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Abstract

Plastic poses a special threat to ecosystems and biodiversity because of its abundance in nature
and longevity. Plastic monitoring in riverine environments is important as rivers are major
transportation and storage systems of plastics. Remote sensing detection methods offer an
opportunity to upscale riverine plastic monitoring. However, there is a clear need for more
research on this topic. In this study, remote sensing detection of plastics on riverbanks is
investigated by means of a field experiment in which two artificial plastic targets were placed on
the riverbanks of the Nederrijn. One target consisted of white polyester sheets to increase the
chances of a clear signal. The other target consisted of PET bottles, which are a more common
form of plastic pollution. Data was collected with a variety of remote sensing sensors, covering a
range of spatial, spectral, and temporal resolutions: The ASD Handheld 2 Spectroradiometer, the
MAIA S2 multispectral camera, Sentinel-2 satellites, PlanetScope SuperDove satellites, and the
EnMAP satellite. The collected reflectance spectra were analysed, and a spectral index analysis
was done, combined with Naive Bayes classification. Sentinel-2 imagery proved to be useful for
polyester detection, as the targets of 1x30 m, 2x30 m, and 3x30 m could be detected. The analysis
showed the importance of high-resolution images to detect PET bottles. In addition, high
correlations were found between polyester target size and several spectral indices, with the
highest correlation coefficient being -0.93 for the Normalised Difference Aquatic Vegetation Index
(NDAVI). This paper serves as a proof of concept to show that plastic detection in riverbank
environments by using satellite and camera imagery is feasible and should be investigated further.



1. Introduction

Plastic poses a special threat to ecosystems and biodiversity because of its abundance in nature
and longevity (Gall & Thompson, 2015; Gallitelli et al., 2020; Rillig, 2012; Strungaru et al., 2019).
Animals ingest plastics or can get entangled in large pieces of plastic (Gall & Thompson, 2015).
Humans are exposed to plastics as well, which can have severe health consequences (Yee et al.,
2021). Plastics pose a risk not only to human health but also to human livelihood. For example,
macroplastics can clog drainage systems which increases flooding risks, and plastic
accumulations on riverbanks can have negative consequences for tourism (van Emmerik &
Schwarz, 2020).

Plastic monitoring in river systems is needed to understand plastic transport and storage, and to
eventually reduce plastic pollution (van Emmerik et al., 2023a). Rivers form main transportation
and storage systems of plastics. Transportation behaviour of plastics is influenced by plastic
properties that vary over plastic type (Tasseron et al., 2021). For example, low-density plastic
floats on river water, while high-density plastics are submerged. Plastic size influences
transportation as well. Macroplastics (> 25 mm) can fragment into smaller pieces and ultimately
into microplastics (1 - 5 mm) (Lee et al.,, 2013). Microplastics undergo more complex
transportation routes and are more easily taken up by organisms than macroplastics (Li et al.,
2020). Rivers carry plastics towards the oceans, but on a global scale only a very small part of the
total plastic pollution is estimated to end up in the ocean (Meijer et al., 2021). Large amounts of
plastics can remain in river systems for a long time, which can be explained by the short travel
distances in rivers due to entrapment in vegetation, and continual deposition on floodplains and
riverbanks (Gallitelli et al., 2024; Hauk et al., 2023; Ledieu et al., 2022; Lotcheris et al., 2024;
Schreyers et al., 2021; Tramoy et al., 2020; van Emmerik et al., 2022; van Emmerik et al., 2023b).
Tramoy et al. (2020) found evidence that rivers can retain plastics for decades through bank
deposition.

Remote sensing detection methods offer an opportunity to upscale riverine plastic monitoring,
allow for reaching remote places, and allow for plastic detection beyond the RGB spectrum.
Plastic pollution on riverbanks is often monitored by visual counting and collection, which is a
slow and labour-intensive process (Maharjan et al., 2022; L. J. Schreyers et al., 2025; Vriend et al.,
2020). The upscaling of riverine plastic monitoring has already been done through citizen science,
in which citizens help to monitor plastics. However, there are difficulties in incentivizing citizens
to participate, and not all river areas where plastics accumulate are easily accessible to humans
(Fritzetal., 2022; Maharjan et al., 2022; Van Emmerik et al., 2020). Remote sensing detection also
allows for measuring spectra beyond the RGB region captured by regular cameras, which is
important for plastic detection as plastic absorption features occur outside this region (Tasseron
et al., 2021). Controlled experiments help with understanding remote sensing plastic
detectability. Research that used large artificial plastic targets has been done in the marine
environment (Themistocleous et al., 2020; Topouzelis et al., 2020), but not in riverine
environments. Image background, which is very different in riverine environments compared to
marine environments, matters in plastic detection as it influences the spectral sighal observed by
the sensor (Michel et al., 2020; Olyaei & Ebtehaj, 2024; van Emmerik et al., 2022; Veettil et al.,
2022). This means that riverine environments need to be researched separately.

Aremote sensing method to upscale riverine plastic detection is multispectral camera detection.
Multispectral cameras create images that, like satellite imagery, contain data beyond the RGB
spectrum (Cortesi et al., 2022). Nowadays, an increase is visible in research on the automatic



detection of riverine plastics by using cameras (Anggraini et al., 2024). The use of multispectral
cameras has shown potential when it comes to riverine plastic detection (Cortesi et al., 2022). De
Giglio et al. (2021) found that the MAIA camera was effective in river plastic monitoring. The
camera can be attached to a tripod or a UAV (Uncrewed Aerial Vehicle). UAVs are able to get close
to the target and collect images at high resolution and frequency (Maharjan et al., 2022). This high
resolution allows for the collection of pure multispectral plastic spectra. Spectral signatures of
plastics are not always the same, as they differ between plastic types (Tasseron et al., 2021). The
spectral signature of a plastic influences its detectability. Research on distinctive features in
spectral signatures of plastics helps to understand how plastics can be detected (Tasseron et al.,
2021). Multispectral MAIA S2 has the same spectral bands as Sentinel-2, except for bands 9, 10,
11, and 12, and thus provides information on how Sentinel-2 would measure a pure plastic
spectrum (SAL Engineering et al., 2018). However, hyperspectral signatures contain more detail
than multispectral signatures.

Another remote sensing method that has proven to be useful in plastic detection is satellite
detection (Biermann et al., 2020; L. Schreyers et al., 2022). Biermann et al. (2020) proved for the
first time that Sentinel-2 satellite imagery is effective for detecting floating macroplastic patches
in the ocean. Sentinel-2 satellites are multispectral satellites with 12 bands covering a spectral
range from the visible spectrum to the short-wave infrared (SWIR) spectrum (Copernicus EU &
European Space Agency, n.d.). Sentinel-2 satellites have a spatial resolution of 10 m, 20 m, or 60
m depending on the satellite band, and a revisit time of 5 days. Monitoring coastal and inland
waters is part of the mission of Sentinel-2 (European Space Agency, n.d.). The images are freely
available, making it a potentially cost-effective method to detect plastic litter. Compared to
Sentinel-2, PlanetScope images have a higher spatial resolution of approximately 3 meters and a
higher revisit time of approximately one day (Planet Labs Inc., 2025). The spectral range of
PlanetScope images covers the visible spectrum until the near infrared spectrum (NIR).
PlanetScope is a commercial satellite, meaning the data is not free of charge. The PlanetScope
images have eight bands, some of which are interoperable with Sentinel-2 (Figure 7, Appendix |,
p.41). The EnMAP (Environmental Mapping and Analysis Program) satellite mission is developed
and operated by the German Space Agency DLR in Bonn to monitor and characterise the Earth
surface on a global scale (EnMAP, 2022). Scientific managementis done by the German Research
Centre for Geosciences (GFZ) in Potsdam. The satellite provides hyperspectral images with a
spectral range of 420 nm to 2450 nm with intervals of 6.5 nm and 10 nm for the VNIR and SWIR
bands. The ground resolution of the satellite is 30 meters, which is low compared to Sentinel-2
and PlanetScope. Comparing imagery of Sentinel-2, PlanetScope, and EnMAP allows for
investigation of the trade-off between spectral and spatial resolution, which is relevant for plastic
detection (Kremezi et al., 2022).

The aim of this study is to investigate how well plastics can be detected in riverbank environments
across remote sensing sensors. This is done by means of a controlled field experiment. This
research has the following research questions:

1) What are the distinctive features in spectral signatures that distinguish polyester and
polyethylene terephthalate from river water and riverbank land covers across multispectral and
hyperspectral sensors?

2) How do polyester and polyethylene terephthalate and their different cover sizes influence
spectra measured by different satellite sensors?
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3) What are detectable cover sizes of polyester and polyethylene terephthalate across remote
sensing sensors?

Multispectral and hyperspectral signatures of a riverbank environment and two plastic types,
polyester and polyethylene terephthalate (PET), were collected with the MAIA S2 and a handheld
spectrometer. The spectral signatures are studied to identify features that differentiate the
plastics from each other and the riverbank environment. Sentinel-2, PlanetScope, and EnMAP
reflectance spectra of pixels containing different polyester and PET cover sizes are studied to
determine the influence of the plastics and their coverage on these reflectance spectra. The most
suitable sensor is used for further analysis. Then, ten spectral indices are analysed to determine
their suitability for plastic detection, of which two spectral indices are used to determine
detectability of the plastics across different cover sizes, by training a Naive Bayes model.
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2.Data and methodology

To answer the research questions, a controlled field experiment was executed on a riverbank in
March 2025. The experiment took two weeks, from 7 March until 21 March 2025. In those weeks,
spectral signatures were collected in the field, and plastic targets were placed to collect satellite
imagery. The size of the targets was changed to investigate plastic detectability.

