a
spatial resolution of 3 m, are projected to the local UTM
coordinate system, and consist of 4 spectral channels: Red,
Green, Blue (RGB) and Near-Infrared (NIR).

All acquired scenes were converted to top-of-
atmosphere reflectance (TOARef) (see Appendix C for
details). The pre-processed PS scenes were used to gener-
ate bounding boxes aggregated per study event.

Sentinel-2 Scenes

The corresponding double acquisition S2 scenes for
each study event were downloaded from Google Earth En-
gine. The MD event date and bounding box coordinates
were used as request parameters. The retrieved S2 scenes
were Level-1 products, containing TOARef measurements
across 13 spectral channels. Spectral channels with coarser
spatial resolution were upscaled to match the highest avail-
able spatial resolution of 10 m. Additionally, the S2 scenes
were re-projected to the local UTM coordinate system to
ensure spatial alignment with the corresponding PS scenes.

Atmospheric Correction

There is no common agreement on the atmospheric cor-
rection (AC) application and its effectiveness, as many
researchers highlight the risk of disrupting the plastic
spectral signal due to AC (Garaba et al., 2018; Goddijn-
Murphy et al., 2018; Biermann et al., 2020; Themisto-
cleous et al., 2020; Topouzelis et al., 2020, 2021; Hu, 2022;
Karakus, 2023; Cézar et al., 2024). Additionally, ensuring
that multi-platform ACs produce comparably corrected
PS and S2 scenes is challenging (Karakus, 2023). While
AC can be deemed important for studies focusing on the
spectral properties of MD, in this study, the short time
interval between double acquisitions is expected to limit
atmospheric condition variability. Therefore, both PS and
S2 scenes are assumed to be affected by the atmosphere in
a similar manner. Based on this, the decision not to apply
ACs was made for both PS and S2 scenes.

2.3. Annotation Process

Although researchers have proposed several spectral
indices to highlight MD patches and plastic waste in
S2 scenes (Themistocleous et al., 2020; Karakus, 2023),
such as the Floating Debris Index (FDI; Biermann et al.
(2020)), these indices often rely on spectral channels that
are not available in PS imagery. Therefore, a simpler
and consistent across-platform index was chosen to aid
the MD patch annotation process. This study employed a
Normalised Difference Index (NDI), which was calculated
for each scene using the Blue and NIR spectral channels
(Eq. 1). This index was chosen based on visual inspection
in preliminary experiments.

NIR — Blue
NDI = NIR + Blue S

Pairs of PS-S2 scenes and their corresponding NDI
rasters were loaded into QGIS and visualised side by side.
MD patches were annotated as pairs using the line tool,
where each line started at the centre of the MD patch in
the PS scene and ended at the same MD patch captured in
the S2 scene (Figure 1). The spatial displacement between
MD patch locations is attributed to drift occurring over the
acquisition time gap, which in this study spanned from 2
to 46 minutes. Annotations were created for each MD
patch in the PS scene when a corresponding match was
identifiable in the S2 scene. In many cases, the emerging
drift patterns, often forming parallel or gradually chang-
ing drift displacement trajectories, aided the annotation
process (see Figure 1).

Line segments were post-processed to their endpoints,
representing MD patch coordinates in the PS and S2
scenes. The original line segments served to associate
matched MD patches into match pairs.

2.4. Annotation Dataset

The final dataset contains 3,445 match pair annota-
tions of MD patches re-detected across PS-S2 double ac-
quisitions (Table 1). These pairs correspond to 3,445 MD
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Figure 1: Example of Marine Debris (MD) patch pair annotations
for the MD event in Accra, Ghana, on 2018-10-31. During the an-
notation process, PlanetScope (PS) and Sentinel-2 (S2) scenes were
visualised side-by-side, and arrows were placed to point from an MD
patch centre in the PS scene to its corresponding location in the S2
scene. Note that in this figure, the arrow annotations do not objec-
tively reflect the drift displacement, as both images have overlapping
extents.

patch locations annotated in PS scenes and 3,080 in S2
scenes. The full dataset is published alongside this study,
and more technical details about the dataset structure and
composition can be found in Appendix B.

The discrepancy between the number of annotations
from each platform is due to the different number of scenes
available per study event. Due to the longer revisit time
of the S2 platform, only one S2 scene is available for each
MD event. In contrast, the PS platform captured the same
event in multiple, sometimes overlapping scenes. This
overlap allowed the same MD patch to be annotated mul-
tiple times in the PS scenes but only once in the S2 scene.
Consequently, there were multiple double acquisition pairs
for some MD patches. For example, the same MD patch
locations PS7, PS5 and S2; produced two match pairs:
(PSl, 521) and (PSQ, 521)

2.5. Dataset Implementation

Annotations from the compiled dataset were used to
generate multispectral tensor tiles of MD patches, which
served as inputs for model training and evaluation.

Tensor Tile Extraction

MD patch annotations were used as centre anchors to
crop tensor tiles from pre-processed PS and S2 scenes (see
Section 2.2). PS tiles were cropped to 256 x 256 pixels, and
S2 tiles to 64 x 64 pixels. These dimensions were selected to

Table 1: The number of annotations in the training, validation, and
test sets of MD patches that were re-detected across the PS-S2 double
acquisitions, categorised by the corresponding MD events.

Matches & Patches
MD event Patches in PS in S2
Bay Islands, Honduras 115 108
Venice (2018-06), Italy 163 163
Calabria, Italy 182 173
Accra, Ghana 67 67
£ Venice (2018-10), Ttaly 154 152
& Lagos, Nigeria 15 15
Durban, South Africa 13 13
Marmara, Turkey 1415 1096
Thassos, Greece 42 42
Total 2166 1829
% Accra, Ghana 365 350
g Marmara, Turkey 240 240
S Total 605 590
« Accra, Ghana 278 268
é Marmara, Turkey 396 393
Total 674 661

ensure approximately similar spatial coverage, while also
retaining computational efficiency benefits of input sizes
that are powers of two. This tile creation strategy was
designed to centre the MD patch within each tile while
also including both the spectral and spatial context from
the surrounding area.

Both PS and S2 TOARef scenes are originally scaled
by 10* to store reflectance values as integer data type in-
stead of float data type, reducing memory usage. However,
such scaling is suboptimal for neural network optimisation,
as large input values can lead the activations, such as sig-
moid and tanh, into their saturation regimes, producing di-
minished gradients and consequently slowing convergence
(Toffe and Szegedy, 2015). To address this, all tile values
were rescaled by dividing by 10%. Since reflectance is a pro-
portional unit between reflected and incident radiation, it
has an inherent range of [0, 1].

Tiles were grouped into PS-S2 pairs and assigned
match labels. A pair was labelled positive if the same
MD patch was centred in both tiles, and negative if the
tiles contained different MD patches.

Data Split

To reflect variability across MD events while preserving
spatial independence, the Marmara and Accra MD events
were spatially divided into training, validation, and test
sets (see Figure D.1 for an illustration of the spatial ex-
tents). All remaining MD events were used exclusively for
training. This spatial division ensured that model perfor-
mance is evaluated on spatially distinct areas of the Accra
and Marmara MD events, promoting a more robust assess-
ment of generalisation. The resulting data split included



2,166 MD patch pairs for training, 605 for validation, and
674 for testing (Table 1).

3. Methodology

This section presents the architecture, optimisation
and training strategies of the proposed Double Acqui-
sition NN, identified as the most effective model, based
on experimental evaluation (detailed later), for estimating
similarity values of MD patches and ranking candidates.

3.1. Model Architecture

Since matching MD patches are represented by PS and
S2 image tiles, originating from different satellite plat-
forms, with varying spatial resolutions and spectral char-
acteristics, estimating pairwise similarity between them
constitutes a heterogeneous (multi-platform and multi-
temporal) image matching problem.

Traditional feature-based image matching methods
in computer vision, such as the Scale-Invariant Feature
Transform (SIFT) introduced by Lowe (2004), compare
images based on the computed similarity between ex-
tracted features.

Deep learning similarity estimation frameworks have
emerged from these traditional methods. These ap-
proaches focus on feature-level similarity estimation, lever-
aging neural networks to extract high-level representa-
tions (features) from inputs and project them into a la-
tent space. In this space, semantically similar inputs are
mapped closely, while non-matching inputs are mapped
farther apart. Similarity is then quantified by comparing
the embedded features using a distance metric such as co-
sine similarity (Chicco, 2020).

Matching features in heterogeneous RS imagery re-
quires bridging the information gap introduced by plat-
form differences. These differences can be treated as dif-
ferences between data modalities (e.g., images and text).
This outlook allows for drawing inspiration from multi-
modal matching approaches.

An example of such a matching approach is the Con-
trastive Language-Image Pre-training (CLIP) framework
from Radford et al. (2021), which is designed to as a pre-
text task to match image-caption pairs for self-supervised
contrastive learning. The CLIP framework addresses a
multi-modal matching task by employing two individual
encoders to extract features from images and text individ-
ually. These features are then projected into a common,
modality-invariant embedding space and compared using
cosine similarity, quantifying the angular distance 6 be-
tween vectors independently of their magnitude (Eq. 2).

A-B
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where A and B are the projected embedding vectors of two
inputs, ||A|| and ||B]| are their corresponding Euclidean
norms, n is their dimension.

Implemented Architecture

This framework inspired the architecture of the pro-
posed Double Acquisition NN. However, instead of indi-
vidual image and text encoders, this network employs two
distinct image encoders—one for PS tiles and one for S2
tiles, referred to as the PS and S2 branches, respectively.
Each branch independently processes its respective input
tile to extract features.

In image-based tasks, ResNet architectures of varying
depths (He et al., 2016) are a common choice for image
encoding due to their strong feature extraction capabili-
ties. In the context of image matching, they have been
applied in domains such as forensic science (Du et al.,
2017; Tang et al., 2019), robotics (Qiu et al., 2018), and
pedestrian re-identification (Zheng et al., 2017). The orig-
inal CLIP framework also employs a ResNet architecture
for the image encoder, which is modified with antialiased
rect-2 blur and attention pooling layers (Radford et al.,
2021). To maintain architectural simplicity and the pos-
sibility to leverage publicly available pre-trained weights
(discussed later in Section 5.3.4), this study opts for a
standard ResNet-18 architecture for both the PS and S2
branches.

As ResNet is originally designed for RGB images, ar-
chitectural modifications are necessary to accommodate
the multispectral nature of RS data. Specifically, the first
convolutional layer is modified to intake 4-channel inputs
in the PS branch and 13-channel inputs in the S2 branch.
Furthermore, the final fully connected layer is replaced
with an identity mapping in both branches. The resulting
512-dimensional feature vectors are then linearly projected
to 128 dimensions. These projection layers are specific to
each branch and do not share weights. Figure 2 illustrates
an overview of the architecture.

8.2. Model Optimisation

The proposed Double Acquisition NN is optimised us-
ing the contrastive learning strategy from the inspirational
CLIP framework, which originally was adapted from the
InfoNCE loss proposed by Oord et al. (2018). While the
CLIP framework is originally designed to jointly pre-train
image and text encoders for direct use in zero-shot classi-
fication inference, in this study, its optimisation strategy
is adopted as the primary supervised contrastive sim-
ilarity learning objective, rather than as a pre-training
step.

This supervised contrastive objective leverages a batch
of N positive pairs to construct all possible mismatched
(negative) pairs within the batch (see Figure E.1 for an
illustration of this pair set composition). The model is
encouraged to correctly identify positive pairs among all
possible pairing combinations. This is achieved by imple-
menting the CLIP loss (Eq. 3), a symmetric cross-entropy
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Figure 2: Double Acquisition Neural Network (NN) architecture in-
spired by Contrastive Language-Image Pre-training (CLIP) frame-
work introduced by Radford et al. (2021). The two-branch model
utilises ResNet-18 backbones with modified first and last layers to
extract features from PS and S2 tiles containing MD patches. Fea-
ture embeddings are projected to 128 dimensions. The similarity
matrix (right) is necessary for CLIP loss calculation and contains
cosine similarities between embedded S2 and PS tile features. True
matches are highlighted in purple; n is a batch size; Conv2D - a
convolutional layer with input and output channel dimension pa-
rameters.

loss applied over cosine similarity scores between extracted
and then projected PS-S2 feature pairs. The total loss
averages the losses obtained from matching PS-to-S2 tiles
(Eq. 4) and matching S2-to-PS tiles (Eq. 5), thereby ensur-
ing balanced learning for both encoders. During training,
similarity values are scaled by a temperature parameter,
which is jointly optimised with the model.

