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ABSTRACT The most vulnerable parts of tomatoes are the tips of the sepals, which are the primary entry
points for fungal spores. Their precise segmentation within hyperspectral images (HSIs) plays a pivotal
role in the development of automated and non-destructive systems for assessing tomatoes’ sensitivity to
fungal infections. This research addresses the critical need for encoding spectral information in hyperspectral
imaging to enhance the efficiency of such automated systems. We investigate four different techniques:
Principal Component Analysis (PCA), Independent Component Analysis (ICA), Probabilistic Principal
Component Analysis (PPCA), and Non-Negative Matrix Factorization (NMF), to perform transfer learning
for tomato sepal instance segmentation using models previously trained on RGB images. A comparative
analysis of three Mask Region-based Convolutional Neural Network (Mask R-CNN) backbone models is
conducted: the Faster R-CNN, Deformable ConvNet, and Feature Pyramid Network (FPN) on spectral-
encoded HSIs of the Brioso tomato variety. TheMask R-CNNwith FPN, integrated with the NMF technique
achieved the highest level of accuracy, yielding a Mean Average Precision (mAP) of 94.05%. Furthermore,
on the second dataset, which included an additional three tomato varieties: Capricia, Provine, and Sao Paolo,
the same model achieved mAP score of 86.42% across all tomato varieties with only a single false positive
detection. Additionally, we incorporated a custom convolutional layer initialized it with estimated NMF
coefficients, and achieved a mAP score of 87.40%. This demonstrates the potential of integrating spectral
information encoding with trained deep learning-based instance segmentation models to enable robust and
accurate transfer learning for automated agricultural food quality assessments.

INDEX TERMS Hyperspectral imaging (HSI), encoding spectral information in HSI, deep learning, transfer
learning, instance segmentation, tomato.

I. INTRODUCTION
Tomatoes (Solanum lycopersicum) are a key commercial
commodity with a high susceptibility to post-harvest fungal
infections. This susceptibility plays an influential role in
investments to improve tomatoes’ growth, storage, and
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supply chain conditions. Many factors contribute to the level
of a tomato’s quality and its vulnerability to pathogenic fungi.
These factors include the age of the plant, the number of
harvests, humidity, temperature, and fruit handling during
post-harvest logistics such as transport, packing, and storage
conditions [1], [2]. The most fragile parts of a tomato are the
sepal tips, which are usually the entry point for fungal spores.
Additionally, pathogenic fungal infections can be spread to
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other parts of the tomato, such as the stem, calyx, or tomato
skin [3]. The most common pathogenic fungi that infect
tomatoes are Penicillium, Aspergillus, and Mucor [4], [5],
[6]. Early prediction of the level of tomato susceptibility to
infection by pathogenic fungi would allow timely measures
to prevent post-harvest losses, which sometimes reach up to
30% of the yield [7], adjust storage and packaging conditions,
and optimize decision-making that extends the shelf life of
tomatoes. Frequent and time-consuming visual inspections
can help prevent the presence of infected tomatoes on retail
shelves. Since these inspections are not precise enough,
especially in the earliest stages of infection [8], [9], [10],
the development of non-destructive methods for estimating
the tomato’s susceptibility before the consequences of a
pathogenic fungus infection become visible is crucial for
the post-harvest supply chain. This research has signifi-
cant practical implications for food quality assessments.
By improving the detection of infected tomatoes, our findings
can enhance the accuracy and efficiency of quality control
processes, ensuring that only the best produce reaches
retail shelves. While aforementioned studies have explored
various methods for detecting tomato diseases, significant
gaps remain in the ability to efficiently identify infected
produce at the point of sale. Additionally, most previously
stated research has focused on general disease detection
without considering the specific implications for food quality
assessments in precision agriculture. Precision farming,
leveraging technologies like IoT and machine learning,
enables farmers to optimize crop yields and reduce costs by
providing data-driven insights on resource requirements [11],
[12], [13], [14]. Building on the advancements in precision
farming, this study addresses these gaps by introducing a
more efficient, automated approach based on hyperspectral
imaging (HSI) for a precise detection of sepals that is
a crucial step for identifying infected tomatoes in retail
settings, with potential applications for real-time quality
control. The HSI has emerged as a highly effective, non-
invasive technique that surpassed traditional RGB images
in acquiring more detailed visual information by having
tens of contiguous spectral bands in the non-visible part of
the electromagnetic spectrum of light [15]. With machine
learning (ML) methods, both unsupervised and supervised,
the HSI is used to develop more accurate and precise models
for plant disease detection. In [16] the authors found that the
near-infrared (NIR) spectral range (700 nm−1300 nm) pro-
vided more valuable information for tomato disease detection
compared to visible color images (350 nm−700 nm). They
employed an extreme learning machine (ELM) classifier
model for the detection and classification of fungal diseases
on tomato leaves. The importance of the NIR spectral
range is also supported by [17] where authors developed
an approach that included minimum noise fraction (MNF)
transformation [18], multi-dimensional visualization [19],
pure pixels endmember selection [20] and spectral angle
mapping (SAM) [21] to process the hyperspectral images