2.1. Study area

The plastic targets were placed on the banks of the Nederrijn, one of the branches of the Rhine
delta, near the city of Wageningen in the Netherlands (Figure 1, p.14). This location was chosen
becauseitis large enoughto place the plastic targets of the experiment (‘2.2 Plastic Targets’, p.12),
it is easily reachable by car, and it is a relatively undisturbed area. Permission to construct and
place the targets was obtained from Rijkswaterstaat by reporting the experiment and providing
information in Omgevingsloket (on https://omgevingswet.overheid.nl/). In addition, permission
was obtained from Rijksvastgoedbedrijf, which is the owner of the location. The water level in this
part of the Nederrijn was expected to be quite stable as itis 11 kilometres downstream of a lock
and weir complex in Driel that regulates the water level (Rijkswaterstaat, 2024b). To make sure the
river did not flood the targets, the water information website of Rijkswaterstaat (Rijkswaterstaat,
2024a) was monitored two days in advance to see the predicted water level for the measurement
location ‘Grebbe’ (which is closest to the fieldwork location). To ensure that the targets were not
going to be damaged by the weather, e.g. by wind, the weather predictions were checked daily.
The cloud cover during the field experiment was low, meaning two weeks was enough time to
gather enough satellite data and to perform all the measurements.

2.2. Plastic targets

Two plastic targets were installed on the riverbank close to the water line. One of the targets was
made of white polyester sheets, and the other target was made of transparent PET bottles
attached to a net. To compare the detectability of different plastic cover sizes, the polyester target
was decreased in size and the PET target was increased in bottle density. Although PET is part of
the polyester family (Pang et al., 2006), the targets varied highly in colour (white versus
transparent) and texture (fabric versus bottles). In the remainder of this report, the PET bottles will
be referred to as PET and the polyester sheets will be referred to as polyester. Polyester fabric is
commonly used as a textile, and PET is a specific polyester type that is very commonly used for
packaging (Lechthaler et al., 2020; van Emmerik & Schwarz, 2020). In addition, white and
transparent are the most common plastic colours in marine litter, which is supplied for a large
part by rivers (Lebreton et al., 2017; Papageorgiou et al., 2022). Polyethylene and polypropylene
are the most commonly produced plastic types (Lechthaler et al., 2020; van Emmerik & Schwarz,
2020), however these materials were not available for the field experiment. Both target types, their
sizes (and the bottle densities), and the target placement with respect to the satellite pixels of the
studied satellites (‘2.4 Satellite Imagery’, p.16) are shown in Figure 1 (p.14). In the experiment
period, the state of the targets was checked three times a week.

2.2.1.The polyester targets

One of the target types was made from multiple polyester sheets that had sizes of 2 by 1 meters,
6 by 1 meters, or 10 by 1 meters. By placing these sheets next to each other, a large polyester
target could be realised. By starting with a target size which was as large as possible and by using
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a white colour, the chances of getting a satellite signal were maximised. The sheets were not
stacked to maximise the target area, meaning the target consisted of a single layer of polyester
sheets. Metal pins were used to pin the white sheets onto the subsurface. Stones were placed on
the polyester sheets in places where no metal pins could be used because of the rocky
subsurface. The stones covered only a very small part of the target, meaning theirinfluence on the
plastic sighal was neglected. Data on the following polyester targets was collected:

- A3 mx30 m polyester target, deployed on 7 March

- A2mx 30 m polyester target, deployed on 9 March through 16 March

- A1 mx30 m polyester target, deployed on 17 March through 19 March

- A0.5mx30m polyester target, deployed on 20 March through 21 March

2.2.2.The PET bottle targets

The PET bottle targets consisted of 364 transparent PET bottles categorised in different sizes:
Large (1.5and 2 L), medium (1 L), and small (0.5 and 0.75 L). The bottles were attached to a black
PE net with a mesh size of 100 x 100 mm? and a thread thickness of 1.3 mm. Metal pins were used
to pin the net onto the subsurface. The bottles were attached to the net with a nylon thread. The
vast majority of the bottles (> 95%) were transparent without colour, while only a very small
fraction was transparent blue or transparent green. The influence of the colours was neglected
because of the small fraction of coloured bottles. Per square meter, there was one large bottle
and three medium bottles, or one large bottle, two medium bottles, and one small bottle. The two
configurations were alternated. In the end, data was collected for two PET targets:

- Atarget of 3 m x 30 m with a PET bottle density of 4 bottles/m2, deployed on 9 March
through 17 March

- Atarget of 3 m x 15 m with a PET bottle density of 8 bottles/m2, deployed on 18 March
through 21 March

2.2.3. Target locations

The Topcon HiPer V GNSS receiver (Topcon Positioning Systems Inc., Livermore, California, USA)
(Figure 8C, Appendix Ill, p.43) was used to measure the location of each plastic target with high
accuracy. This was needed to determine the pixel coverage of the plastic targets within the
satellite pixels. Multiple points along the outlines of the targets were measured, assuming a
straight line between the points. The water line along the polyester target on 7 March was
measured to use for the land cover map of the study area (discussed in ‘2.5.3 Naive Bayes
classification’, p.18).

The target placement was based on previous Sentinel-2 imagery. By choosing a length larger than
20 m and by placing the target at an angle compared to east-west and north-south alignment,
chances were increased that the target crossed at least one pixel close to the pixel centre (most
Sentinel-2 bands are 10 m or 20 m). Before placing the targets, the GPS coordinates of the ideal
location were retrieved from previous Sentinel-2 images. The coordinates were tracked in the field
by using the Topcon HiPer V GNSS Receiver. The targets were placed as close as possible to these
coordinates, dependent on field conditions. For every satellite type studied, the target placement
with respect to the satellite pixels is shown in Figure 1 (p.14).
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Figure 1 Study area, plastic target locations and proportions, and plastic pixel coverage. The grids represent the
outlines of the pixels in the images of EnMAP, Sentinel-2, and PlanetScope. For Sentinel-2, the 10 m pixels are shown.

2.3. Spectral signatures

To determine the distinctive features in spectral sighatures that differentiate polyester and PET
from river water and riverbank land covers, hyperspectral and multispectral field measurements

were done.

2.3.1.Hyperspectral measurements

The ASD Fieldspec Handheld 2 Spectroradiometer (HSR) (Malvern Panalytical, Malvern,
Worcestershire, UK) (Figure 8B, Appendix lll, p.43) was used to measure different spectra present
in the study area and the spectra of polyester and PET. The following land covers were identified:
Shrubs, grass, riparian vegetation, rock, water, sand, and soil (Table 4, Appendix Il, p.42). During
the experiment, it was discovered that the background had a large influence on the reflectance
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spectra of polyester and PET. Multiple layers of polyester were stacked until there was no
influence of the background anymore, so that the pure spectrum of polyester could be measured.
The spectrum of one polyester layer on grass was used to analyse the spectrum of the polyester
target in the field experiment. PET was measured on two different backgrounds, because these
were the backgrounds of the PET target in the field experiment. The HSR had a range of 325 nm to
1075 nm, of which the range 400 nm to 900 nm remained after data pre-processing. There was no
device available with a higher spectral range.

The person measuring held the HSR next to their body with their back turned to the sun to limit the
influence of reflectance from their body on the measurement. The HSR was held at a
predetermined height so that the field of view (FOV) of the instrument covered as much as
possible of the land covers but as least as possible of the adjacent land covers. The sample count
of the spectrum count averaging was set to 30. This was done for the white reference
measurement, the dark current measurement, and the optimisation as well. During a
measurement, the device was moved over the land cover. The black current-white reference
measurement and the optimisation were done every 10 minutes or with shorter intervals when
the lighting conditions or the slope of the measured land cover changed.

Foreach land cover, thiswas done at least three times on different locations within the study area.
This increases the chance of getting a representative database of spectra for each land cover. Not
all land covers were measured the same number of times, because of the investigative nature of
this research and because of battery power issues of the device (Table 4, Appendix Il, p.42).

2.3.2.Multispectral measurements

The MAIA S2 multispectral camera (Eoptis Srl., Trento, Italy; SAL Engineering, Russi, Italy) was
used to create high-resolution images of the study area and the plastic targets from up close.
These high-resolution images allowed for the analysis of pure pixels for each land cover and
plastic type. The camera was placed on a 1.65 meter tall ladder. It was not allowed to use a drone
in the study area during the field experiment. This would have made it possible to gather images
that cover large parts of the study area at once, and at nadir. This was not possible by using the
ladder, because the camera's field of view was too small to capture large areas.

The MAIA S2 camera was attached to a battery to enable power supply in the field (Figure 8A1,
Appendix Ill, p.43). The voltage of the battery was continuously measured so that the battery
would not run empty while the camera was still on. The camera was also attached to an Incident
Light Sensor (ILS) (Figure 8A2, Appendix lll, p.43). This sensor measured incoming atmospheric
radiation as input for the radiometric correction of the MAIA S2 images. The top of the ILS had to
be pointed upwards to correctly measure this. During data acquisition, automatic calibration was
used to set the exposure times of the lenses.

2.3.3.Spectral signature analysis

The HSR and MAIA S2 allowed for the collection of pure land cover spectra. Their data was used
to analyse the differences between the spectral signatures of the riverbank environment and the
plastics.