Lcrip =
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N ZEPS(PSia S2; .n)+ ZLSQ(SZia PSi,...,N)]
=1

- 3)

exp (cos(PSi,S%))
Lps (PSiv S2i,-»-,N) = —log ZN Lexp (COS(PSi,S2j)> (4)
j= T
exp (cos(SZi,PSi))
£S2<Sziﬂ Psi,m,N) = —log ZN Lexp (cos(SZi,PSj)> (5)
j= T

where PS and S2 are the projected feature vectors of PS
and S2 tiles, respectively. cos(-,-) denotes cosine similar-
ity, calculated for index i (positive pairs) and index j—all
candidate pairs in the batch, including negatives. 7 is a
learnable temperature parameter.

3.3. Model Training

The model was trained for 800 epochs, with a batch
size of 128. The temperature parameter was initialised

at 7 = 0.07. An initial learning rate of 0.0005 was used
with a cosine learning rate scheduler and the Adam opti-
miser. No data augmentations were applied to the input
tensors. The branch-specific ResNet-18 encoders were ini-
tialised with general pre-trained weights from Wang et al.
(2023), for more details refer to the (b) weight initialisa-
tion outlined in Section 5.3.4. Final model weights were
selected based on the highest top-5 validation accuracy
(described in Section 5.1), which was monitored for each
epoch.

4. Related Methods

This section describes other similarity estimation
frameworks tested for the MD patch matching task, in
addition to the proposed Double Acquisition NN outlined
in Section 3.

4.1. Siamese Neural Network

Using features extracted by neural networks for simi-
larity estimation was introduced by Bromley et al. (1993),
who proposed the Siamese Neural Network (SiamNN) for
signature forgery detection. The objective of this net-
work is to extract features using a time-delay neural net-
work encoder and compare pairs of these extracted fea-
tures by measuring their cosine similarity. The architec-
ture employs a single shared-weight backbone, forming a
two-stream network. SiamNN is optimised to maximise
similarity for matching pairs and minimise it for non-
matching pairs. Notably, the original SiamNN is a ver-
ification model, designed to solve a one-shot classification
problem of verifying a given signature against a reference.

Since its introduction, the SiamNN architecture has
been applied in numerous fields. Specialised variants
are used in handwriting (Du et al., 2017), finger vein
(Tang et al., 2019), fingerprint, and face-verification tasks
(Chicco, 2020). Its application in remote sensing is also
established; for example, He et al. (2018) used SiamNN to
match satellite imagery with complex background varia-
tions such as land use changes and differing atmospheric
conditions.

Implemented Architectures

The SiamNN implementation for MD matching in-
volved architectural modifications. Due to differences in
spectral and spatial resolutions and varying tile sizes be-
tween PS and S2 inputs, the use of a shared-weight back-
bone architecture could not be directly implemented. To
address the mismatch in input properties, three architec-
tural configurations were tested.

First, the SiamNN-Single configuration included
simple branch-specific pre-encoders for PS and S2 inputs,
followed by a shared-weight ResNet-18 backbone (Fig-
ure 3a). Second, the SiamNN-3-layer configuration re-
placed the simple pre-encoders with deeper 3-layer Con-
volutional Neural Networks (CNNs), while keeping the
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Figure 3: Siamese Neural Network architectures for the PS-S2 MD
patch matching problem. (a) Architecture with branch-specific pre-
encoders for PS and S2 input tiles to standardise input dimension-
ality and enable a shared-weight ResNet-18 backbone encoder; (b)
Architecture with fully independent branch-specific ResNet-18 en-
coders. In both cases, the model outputs 512-dimensional feature
vectors.

shared-weight backbone unchanged (Figure 3a). Lastly,
the SiamNN-Individual configuration was composed of
entirely independent encoders (Figure 3b), identical to
those used in the proposed Double Acquisition NN (Sec-
tion 3.1). None of the configurations included projection
layers, as this component was not part of the original
SiamNN design. Detailed architectural descriptions are
provided in Appendix F.

Optimisation

All SiamNN models were optimised using the Cosine
Embedding loss (Eq. 6). For effective training, the loss
requires negative pairs as input. Therefore, to produce a
balanced dataset, half of the positive pairs in each input
batch were rearranged into negative pairs, resulting in a
balanced training set with 50% positive and 50% negative
pairs.

£Cosine Embedding(PSa SZ) =
)1 —cos(PS,82),
| max(0, cos(PS, S2)),

ify=1 (6)
ify=-—1

where cos(PS, S2) denotes the cosine similarity between
PS and S2 embedded vectors, y = 1 is the pair label for
positive pairs and y = —1 for negative pairs.

4.2. Deep Relational Similarity Learning

The proposed method in this study is based on the
CLIP framework, which assumes that features extracted
from different modalities (e.g., image-text or PS-S2) can be
aligned in a shared latent space. This modality-invariant
space then enables similarity quantification using standard
distance metrics. However, Wang et al. (2021) argued that

relying on a modality-invariant latent space can be imprac-
tical, as data from different modalities may contain differ-
ent structures and information amounts. As an alterna-
tive, researchers introduced the Deep Relational Similar-
ity Learning (DRSL) framework, which learns the optimal
similarity function between modalities rather than relying
on extracted feature alignment in a common embedding
space. Fusing extracted multi-modal features and passing
them through a learnable Relation Network allows estima-
tion of the pairwise similarity.

Implemented Architecture

To adapt the original DRSL for the MD patch match-
ing task, the DRSL architecture was configured with
two individual ResNet-18 encoders for the PS and S2
branches. The first convolution layers were modified to
intake modality-specific input channel dimensions, as de-
scribed in Section 3.1. The final fully connected layers
in both branches were replaced by branch-specific fully
connected neural networks (FNNs), each with two hidden
layers. The feature vectors produced by these FNNs were
concatenated and passed through a relational similarity
NN consisting of two hidden layers to output a relational
pairwise similarity score. Appendix G contains an illus-
tration and details of the implemented DRSL architecture.

Optimisation

Following the original DRSL framework, model train-
ing utilised a batch to generate all possible pairwise combi-
nations of PS-S2, forming a full similarity matrix per batch
(see illustration in Figure G.1). The network was opti-
mised using a Mean Squared Error (MSE) loss to learn re-
lational similarities that approximate a prior matrix, con-
sisting of ones for positive and zeros for negative pairs.

4.3. Supervised SimCLR

Pair matching is a frequent pretext task in contrastive
self-supervised learning (SSL), where models are pre-
trained to associate representations of semantically sim-
ilar inputs and learn robust feature extractions without
the need for labelled data (Wang et al., 2022).

SimCLR (Simple Framework for Contrastive Learning
of Visual Representations; Chen et al. (2020)) is a con-
trastive learning framework that employs a Siamese-like
architecture to identify positive pairs of two augmented
views of the same input images among all other possi-
ble pairings in the batch, including negative pairs. This
architecture consists of a shared-weight backbone and a
non-linear projection head. It is optimised using the
Normalised Temperature-scaled Cross Entropy (NT-Xent)
loss, a form of the InfoNCE loss (Oord et al., 2018).

A key difference between SimCLR and CLIP (which
inspired the proposed Double Acquisition NN) lies in the
encoder design. SimCLR uses a single modality-specific
encoder to process augmented views of the same image.



In contrast, CLIP employs two separate modality-specific
encoders to align image-text pairs.

This study implemented a supervised adaptation of
SimCLR with the primary objective of matching multi-
platform PS and S2 tiles with MD patches, rather than
pre-training an image encoder. In this adaptation, the two
views correspond to two tiles with the same MD patch cap-
tured by different platforms (PS and S2), replacing Sim-
CLR’s self-supervised augmentation-based positive pairs
with ground truth multi-platform MD patch matches.

Implemented Architectures

To enable SimCLR shared-weight encoder design for
the multi-platform tile matching task, the architecture was
modified to accommodate platform-specific inputs. The
tested architectures mirrored those used in the SiamNN
implementation. The first SimCLR-3-layer configura-
tion used 3-layer CNN branch-specific pre-encoders, fol-
lowed by a shared-weight ResNet-18 backbone (Figure 3a).
The second SimCLR-Individual configuration employed
two branch-specific ResNet-18 encoders (Figure 3a). In
both variants, encoders were followed by a shared-weight
projection head with one hidden layer, outputting 128-
dimensional embeddings, consistent with Chen et al.
(2020).

Optimisation Variations

When directly applying the SimCLR optimisation
strategy to the MD patch matching task, the definition of
negative pairs expands to include not only multi-platform
negatives (i.e., (PS;,S82;) for j # i), but also same-
platform pairs such as (PS;, PS;) and (S2;,52;) for
j # 4. To reflect this broader definition, the corresponding
NT-Xent loss is referred to as NT-Xent-Full (Eq. 8).

MD = {PS;}[L, U {S2;}}}, (7)

LNT—Xent—Full =

(cos(MD,y,MDp) )

exp —

exp (cos(M]::—,;,MDp) ) + Zne/\/ exp (cos(M[:j,MDn) )
(8)

where N is batch size, 7 is the temperature parameter,
cos(MD;, MD,,) denotes the cosine similarity between the
embedded anchor tile MD; and its positive match MD,,
from the other platform (a PS-S2 pair), cos(MD;, MD,,)
denotes similarity between the same embedded anchor tile
and each negative sample, including those originating from
the same platform. The negative set is defined as N/ =
PS,,S24,...,PS,,S2,, where n ¢ P.

However, since this study focuses on matching PS to
S2 MD patches (not PS-PS or S2-S2), modified optimisa-
tion strategies were introduced to discard same-platform
negatives. In addition, these adaptations also accounted

— log

for multiple positive matches, as some MD patches were
captured in multiple PS scenes. This study tested two
loss variants: NT-Xent-In (Eq. 9), suitable for datasets
with distinct positives-negatives, and NT-Xent-Out loss
(Eq. 10), which works better with noisy and inaccurate
data (Hoffmann et al., 2022).
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In both equations, cos(PS;, S2,) denotes the similarity be-
tween embeddings of the anchor PS tile PS; and its pos-
itive S2 match tile S2,, cos(PS;, S2,,) refers to similarity
between embeddings of the same anchor tile and all nega-
tive samples originating from the S2. The negative set is
defined as N' = S24,...,52,, where n ¢ P.

In all NT-Xent loss variants, cosine similarity is scaled
by a temperature parameter 7, which is fixed during train-
ing. Preliminary experiments showed that a commonly
used temperature value of 0.07 performed better than the
original value of 0.5 used by Chen et al. (2020), for the
MD patch matching task.

5. Experimental Design

This section outlines the experimental designs for eval-
uating different similarity estimation frameworks and im-
plementation approaches for matching PS-S2 tiles with
MD patches. Each set of experiments corresponds to one
of the three RQs defined in the introduction and supports
the development of the proposed Double Acquisition NN,
which demonstrated the best overall performance.

The proposed model and all experiments were imple-
mented using the PyTorch and PyTorch Lightning frame-
works. Each experimental model was trained under com-
parable conditions, with identical dataset splits and ini-
tialisation seeds. Unless specified otherwise, training pa-
rameters (where applicable), weight initialisation, and fi-
nal weight selection strategies were identical to those used
for training the proposed Double Acquisition NN (see Sec-
tion 3.3).

5.1. FEvaluation

To assess and compare experimental model designs,
this study used two groups of metrics: classification and
retrieval. While both metric groups provide insights into
model behaviour details, retrieval metrics were the pri-
mary focus given the retrieval formulation of the MD patch
matching task.



5.1.1. Classification Fvaluation

Classification metrics were used to evaluate the model’s
ability to correctly assign positive or negative pair labels
based on a similarity threshold of 0.5.

Dedicated balanced validation and test datasets were
constructed to evaluate classification performance, each
containing 50% positive and 50% negative pairs. Posi-
tive pairs were sampled directly from the full evaluation
dataset. In contrast, negative pairs were generated by re-
assigning a non-matching S2 tile to each of the remaining
PS anchor tiles (see dataset composition in Figure E.2).

This balanced dataset was also used to compute clas-
sification accuracy and average similarity scores: the
mean average similarity (calculated over the entire bal-
anced dataset), and the average positive and average
negative similarities (calculated over positive and nega-
tive pairs separately in this balanced dataset). These met-
rics were applied selectively to provide a complementary
measure of the model’s capacity to differentiate between
positive and negative pair inputs in key experiments.

5.1.2. Retrieval Fvaluation

The retrieval metrics are generally used to quantify a
model’s ability to correctly rank the relevant candidate for
a given query among a set of candidates based on their
ranking scores. This study used two retrieval metrics:
mean position and top-k accuracy.