The HSR data was imported from the instrument with the HH2 Sync software provided with the
HSR. ViewSpec Pro was used to convert the .asd files of each spectrum to DAT files in which the
spectra were stored per land cover. These DAT files were imported into a Python script for further
preprocessing and analysis. To remove noise and increase data reliability, the spectra measured
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with the HSR were first smoothed by using a Savitzky-Golay filter (Savitzky & Golay, 1964). Then
the spectra were cropped to a wavelength range of 400 nm to 900 nm, because the values at the
other wavelengths were very noisy. The smoothed spectra of the same land covers were taken
together to calculate the mean spectrum and the standard deviation.

The reflectance spectra measured with the HSR were compared to the spectra collected with
MAIA S2 to compare hyperspectral data to multispectral data. The MAIA S2 raw images were
processed with the MultiCam Stitcher Pro v 1.4 software provided along with the camera. First,
the raw images were previewed to select images without oversaturation. Then the raw files were
converted to multilayer TIFF files after doing a radial correction, co-registration of the bands, and
aradiometric correction by using the ILS data. These files were imported into ArcGIS Pro, in which
polygons were created for each land cover to extract the reflectance values per land cover class.
The mean and standard deviation of these values were calculated in Python. Only three images
were used in the MAIA S2 analysis because of time constraints. One image was used from which
the spectra of grass, riparian vegetation, rock, water, soil, and polyester were collected. Sand,
shrubs, and PET were not (clearly) present in this image, so two additional images were used. A
second image from which the spectra of sand and shrubs were collected, and a third image to
collect the PET spectrum.

2.4. Satellite imagery

In the field experiment, images were acquired with three different satellite types. The properties
of the satellites and their instruments are shown in Table 3 (Appendix |, p.41).

The first satellite type that was studied is Sentinel-2. At the time of the field experiment, Sentinel-
2 contained three different generations that gathered data: Sentinel-2a, Sentinel-2b, and
Sentinel-2c. This is an exceptional situation that occurred after the launch of Sentinel-2c (in
September 2024), which is the replacement of Sentinel-2a, and after the Sentinel-2a campaign
was extended by a year (Copernicus EU & European Space Agency, 2024, 2025). This means that
during the field experiment, the revisit time of Sentinel-2 was increased compared to the usual 5
days. As these different generations collect nearly the same data, level 2A data from all the
generations were used together in the analysis phase of this research.

PlanetScope data was accessed through a paid license by Wageningen University and Research.
PlanetScope’s SuperDove images were collected and the orthorectified and radiometrically
corrected surface reflectance products were analysed, which are suitable for monitoring
applications. During the field experiment, PlanetScope images were created on 11 days (of which
six images were useful), meaning the revisit time was lower than the usual 1 day.

The third studied satellite type is the EnMAP satellite. Data acquisition for the study area in the
fieldwork period was requested on the website of EnMAP (EnMAP, 2024). The data could be
requested free of charge as it was for research purposes. First, it was needed to register in the
EnMAP Instrument Planning Portal and to assign a user role. After this user role was accepted, a
research proposal had to be submitted in which a topic description, the expiration date of the
research, the research objectives, the methodology, and the expected results were described.
After the proposal was approved, level 2A data with land processing was requested. The success
of the acquisitions was dependent on the approval of EnMAP and the weather circumstances.

Because of the different revisit times of Sentinel-2 and PlanetScope, and the observation request
process of EnMAP, the acquisition dates of the images varied. This also influenced how often
certain targets were captured by each satellite. An overview of all the acquisitions in which clouds
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did not cover the study area is given in Table 1. During the measurement period, six useful
Sentinel-2 images, six useful PlanetScope images, and one useful EnMAP image were collected.
For Sentinel-2 and PlanetScope, two additional images of the study area without plastic targets
were used in the analysis as a baseline. One image was chosenright before the experiment period,
and one image was chosen right after. The EnMAP observation request protocol did not allow for
more useful images than one.

Table 1 Images acquired with Sentinel-2, PlanetScope, and EnMAP. For each target, the date is shown on which a

cloud-free image is acquired. For Sentinel-2 and PlanetScope, the dates are shown on which images were taken that
are used in this research as a baseline scenario.

Material Size Density Sentinel-2 PlanetScope EnMAP
Polyester 3x30 m - 07/03/2025 - -
Polyester 2x30m - 10/03/2025 15/03/2025* 16/03/2025
12/03/2025* | 16/03/2025
14/03/2025*
PET bottles | 3x30m 4 bottles/m2 | 10/03/2025 15/03/2025* 16/03/2025
12/03/2025* | 16/03/2025
14/03/2025* | 17/03/2025
17/03/2025
Polyester 1x30 m - 17/03/2025 17/03/2025 -
19/03/2025
PET bottles | 3x15m 8 bottles/m2 | 20/03/2025 19/03/2025 -
20/03/2025
21/03/2025
Polyester 0.5x30m - 20/03/2025 20/03/2025 -
21/03/2025
No plastics | - - 05/03/2025 06/03/2025
24/03/2025 27/03/2025

*These images contained cloud shadow

2.4.1.Analysis of satellite spectra

Preprocessing and analysis of the satellite data were done in ArcGIS Pro and Python. All satellite
data were collected as a surface reflectance product, meaning no additional pre-processing was
needed except for cropping the images to the study area. Only cloud-free images were used, but
there were two Sentinel-2 images and one PlanetScope image with cloud shadow. These images
were used in the analysis to maximise the amount of data. The impact of the cloud shadow on the
analysis was continuously reflected on.

To answer how polyester and PET and their different cover sizes influence spectra measured by
the different satellite sensors, reflectance signals were retrieved from the pixels with the highest
plastic coverages within the images. These reflectance signals measured by the different
satellites of the different target sizes were analysed by visual inspection and comparison of
absolute reflectance values.

2.5. Polyester and PET detection

The analysis of the satellite spectra led to the conclusion that the Sentinel-2 imagery collected in
this study was most suitable for further analysis on polyester and PET detection. Because of time
constraints, data from only one sensor could be investigated further. First, spectral indices were

calculated for the study area to see which indices distinguish the plastic targets from the
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environment. Next, Spearman correlation coefficients were calculated to find out whether the
spectral indices could work as indicators for plastic coverages. Lastly, the two most important
spectral indices were used for Naive Bayes classification to quantify the detectability of the
plastic types and cover sizes. ArcGIS Pro and Python were used to execute the data analysis.

2.5.1.Spectral indices

Spectral indices were analysed that are used more often for plastic detection and that are used
for differentiation between riverbank land covers (Table 5, Appendix IV, p.44-45). The indices were
calculated from the Sentinel-2 images of the whole study area and the maps were analysed to
determine the usefulness of each index for plastic detection. The most useful index, SI-13, and
NDVI were used for the Naive Bayes classification (‘2.5.3. Naive Bayes classification’, p.18).

2.5.2.Relationship between polyester target size and spectral indices

It was investigated whether spectral indices could work as polyester target size indicators. For
each Sentinel-2 image, the reflectance of the pixel with the highest polyester and PET coverage
was converted to the spectral index values used in this research. For each spectral index, the
Spearman correlation coefficient was calculated to analyse the relationship between the index
value and the target sizes.

2.5.3.Naive Bayes classification

A Gaussian Naive Bayes model based on SI-13 and NDVI was trained and tested to analyse the
detectability of the plastic targets more concretely. Data from 12 and 14 March was not used
because of cloud shadow.

First, a land cover map was created in ArcGIS Pro to classify the satellite pixels. This was done for
all satellites. The location of the plastic targets was measured with high accuracy by the Topcon.
The other land cover classes in the land cover map were based on two 8cm RGB orthophotos of
2023 and 2024 (Beeldmateriaal Nederland, 2023, 2024), and photos made in the study area. The
land cover map was converted to different classification rasters for each satellite type and plastic
scenario. For each pixel, the land cover class was selected based on the land cover occurring at
the centre of the pixel. This method was chosen based on the point spread function that causes
satellites to capture the reflectance in the middle of a pixel better than the reflectance closer to
the borders of the pixel (Kaiser & Schneider, 2008). The land cover classes of the pixels in which
the plastic targets were present that were not yet defined as polyester or PET were changed to
‘polyester’ or ‘PET’. Riparian vegetation did not occur in the land cover map. Rock was taken out
of the analysis as it covered only a small part of the study area and its location on the classification
map was too uncertain.

The classification rasters were used to link the spectral index values of the pixels to the land
covers in the study area. SI-13 and NDVI were plotted against each other to maximise class
separability between the plastic classes and the other land cover classes. The mean, standard
deviation, and the bounding box of each land cover class were calculated to be included in these
plots. This was done for each sensor used in this study, so that the sensors could be compared.
The plot belonging to Sentinel-2 was analysed more thoroughly. Plastic pixels were plotted as
individual pixels to analyse the change of the spectral indices with plastic target size and density.
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In addition, Naive Bayes models were trained and tested on this data to test whether it was
possible to discriminate between the plastic pixels and the other land cover classes. This
algorithm was chosen because of its good performance and suitability for small amounts of
training data (Pedregosa et al., 2011). The GaussianNB function was used from the scikit-learn
library in Python. The Naive Bayes algorithm was used in three different ways. Each time, SI-13
and NDVI were used as input features, and the Naive Bayes model was trained with two different
sets of prior probabilities. The prior probability of a land cover is the probability that a pixel belongs
to that land cover if no information about the SI-13 and NDVI values is given. The default prior
probabilities of the Gaussian Naive Bayes model used in this research were based on the training
sample sizes. Only 9 polyester pixels and 3 sand pixels were used for training, compared to 206
water pixels and 184 to 186 vegetation pixels (the amount depending on differences in PET target
coverage between the images). This uneven sampling distribution had a large impact on the Naive
Bayes. To eliminate the influence of the training sample sizes, Naive Bayes was also trained with
equal priors for each class. The default priors were more realistic than the equal priors, because
the chance of finding plastic in a riverbank environment is not equal to the chance of finding e.g.
water. However, the default priors were not realistic for each riverbank pollution scenario, as this
depends on the size of the study area and the severity of the plastic pollution. By using equal
priors, there was no bias towards a specific land cover class.