The mean position describes the average position
of the correct match within the ranked list of candidates
based on similarity scores (Eq. 11).

N
1
Mean Position = N Z position(S2P) (11)

i=1

where N is the number of query PS tiles, and position(S27)
is the rank of the true matching S2 tile (with the same
physical MD patch) in a set of S2 tile candidates for the
i-th PS query.

Top-k accuracy measures the proportion of queries
for which the true match is positioned within the top k
most similar predictions (Eq. 12). This study monitored
k€ {1,3,5,10,50}.

1 <L (1 if S2P € (S2;);

Top-k Accuracy = — Z ] » J

i—1 0 if SZ,L ¢ (SZZ)]

N

where N is the number of query PS tiles, S2; denotes
the ranked set of candidates for the i-th PS query, p is
the relevant candidate (i.e., true match in S2) and (S2;);
where j € {1, ..., k} denotes the top-k candidate subset.

Since the MD patch matching task is formulated as
a retrieval problem, the optimal Double Acquisition NN
configuration in each experiment was selected based on
the top-1 accuracy on the test dataset, using the full S2
set as the candidates, reflecting the global retrieval regime,
which is detailed later in Section 5.4.

(12)
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5.2. Framework Variation Experiments (RQ1)

This study investigated the effectiveness of various es-
tablished similarity estimation frameworks for the MD
patch matching. The following frameworks were tested:
the proposed Double Acquisition NN, SiamNN-Single,
SiamNN-3-layer, SiamNN-Individual, DRSL, SimCLR-3-
layer and SimCLR-Individual. All SimCLR-based archi-
tectures were optimised using the NT-Xent-Out loss, while
the other loss variants (NT-Xent-In and NT-Xent-Full)
were tested on the SimCLR-Individual architecture.

All models were trained for 200 allocated epochs using
a batch size of 128 positive pairs. Subsequent experiments
involved the best-performing configuration identified from
this comparison.

5.8. Hyperparameter Optimisation (RQ2)

This section describes hyperparameter experiments
conducted on the proposed Double Acquisition NN (as de-
scribed in Section 3).

5.8.1. Batch Size Fxperiments

This study investigated the effects of increasing batch
size on model performance. Experiments were conducted
using batch sizes of 16, 32, 64, 128, and 256. Initially, all
configurations were trained for 200 allocated epochs. How-
ever, due to the unexpected behaviour of smaller batch
sizes performing slightly better, additional experiments
were carried out to extend the training duration of larger
batches such that each configuration performed approx-
imately the same number of model weight updates (i.e.,
steps). The training for a model with a batch of 32 re-
mained for 200 allocated epochs, for a batch size of 64, it
was increased to 400 allocated epochs, 128—800 allocated
epochs, and 256—1600 allocated epochs.

The optimal batch size and training duration were se-
lected from extended-duration training experiments.

5.8.2. Augmentation Strategy Experiments

Data augmentations were tested to enhance the
model’s generalisation abilities and virtually increase the
size of the training set. Augmentations were independently
applied to PS and S2 training tiles, allowing each tile in
a pair to undergo a different (randomised) augmentation
strategy.

The benefits of augmentations on model performance
were evaluated across multiple augmentation strategies:
no augmentations, mild, medium, and harsh augmenta-
tions, and the spectral-channel-shuffling strategy. Detailed
descriptions of these augmentation strategies are provided
in Appendix H, and Figure H.1 shows examples of each
strategy. All configurations were trained using a batch size
of 128 for 800 allocated epochs.



5.3.3. Base Encoder Depth Experiments

ResNet-18 was selected as the primary base architec-
ture for image encoding in all experiments due to its rel-
atively small size and simplicity, making it more suitable
for extensive experimentation. Once the proposed archi-
tecture configuration was identified, a deeper and more
complex ResNet-50 base architecture was tested within the
Double Acquisition NN framework. Both branch-specific
ResNet-50 encoders incorporated the same modifications
applied to the ResNet-18 encoder: adjustments to the first
convolutional layer and replacement of the last fully con-
nected layers (see Section 3.1).

These experiments were trained using a batch size of
128 for 800 allocated epochs and employed slightly differ-
ent weight initialisation strategies. MoCo weights were the
only ones available for ResNet-18 in the SSL4EO project
(Self-Supervised Learning for Earth Observation; Wang
et al. (2023)), thus they were used by default. How-
ever, SSL4EO provides additional weight options for the
ResNet-50 architecture; therefore, to further investigate
the effects of base encoder architecture on model perfor-
mance and to account for possible biases introduced by dif-
ferent weight initialisations, the ResNet-50 encoders were
initialised separately with MoCo and DINO weights from
the SSL4EO study.

5.83.4. Pre-Training Variation Experiments

This study tested three initialisation configurations for
the proposed Double Acquisition NN to investigate the
benefits of using pre-trained encoders. These configura-
tions were subsequently fine-tuned (the entire network) on
the MD patch matching task for 200 allocated epochs, with
the remaining training parameters kept consistent as de-
scribed in Section 3.3. The models were initialised with:

(a) random weights;
(b) general pre-trained weights;

(c) weights obtained through self-supervised SimCLR
refinement of the general pre-trained weights.

(a) Random Initialisation Weights

In this initialisation configuration, the entire network
(except the temperature parameter) had randomly ini-
tialised weights, and it served as a baseline to assess the
impact of pre-trained weights.

(b) General Pre-trained Weights

This initialisation configuration was used in all experi-
ments described above. Here, the ResNet encoders in each
model branch (or the shared encoder, where applicable)
were initialised with publicly available weights from the
SSL4EOQ project (Wang et al., 2023). These weights were
obtained through pre-training conducted by the SSLAEO
team on S2 Level-1 data from all 13 spectral channels using
the MoCo SSL framework. Pre-training data were sam-
pled around 10,000 of the most populated cities, making
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these weights general for broad use of S2 applications in
the Earth observation domain.

For encoders requiring a different number of input
channels (e.g., PS encoder, or shared-weight encoders
in the SiamNN and supervised SimCLR frameworks),
the first convolutional layer, along with other introduced
or modified layers (e.g., pre-encoders, projection lay-
ers, FNNs, Relational Similarity NN), was randomly ini-
tialised.

To the best of the author’s knowledge, there are no
publicly available, generally pre-trained ResNet architec-
tures for PS data. Therefore, an ablation experiment was
conducted on the Double Acquisition NN to investigate the
applicability of S2-based general pre-trained weights for
the PS modality. This experiment used MoCo pre-trained
weights for the S2-branch encoder, while the PS-branch
and the remaining architecture parts were randomly ini-
tialised.

(¢) Self-Supervised Refined Weights

Initialisation configuration (c¢) was built upon configu-
ration (b) by refining the SSL4EO weights through ad-
ditional self-supervised pre-training using the SimCLR
framework, applied independently to each branch-specific
encoder.

For the PS branch, the encoder architecture was con-
figured as in the proposed Double Acquisition NN (see
Section 3.1), except that the final projection layer was re-
placed with a non-linear projection head producing 128-
dimensional feature vectors, as proposed by Chen et al.
(2020). Pre-training was performed using the NT-Xent-
Full loss (Eq. 8) on batches of positive pairs, composed
of two augmented views derived from the same platform,
specifically, PS tiles, resulting in PS-PS pairs. Augmented
views were generated using the harsh augmentation strat-
egy (see Appendix H for more details). This ResNet-18
base encoder was initialised with the SSLAEO weights.

Self-supervised SimCLR pre-training was configured
with the following hyperparameters: temperature 7 =
0.07, batch size of 512, and 200 training epochs. The
same pre-training procedure was replicated independently
for the S2 branch encoder, using S2 tiles.

The final encoder weights used in downstream fine-
tuning for both branch-specific encoders were selected
based on the top-3 validation accuracies monitored dur-
ing self-supervised SimCLR. pre-training. The non-linear
projection heads used during pre-training were replaced
with randomly initialised linear projection layers for the
transfer to the MD patch matching task.

As the model initialised with refined weights performed
worse than those using the original SSL4AEO weights, addi-
tional experiments were conducted to investigate whether
this performance drop can be associated with catastrophic
forgetting. This phenomenon, described by McCloskey
and Cohen (1989), occurs when a neural network forgets
previously learned useful representations as its weights ad-
just to a new training objective. To investigate whether



self-supervised SimCLR pre-training induced such forget-
ting, the Double Acquisition NN was fine-tuned on the
MD patch matching task after 1, 3, 5, 10, 15, 20, and
25 epochs of self-supervised SimCLR pre-training for each
branch encoder.

5.4. Candidate Selection Regimes (RQ)3)

This set of experiments was no longer focused on ar-
chitectural and training-related experiments. Instead, it
examined how to implement the proposed Double Acqui-
sition NN most efficiently by leveraging prior knowledge
to enhance performance further.

Since the MD patch matching problem is formulated
as a retrieval task, applying prior-knowledge-based con-
straints to limit the candidate set is expected to reduce
task complexity and improve retrieval performance. This
study explored three candidate selection regimes: global,
local and drift-bound, each applying progressively stronger
constraints to narrow the candidate search space. In these
experiments, only retrieval metrics were evaluated.

Global Regime

In the global regime, each PS MD patch tile in the
evaluation dataset was compared against all available S2
tiles with MD patches from the S2 platform (in the same
dataset). MD patches originating from one MD event were
compared against those from all events in the dataset, sim-
ulating a completely unconstrained search scenario.

For the global regime, the global tok-k accuracy was
computed individually for each query and then averaged
across all queries.

Local Regime

The local regime restricts the candidate set to only
those tiles with MD patches from the same MD event as
the query MD patch. This regime simulated a scenario
where a single MD event is investigated at a time, without
any prior knowledge of the expected maximum drift speed.

For the local regime, the local top-k accuracies were
first averaged per test MD event, and then across all
events.

Drift-bound Regime

The drift-bound regime is based on the intuition that
MD patches can only drift within a limited spatial radius.
Due to uncertainties in drift model accuracy for estimating
precise expected MD patch locations, this study adopts a
simplified approach of drift-informed restrictions. Specifi-
cally, it applies a constant maximum drift speed per MD
event, thereby avoiding the need for complex drift mod-
elling.

The expected search area for candidate selection is de-
termined by combining the maximum drift speed with the
time elapsed between acquisitions. Since MD annotations
include temporal information, an expected drift radius can
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be estimated for each MD patch query and used to filter
the candidate set accordingly.

Maximum drift speed values were determined through
an optimal drift speed search conducted for each test MD
event. This study tested drift speed values ranging from
2 cm/s to 2 m/s. Initial values were drawn from the liter-
ature: Gerin et al. (2013) reported an average drift speed
of 2 cm/s (£20 cm/s standard deviation) for drifters in
the Marmara Sea, and Kikaki et al. (2020) reported 2-
14 cm/s for MD off the coast of Honduras. However, these
speed values proved insufficient to retrieve any candidate
matches.

It is important to note that this drift speed search was
not conducted to tune the search radius to the test data
and introduce bias, but rather to simulate an applied sce-
nario where the expected maximum drift speed is known,
for example, from oceanographic forecasts. A full applied
case study of drift-informed candidate selection is beyond
the scope of this study.

In the drift-bound regime, top-k accuracies were aver-
aged per MD event and across all events. Candidate set
sizes varied for each query and were sometimes smaller
than the k retrieval scope. The corresponding query was
excluded from the mean position calculation if the true
match was outside the candidate set. For top-k accuracy,
queries were assigned a value of 1 if the true match was
within the candidate set, and 0 otherwise.

6. Results

6.1. Performance of Framework Variations (RQ1)

The test classification and retrieval results for all evalu-
ated frameworks are summarised in Table 2. The proposed
Double Acquisition NN achieved the highest retrieval per-
formance across all metrics, including a global top-1 ac-
curacy of 26.7%, a mean position of 20.8. It also reached
the second-best classification accuracy of 87.1%, confirm-
ing the model’s robustness for classification and retrieval
tasks.

In contrast, DRSL and all SiamNN variants demon-
strated substantially lower retrieval performance, with
global top-1 accuracies below 3% and mean positions ex-
ceeding 100. DRSL and SiamNN-Single also achieved
classification accuracies (of 50%) close to random chance.
Among the SiamNN variants, the SiamNN-Individual
architecture performed best in the retrieval task, al-
though it remained far behind the proposed model
(global top-1 accuracy of 0.6 vs 26.7%). Despite their
poor retrieval performance, SiamNN-3-layer and SiamNN-
Individual reached some of the highest classification accu-
racies of 88.3 and 85.2%, respectively.