In the first Naive Bayes method, the algorithm was trained on all available data to create
probability distribution regions for each land cover. These regions showed for each combination
of the two spectral index values, how high the chance is that a pixel would belong to a certain land
cover class. The Naive Bayes algorithm was also trained on all data except for one polyester pixel
on which was tested. This was done for each polyester pixel. In this method, the maximum
amount of data was used for training while there was still one plastic pixel left for testing. Lastly,
Naive Bayes was trained on all available images except for one image, which was used for testing.
In this method, less data was used for model training, but on the other hand it was possible to
analyse the classification of all land covers. Accuracy metrics were calculated, and confusion
matrices were created to evaluate the classifications. The results of the three different Naive
Bayes methods were compared to draw a conclusion on plastic detectability for different target
sizes.
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3. Results & Discussion

This research provides insight into how well plastics can be detected in riverbank environments
across remote sensing sensors. In order to do so, the measurements from the field experiment
were used in an analysis. This chapter provides the results and a critical discussion for each
research question.

3.1. Analysing spectral signatures to differentiate polyester and PET
from a riverbank environment

The multispectral and hyperspectral signatures of river water, riverbank, and the plastics were
determined. By comparing these spectral signatures, the main characteristics of the spectra
could be determined that distinguish plastics from the riverbank environment. Measurements
from the HRS and the MAIA S2 were compared to determine which sensor is more suitable to
differentiate plastic spectra from the riverbank environment (Figure 2).
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Figure 2 The reflectance spectra of the main land covers in the study area, measured with the HSR and with MAIA S2.
The HSR spectra range from 400 nm to 900 nm. The MAIA S2 spectra were interpolated between each band, covering a
range from 433 nm to 875 nm. Each curve shows the mean spectrum of a land cover, with a shaded area around it
representing the standard deviation of the land cover. HSR spectra were retrieved for PET on a soil background and on
a grass background, because the PET target was lying both on soil and on grass. The polyester spectra that are described
as ‘Grass background’are the spectra of the polyester target from the field experiment. The target consisted of one layer
of polyester lying on a grass background. The polyester spectrum that is described as ‘Multiple layers’ is the pure
polyester reflectance measured from multiple stacked layers of polyester.
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Polyester is distinguishable in the HSR spectra by its higher reflectance compared to the other
land covers. The HSR and MAIA S2 reflectance of the polyester target (indicated by ‘Grass
background’) is influenced by the grass lying underneath the target, while the HSR spectrum of
multiple layers of polyester is not influenced by this. For all wavelengths, polyester causes an
increase in the reflectance of its background. The steep increase in the red edge and small peak
in the green spectrum, typical for land vegetation (Ai et al., 2020; Seelig et al., 2008), are although
diminished in the HSR spectrum, present in the polyester target spectrum. Between 400 nm and
680 nm the HSR polyester reflectance is approximately constant. This trend is different from the
HSR spectra of the other land covers, in which reflectance is increasing in that area, except for
water. The slight decrease in that area of the pure polyester spectrum (multiple layers) seems to
diminish the increase in the grass spectrum. The MAIA S2 polyester spectrum does not have the
same shape as the HSR spectrum. The MAIA S2 signal shows a lower value in band 1, which
means the spectrum is more similar to the grass spectrum. Compared to MAIA S2, the HSR is
better at measuring the differences between the polyester target spectrum and the grass
spectrum. Additionally, the MAIA S2 measurements show very similar spectra for the polyester
target and the PET target. There is a larger difference between the spectra measured by the HSR.

The spectrum of PET is highly influenced by its background, but has higher reflectance values in
the RGB in the MAIA S2 spectra. HSR reflectance of PET on a grass background is only slightly
higher than the reflectance of grass for wavelengths under 550 nm. The HSR spectrum of PET on
a soil background is very similar to the spectrum of soil, except that the overall reflectance of the
PET spectrum is higher. This is in line with Tasseron et al. (2021), who showed that transparent
PET does not have any characteristic absorption features between 500 nm and 1700 nm (although
the range between 850 nm and 950 nm was not analysed). Tasseron et al. (2021) hypothesised
that this effect is caused by the transparency of the PET. The increase in reflectance caused by
PET and the relatively high standard deviation of the PET reflectance (> 15%) is explained by the
morphology of the PET bottles. Goddijn-Murphy & Dufaur (2018) found that reflectance is
dependent on the shape of the measured object and the ambient light conditions. As only three
measurements were done to determine the PET spectrum on a soil background and another three
were done to determine the PET spectrum on a grass background, measuring different parts of
the PET bottle in combination with the difference in rotation of the PET bottle relative to the sun,
could have large effects on the increase in reflectance. Change in ambient light was taken into
account by the black current-white reference measurements and the optimisation, but this does
not account for the effect of the rotation of the PET bottle. The MAIA S2 is more suitable for the
differentiation of the PET spectrum. MAIA S2 has an advantage over the HSR because it can
capture large areas more easily, especially when attached to a UAV. The reflectance of many PET
bottles, which have different rotations relative to the sun, can be captured at once. This means
thatthere is a high chance that PET bottles will be measured that cause anincrease in reflectance
in the RGB. In addition, a higher variability in reflectance values can be measured, which
differentiates the PET spectrum from many of the other spectra. The latter is relevant for the
characterisation of the PET spectrum.

How the MAIA S2 data was collected influences the quality of the data. The MAIA S2 settings
during data collection could explain the consistently increasing reflectance in the red edge and
NIR compared to the HSR spectra. Automatic calibration was done to set the exposure time for
each lens by using the ILS. The exposure times for the higher bands could be too high. In addition,
the MAIA S2 images were taken under an angle which affects the absolute reflectance. The angle
led to higher reflectance or lower reflectance compared to images taken at nadir (which is more
common when using UAVs), depending on the position of the sun and topography. In case of
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higher reflectance, PET bottles enhance this effect even more due to high scattering. This could
explain the larger difference between PET reflectance and grass reflectance for MAIA S2
compared to the HSR measurements. In addition, the PET spectra were taken from a different
image than the grass spectra. The images were taken under the same angle but not from the same
perspective, which influenced absolute reflection. In short, this means that the absolute
reflectance is not reliable. Despite this, conclusions can still be drawn from the shapes of the
collected spectra. The effect of the angle can be diminished by looking at spectral indices that
keep the shape of the reflectance curve, but do not take into account absolute reflectance. Still,
it has to be taken into account that the MAIA S2 data is of low quality. In this research, there is no
solid evidence presented that MAIA S2 can capture the increasing reflectance of PET bottles.
However, the HSR has measured all wavelengths included in the MAIA S2 reflectance bands.
When looking at PET bottles on a soil background, all wavelengths within the MAIA bands show
increased reflectance for the HSR, making it likely that MAIA S2 can capture the increasing
reflectance as well.

3.2. The influence of polyester and PET and their cover size on
spectra measured by different satellite sensors

The influence of plastic type and cover size on spectra measured by Sentinel-2, PlanetScope, and
EnMAP satellite sensors was studied. For each satellite type, the reflectance spectra of pixels with
different polyester and PET coverages were compared visually. In the end, the most suitable
sensor for further analysis was determined.

Polyester reflectance is increasing with target size in both the Sentinel-2 and PlanetScope
reflectance spectra (Figure 3, p.23). In the Sentinel-2 spectra this happens in bands 2, 3, 4, and 5,
and in the PlanetScope spectra in bands 1 through 7. It was decided that these bands would be
important for polyester detection. The Sentinel-2 images taken on 12 March and 14 March, and
the PlanetScope images taken on 15 March were affected by cloud shadow, which explains the
divergent reflectance spectra on those dates. All the other images were cloud-free and thus
provide more reliable reflectance values. It was not expected that the 0.5 m target could be
detected, as all reflectance values are very close to the reflectance values of the scenario without
a target. The same holds for all PET spectra. It was expected that 4b (4 bottles/m2) and 8b (8
bottles/m2) PET could not be detected in Sentinel-2 images. The transparency of the PET is a
probable cause. Tasseron et al. (2021) hypothesised that the transparency of the PET causes a
lack of characteristic absorption features that distinguish PET from its environment. Moreover, the
combination with the low pixel coverage of the PET reduces chances of detectability further
(Kremezi et al., 2022). Similarly, the PlanetScope PET reflectance spectra are very close to the
scenario without a target, thus it was expected that PET could not be detected either.

For Sentinel-2, the relatively low reflectance in band 8 of the 8b spectrum and the lower
reflectance values in band 11 of both the 8b and 4b spectra could not be logically explained, as
the HSR measurements in Figure 2 (p.20) showed that PET should increase reflectance rather than
decrease it. The patterns are likely based on other changing conditions, e.g. happening in the
atmosphere or at sensor level. The peak reflectance in band 8 happening in both the polyester
and the PET spectra is explained by the difference in spatial resolution between band 8 and its
neighbouring bands. Band 8 has a high spatial resolution of ten meters, while other bands have a
lower resolution of 20 or 60 meters. The plastic coverage within the ten meter pixel is higher than
the coverage within the 20 meter or 60 meter pixels. As polyester increases the reflectance values
of pixels, the ten meter resolution bands overall show higher reflectance values than they would
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Figure 3 The reflectance spectra of different polyester and PET coverages for Sentinel-2, PlanetScope, and EnMAP. All spectra were
taken from the satellite pixel in which the plastic coverage is highest. For Sentinel-2, the reflectance values were interpolated
between the spectral bands to increase readability of the plot. However, Sentinel-2 bands have varying spatial resolutions, meaning
that the interpolated values cannot be taken as true reflectance values. For Sentinel-2 and PlanetScope, the curves that are
described as ‘No target’ are the average signals of two scenarios without plastic targets. Enlarged versions of Figures A and C can be
found in Appendix V (p.46), as they are not entirely readable here. A) Sentinel-2 polyester reflectance for different target sizes. The 3
m,2m, 1 m, and 0.5 m polyester targets covered 29.6%, 19.7%, 10.1%, and 5.3% of the 10 m Sentinel-2 pixel respectively. B) Sentinel-
2 PET reflectance for different target densities. The 4b PET target covered 7.1% of the 10m Sentinel-2 pixel. The 8b PET target covered
14.8%. C) PlanetScope polyester reflectance for different target sizes. The 2 m, 1 m, and 0.5 m polyester targets covered 64.4%,
34.1%, and 18.2% of the PlanetScope pixel respectively. D) PlanetScope PET reflectance spectra for different target densities. The 4b
target covered 23.0% of the PlanetScope pixel, and the 8b target 42.2%. E) The reflectance spectra of the plastics, water, and grass
retrieved with the EnMAP satellite. The entire polyester target fitted almost completely within one pixel, providing a pixel coverage of
5.5%. The other main land covers within the same pixel were water (59.2%) and grass (25.9%). The PET target was located at the
intersection of three pixels. The reflectance of the pixel with the highest PET coverage (1.4%) is shown. The main land cover within
this pixel was grass (96.0%).
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have when they had a lower spatial resolution.

For PlanetScope, the polyester and PET spectra retrieved on 17 March show higher values in
bands 7 and 8. The polyester and PET spectra retrieved on 21 March show a peak in band 5. These
patterns are not related to the different plastic covers and can be explained by the low radiometric
quality of PlanetScope compared to conventional satellites, such as Sentinel-2 (Dias et al., 2024;
Latte & Lejeune, 2020). In addition, Sentinel-2 shows to capture the differences in signals
between the polyester targets and the no-target scenario at least as good as PlanetScope. The
maximum difference in absolute reflection between the target spectra and the no-target spectra
within the bands important for polyester detection (bands 2, 3, 4, and 5 for Sentinel-2, and bands
1 through 7 for PlanetScope) of the 2 mtarget is 0.04 and for the 1 m targetis 0.03 for both Sentinel-
2 and PlanetScope. For the 0.05 m target this is 0.02 for Sentinel-2 and 0.01 for PlanetScope.
Another benefit of Sentinel-2 is that it covers a larger spectral range than PlanetScope. This means
Sentinel-2 seems more suitable for plastic detection than PlanetScope. The main advantage of
PlanetScope is its high revisit time of one day. This makes image acquisition easier, which is
especially beneficial at cloudy locations and in cloudy seasons. For comparison, PlanetScope
images were made on 11 days in the experiment period, and Sentinel-2 images were made on 7
days, while Sentinel-2 image collection in the study period was more frequent than usual (‘2.4
Satellite imagery’, p.16).

There was only one useful image collected by the EnMAP satellite. Therefore, no robust
conclusions can be drawn from this sparse data. The plastic and grass spectra (Figure 3E, p.23)
are typical spectra of green vegetation (Ai et al., 2020; Seelig et al., 2008). Chlorophyll absorption
bands are present around 400 nm and 650 nm. The dips around 1000 nm, 1200 nm, 1400 nm,
2000 nm, and 2500 nm are water absorption bands. The large water fraction within the polyester
pixel explains the relatively low polyester reflectance between 680 nm and 1350 nm and could be
causing the relatively large water absorption dip around 1000 nm.

Itis probably not possible to detect the plastics in the EnMAP image, because of large similarities
between the plastic spectra and the grass spectrum. The maximum difference in reflectance
value between the grass and PET spectrum is 0.026. The reflectance values of the polyester target
are mainly lower than those of grass, while spectral signatures of polyester show that it should
have a higher reflectance than grass (Figure 2, p.20). The similarities are explained by the low
plastic coverages within the EnMAP pixels (5.5% polyester coverage and 1.4% PET coverage).
Moshtaghi et al. (2021) found that the absorption features of polyester are present around 1130
nm, 1171 nm, 1413 nm, and 1660 nm. These absorption features are not visible in Figure 3E (p.23).
Additionally, in the PET spectrum there are no reflectance dips present between 1600 nm and
1700 nm as found by Tasseron et al. (2021). The absence of the absorption features verifies that
the plastic coverages are too low for detection. The polyester target in the EnNMAP image is one of
the biggest targets of the experiment (the 2 m target). EnMAP reflectance is not influenced by this
target, while the target shows to affect the reflectance values in the Sentinel-2 and PlanetScope
spectra.

In this research, Sentinel-2 data is the most suitable option for plastic detection and will thus be
used for further analysis. As mentioned, Sentinel-2 outperforms PlanetScope in radiometric
quality, captures the reflectance change by polyester as least as good, and has a larger spectral
range. The low spatial resolution of EnNMAP proves to outweigh its ability to gather data at high
spectral resolution, and the image acquisition process makes it hard to collect sufficient images
for a proper analysis. However, EnNMAP data can still be useful for the detection of large plastic
pollution coverages of at least 100 m2, such as those found at the Hidrovacas dam (> 10,000 m2,
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in Guatemala) and in the Nile River (Cerra et al., 2025). Especially since its high spectral resolution
and range allow for the analysis of plastic absorption features (Schmidt et al., 2023).

3.3. Detecting polyester and PET in Sentinel-2 imagery

In the previous chapters, the main characteristics of the reflectance spectra were determined
that distinguish plastics from the riverbank environment, and the most suitable satellite sensor
for further analysis was determined: Sentinel-2. In this chapter, the detectability of plastic type
and cover size in Sentinel-2 images was quantified. First, spectral indices were calculated for the
study area to see which indices distinguish the plastic targets from the environment. Next,
Spearman correlation coefficients were calculated to find out whether the spectralindices could
work as indicators for plastic coverages. Lastly, the two most important spectral indices were
used for Naive Bayes classification to quantify the detectability of the plastic types and cover

sizes.

3.3.1.Spectral indices to differentiate plastics from a riverbank environment

Spectral indices were calculated from the Sentinel-2 imagery and mapped to assess which
indices distinguish the plastic targets from the riverbank environment.

05/03/2025 No targets 07/03/2025 3mp 10/03/2025 2mp 4b 12/03/2025 2mp 4b SI-13

e

14/03/2025 2mp 4b 17/03/2025 1mp 4b 20/03/2025 0.5mp 8b 24/03/2025 No targets
.
% Polyester target PET target 3mp: 3 m polyester target 1mp: 1 m polyester target 4b: 4 bottles/m? target
location location 2mp: 2 m polyester target 0.5mp: 0.5 m polyestertarget 8b: 8 bottles/m? target

Figure 4 SiI-13 calculated for the Sentinel-2 images and mapped over the study area in chronological order. Locations
of the plastic targets are indicated in each image to compare index values for different target coverages. In the image of
the 3 m target, SI-13 is highest at the polyester target itself. This value is also the highest SI-13 value of all images. On 7,
10, and 12 March, one of the polyester pixels has the highest SI-13 value within the image. On 17 and 20 March, the Si-
13 values that belong to the left groyne are higher than the values of the pixels belonging to the 2 m, 1T m, and 0.5 m
polyester targets. The PET target did not influence the SI-13 values. The images of 12 and 14 March contain cloud
shadow, which results in general in lower values. Since SI-13 represents the slope between two bands, this should have
partly solved the cloud shadow issue. However, the results remain less reliable than for cloud-free images.

SI-13 provides the best distinction between the polyester target and the riverbank environment
and will be used for further analysis (Figure 4; the maps belonging to the other spectral indices
can be found in Appendix VI, p.47-49). Polyester clearly shows high SI-13 values compared to the
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environment, and the values are decreasing with decreasing target size. The FDI index was
designed to detect floating debris on water, but it did not seem very effective for detecting
polyester on land next to water. However, the 3 m polyester target influenced SI-23 with a much
lower impact than SI-13, and the 2 m target did not have influence anymore. The PPl index reacts
to the largest polyester cover, but a clear distinction from the environment purely based on this
index was not possible. The APl index seems to react to the polyester targets as well, but a clear
distinction did not seem possible. NDVI did not provide a clear distinction between the plastic
targets and their environment, which is in line with the spectral signatures measured with the
HSR. Polyester increases reflectance values all over the spectral range, while keeping the slope in
the red edge that is typical for vegetation and determines NDVI. This is applicable for NDWI,
NDAVI, and Pl as well.

None of the spectral indices calculated from the Sentinel-2 images seems to be affected by the
PET targets (Figure 4, p.25; Figures 10-18, Appendix VI, p.47-49). This is in line with the spectral
signature of PET, which is similar to the spectral signature of the background material. In addition,
based on the Sentinel-2 reflectance spectra, it was concluded that the PET coverage in the
experiment is too low to be detected.

3.3.2.Spearman correlations between spectral indices and plastic cover
size

Spearman correlation coefficients were calculated to find out whether the spectral indices could
work as indicators for plastic coverages. While the spectral index maps of the Sentinel-2 imagery
in the previous chapter provide information about the separability of the plastic pixels from the
other pixels in the riverbank environment, the correlation coefficients provide information about
whether a spectral index can explain the width of the polyester target or the density of the PET
target when looking at the plastic pixels specifically.