Supervised SimCLR frameworks achieved the second-
best retrieval performance overall. The top-performing
(based on global top-1 accuracy) SimCLR variant stayed
behind the proposed model by 3.7%. Within the SimCLR
variants, the architecture with individual encoders con-
sistently outperformed the 3-layer shared architecture, as



Table 2: Test classification and retrieval performance of all evaluated framework variants.

Classification metrics are evaluated on the

balanced dataset, and retrieval metrics under the global candidate selection regime (with 661 MD patches). All frameworks were trained
for 200 allocated epochs (ep). Bold values indicate the best-performing scores per metric. Frameworks are grouped by type, with variants
listed together. DRSL-Deep Relational Similarity Learning; SiamNN - Siamese NN; SimCLR-a supervised Simple Framework for Contrastive
Learning implementation; NT-Xent-Normalised temperature-scaled cross entropy loss variants

Global Retrieval

Classification
Fr K Accuracy Mean Top-k Accuracy (%)
amewor (%) Position
1 3 5 10 50
Double Acquisition NN (200ep) 87.1 20.8 26.7 44.7 56.5 66.2 89.0
DRSL 50.0 102.8 2.5 6.5 8.9 15.1 43.2
SiamNN-Single 50.0 266.2 0.3 0.4 0.4 1.2 2.4
SiamNN-3-layer 88.3 126.7 0.6 2.5 3.7 7.3 31.3
SiamNN-Individual 85.2 133.1 0.6 2.2 4.3 8.3 26.3
SimCLR-3-layer (NT-Xent-Out) 73.0 77.5 13.4 25.4 31.6 41.5 66.2
SimCLR-Individual (NT-Xent-Out) 86.9 29.4 23.0 42.0 48.7 61.9 84.1
SimCLR-Individual (NT-Xent-In) 83.8 27.4 21.8 38.1 47.3 61.9 86.1
SimCLR-Individual (NT-Xent-Full) 87.1 31.6 20.2 38.4 46.3 59.3 85.0
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Figure 4: Average mean, positive (pos) and negative (neg) pair similarities for each tested framework variation. All frameworks were trained
for 200 allocated epochs (ep). The classification threshold equals 0.5.

reflected by the drop in mean position from 77.5 to 29.4.
However, none of the three NT-Xent loss variants used
in SimCLR-Individual showed a clear advantage over one
another across retrieval metrics.

Figure 4 presents the average mean, positive, and neg-
ative similarities across all frameworks. These patterns
relate to the observed classification performances. Frame-
works such as DRSL, SiamNN-Single, and SimCLR-3-
layer, which had the lowest classification accuracies, also
exhibited average positive similarities below the 0.5 clas-
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sification threshold. The SiamNN-3-layer variant had the
highest classification accuracy and the mean average sim-
ilarity just below the classification threshold. In con-
trast, the highest-performing models in the retrieval task
(the proposed network and SimCLR-Individual variants)
demonstrated a wider gap between average positive and
negative similarities. This effect was largely induced by
substantially lower average negative similarity values, par-
ticularly compared to the SiamNN variants.



Table 3: Test classification and retrieval performance of the proposed Double Acquisition NN under different training batch sizes and extended
training durations. Classification metrics are evaluated on the balanced dataset, and retrieval metrics under the global candidate selection
regime (with 661 MD patches). Results are grouped into two training regimes: a baseline regime with 200 allocated epochs, and extended
training regimes for larger batch sizes. Bold values indicate the best-performing scores per metric for each training regime.

Global Retrieval

Classification
Batch Size/ Accuracy Mean Top-k Accuracy (%)
epochs (%) Position
1 3 5 10 50
16,/200 93.2 19.0 26.1 46.9 56.5 69.6 90.5
32/200 90.8 18.5 31.5 52.5 60.2 71.2 89.9
64,/200 90.5 21.6 28.5 47.9 57.3 68.1 88.9
128/200 87.1 20.8 26.7 44.7 56.5 66.2 89.0
256,/200 73.1 38.3 15.3 29.4 37.5 49.9 78.6
64/400 89.5 | 221 29.7 49.6 59.6 69.1 89.3
128/800 89.0 15.5 37.5 56.5 65.7 75.7 92.3
256,/1600 73.7 22.3 24.3 41.4 49.7 65.0 89.5
6.2. Optimised Hyperparameters (RQ2) 08  pos:0.77 _
Pos: 0.74 Mean
6.2.1. Batch Size 07 Pos: 066 Classification
Table 3 summarises the test retrieval and classifica- 206 SOV AP [ S{101
tion performance of the proposed Double Acquisition NN _!_E 05
across varying batch sizes and training durations. Results £ 0 o Pos: 0.45
are grouped into two training regimes: a baseline regime ﬁ 04 0.36
with 200 allocated training epochs, and an extended train- 30.3 092 025
ing regime for larger batch sizes. g 02 '
The highest retrieval performance was observed with <
a batch size of 128 under the extended training regime. 01 i Neg: 0.07  Neg:0.07  'Neg: 0.0
Within the baseline regime, a batch size of 32 had the 00 16 2 64 128 256
best overall performance, except for global top-50 retrieval Batch Size

accuracy and classification accuracy, which were slightly
higher for the model trained with a batch size of 16.

Figure 5 shows the average mean, positive, and neg-
ative similarities for each batch size. Smaller batch sizes
(16, 32, and 64) yielded higher classification accuracies
(90.5-93.2%) and higher average positive similarity scores.
In contrast, models trained with larger batch sizes (128
and 256) under the baseline regime showed reduced clas-
sification accuracies (87.1% and 73.1%, respectively) and
lower average positive similarity scores (e.g., 0.45 for batch
size of 256, just below the classification threshold). When
extended training was applied, a batch size of 128 im-
proved classification and retrieval performance compared
to the corresponding 64 and 32 batch size models.

6.2.2. Augmentations Strategies

Table 4 presents the test retrieval and classification
performance of the proposed Double Acquisition NN
trained with different augmentation strategies: none, mild,
medium, harsh, and spectral-channel-shuffling.

The model trained without augmentations achieved
the highest global top-1, top-3, top-5, and top-10 re-
trieval accuracies. However, the model trained with the
medium augmentation strategy slightly outperformed in
mean position (15.5 vs 13.9) and global top-50 accuracy
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Figure 5: Average mean, positive and negative pair similarities for
the proposed Double Acquisition NN trained with varied batch sizes.
All models were trained for 200 allocated epochs. The classification
threshold equals 0.5.

(92.3% vs 92.9%), indicating improved ranking perfor-
mance beyond the top-10. The highest classification ac-
curacy was achieved by the model trained with harsh aug-
mentations. However, the same harsh strategy and the
spectral-channel-shuffling strategy resulted in the lowest
retrieval performance scores.

6.2.3. Base Encoder Depth

Table 5 reports the test retrieval and classification per-
formance of the proposed Double Acquisition NN with dif-
ferent base encoder architectures. Results grouped by en-
coder type: ResNet-18 (initialised with MoCo pre-trained
weights) and ResNet-50 (evaluated with both MoCo and
DINO pre-trained weights).

The model equipped with ResNet-18 as the base en-
coder for each branch outperformed both ResNet-50 vari-
ants across all classification and retrieval metrics. It
achieved a global top-1 accuracy of 37.5%, compared to
26.4% for the ResNet-50 with MoCo weights and 15.1%



Table 4: Test classification and retrieval performance of the proposed Double Acquisition NN trained with different data augmentation
strategies. Classification metrics are evaluated on the balanced dataset, and retrieval metrics under the global candidate selection regime
(with 661 MD patches). All experimental models were trained for 800 allocated epochs. Bold values indicate the best-performing scores per

metric.
Global Retrieval
Classification
Augmentation Accuracy Mean Top-k Accuracy (%)
Strategy (%) Position
1 3 5 10 50
None 89.0 15.5 37.5 56.5 65.7 75.7 92.3
Mild 90.9 15.0 33.1 53.7 62.9 2.7 92.3
Medium 93.0 13.9 34.4 55.8 63.4 74.5 92.9
Harsh 94.2 18.9 25.7 44.8 53.1 65.3 90.2
Spectral-channel-shuffling 85.2 25.5 31.8 47.8 56.4 68.2 88.1

Table 5: Test classification and retrieval performance of the proposed Double Acquisition NN when employing different base architectures for
image encoding. In brackets, the indication of which general pre-trained weights from SSL4EO (Wang et al., 2023) were used for base-encoder
initialisations. All experimental models were trained for 800 allocated epochs. Classification metrics are evaluated on the balanced dataset,
and retrieval metrics under the global candidate selection regime (with 661 MD patches). Bold values indicate the best-performing scores per

metric.

Global Retrieval

Classification
Base Accuracy Mean Top-k Accuracy (%)
Architecture (%) Position
1 3 5 10 50
ResNet-18-MoCo 89.0 15.5 37.5 56.5 65.7 75.7 92.3
ResNet-50-MoC0 86.9 22.4 26.4 43.2 52.7 62.5 88.4
ResNet-50-DINO 86.6 40.4 15.1 29.4 38.4 50.3 80.7

for the ResNet-50 with DINO weights.

Between the two ResNet-50 configurations, the MoCo-
initialised model outperformed the DINO-initialised model
across all retrieval metrics, with improvements ranging
from 7.7 to 18.0%. The difference in classification capacity
was marginal (0.3%), with the MoCo variant being better.

6.2.4. Pre-Trained Weight Initialisation

Table 6 summarises the impact of different weight
initialisation strategies obtained through different pre-
training strategies for the encoders in the proposed Double
Acquisition NN on test retrieval and classification perfor-
mance.

The model initialised with SSL4EO pre-trained weights
on both the PS and S2 encoders outperformed the ran-
domly initialised variant across all retrieval metrics. No-
tably, global top-1 accuracy increased by 11.4%, and other
global top-k metrics showed relative improvements rang-
ing from 9.2 to 18.5%. Classification accuracy was slightly
higher (87.1% vs 89.6%) for the randomly initialised vari-
ant.

When SSL4EO weights were initialised only in the S2
encoder, performance decreased across all metrics com-
pared to random initialisation, except for a marginal im-
provement in global mean position (by 1.4) and global top-
50 accuracy (by 0.8%).
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Further refinement of SSI4EO weights through self-
supervised SimCRL pre-training decreased performance,
with global top-1 and top-3 accuracies below those ob-
tained with random initialisation. Overall, this refined-
weight configuration performed worse than the unrefined
SSLAEQO weight initialisation.

Figure 6 shows the downstream performance of refined-
weight models across self-supervised SInCLR pre-training
epochs. Retrieval performance began to decline from the
first epoch and continued to decline until epoch 15, after
which it began to recover slightly. However, the refined
weights never regained the original performance level of
the unrefined SSLAEO weights.

6.3. Impact of Candidate Selection Restrictions (RQ3)

Table 7 summarises the retrieval performance of the
proposed Double Acquisition NN under varying levels of
prior knowledge, defined by applying different candidate
selection regimes (global, local, and drift-bound) to the
testing procedures.

Under the global regime, the model ranked the true
match, on average, as the 15.5'" most similar tile. It cor-
rectly retrieved the top-1 prediction in 37.5% of test cases.
With three attempts, the model successfully retrieved the
true match in 56.6% of cases (see Figure 7 for some top-
3 retrieval examples), and with 50 attempts, in 92.3% of



Table 6: Test classification and retrieval performance of the proposed Double Acquisition NN fine-tuned on different weight initialisations. All
experimental models were trained for 200 allocated epochs. Classification metrics are evaluated on the balanced dataset, and retrieval metrics
under the global candidate selection regime (with 661 MD patches). Results are organised into three groups: random weight initialisation,
SSLAEO pre-trained weights (applied either to both PS and S2 encoders or to the S2 encoder only), and SSLAEO weights further refined
using a self-supervised SimCLR pre-training strategy. Bold values indicate the best-performing scores per metric.