There is a clear correlation between every spectral index, except FDI and PGI, and the polyester
target width, as the Spearman correlation coefficients are high and the p-values are under 0.05
(Table 2, p.27). NDAVI shows the highest correlation and results in a clear distinction between the
3 m target, 2 m target, and the no-target pixels (Figure 5, p.27). NDAVI, NDWI, NDVI, PI, and API
are allbased on the red edge slope starting at the visible spectrum and ending in the NIR. The HSR
spectrum of polyester showed that polyester dampens the red edge slope of its grass background.
This finding aligns with the idea that a higher polyester coverage dampens this red edge even
more, influencing the aforementioned spectral indices. This effect is visible in the Sentinel-2
reflectance spectra as well (Figure 3A, p.23). The reflectance values of different target sizes are
very similar in band 8, which represents the NIR. The bands in the RGB show increasing
reflectance values with increasing target size. This means the red edge slope between the RGB
and the NIR will decrease with increasing target size. The correlation coefficients of SI-13 and SI-
23 are also in line with the Sentinel-2 reflectance spectra. These indices are based on the slopes
between band 1 and the RGB region. The Sentinel-2 reflectance in band 1 remains stable with
increasing target size, while the blue and green wavelengths show increasing reflectance with
increasing target size.

There is no correlation found between the PET coverage and the spectral indices. SI-23 results in
the highest correlation coefficient of -0.68 and a p-value of 0.095. As the p-value is above 0.05, it
is concluded that there is no correlation. All other indices show p-values far above 0.05 and very
low correlation coefficients.
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NDVI will be used in combination with SI-13 to further analyse the detectability of the polyester
targets. NDVI is a commonly used spectral index and has been proven to be useful in
distinguishing between plastic target sizes.

Table 2 Spearman correlation coefficients of the relationship between the plastic target size and the spectral indices
calculated from Sentinel-2 imagery. For polyester, FDI and PGl show low correlation coefficients and p-values above
0.05, while the other indices show high correlation coefficients and p-values under 0.05. In particular, the correlation
coefficients for NDAVI, NDWI, NDVI, Pl, and API are very high. The correlation coefficients of SI-23 and SI-13 are very
similar. The relationships between the spectral indices and the PET coverage have low correlation coefficients and p-

values above 0.05.

Spectral Index | Spearman correlation | P-value Spearman correlation | P-value
coefficient of polyester coefficient of PET PET
polyester

NDAVI -0.93 0.001 -0.12 0.799

NDWI 0.88 0.004 0.02 0.966

NDVI -0.87 0.005 -0.14 0.766

Pl -0.87 0.005 -0.14 0.766

API 0.87 0.005 0.14 0.766

PPI 0.80 0.018 0.00 1.000

SI-23 -0.75 0.033 -0.68 0.095

SI-13 0.72 0.042 0.08 0.865

FDI 0.23 0.578 0.22 0.637

PGI 0.00 1.000 0.10 0.832
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Figure 5 The relationship between NDAVI values and polyester target width. The 2 m and 3 m targets clearly show a
difference from each other and the no target scenario. The 1 m and 0.5 m targets do not show a (clear) difference.
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3.3.3.Naive Bayes classification to evaluate plastic detectability

SI-13 and NDVIwere used for Naive Bayes classification to quantify the detectability of the plastic
types and cover sizes. Three methods were used for Naive Bayes training and testing. In the first
method, the Naive Bayes model was trained on all Sentinel-2 data and no data was left for testing.
Thus, the maximum amount of data was used to determine the class probabilities in the best way
possible (Figure 6, p.29). In the second method, Naive Bayes was trained on all pixels except for
one polyester pixel, which was used for testing. This was done for each polyester pixel in the
dataset. Lastly, a third method was used to get insight into the classification of all land covers. For
this method, one image was used for testing while the other images were used for training. Each
image was used for testing once. Appendix VIl (p.50-52) contains an overview of the results of the
second and third methods. PET was not used as input for the Naive Bayes models, because the
PET targets were unlikely to be detected. Method 1 confirms this, as the PET pixel values fall within
aregion exhibiting a vegetation probability greater than 0.70.

There cannot be any conclusions drawn from the first method to determine whether a class would
be predicted correctly, because all the data was used for training. The polyester pixels that are
visualised on the class probabilities (Figure 6, p.29) were also used to determine these class
probabilities. Nevertheless, it gives a good overview of the probability regions of each class. In
addition, conclusions can be made based on the plastic pixels that do not fall within a region with
high plastic probabilities, even though these pixels were used for training.

The centre and right 3 m polyester pixels are located outside all bounding boxes of the other land
covers. This proves that the 3 m polyester target influences reflectance measured with Sentinel-
2 in such a way that it can be distinguished from the land cover classes of the riverbank. The 3 m
polyester target pixels have large SI-13 values, which are close to the area of the sand class. The
left 3 m pixel even lies in the region exhibiting a high sand probability. The smaller the size of the
polyester target, the lower SI-13 and the higher NDVI. This means that the index values get closer
to those of the vegetation class. It becomes clear that the 0.5 m target cannot be detected when
the default priors are used, as its values fall within a region exhibiting a vegetation probability
greater than 0.70. For the equal prior Naive Bayes model, the 0.5 m target falls in a region with a
polyester probability greater than 0.70.

The plots that combine SI-13 and NDVI for the measurements of the other sensors used in this
research (Figure 21, Appendix VII, p.53) show that the plastic pixels are not clearly separable from
the other land cover classes, except for the data from the HSR. In addition, the HSR shows the
ability to distinguish between PET and the other land covers. The HSR is better at detecting
plastics because the measurements represent pure plastic spectra instead of mixed pixels. In the
HSR plot, polyester has the lowest NDVI value, which is different compared to the Sentinel-2
results in which water has the lowest NDVI values. This is because the HSR measurements of
water were taken at shallow locations, meaning the river bottom could be influencing the
measurements.

The second method, in which Naive Bayes was trained on all data except for one polyester pixel
which was used for testing, used the maximum amount of available good-quality data for training.
Two-thirds of the 3 m polyester pixels, all 1 m polyester pixels, and all 2 m polyester pixels were
classified correctly (Tables 6-7, Appendix VII, p.50). The left 3 m polyester pixel was misclassified
as sand. Using the model with default priors, two-thirds of the 0.5 m polyester pixels were
classified correctly. The right pixel of the 0.5 m target was classified as vegetation. Using the
model with equal priors, the full 0.5 m target was classified as vegetation.
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Figure 6 Naive Bayes class probabilities and distributions of the classified Sentinel-2 pixels. SI-13 and NDVI are
combined to increase separability between the plastics and the other land covers in the study area. For each land
cover, the mean and standard deviation are shown. The bounding boxes delineate the ranges of the pixel values within
each land cover. Because the shrub land cover has very similar SI-13 and NDVI values as grass, this land cover was
taken together with grass into the combined vegetation land cover. The polyester and PET (4b = 4 bottles/m?, 8b = 8
bottles/m?) pixels with the highest plastic coverages in each image are shown. All pixels covered by the 3 m polyester
target are shown (3mL = left pixel, 3mC = centre pixel, 3mR = right pixel). The probability distribution, resulting from
training the Naive Bayes model on all four cloud-free Sentinel-2 images, is shown as shaded regions. A) Naive Bayes
model trained with the default prior probabilities, aligning with the sample size of the training data. B) Naive Bayes
model trained with equal prior probabilities for each class. The equal priors give a higher priority to the polyester and
sand classes, as these classes are underrepresented in the training data.
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In the third method, in which Naive Bayes was trained and tested on different images, less data is
used for model training. However, this method provides information about the classification of all
land covers (Tables 8-9, Figures 19-20, Appendix VII, p.51-52). The recall of the 3 m target is 0.33,
meaning one-third of the 3 m pixels was classified correctly. The recall values of the2mand 1 m
targets are both 1.00, meaning all target pixels were classified correctly. The recall of the 0.5 m
target depends on the prior probabilities and is 0.00 for default priors and 0.67 for equal priors.
The misclassified 3 m pixels were classified as sand, and the misclassified 0.5 m pixels were
classified as vegetation. All precision and F-score values are 0.5 or lower, except for the F1-score
of the 2m target when using default priors (which is 0.60). This is caused by the small humber of
polyester pixels compared to the number of pixels of some of the other classes. In the confusion
matrices it can be seen that a maximum of 12 pixels were misclassified as polyester (Figures 19-
20, Appendix VII, p.52). This is a large amount compared to the amount of plastic pixels, but a
small amount compared to the total amount of pixels used for testing, which is around 395. The
overall accuracy scores of the image classifications are 0.94 or higher, meaning most of the pixels
were still correctly classified even when using equal prior probabilities. The Naive Bayes model
with equal priors classified more polyester pixels correctly than the Naive Bayes model with
default priors, but more pixels of other land covers were misclassified as polyester.

The 1 m, 2 m, and 3 m polyester targets can be detected in the riverbank environment. Methods 2
and 3 always showed a correct classification for at least one of the 3 m polyester pixels. All three
pixels of the 1m target and the 2m target were classified correctly in methods 2 and 3. The 0.5 m
target can be detected with the equal prior model, but not with the default prior model. The
misclassified pixels were classified as vegetation, which is the background land cover of the
target. This means the background signal was getting more dominant over the polyester signal.
For equal priors, the target was partly classified correctly, but this scenario is less realistic than
for default priors. In addition, all three methods include a location bias as data was used from the
same study area. This led to overfitting of the models on the study area, making it easier for the
models to predict the land covers correctly. Besides, the images were taken within a period of 2
weeks, meaning the model is biased towards a specific season. These biases, together with the
poor results of the default prior model, make it unclear whether the 0.5 m target will be detected
when using more qualitative models and more data.