Global Retrieval

Classification
Weight Accuracy Mean Top-k Accuracy (%)
Initialisation (%) Position

1 3 5 10 50

Random 89.6 39.0 15.3 31.5 38.0 50.4 79.8
"~ SSL4EO pre-trained weights in: | |

PS and S2 branches 87.1 20.8 26.7 44.7 56.5 66.2 89.0

S2 branch 86.8 37.6 11.9 27.0 36.2 49.7 80.6

SSLfgf_‘:E;ge};tvsiSffg?igEﬁ 88.1 32.8 15.0 30.9 39.0 50.4 82.8
Top5 cases, indicating that the model was able to narrow down

£ 50 Top-3 the correct match to a smaller candidate set.
Z —— Top-1 Under the local regime, the model retrieved the true
% 40 match more efficiently: on average, within 12.6 attempts.
& Local top-5, top-10, and top-50 accuracy scores were only
% marginally higher (by 0.1-1.2%) than in the global regime,
'T': 20 whereas the local top-1 accuracy was 0.5% lower than the
< global top-1 accuracy.
G 10 Figure 8 shows retrieval results of the optimal max-
0135 10 15 20 25 Highest imum drift speed search for each test MD event. The
Top-3 reported drift speed values in the literature (2-20 cm/s)
accuracy

N° of SimCLR Pre-Training Epoch

Figure 6: Global top-1, top-3, and top-5 test accuracies of Double
Acquisition Neural Networks fine-tuned for the MD patch match-
ing task. Models were initialised either with MoCo weights from
the original SSL4EO (epoch 0) or with weights obtained from ad-
ditional self-supervised SimCLR pre-training for 1, 3, 5, 10, 15, 20,
and 25 epochs, as well as from an extra checkpoint selected based on
the highest top-3 validation accuracy during self-supervised SimCLR
pre-training.

failed to retrieve any candidate MD patches for most
queries, resulting in low retrieval accuracies and simulating
a maximum drift speed underestimation scenario. Grad-
ually increasing the drift value improved retrieval perfor-
mance up to a breakpoint. This breakpoint had the high-
est performance scores and was used to select the optimal
maximum drift speeds. They were: 90 cm/s for the Accra
MD event, and 40 cm/s for Marmara. Increasing the drift
speed further and simulating the overestimation scenarios
resulted in a gradual decline in performance.

Introducing these optimised maximum drift speed val-

Table 7: Test retrieval performance of the proposed Double Acquisition NN under global, local, and drift-bound candidate selection regimes.
Results for local and drift-bound regimes are reported separately for the Marmara and Accra MD events. Bold values indicate the best-

performing scores per metric.

Search Scope Pl(\)/gigggn Top-k Accuracy (%)
1 3 5 10 50
Global 15.5 37.5 56.5 65.7 75.7 92.3
S Local | 126 370 565 658 7164 935
Accra 12.8 32.7 54.7 64.4 73.4 92.8
Marmara 12.4 41.2 58.3 67.2 79.3 94.2
S Drift-bound | 1.9 62.2 ¢ 884 940 98.8 99.2
Accra (0.9m/s) 2.2 55.0 84.9 91.0 98.2 98.9
Marmara (0.4m/s) 1.6 69.4 91.9 97.0 99.5 99.5
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Figure 7: Examples of top-3 match predictions from the global S2 tile test set for given PS query tiles. Note that the false positives share
high visual similarity with the actual match tiles. a-c are from the Accra MD events, d and e are from the Marmara MD event.

ues for the drift-bound candidate set restrictions signifi-
cantly enhanced the model’s retrieval performance. The
model ranked the true match at an average position of
1.9, compared to 12.6 in the local regime. Top-1 accuracy
improved from 37.0% (local regime) to 62.2%, and top-
3, top-5, top-10 and top-50 accuracies increased by 31.9%,
28.2%, 22.4% and 5.7%, respectively. These improvements
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are evident in Figures 9 and 10, which visualise top-1 pre-
dictions under the local and drift-bound regimes. In the
local regime, many top-1 predictions are pointed to MD
patches at distances unfeasible to be reached by passive
drift. In contrast, drift-bound predictions were more lo-
calised. However, some confusion remained, especially in
clustered MD patches, where the top-1 prediction points
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Figure 8: Top-1, top-3, and top-5 retrieval accuracies under varying
drift maximum drift speed regimes for: a) the Accra MD event; b)
Marmara MD events.

to an MD patch near the correct match, resulting in an
incorrect top-1 prediction despite spatial proximity to the
correct match.

When examining MD events individually, the Marmara
MD event test set yielded higher retrieval scores than the
Accra set. Under the local regime, top-1 accuracies were
41.2% (Marmara) and 32.7% (Accra), increasing to 69.4%
and 55.0%, respectively, under the drift-bound regime. As
shown in Figures 9 and 10, the model successfully iden-
tified several matches on the first attempt in both study
events. However, prediction errors are still evident, con-
sistent with overall top-1 scores below 70%.

7. Discussion

This study aimed to design an optimal architecture,
optimisation and training strategies, as well as implemen-
tation procedures for the MD patch matching problem
across PS and S2 double acquisition imagery. The pro-
posed Double Acquisition NN (as described in Section 3)
emerged through a series of experiments that provided in-
sights into the architectural and implementation require-
ments and the inherent challenges of the MD patch match-
ing task.

7.1. Framework Performance Analysis (RQ1)
Experimental results indicate that MD patch match-
ing across PS-S2 double acquisitions aligns more closely
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with a multi-modal matching task. Consequently, perfor-
mance benefits from using platform-specific encoders that
account for the modality gap between platforms. How-
ever, this gap can be effectively bridged through robust
feature extraction, without the need for an explicit simi-
larity estimation; simple cosine similarity proves sufficient.
The MD patch matching performance is enhanced when
the model is trained in a retrieval setting that leverages
batches for negative sampling, to introduce many negative
pairs. However, this presents a significant class imbalance,
necessitating careful selection of loss functions to ensure
reliable optimisation. The final, proposed Double Acquisi-
tion NN adopts a CLIP-inspired framework configuration.

Effects of Shared Backbone Architectures

The superior performance of the proposed Double Ac-
quisition NN with platform-specific encoders and the rel-
ative advantage of SiamNN and supervised SImCLR vari-
ants using individual encoders over their shared-weight
counterparts suggests that MD patch matching resembles
a multi-modal similarity estimation task.

Although both inputs are images and not fundamen-
tally different data types, like image-text pairs, they differ
in spatial resolution (3 m vs up to 60 m) and spectral
information (4 vs 13 spectral channels), making them het-
erogeneous in terms of information content. These dif-
ferences likely limit the effectiveness of shared-weight en-
coder architectures in extracting consistent and useful fea-
tures across platforms. Moreover, the small pre-encoder
modules used in this study (single or 3-layer CNNs) may
have been insufficient to extract modality-invariant sub-
features, which could then benefit from a shared-weight
backbone.

Although both PS and S2 platforms can achieve com-
parable results for the same tasks (e.g., mountain pine
mapping (Rosch et al., 2022)), the features used to achieve
these results may originate from different aspects of the
data. Platform-specific encoders can better exploit these
intricacies, yielding more robust features that align more
effectively in a shared latent space. The findings of this
study support multi-modality presence and the choice of
individual encoders for MD patch matching.

Training Objective and Retrieval Task Alignment

The poor retrieval performance with relatively high
classification accuracies of the SiamNN framework vari-
ants could have been anticipated. The original SiamNN
framework was designed for a classification rather than a
retrieval task (Bromley et al., 1993). In this study, the
SiamNN models, particularly the 3-layer and Individual
encoder variants, performed the classification task reason-
ably well. This performance indicates that the models
could distinguish positive and negative pairs in a balanced
dataset.

However, when deployed in a retrieval setting, these
model variants struggled to identify the correct match
among many negative candidates. This struggle may
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be attributed to their balanced training configuration:
batches comprised 64 positive and 64 negative pairs. In
contrast, remaining frameworks, namely DRSL, super-
vised SimCLR, and the proposed framework, adopted
retrieval-like optimisation strategies and leveraged the
whole batch to generate all possible negative pairs, making
up as many as approximately 16,200 per batch.

Training with more negatives likely enabled the lat-
ter models to learn more discriminative representations,
allowing easier positive and negative identification. These
models had significantly lower average negative similarities
(Figure 4), suggesting they were more confident in reject-
ing negative pairs. In contrast, SiamNN variants, trained
with limited negatives, appear to have predicted similarity
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scores that were not discriminative enough for the retrieval
task.

A potential solution could have been inspired by Zheng
et al. (2017), who trained their SiamNN with a gradual
increase in negative pairs per epoch to avoid biases towards
positive pairs in a retrieval setting.

Altogether, these findings highlight the importance of
selecting an appropriate design for model architecture and
training with the target task in mind. They also showcase
how classification metrics can be misleading when evalu-
ating models intended for retrieval applications.

Importance of Learning Relational Similarity

Despite using batch-leveraged negative sampling, the
DRSL model underperformed relative to the other
retrieval-like frameworks (i.e., CLIP and supervised Sim-
CLR). Several possible factors may have contributed to
this.

First, the DRSL model did not appear to converge
within the 200 allocated training epochs (evident from
training loss curves; not shown). This training behaviour
may be attributed to a larger number of trainable param-
eters introduced by the additional FNNs, potentially hin-
dering gradient flow and slowing convergence.

Second, DRSL was trained using the MSE loss, which is
known to be sensitive to imbalanced datasets and tends to
be biased towards the majority class (Wang et al., 2016).
In this case, the large number of negative pairs likely led to
overly conservative similarity predictions, particularly for
positive pairs (as seen in the low average similarity value
for positive pairs in Figure 4).

Although DRSL may have benefited from longer train-
ing and a more considerate design, such as a smaller batch
size (as used in the original DRSL study (Wang et al.,
2021)), selective negative sample mining, or cost-sensitive
loss (Wang et al., 2016), the results state: despite rely-
ing on a more straightforward cosine similarity metric, the
Double Acquisition NN outperformed the DRSL, which
adopted a learnable similarity metric; and suggests that
for multi-platform MD patch matching, a strong feature
extractor and a simple similarity metric are sufficient to
find modality-invariant space and effectively use it for sim-
ilarity estimations.

Contrastive Learning with Batch-Negative Sampling Anal-
YSis

The strongest-performing frameworks across retrieval
metrics, namely, the proposed Double Acquisition NN with
CLIP loss and supervised SimCLR-Individual with all NT-
Xent loss variants, were based on the InfoNCE loss. Their
comparable performance, albeit with differences, suggests
that contrastive optimisation with batch-based negative
sampling is particularly well-suited for MD patch match-
ing.
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Loss Function Considerations

The similar results across NT-Xent loss variants were
somewhat unexpected. The NT-Xent-Full variant incor-
porated additional negative pairs from the same platform,
increasing the number of negative pairs to over 65,000 per
batch. However, the similar performance results suggest
that distinguishing PS-PS and S2-S2 negatives was irrele-
vant for the PS-S2 matching task. One possible explana-
tion is that the model learned to differentiate PS and S2
MD patches based on embedded platform differences and
used it as a shortcut, never considering such pairs as pos-
itives. Further experiments would be required to confirm
this hypothesis.

The NT-Xent-In and NT-Xent-Out loss variants did
not show a consistent advantage. These losses are designed
for scenarios where multiple positive matches are possible
per query (Hoffmann et al., 2022). In this study, each PS
query MD patch typically had only one or at most four
positive S2 tile matches, potentially limiting the benefits
of such losses.

The CLIP loss was not tested independently of its ar-
chitecture, making it challenging to interpret its potential
advantages over the NT-Xent variants in isolation. How-
ever, some key distinctions between these losses are worth
noting. NT-Xent-Full loss employed a broader negative
pair definition, while the NT-Xent-In and -Out variants
optimised the network only in the PS-to-S2 direction. In
contrast, the CLIP loss is optimised in both PS-to-S2 and
S2-to-PS directions. This symmetric optimisation strat-
egy may have partially contributed to the observed per-
formance improvement of the CLIP-based framework.

Another difference lies in the temperature scaling ap-
proach. All SimCLR NT-Xent variants used a fixed tem-
perature parameter, while the CLIP-based proposed model
adopted a trainable temperature, removing the need to
tune it manually. The temperature was initialised in both
frameworks at 7 = 0.07. During training, this temperature
gradually decreased to approximately 0.05 in the proposed
model. Although small, this temperature difference sharp-
ened the softmax distribution, resulting in higher penalties
for the hard negatives (i.e., negative samples predicted to
be highly similar to the anchor). As noted by Wang and
Liu (2021), lower temperatures shift the model’s focus to-
ward learning to discriminate the most challenging nega-
tives rather than all negative samples. Lower temperatures
potentially encouraged the proposed Double Acquisition
NN model to learn more fine-grained distinctions between
hard negatives and improve its ability to differentiate MD
patch pairs.