Classification of pixels with a high polyester coverage as sand is partly because an increasing
polyester coverage leads to a lower NDVI approaching the low NDVI of sand, but also because of
the SI-13 index. The SI-13 index is based on band 1 and band 3, which both have a different spatial
resolution of 60m and 10m respectively. Band 1 showed to be rather consistent with target size,
which makes sense as the target covers are very low within the 60 by 60 meter pixels and the same
pixel was used for each target size spectrum. Band 3 reflection shows a clear increase with target
size, which is possible because of the high polyester coverage within the ten meter pixel used for
this band. This means SI-13 is capturing the increasing reflectance in the RGB compared to a
rather constant reflectance in the direct environment of the target which is relatively low because
of the low influence of polyester. Reflectance in band 1 is dependent on aerosol concentration,
meaning a changing aerosol concentration will lead to changing reflectance values in band 1
(Copernicus EU & European Space Agency, n.d.). During the field experiment these conditions
were comparable for each image because they were taken within a short time period of two weeks
and with comparable atmospheric conditions. The sand beach in the study area has an area of
order of magnitude 100 m? which is close to the target area of the 3 m target, which is 90 m2. In
Addition, the sand beach has a high reflectance compared to the surrounding grass and water as
well. This means that the sand beach is likely to cover a large part of the 10 meter pixel of the green
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band and a small part of the 60 meter pixel of band 1. This will result in high SI-13 values as the
reflection in band 3 is relatively high. This difficulty of SI-13 would arise each time there is a land
cover with a high reflectance compared to its surroundings. Although for riverbank environments
that consist primarily out of grass the SI-13 index can be a useful tool, but it would be more logical
to use band 3 only, especially when looking at other devices than Sentinel-2. In Figure 21 in
Appendix VIl (p.53) it can be seen that the SI-13 index is not useful for the other devices as these
do collect data at different spatial resolutions.

Overall, the findings of this study showed that plastic detection by using Sentinel-2 imagery is
possible for polyester targets as small as 1m by 30 m. In the next section, the main results are
summarised and reflected upon to form a conclusion for the entire research. As a closing,
recommendations are made for further research.
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4. Conclusion

This paper demonstrates that plastic detection in riverbank environments by using satellite and
camera imagery is feasible and should be investigated further. A controlled field experiment in
which plastic targets were placed on the riverbanks of the Nederrijn was executed successfully.
The collected data was used to determine the spectral signatures of the riverbank environment
and the plastics, to determine the influence of plastic type and cover size on satellite spectra
measured by different satellite sensors, and to quantify the detectability of different plastic types
and cover sizes in Sentinel-2 imagery.

Spectral signatures of riverbank, river water, and plastics can be distinguished visually. Although
PET is part of the polyester family, the PET bottle target and the polyester sheet target showed
different characteristics in their spectral signatures. Transparent PET is hard to distinguish from
the other land covers as its spectrum is similar to the spectrum of its background. Depending on
the shape and placement of the PET object, and on the lighting conditions, PET could lead to an
overall increased reflectance. Therefore, PET pixels showed larger standard deviations compared
to the other land covers. White polyester sheets can mainly be distinguished based on a high
overall reflection compared to the spectra of the other land covers. The polyester spectra are also
influenced by the background material during reflectance measurements, but polyester more
strongly increases the overall reflection than PET and changes the reflectance in the 400 nm and
680 nm range. The hyperspectral HSR measurements resulted in larger differences between the
polyester target and grass compared to the multispectral MAIA S2 measurements, while the MAIA
S2 was more suitable to measure PET.

In this study, Sentinel-2 data is preferred over PlanetScope data for plastic detection because,
although PlanetScope images have a higher spatial resolution, they did not prove to be more
useful than Sentinel-2 images. Additionally, Sentinel-2 has a higher radiometric quality and has a
larger spectral range. Sentinel-2 spectra were found to be influenced by the 3m, 2 m, and 1 m
polyester targets in bands 2, 3, 4, and 5. PlanetScope reflectance spectra were influenced by the
polyester targets in bands 1 through 7. There was no influence of the PET targets on the spectra of
Sentinel-2 and PlanetScope. The spatial resolution of EnNMAP is too low to detect the plastics in
the field experiment. However, EnMAP could still be useful to detect high amounts of plastic
pollution that cover large areas.

In this research, the 1 m, 2 m, and 3 m polyester targets were detected in Sentinel-2 imagery by
using Naive Bayes classification. All 1 m and 2 m pixels were classified correctly, and for every
model run at least one of the 3 m target pixels was correctly classified. PET was not used for
training the Naive Bayes model, as the targets did not influence the reflectance spectra of
Sentinel-2. In addition, the PET pixel values had a probability greater than 0.70 of being classified
as vegetation. A large part of the analysed spectral indices were found to be indicators of plastic
cover size in Sentinel-2 imagery. The largest correlation between spectral index value and
polyester target width was -0.93, for NDAVI.

Remote sensing plastic detection is a developing discipline that is very promising and shows a lot
of possibilities. Recommendations are made in the next chapter to enhance research on plastics
detection in riverbank environments across remote sensing sensors.
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5. Recommendations

This paper serves as a proof of concept to show that plastic detection in riverbank environments
by using satellite and camera imagery is feasible and should be investigated further. The data
gathered in this research and used for analysis were sparse. More data collection is needed to
build qualitative classification models. To achieve this, more controlled field experiments could
be carried out to analyse different plastic types, target sizes, and riverbank environments. Plastic
types that could be investigated are polyethylene and polypropylene, as they are the most
produced plastic types (as mentioned in ‘2.2 Plastic targets’, p.12). In addition, a focus on targets
consisting of more realistic plastic waste, like the PET target, and combined plastic types would
lead to a better understanding of detecting real plastic pollution. The type of riverbank
environment has a large influence on detectability, which should be taken into account. It is
recommended to place the plastic targets at different locations for each image and to compare
the influence of the different seasons on the land cover spectra, as these factors introduced a
bias in the used model. Another way to gather more data is to analyse existing plastic pollution
patches in riverbank environments by using satellite and camera imagery. Gathering information
on the plastic composition and size of the patches together with the satellite and camera analysis
leads to a better understanding of what plastic waste and compositions can be detected.

It is recommended to use Sentinel-2 data in further research on plastic detection, as this data
proved to be useful in detecting plastics. The main advantage of using satellite data is that plastic
detection can be upscaled to a global scale. This can be combined with field detection on a local
scale. For detection on a local scale, it is recommended to use hyperspectral cameras mounted
on a UAV. The hyperspectral camera combines the high spatial resolution of the MAIA S2 with the
high spectral resolutions of EnMAP and the HSR. By mounting the camera to an UAV, large areas
can be covered.

Investigation of more spectral signatures of riverbanks and other plastic types is recommended.
In addition, the limited spectral range of the HSR limits the comparison between the spectral
signatures of the land covers. Reflectance values for higher wavelengths may show important
differences relevant for the Sentinel-2 and EnMAP analysis. Measuring reflectance from 400 nm
to 2450 nm in future experiments would lead to a higher quality analysis. In this research it was
not possible because there was no suitable device available.

Finally, there was not enough time to consider other classification models than the Naive Bayes
model. When Naive Bayes is used again, a more thorough analysis on the prior probabilities of the
classes is needed as these have a large impact on the results. In addition, different models could
be compared to classify plastics. Automated machine learning models applied on Sentinel-2
imagery, such as Random Forest, Support Vector Machine, and K-means models proved to be
effective for plastic detection in coastal waters (Danilov & Serdiukova, 2024). However, more
research is needed on what models are effective for plastic detection in riverine environments.
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Appendix |: Satellite characteristics

Table 3 Characteristics of each satellite type studied (Copernicus EU & European Space Agency, n.d.; Planet Labs
Inc., 2025; EnMAP, 2022).

Sentinel-2 PlanetScope EnMAP
SuperDove
Spectral 1. Coastal aerosol 442.7 nm 1. Coastal Blue 443 nm - 228 spectral bands
bands and 2. Blue 492.7 nm 2. Blue 490 nm - Spectral range: 420 nm -
. 3. Green 559.8 nm 3. Green | 531 nm 2450 nm
equivalent 4. Red 664.6 nm 4. Green 565 nm - Intervals of 6.5 nm and 10
wavelengths 5. Red edge 1 704.1 nm 5. Yellow 610 nm nm for the VNIR and SWIR
6. Red edge 2 740.5 nm 6. Red 665 nm bands
7.Red edge 3 782.8 nm 7. Red Edge 705 nm
8.NIR 1 832.8nm 8.NIR 865 nm
8a.NIR2 864.7 nm
9. Water vapour 945.1 nm
10. SWIR - Cirrus 1373.5nm
11.SWIR 1 1613.7 nm
12.SWIR 2 2202.4 nm
Spatial Band 2, 3,4, 8: 10m 3m 30m
resolution | 0T S o com
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Figure 7 The spectral response functions of different generations of PlanetScope satellites and of the first nine bands of
Sentinel-2. Out of the PlanetScope satellites, the SuperDove is relevant for this thesis. It can be seen that certain bands of
PlanetScope and Sentinel-2 are interoperable. (Tu et al., 2022).
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Appendix ll: Land covers and HSR measurements

Table 4 Land covers in the study area and information on the HSR measurements. The images of the polyester target
with a grass background and the multiple layers of polyester are the same, because the multiple layers visually
looked the same. However, the HSR did not measure the same values.