Architectural Considerations

Beyond differences in InfoNCE-based loss implemen-
tation, architectural design may have also contributed to
the performance differences between the CLIP-based Dou-
ble Acquisition NN and the supervised SimCLR-Individual



frameworks. While both employed platform-specific en-
coders and batch-based contrastive learning, they differed
in their projection schemes.

Supervised SimCLR used a non-linear, shared-weight
projection head, whereas the proposed framework used
individual linear projection layers in each branch. Shar-
ing the projection head may have been suboptimal given
the use of individual encoders, as it forced learning a
modality-invariant projection scheme, potentially com-
plicating alignment. Moreover, the non-linear projec-
tion head in SimCLR was originally designed to support
transformation-invariant feature learning (Chen et al.,
2020). However, in the present study, PS-S2 matching
was essentially an image-to-image matching task without
transformation-equivalent distortions: there were no large-
scale rotations or random spatial shifts, such as those pro-
duced by random cropping. Consequently, a non-linear
projection head may have introduced unnecessary com-
plexity. CLIP study findings support this interpretation:
researchers found linear projection layers sufficient for
multi-modal alignment (Radford et al., 2021).

The CLIP-based framework consistently outperformed
the supervised SimCLR variants. While several factors
may explain this difference, the CLIP framework was ul-
timately preferred for the MD patch matching due to
its performance enhancements and stronger conceptual
alignment with its original design. The CLIP framework
was specifically designed for multi-modal matching tasks.
In contrast, the supervised SimCLR implementation was
adapted from a single-modality contrastive learning frame-
work, and its best implementation for MD patch matching
had two individual encoders (deviating from the original
SiamNN-like configuration). As such, the CLIP-based de-
sign had the conceptual advantage of being deliberately
created to deal with multi-modal problems.

7.2. Impact of Hyperparameter Choices (RQ2)

Experimental results suggest that the proposed Dou-
ble Acquisition NN benefits from moderately large batch
sizes only when training is extended, likely due to high
visual similarity between MD patches. The augmenta-
tion strategies tested in this study were detrimental to
the model training, presumably due to the introduction
of unrepresentative data variations. The relatively small
dataset size likely constrains the potential effectiveness of
deeper base encoder architectures, such as ResNet-50. In-
stead, the best-performing configuration used shallower
ResNet-18 encoders pre-trained by SSL4EO, applied to
each platform branch separately. This performance gain
can be attributed to the already available feature extrac-
tion capabilities in pre-trained weights, facilitating more
efficient fine-tuning for the MD patch matching task. Fur-
ther refinement of SSLAEO weights for the marine domain
through continued self-supervised SimCLR pre-training
may have been misconfigured, producing a catastrophic
forgetting effect, rendering refined weights worse than the
original SSLAEO weights for the downstream task.
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Batch Size Limitations

Typically, contrastive learning approaches benefit from
large batch sizes or memory banks, which introduce more
negative samples and promote robust feature learning by
enhancing the model’s discriminative abilities (Chen et al.,
2020; He et al., 2020; Mitrovic et al., 2020).

In a restricted training duration regime, the benefits
of larger batch sizes appeared to be inverted, possibly due
to the nature of the collected dataset: MD patches of-
ten share similar shapes, sizes, and spectral characteris-
tics (Figure 7 shows an example of top-3 predictions with
high visual similarity). The visual similarity between MD
patches makes them nearly indistinguishable, even for hu-
mans. Consequently, larger-batch models (i.e., with more
negative pairs) were penalised more heavily for assigning
high similarity scores to visually similar negatives. Such
discouragement of high-value predictions resulted in more
conservative predictions for positive pairs and a reduced
average similarity range (Figure 5). This narrower pre-
diction range is suboptimal for candidate ranking, as it
diminishes the model’s ability to distinguish between vi-
sually similar positive and negative samples. Mitrovic
et al. (2020) highlighted that excessive amounts of neg-
atives degrade the model performance, while Kalantidis
et al. (2020) noted the importance of the quality of hard-
negative samples over large quantities. Therefore, a more
careful selection of negative samples may be required to
benefit from a large-batch training.

The proposed Double Acquisition NN benefited from
a large batch size only when trained for a longer dura-
tion. A potential explanation could be attributed to the
positive-to-negative pair ratio per epoch. A 32-batch vari-
ant in each epoch was supplied with 2,166 positive and ap-
proximately 66,500 negative samples (a ratio of 1:30). In
contrast, the 128-batch variant received the same amount
of positives, together with approximately 274,700 nega-
tives (a ratio of 1:125). This increased amount of nega-
tive samples in the larger-batch-size training settings may
have diluted the positive signal and thus required longer
training for the model to achieve comparable discrimina-
tive abilities. However, these improved results relative to
smaller batch sizes suggest that with the longer training,
the model was able to benefit from the increased batch size
and the consequent number of negative pairs to learn to
differentiate similarly looking MD patches better.

It is worth noting that training such larger-batch mod-
els for more allocated epochs significantly increased the
training time. Therefore, the findings showcase a trade-off
between performance and efficiency.

Risk of Unrealistic Augmentations

The finding that no augmentation outperformed all
other strategies suggests that even mild augmentations in-
troduced data alterations not encountered at the inference.
Augmentations are beneficial only when they simulate re-
alistic variations to virtually expand the training dataset



and allow the model to benefit from increased generalisa-
tion capacity. Conversely, unrealistic variations hinder the
model’s ability to learn robust features.

Performance degradation under harsh augmentations
was not unexpected, as 90° rotations for MD patches are
very rare, and were never observed during the annotation
process. Mild augmentations (e.g., minor rotations) were
assumed to be realistic based on RGB visual validation
(see Figure H.1a). However, the independent application
of a randomised augmentation strategy to each tile in a
pair likely increased intra-pair differences, complicating
the matching task. The brightness and contrast trans-
formations, applied in both the medium and harsh aug-
mentation strategies, were only visually validated in RGB
spectral channels, which may have introduced unrealistic
histogram shifts in the non-visible light spectrum. Alto-
gether, these augmentations may have forced the model to
learn representations that do not align with the nature of
actual data.

The low performance scores from the spectral channel
shuffling experiment suggest that forcing the model to rely
solely on spatial information is ineffective, and spectral in-
formation is critical for matching MD patches. However,
varied spatial resolution across S2 spectral channels may
have introduced spatial artefacts, such as MD patch shape
blurring upon shuffling (see reduced shape definition for
the first S2 tile in Figure H.1d) and limited the model’s
ability to rely on spatial information. Additionally, the
experimental model was initialised with SSL4EO weights,
likely tuned to spectral information for feature extraction
due to the critical role of the spectral signature in any
general RS task. Therefore, the spectral channel shuffling
may have had detrimental effects on available feature ex-
traction capabilities.

In contrastive representation learning, the model’s abil-
ity to learn better representations highly depends on a suf-
ficiently difficult matching task. For self-supervised image-
matching-based learning approaches, harsh augmentations
are often used to create a challenging task and avoid learn-
ing identity mappings (Chen et al., 2020). However, the
matching objective in this study differs from a typical
image-matching task. Here, the MD patch pairs are not
augmented views but rather two different captures of the
same MD object. It can be argued that the inherent plat-
form (modality) shift between PS and S2 already creates a
challenging matching task. Any additional augmentations
may have exaggerated these differences, making a match-
ing task no longer relevant for learning robust features.

These findings align with previous studies, such as
Wang and Qi (2022), which noted that too extreme aug-
mentations interfere with effective representation learning
if not carefully designed. The results of this study confirm
the importance of investigating augmentations in domain-
specific settings (Wang et al., 2022).
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Encoder Depth Limitations

The deeper ResNet-50 architecture was less effective
than the shallower ResNet-18 as a base encoder in the
proposed Double Acquisition NN. One plausible expla-
nation is the influence of pre-trained weight initialisa-
tion. Although both ResNet variants were initialised using
weights from the SSL4EO study (pre-trained with MoCo
on the same dataset), different depths and independent
pre-training may have resulted in different initialisation
positions within the solution space. It is possible that the
ResNet-18 weights were more favourable for transfer to the
MD patch matching task.

Some evidence of weight initialisation bias is apparent
in performance differences observed in ResNet-50 variants
with different initialisations (MoCo and DINO). Shekhar
et al. (2023) reported a different observation: in their
study, different contrastive SSL methods, including MoCo
and DINO, learned to extract similar features across ar-
chitectures like ResNet and Vision Transformers. How-
ever, researchers did not compare different ResNet depths.
Therefore, architectural complexity could still be a factor
in the downstream performance.

The inconsistencies with prior literature and lower per-
formances of ResNet-50, regardless of the two tested ini-
tialisations, relative to ResNet-18, suggest that, even if
weight initialisation bias was present, there were other un-
derlying limitations of the ResNet-50 architecture for the
MD patch matching task.

A more probable explanation is that ResNet-50 re-
quired a larger training dataset than was available. It
is well established that deeper networks, capable of learn-
ing more complex representations, require larger datasets
and longer training. Training such networks with a small
dataset may lead to overfitting (Sun et al., 2017). Shal-
lower networks offer a more robust alternative in limited
data regimes by reducing the risk of over-parameterisation
(Raghu et al., 2019; Brigato and Iocchi, 2021). Similar
findings were reported by Du et al. (2017), who found that
a shallower ResNet was more effective in a SiamNN archi-
tecture for handwriting matching, although researchers did
not elaborate on the reason.

Overall, these findings align with the well-established
notion that, in limited data regimes, the choice of model
architecture plays a critical role in overall performance
(Brigato and Iocchi, 2021). Given the scarcity of MD time-
aware annotation data, the model architecture remains a
key factor in model success.

Importance of Pre-training

The notable performance improvement of the proposed
Double Acquisition NN when initialised with SSL4EO
weights for each encoder branch may be attributed to the
general feature extraction capabilities learned during pre-
training, facilitating a smoother transfer to the MD patch
matching task. Such an outcome was expected, as it is
well-known that SSL-pre-trained models, when fine-tuned
for the downstream task, require less labelled data and



converge faster and often achieve comparable or enhanced
performance compared to models trained from scratch.
Wang et al. (2022, 2023) found that fine-tuned SSL models
consistently outperformed their supervised counterparts
across various RS tasks, particularly in low-data regimes.

The underperformance of the configuration in which
SSL4EO weights were applied only to the S2 branch may
be explained by the model’s overall objective to align PS
and S2 features. In this configuration, the PS branch was
forced to learn features aligned with those extracted from
the pre-trained S2 encoder. This objective is particularly
challenging, given the differences between PS and S2 im-
agery and the substantially smaller training dataset size
relative to the scale of SSLAEO pre-training.

In contrast, the model in which both encoder branches
were initialised with the same S2-based pre-trained
weights achieved consistently strong results, suggesting
that SSLAEO weights, although pre-trained on S2 data, are
also beneficial for encoding PS imagery in the MD patch
matching task context. One interpretation is that SSLAEO
pre-trained models are not strictly platform-specific and
can be transferred to multi-platform tasks, at least for the
PS platform. Alternatively, the modality gap between PS
and S2 may be smaller than previously discussed.

A key consideration for successfully transferring SSL
pre-trained models to downstream tasks is the representa-
tiveness of the pre-training dataset relative to the target
task (Wang et al., 2022). The original SSL4EO models
were trained on RS imagery containing seasonal repre-
sentations of various land cover types, but with limited
ocean coverage (Wang et al., 2023). While this broad RS-
domain pre-training was proven beneficial, it raises the
question of whether models pre-trained on marine-specific
data would yield further performance enhancements for
marine-domain tasks. Currently, there are no publicly
available ResNet-based weights for the marine domain.
However, recent initiatives, such as Corley and Robinson
(2024), have begun exploring marine-domain pre-training
for transformer architectures.

Contrary to expectations, additional refinement of
SSLAEO weights through self-supervised SimCLR pre-
training did not improve downstream performance. On the
contrary, results suggest the presence of catastrophic for-
getting. It seems that the initial weight update in the first
epochs of pre-training instantly degraded the representa-
tion extraction capacity of the original SSL4EO weights.

Catastrophic forgetting typically occurs when a model
is subsequently trained on another distinct task (Mc-
Closkey and Cohen, 1989). However, in this study, self-
supervised pre-training was not intended to shift the task
but to refine the SSL4EO weights for the marine domain.
The observed weight degradation may be attributed to
either task incoherence introduced by the pretext task or
too-radical optimisation procedures that shifted the initial
feature space.