Land covers measured | Amount of Estimated diameter | Image
by the HSR measurements of FOV
Polyester target with a 5 60cm

grass background

Multiple layers of 3 23cm
polyester
PET bottle target with a 3 23cm

grass background*

PET bottle target with a 3 23cm
soil background

Shrubs 5 30cm
Grass 10 60cm
Riparian vegetation 5 23cm
Rock 5 60cm
Water 5 51cm
Sand 11 60cm
Soil 2 (total=12) | 23cm

5 30cm

5 60 cm
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Appendix lll: Field measurement devices

Figure 8 A1) The MAIA S2 camera attached to a battery and the Incident Light Sensor (ILS). A2) The ILS. B) The
ASD Fieldspec Handheld 2 Spectroradiometer. C) The Topcon HiPer V GNSS receiver.
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Appendix IV: Spectral Indices

Table 5 The spectral indices used in this study.

Debris Index
(FDI)

FDI = B08 — B06 — (B11 — B06) *

(ABll - /1504—)

pollution in the
ocean. By using this
index, it was shown
for the first time that
floating
macroplastics are
detectable in
Sentinel-2 imagery.

Index Formula Description Source
Normalised NDVI = (NIR — RED) Useful for (Rouse etal.,
Difference " (NIR + RED) differentiation 1974)
Vegetation between river water

Index (NDVI) and vegetation.

Normalised NDAVI = (NIR — BLUE) Useful for (Villa et al.,
Difference " (NIR + BLUE) differentiation 2014)
Aquatic between river water

Vegetation and vegetation.

Index (NDAVI)

Normalised NDWI = (GREEN — NIR) Useful for (McFeeters,
Difference " (GREEN + NIR) differentiation 1996)

Water Index between river water

(NDWI) and vegetation.

Floating 10(Agos — Apos) | To detect floating (Biermann et al.,

2020)

ELSE

BLUE * (NIR — RED)

PGI =1
Gl =100 o en(BLUE + GREEN + NIR)

There are similarities
between the plastic
targets and the
plastic greenhouses
(PGs). Both the PET
target and the PGs
were transparent,
were lying over a

Plastics Index Pl = NIR Pl was developed for | (Themistocleous
(PI) (NIR + RED) Sentinel-2 data and etal., 2020)
showed to be
effective for
detecting floating
plastic on the ocean.
Adjusted NDBI — (SWIR — NIR) Pl adjusted for river (Sakti et al.,
Plastic Index (SWIR + NIR) areas. APlis notonly | 2023)
(API) based on PI, but also
IFNDVI > 0 PI, =PI — NDVI on NDVI and the
ELSE P11 =PI Normalised
Difference Built-up
IFNDBI > 0 Pl, = PI; — NDBI Index (NDBI).
ELSE Pl; =PI,
Plastic IF NDVI > 0.73 PGI=0 Developed to map (Yang et al.,
Greenhouse plastic greenhouses 2017)
Index (PGI) IF NDBI > 0.005 PGI =0 over large areas.
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vegetation cover, and
collected condense.

Plastic Patch PP = (B08a — B09) The formula is given (Breukel, 2025)
Index (PPI) (B08a + B09) in terms of Sentinel-2
bands.
SI-13 §I113 = (B03 — B01) Newly developed -
(B03 + B01) spectral index. The
formulais given in
terms of Sentinel-2
bands, but can be
applied to all other
sensors used in this
research.
SI-23 123 = (B03 — B02) Newly developed -
(B03 + B02) spectral index. The

formulais given in
terms of Sentinel-2
bands, but can be
applied to all other
sensors used in this
research.
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Appendix V: Enlarged versions of the Sentinel-2 spectra
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Figure 9 Enlarged versions of the Sentinel-2 reflectance spectra of different polyester and PET coverages.
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Appendix VI: Spectral index maps

Sentinel-2 FDI 05-03-2025 Sentinel-2 FDI 07-03-2025 Sentinel-2 FDI 10-03-2025

—0.05

% Polyester target PET target
location location

Figure 10 FDI map. The FDI values of the riverbank land covers are not very stable between the images. The index was
designed to distinguish floating debris from water pixels. The FDI values of water pixels are indeed more stable. The
polyester target shows relatively high FDI values compared to its surroundings, but the target is not clearly
distinguishable from all other land covers. High values also occur at other locations within the study area, e.g. at the
top of the image. The PET target is not distinguishable.

Sentinel-2 NDVI 05-03-2025 Sentinel-2 NDVI 07-03-2025 Sentinel-2 NDVI 10-03-2025
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r T 0.3
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01
00
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Figure 11 NDVI map. NDVI mainly distinguishes between vegetation and water and shows intermediate values around
the border of land and water. The plastic targets are not distinguishable.
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Figure 12 SI-23 map. The right polyester pixel has the highest value within the image of the 3 m polyester target, but
this does not hold anymore for smaller polyester targets. The PET target is not distinguishable.
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Figure 13 NDWI map. NDWI roughly shows the reverse effect of NDVI. There are high values at water pixels and low
values at vegetation pixels. The plastic targets are not distinguishable.
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Figure 14 NDAVI map. No clear signals are coming from the targets. The right polyester pixel has a slightly higher
value compared to its surroundings. This is, however, not a strong deviation from the other values within the image.
The effect is gone in images of smaller polyester targets.
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Figure 15 PPl map. PPl is not based on bands with a 10m resolution, meaning it can only predict at 20 m resolution.
The pixels that belong to the 3 m polyester target are relatively bright, but are not easily distinguishable from all other
pixels within the image. There is no clear signal of the PET target.
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Figure 16 Pl map. No plastic target is distinguishable.
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Figure 17 PGl map. No plastic target is distinguishable.
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Figure 18 APl map. There are somewhat higher APl values at the polyester target pixels compared to the scenario
without targets on 5 March. However, the plastic pixel values are in the same range as a part of the other values and
thus cannot be clearly distinguished from the environment.
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Appendix VII: Naive Bayes classification

Table 6 Results of method 2 with Naive Bayes trained on default priors.

Polyester
target

3mx30m
0.5mx30m
3mx30m
2mx30m

Tmx30m

Pixel

Left

All

Middle, right
All

All

Prediction Pixel plastic coverage 10m band
class

Sand 26.7%

Vegetation 4.3-5.3%

Polyester 8.5-24.6%, 29.6%

Table 7 Results of method 2 with Naive Bayes trained on equal priors.

Polyester
target

3mx30m
0.5mx30m
3mx30m
2mx30m
Tmx30m

0.5mx30m

Pixel

Left

Right
Middle, right
All

All

Left, middle

Prediction Pixel plastic coverage 10m band
class

Sand 26.7%

Vegetation 4.3%

Polyester 5.1-24.6%, 29.6%
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Table 8 Accuracy metrics of method 3 with Naive Bayes trained on default priors.

Target Precision Recall F1-score Overall
accuracy
3mx30m 0.25 0.33 0.29 0.97
2mx30m 0.43 1.00 0.60 0.97
Tmx30m 0.33 1.00 0.50 0.97
0.5mx30m 0.00 0.00 0.00 0.95
Table 9 Accuracy metrics of method 3 with Naive Bayes trained on equal priors.
Target Precision Recall F1-score Overall
accuracy
3mx30m 0.08 0.33 0.13 0.94
2mx30m 0.20 1.00 0.33 0.96
Tmx30m 0.20 1.00 0.33 0.95
0.5mx30m 0.18 0.67 0.29 0.95
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Figure 19 Confusion matrices of method 3 with Naive Bayes trained on default priors.
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Figure 20 Confusion matrices of method 3 with Naive Bayes trained on equal priors. -
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Figure 21 SI-13 and NDVI clustering for other sensors than Sentinel-2. In comparison to the other sensors, the HSR could distinguish
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between each class. Therefore, for the HSR all land covers in the study area are shown instead of the land covers used for plastic
detection in Sentinel-2 imagery.
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Appendix VlII: Use of Generative Al statement

Grammarly

Grammarly was used as a grammar and spelling checker for the final thesis report. The tool was
used right before submitting the thesis report. For every correction, it was first checked whether
the correction was appropriate. Using Grammarly has led to the improvement of spelling and

grammar in the thesis report.

ChatGPT

ChatGPT was utilised in several ways, as listed below. The purpose of the usage and how it
affected the research are described.

Coding support

ChatGPT was mainly used as a coding assistant. It was used to find and solve coding errors, to
find what libraries, functions, and prompts are useful for specific actions, and to make code more
efficient. By using the Al tool in these ways, the coding process became more efficient, it made
the code easier to understand, and it supported the learning process of the student by showing
how to improve the code. The output of ChatGPT was first studied before using it for coding. The
student made sure to understand the code first to maintain the quality of the code.

Explaining concepts

ChatGPT was used to explain how certain concepts worked related to statistics and remote
sensing pre-processing and analysis. The purpose was to get a first impression of how these
concepts work. However, the output was reflected on critically by assessing whether the output
made any sense to start with. In addition, other sources were used to verify the output of
ChatGPT. Information provided by ChatGPT was only used when the student was sure that it was

correct.
ArcGIS Pro support

ChatGPT was used as support for using the software of ArcGIS Pro. When the student did not
know how to carry out certain actions in the software, they asked ChatGPT. Sometimes, ArcGIS
Pro did not support the actions directly, and suggestions were made by ChatGPT to do it in a
different way. This method was only used if it made sense to the student. The use of ChatGPT
supported the learning process of the student (by giving insight into how ArcGIS Pro was
functioning) and made it more efficient. There was no direct impact on the research outcomes,

as it was easily assessed whether the suggestions made by ChatGPT were helpful or not.
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