Task incoherence may have stemmed from an inappro-
priate augmentation strategy used in self-supervised Sim-
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CLR. The harsh augmentations may not have been suf-
ficiently challenging or informative in an intra-platform
setting. For example, ocean surface textures remained un-
affected under harsh transformations (Figure H.lc), po-
tentially creating shortcuts for positive pair identification.
As a result, each branch encoder may have learned branch-
specific feature extractions that were not valuable in a
multi-platform setting, where, for example, water patterns
rarely match. Such findings suggest a case of a too-specific
pretext task resulting in reduced generalisation capacity
(Chen et al., 2020; Wang et al., 2022).

In addition, hyperparameters such as learning rate and
temperature may have caused an abrupt shift from the
learned useful representation space. Chen et al. (2020)
noted the importance of performance drop without proper
temperature scaling. A more carefully tuned hyperparam-
eter design may have mitigated the risk of catastrophic
forgetting. Nonetheless, this would not address the previ-
ously discussed issue of pretext-task misalignment or elim-
inate the present study’s limitations for supervised con-
trastive learning, which are also relevant for self-supervised
pre-training: a small dataset size and lack of diverse neg-
atives..

7.3. Impact of Candidate Selection Constraints (RQ3)

Many visually similar MD patches are, in fact, false
positives when considered in spatial context. Therefore,
the retrieval task of matching MD patches extends be-
yond designing an effective similarity ranking model. For
the proposed Double Acquisition NN to be successful in
applied scenarios, knowledge-informed candidate selection
constraints are needed to minimise the inclusion of such
false positives into the candidate set to reduce the com-
plexity of the retrieval task and improve the accuracy in
applied scenarios.

Retrieval Task Complexity

The relatively low performance of the model under the
global regime does not necessarily indicate model failure;
instead, it must be interpreted in the context of the task’s
inherent complexity. Assigning high similarity values to
visually similar but spatially incorrect MD patches is not
technically incorrect from a visual similarity standpoint.
However, because MD patch matching also requires spa-
tial correctness, such predictions ultimately become false
positives in applied scenarios, reducing practical accuracy.

As observed during the annotation process and from
visualised top-3 model predictions (Figure 7), MD patches
often exhibit high visual similarity. This similarity makes
the matching task particularly complex, especially under
the global regime, where the model is equipped to retrieve
the correct match from a set of 661 candidates, many of
which are nearly indistinguishable in shape, size, or com-
position. This resemblance is especially pronounced for
MD patches originating from the same MD event.

An additional source of complexity in distinguishing
MD patches arises from platform limitations. Due to the



limited spectral information in PS imagery, it can be as-
sumed that the PS encoder primarily relies on shape at-
tributes for feature extraction. Conversely, the reduced
spatial resolution of S2 imagery limits the visibility of fine-
grained shape details. As a result, this could have com-
plicated the cross-resolution MD matching and may have
caused the reduced retrieval performance.

Some clustered annotations further amplify the re-
trieval complexity. In some cases, clustered MD patches
were annotated individually, resulting in tiles that are only
slightly offset in their centre coordinates but visually near-
identical (e.g., Figure 7c and e). Since the model is re-
quested to match MD patches centred within the tile, this
annotation type increases the likelihood of confusion dur-
ing retrieval.

One potential mitigation would be to space out annota-
tions to reduce ambiguity over which MD patch is centred
in the tile. However, in the intended application of the MD
patch matching module in the automated tracking pipeline
(see Figure Appendix A for such system composition),
the MD detectors are expected to identify all visible MD
patches, including those in clusters. Therefore, avoiding
such annotations would not reflect real-world applications,
and such a solution would be suboptimal.

Performance Improvement Through Drift-Informed Re-
strictions

Reducing candidate sets is a common strategy in infor-
mation retrieval and recommendation systems to enhance
retrieval efficiency and accuracy. For example, Borisyuk
et al. (2016) showed how machine learning-based filter-
ing of LinkedIn job advertisement candidates improved re-
trieval efficiency and the recommendation relevance.

Limiting the candidate scope from local to drift-bound
regimes nearly doubled the top-1 accuracy of the Double
Acquisition NN. Therefore, a similar principle of reducing
the candidate set size to simplify the retrieval task applies
to MD patch matching.

These performance enhancements largely stem from
excluding visually similar but spatially implausible MD
patches from the top-k subsets. This exclusion allows the
model to focus on contextually realistic candidates rather
than being forced to differentiate spatially distant but
highly similar MD patches. Additionally, in some drift-
informed cases, the candidate set may have been restricted
to the true match alone, effectively making the retrieval
task trivial. Although these cases simplify the retrieval
task, they remain a valid representation of a realistic, well-
informed candidate selection. In addition, these cases were
rare due to the tendency of MD patches to occur in clusters
(Figures 9 and 10), often resulting in multiple candidates
within the drift-informed search area.

Increased performance through the drift-bound regime
aligns with the initial intuition that MD patches drift
within a limited spatial area. This assumption was par-
tially inspired by manual MD tracking (e.g., estimating the
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expected MD drift trajectory for search efforts in multi-
temporal scenes; Weif} et al. (2022)) and emergency re-
sponse efforts (e.g., back-tracking MH370 flight debris to
the possible crash location; Durgadoo et al. (2019)), both
of which leveraged ocean drift models to constrain the spa-
tial extent of the search area based on expected drift be-
haviour.

This study used maximum drift speed as a more easily
estimated and applicable proxy to restrict the candidate
search space. This approach avoids the need for complex
and accurate ocean drift models, often unreliable in coastal
areas (Pereiro et al., 2018). In applied scenarios, these drift
speed estimates can be derived from windage coefficients
combined with ocean current and wind data (Pereiro et al.,
2018; Durgadoo et al., 2019; Li et al., 2020). However,
drift-informed candidate selection is susceptible to the ac-
curacy of these estimates. In the case of underestima-
tion, the true match may be excluded from the candidate
set, forcing the model to retrieve the most visually sim-
ilar false positive. In contrast, overestimating maximum
drift speed may increase the candidate set size and the
likelihood of including other visually similar MD patches,
thereby increasing task complexity. As such, uncertainty
in drift-speed estimation remains a limiting factor in de-
ploying the Double Acquisition NN in applied scenarios.

Additional Candidate Selection Filters

While the drift-bound regime substantially improved
retrieval performance, the top-1 accuracy remained im-
perfect. A plausible explanation could be the clustered
annotation problem introduced earlier. As the drift-bound
regime restricted the candidate set to spatially neighbour-
ing MD patches, these clustered annotations increased the
likelihood of the model retrieving a visually similar neigh-
bouring MD patch rather than the true match. This may
help explain the observed mean position of 1.9, which in-
dicates that while the correct match was usually among
the top predictions, it was not always the first.

Additional strategies for candidate filtering could tar-
get this problem and reduce false positives, especially in
scenarios where prior knowledge of drift patterns is un-
available or unreliable. Several potential candidate filters
are:

e A logic-based spatial filter, applied in the absence of
drift knowledge. Since MD patches drift passively,
there is a physical limit beyond which natural drift
becomes infeasible.

e A drift behaviour filter, which exploits drift patterns
without relying on drift models. Candidates can be
re-ranked based on how well their predicted drift tra-
jectory (distance and direction) aligns with the dom-
inant drift patterns observed among neighbouring
MD patch pairs. Figures 9 and 10 show almost par-
allel alignment of drift trajectories for correct top-1
predictions, whereas incorrect predictions often show



directional inconsistencies. However, this filtering
approach may not always be reliable, as non-parallel,
eddy-induced trajectories were observed during the
annotation process.

e A low-confidence match filter, which discards or flags
predictions for manual validation, when, for exam-
ple, the top-1 candidate has a low estimated similar-
ity, or top-k predictions have nearly equal estimated
similarities, indicating high confusion between most
likely candidates.

e A greedy-match filter, which iteratively matches the
most likely pairs and removes the retrieved candi-
date from the candidate set. This approach could
potentially reduce confusion between clustered near-
duplicates.

While none of these strategies were tested in this study,
they illustrate the potential benefits of incorporating sim-
ple yet informed candidate selection to increase model per-
formance further.

Model Generalisation Concerns

The comparable performance observed across global
and local regimes suggests that the model learned to iden-
tify and restrict top candidates to a local scope. This out-
come may be attributed to the specifics of each MD-event
and data-induced explanations.

The Marmara MD event was a mucilage bloom, visu-
ally exhibiting more intricate structures (Figure 7d and
e). In contrast, the Accra MD patches, composed of
macroalgae and spume, had more uniform round shapes
and tended to occur in clusters (Figure 7a, b and c).
These visual differences, potentially including spectral sig-
nature differences, may have made it easier for the model
to distinguish Marmara patches from Accra. The intri-
cate and easier-to-differentiate MD formations in Marmara
may also explain its higher, relative to Accra, per-event
performance scores.

From a data perspective, two factors have to be ac-
counted for. First, the Marmara MD event constituted
the majority of training tiles, likely biasing the model to
be more discriminative toward mucilage structures present
in this event. Second, the dataset split was spatially but
not temporally independent. The latter may have allowed
the model to exploit event-specific artefacts such as his-
togram shifts, potentially caused by environmental condi-
tions (e.g., water and atmospheric conditions, or daylight
illumination). These observations raise concerns about the
model’s ability to generalise to unseen MD events. Such
generalisation challenges in the marine domain were also
noted by Carmo et al. (2021), who found that the per-
formance of marine floating object detection models was
highly dependent on the training scenes.

8. Conclusions

The growing urgency to mitigate marine plastic pol-
lution calls for reliable methods to monitor and track
its presence over time, enabling the development of
knowledge-based solutions. This study addresses the
tracking need by compiling the first annotation dataset of
PS-S2 MD patch pairs and developing the Double Acqui-
sition NN—a model designed to match MD patches cap-
tured by the two platforms within a one-hour interval.

The Double Acquisition NN employs two platform-
specific ResNet-18 encoders, each followed by individual
linear projection layers. It is trained using a supervised
contrastive loss. A systematic examination of multiple
similarity estimation frameworks and hyperparameter con-
figurations led to the following key findings:

e Platform-specific encoders outperform shared ones,
confirming a modality gap between PS and S2 plat-
forms.

o Frameworks designed for retrieval tasks (e.g., CLIP)
outperformed frameworks designed for classification
problems (e.g., SiamNN), primarily due to the larger
number of negative samples used for training.

e In the MD patch matching task, simple similarity
metrics combined with strong feature extraction out-
perform more complex, explicitly learned relational
similarity networks.

e Moderate batch sizes are optimal in limited data
regimes; larger batches overly penalise visually sim-
ilar negatives, leading to overly conservative predic-
tion and reduction of the model’s distinguishing abil-
ities.

e The tested augmentation strategies degraded model
performance due to poor design, highlighting the im-
portance of domain-informed augmentation strate-
gies.

e Shallower encoders (i.e., ResNet-18) yielded more ro-
bust features than deeper ones (i.e., ResNet-50) un-
der limited data regimes.

e SSL4AEQ pre-trained weights improved model perfor-
mance in the marine domain. However, poorly de-
signed additional self-supervised weight refinement
led to catastrophic forgetting, highlighting the im-
portance of pretext task alignment and careful im-
plementation.

The proposed Double Acquisition NN evaluation under
different candidate selection regimes revealed that:

e MD patch matching is a complex task, due to high
visual similarity between MD patches and the need
for spatial correctness.



e Restricting the candidate search space based on
knowledge is critical to improve applied retrieval per-
formance.

e However, the performance gains from candidate se-
lection are limited by the accuracy of the prior
knowledge used.

Beyond their original purposes, both the dataset and
model offer potential for broader MD and plastic waste
monitoring context applications. The newly collected
dataset can support platform-specific tasks (e.g., MD de-
tection in PS or S2 imagery) and is particularly valuable
for studying the temporal dynamics of MD. The combi-
nation of spatial and temporal information in annotations
has potential for deriving MD drift coefficients and cali-
brating and validating drift models.

The Double Acquisition NN could support two use
cases. First, it could be a verification tool for identifying
plastic debris in PS MD patches when the presence is con-
firmed in corresponding S2 MD patches through spectral
signature analysis. Second, the model may be configured
for PS-PS MD patch matching due to its individual en-
coder architecture, enabling more frequent and temporally
extended tracking.

This study contributes a multi-temporal dataset and a
retrieval model, which are key components for developing
an automated MD tracking system. Future work could
focus on integrating the proposed Double Acquisition NN
with MD detectors and more robust filtering mechanisms,
forming a fully automated tracking pipeline. Another
promising direction lies in improving the retrieval accu-
racy of the proposed Double Acquisition NN by incorpo-
rating more robust feature extraction strategies, achieved
through the collection of larger datasets and large-scale
training, or by leveraging the capabilities of more com-
plex encoder architectures and marine domain pre-trained
models.
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Appendix A. Proposed Automated MD Tracking System
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Figure A.1: Automated Marine Debris (MD) tracking system, inspired by Ahn et al. (2023). In this system, satellite scenes are subjected
to MD patch detectors, which extract spatial information about detected objects into MD patch databases. Each detected object in a
PlanetScope (PS) scene is then compared against candidates, each detected object in the corresponding Sentinel-2 (S2) scene, using the
Double Acquisition Neural Network (NN), developed by this study. If two MD patches are identified to be matching, their drift trajectory
and velocity can be estimated and recorded in the final database of tracked MD movements.

Appendix B. Dataset Structure and Composition

Table B.1 provides an overview of the marine debris (MD) events and the corresponding Scene IDs of PlanetScope
(PS) and Sentinel-2 (S2) imagery. These scenes were used for manual MD double acquisition annotations and subsequent
tile generation.

The collected PS-S2 double acquisition MD patch annotations, published alongside this study, are in a structured
database format. The database consists of three tables: Scene, Patch, and Match (see Figure B.1). Together, these three
tables provide spatial and temporal information for each MD patch and information about its source scene.

e The Scene table contains metadata about the scenes in which MD patches were annotated.

e The Patch table contains all annotation information for MD patches from both PS and S2 platforms. A patch entry
has MD patch centre coordinates, provided in the coordinate reference system (CRS), defined by its corresponding
scene. Each MD patch entry references its parent scene, allowing the acquisition information and platform metadata
to be traced.

e The Match table links two entries from the Patch table into a positive match - a pair composed of an MD patch
annotation in PS and the corresponding patch annotation in S2.

Scene Patch Match
. + PatchlD . * MatchID
Soenell? . ScenelD . « PatchID_PS
- StudySite .
- GentrelLat . + PatchlD_S2
$ ORS | |- Centrel .| |- Trainvalidatet
. Platform . entrelon rainValidateTest
- Sensor .
- PxSize .
- AcqDate .
- AcqTime .

- TopRighGornerLat .
- TopRightGornerlon
- BottomLeftGornerlLat .,
+ BottomLeftGCornerLon ,

Figure B.1: Structure of the database containing information about the collected dataset. The Scene table includes: scene ID, study site name,
local UTM CRS, platform source (PS or S2), sensor (for PS scenes), acquisition date and time, and bounding box coordinates. The Patch
table includes: MD patch annotation coordinates and reference to the associated scene. The Match table links each MD patch annotation
from PS with the corresponding MD patch annotation from S2. It provides information on whether a match is used for training, validation,
or testing.
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Table B.1: MD events and the corresponding Scene IDs used in this study for annotating MD pairs and generating tiles.
MD Event Date S2 Scene IDs PS Scene IDs

Bay Islands, Honduras 2017-10-09 20171009T161341 20171009-153515_0£25, 20171009-153514_0£25,
20171009-153609-103a, 20171009-153610-103a,
20171009-153729103c

Venice, Italy 2018-06-30  20180630T100029 20180630-093120-1038, 20180630-093121_1038,
20180630-093122_1038, 20180630-093123_1038,
20180630-093124_1038, 20180630-093125_1038,
20180630-093126-1038

Calabria, Italy 2018-10-22 20181022T094029 20181022_085429_0f2b, 20181022_085430_0f2b,
20181022_085431_0f2b, 20181022_091141_0e20,
20181022_091552_1002, 20181022_091553-1002

Accra, Ghana 2018-10-31 20181031T101139 20181031-095646-101b, 20181031-095847_0f43,
20181031-095848_0f43, 20181031-095850-0f43,
20181031-095925_-103b, 20181031_095926_103b

Venice, Italy 2018-10-31 20181031T10113  20181031_093318_0Oe3a, 20181031_093404-1004,
20181031-093405-1004, 20181031-093406-1004,
20181031-093407-1004, 20181031-093408-1004

Lagos, Nigeria 2019-01-01  20190101T100411 20190101_094700_1011, 20190101_095118_0f2a
Durban, South Africa  2019-04-24 20190424T073619 20190424 _073843_1105, 20190424_080100_0f2d
Thassos, Greece 2021-04-30  20210430T090549 20210430_082515_04_242d

Marmara, Turkey 2021-05-19  20210519T084601 20210519_080717_-05-2440, 20210519_081237_40_106¢,

20210519-081238_-92_106¢, 20210519-081240_43_106c,
20210519-081241_94_106c¢, 20210519-081243_46_106c,
20210519-081345-38_2251, 20210519_081347_67_2251,
20210519-083059-1039, 20210519-083338-100a,
20210519-083339-100a, 20210519_083340-100a

Appendix C. PlanetScope Scene Pre-Processing

PS scenes, provided the Planet, are measured in units of radiance (Wm~2sr~1), representing top-of-atmosphere
radiance (TOARad), quantifying the amount of light captured over an area covered by each pixel. However, TOARad
measurements are influenced not only by surface reflection qualities but also by illumination conditions. To account
for varied lightning conditions due to different acquisition times and locations, TOARad values were converted to top-
of-atmosphere reflectance (TOARef), which measures the ratio between reflected and incident radiation. The Planet
provides the necessary conversion indices and the requested scenes for each spectral channel, enabling TOARad conversion
to TOARef following Eq. C.1.

iB
e
PS scene ToARer = ; x PS scene ToARad (C.1)
R
INIR
where ig, ig, ir, and iy;r are scaling factors for the red, blue, green, and near-infrared spectral channels, respectively,
individually for each PS scene.
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Appendix D. Spatial Dataset Split

* Validate

Marmara

MD location in PS
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Figure D.1: Spatial data split for Marmara and Accra MD events, showing spatially independent regions used for model training, validation,
and testing (remaining).

Appendix E. Evaluation Dataset Compositions

Positive pairs Negative pairs

Figure E.1: Composition of the dataset used for retrieval-based evaluation. The dataset comprises all possible, annotated positive pairs (left)
and negative pairs (right): each PS tile is paired with all non-matching S2 tiles. For example, PS; is paired with S25 through $2,. This
dataset composition allows for global top-k retrieval evaluation.
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Figure E.2: Composition of the balanced dataset. The dataset contains 50% positive pairs (left), where each PS MD patch tile is paired with
its corresponding S2 tile. The remaining 50% are negative pairs (right), formed by pairing the second half of the PS tiles with randomly
shuffled S2 tiles, indexed by r € [1,n]. Here, n denotes the total number of tile pairs in the dataset.

Appendix F. Siamese Neural Network Configurations

Three architectural configurations were tested in this study to address the mismatch in input dimensions and imple-
ment the Siamese Neural Network (SiamNN) framework for architecture and training.

The first SiamINN-Single architectural configuration was composed of simple pre-encoders (Figure 3 and Table F.1)
consisting of a convolution layer with kernel_size=4 and stride=4, followed by an Average Pooling layer with kernel_size
=2 and stride=2 for PS branch, which produced middle-level output with a size 64 by 64 px and 128 channels. To obtain
matching dimensions S2 middle-level outputs, an S2 pre-encoder was a single convolution layer with kernel_size=1. These
outputs were then forwarded through a shared-weight backbone, where the first layer of the shared-weight backbone
was adjusted to accommodate 128 input channels, while the last fully connected layer was replaced again with identity
mapping, similarly to the proposed Double Acquisition NN ResNet modifications (see section 3.1).

The second SiamNN-3-block architecture was identical to the first one, but simple pre-encoders were replaced with
3-layer Convolutional Neural Networks (CNNs) (Table F.1). These CNNs comprised three convolutional layers with
batch normalisations and ReLU activations in between. Additionally, the PS CNN pre-encoder had an average pooling
layer in the second layer, to reduce its output size and allow standardisation of input dimensionality for both PS and S2
input tiles.

The last SiamINN-Individual configuration was identical to the proposed Double Acquisition NN architecture with
two branch-specific encoders, but without the projection layers.
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Table F.1: Pre-Encoder Architecture Comparisons. 2D convolutional layer (Conv2D), Batch Normalisation layer (BatchNorm), Rectified
Linear Unit activation layer (ReLU), Average Pooling layer (AvgPool), input channels (in), output channels (out), kernel size (k), padding
(p), stride (s)

Block PS Pre-encoder S2 Pre-encoder
Single 3-layer CNN Single 3-layer CNN
1 Conv2D(in=4, out=128, Conv2D(in=4, out=32, | Conv2D(in=13, Conv2D(in=13, out=32,
k=4, s=4) k=3, p=1) out=128, k=1, s=1) k=3, p=1)
AvgPool(2,2) BatchNorm(32) BatchNorm(32)
ReLU() ReLU()
2 Conv2D(32, 64, 3, 1) Conv2D(32, 64, 3, 1)
BatchNorm(64) BatchNorm(64)
ReLU() ReLU()
AvgPool(2,2)
3 Conv2D(64, 128, 3, 1) Conv2D(64, 128, 3, 1)
BatchNorm(128) BatchNorm(128)
ReLU() ReLU()

Appendix G. Deep Relational Similarity Learning Configuration

The Deep Relational Similarity Learning (DRSL) configuration for MD patch matching was modelled after Wang
et al. (2021) as a two-branch network (Figure G.1). Both the PS and S2 branches utilised branch-specific ResNet-18
architectures for image encoders. The first convolutional layers were adjusted to intake 4 and 13 spectral channels,
respectively, and the final fully connected layers were replaced with identity layers. Each ResNet encoder was followed
by a branch-specific Fully Connected Neural Network (FNN), composed of three linear layers with batch normalisations
and Rectified Linear Unit (ReLU) activations applied between the layers and after the last layer. Following Wang et al.
(2021), the linear layers were mapping output vectors from 512 to 1024, then to 1024, and finally to 300 dimensions.

The 300-dimensional outputs from both branches were concatenated to form a 600-dimensional vector and passed to
a Relational NN. This network was composed of 3 linear layers with batch normalisations and ReLLU activations between
them. The linear layers performed 600-1024-1024-1 mapping. The final mapping was a pairwise relational similarity
prediction, which, during the training, was optimised to 0 and 1 labels by employing Mean Squared Error (MSE) loss.

The 300-dimensional outputs of both branches were concatenated to form a 600-dimensional vector, which was passed
to a relational neural network (Relational NN). This network consisted of three linear layers with batch normalisation
and ReLlU activations between them. The layers performed a dimensionality mapping of 600-1024-1024-1.
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Figure G.1: The implementation of Deep Relational Similarity Learning (DRSL) for the MD patch matching task across PS and S2 double
acquisitions. FNN-Fully connected Neural Network.
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Appendix H. Augmentation Strategies

This study explored four augmentation strategies: mild, medium, harsh, and spectral channel-shuffling (Figure H.1).
Based on visual inspection, the augmentation strategies were adjusted for PS and S2 to produce a similar range of
transformations.

e In the mild augmentation strategy (Figure H.1 (a)) tiles were randomly rotated by up to +20°, and scaled by a
random factor ranging from 0.5 to 1.3 times. Elastic transformations and Gaussian blur were also applied randomly,
along with the addition of Gaussian noise.

e In the medium augmentation strategy, the random rotation range was increased to +45°, and the scaling factor
range was extended to 0.35-1.5. Additionally, brightness and contrast adjustments were applied with random
factors in the ranges of 0.6-1.4 and 0.5-3, respectively.

e In the harsh augmentation strategy, the random rotation range was further expanded to £90°, and the scaling
factor was kept the same as in the medium augmentation strategy. While the brightness and contrast factors
remained unchanged from the medium strategy, brightness was adjusted for each spectral channel individually,
with a random offset of +0.2 for S2 and 40.05 for PS channels.

e In the spectral-channel-shuffling augmentation strategy, the only augmentation strategy applied was the random
spectral channel re-arrangement.

It is worth noting that directly extracted tiles (referred to as pre-tiles) from PS and S2 scenes had a larger extent
of 900 x 900 m (300 x 300 px for PS and 90 x 90 px for S2). Each pre-tile was centred on the MD patch, while the
additional inclusive padding allowed for data augmentations that alter tile extent and may otherwise introduce no-data
values. Pre-tiles were centre-cropped to the previously mentioned final input sizes for all model training and inference
procedures: 256 x 256 pixels for PS and 64 x 64 pixels for S2.
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Figure H.1: RGB Examples of PS and S2 tiles with: a) mild, b) medium, c) harsh and d) spectral-channel-shuffling augmentation strategies.
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