for identification of diseased tomato plants. The sensitivity
of hyperspectral imaging to specific forms of cell damage
has also been highlighted in various studies. For instance,
researchers have demonstrated its efficacy in detecting the
bruise regions on kiwi [22] that were extracted from the
images generated by the principal component analysis (PCA)
using parallelepiped classification [23]. For the detection of
bruises on blueberries, the authors from [24] used support
vector machine (SVM) classification [25]. In [26], HSI
data were analyzed using partial least squares-discriminant
analysis (PLS-DA) and SVMs with data fusion principles.
They merge three-level strategies at the data, feature, and
decision levels for blueberry bruising detection. In [27], two
classifiers of spectral angle mapping (SAM), multinomial
logistic regression (MLR), and classification decision trees
were used to verify the results of the identification of
blueberry fruit on plants. To discriminate early disease
in blueberries, [28] employed PLS-DA models on two
types of spectral range (i.e., the full wavelength range of
400 nm − 1000 nm and the effective spectral range of
685 nm− 1000 nm), showing that the effective spectral range
provides better classification results. In [29], an improved
deep residual 3D convolutional neural network (3D-CNN)
framework is proposed for detecting and classifying early
decay on blueberries. In [30] it is proposed a Spectral-
Spatial Network (SSNet) for tobacco impurity detection by
integrating HSI and in a [31], the aim was to reconstruct RGB
images from HSI and employ deep learning techniques to
classify different varieties of corn seeds. Moreover, in [32]
HSI is utilized to predict the susceptibility of tomato sepals to
fungal infection even before visible symptoms appear using
XGBoost and random forest-based regression models.

However, despite its informational richness, leveraging
hyperspectral data introduces challenges such as sensitivity
to atmospheric conditions (atmospheric haze and instrument
noise), illumination changes, and the spectra mixing problem.
That imposes limitations for determining the number of
pure spectral signatures due to low spatial resolution and
heterogenous structures in the image at edges [15]. The high
dimensionality of hyperspectral images, while enabling fine
spectral discrimination, demands considerable storage and
computational power [33]. The similarity and redundancy in
neighboring bands present a significant challenge, impacting
detection performance when these bands are fed into various
modeling frameworks. This underscores the importance
of strategic approaches to handling hyperspectral image
data effectively [34]. The information redundancy between
adjacent spectral bands increases the computational cost,
making it challenging to leverage hyperspectral images
on a large scale, especially with equipment limitations.
Additionally, efforts to eliminate redundant information
involve mapping bands into subspaces using a combination
of bands that are more informative, less correlated, and
more discriminative [34], [35]. Unsupervised ML techniques
like PCA and ICA are often employed before applying
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deep neural network models to hyperspectral images [15],
[34], [36]. In studies [34] and [37], authors utilized PCA
to extract the representative features of hyperspectral data.
In [38] the authors employed the successive projections
algorithm, [39], to identify the most important wavelengths
and texture features (mean, variance, homogeneity, contrast,
dissimilarity, entropy, second moment, and correlation) in
HSI. Utilization of typical convolutional neural network
(CNN) architecture after reducing the dimensionality of
hyperspectral images in the spectrum domain is reported
in [40] and [41]. However, a CNN-based method might
not perform well in small-sized object detection due to at
least two factors: one is the convolutional layer containing a
pooling operation, where feature maps may have been down-
sampled many times, or spatial information can be lost if
the stride is greater than one [41], [42]. Moreover, solutions
based on such complex models for object detection in HSI
are vulnerable to the peaking paradox [33], [43], [44], [45].
The peaking paradox in the context of hyperspectral images
and deep learning establishes that an additional increase in
the number of features brings complexity to the classifier as
the number of statistical parameters that define the object
increases, which leads to an increase in estimation error,
negatively affecting the final results [33]. The lack of a large
labeled dataset becomes one of the barriers to the use of
deep learning in HSI, but strategies like data augmentation
offer potential solutions [46], [47], [48]. The study in this
paper is a continuation of research from [32], where a semi-
automated procedure with limitations in operational usage
is developed for the segmentation of the calyx-stem region
of tomatoes. The segmentation approach proposed in this
study offers a more generalized and robust methodology
compared to conventional step-by-step parametric methods
that we used in [32], which are often dataset-dependent and
lack adaptability to new datasets. While the assessment of
susceptibility to fungal infections was demonstrated in our
previous study [32], the segmentation method introduced
here enhances the extraction of tomato sepals in a more
flexible and scalable manner. This approach improves the
reproducibility of results and facilitates broader applicability
across diverse datasets, thereby strengthening the robustness
of the analysis.

Within this paper, an HSI processing pipeline is proposed
to perform automatic instance segmentation of the tomato
sepal regions based on a regional convolutional neural
network (Mask R-CNN) with different backbones. In the
context of HSI, where tens of spectral bands are generated,
the objective is to encode essential information from the
non-noisy components of the spectra and to evaluate how
particular encoding affects the performance of the Mask
R-CNN instance segmentation model. Among various tech-
niques for encoding spectral information, it is not evident
which would be suitable for object detection in hyperspectral
data, especially of tomato sepal tips, which consist of a
very small number of pixels and therefore require very

precise segmentation. Although the review [49] does cover
it to some extent, this paper investigates their influence on
the successful detection of tomato sepals in hyperspectral
images.

II. MATERIALS AND METHODS
A. HSI INSTANCE SEGMENTATION
The field of precision agriculture, with a special focus on
post-harvest, is one of the remaining challenging areas where
advanced segmentation and detection methods based on
deep learning have a great potential to achieve outstanding
practical results and thus improve the efficiency of the supply
chain and reduce food waste [50], [51], [52]. Researchers
continuously explore and propose new architectural designs
of deep neural networks (DNN) to address the challenge of
accurate classification of the objects within the image by
providing pixel-level segmentation and precise estimation of
object boundaries [53], [54], [55], [56], [57]. Specifically,
CNNs have shown great success in instance segmentation
tasks for natural images [58], [59], [60]. The region-based
CNN (R-CNN) [61] introduced the concept of region-
based object detection, setting the stage for subsequent
developments. Fast R-CNN [62], in turn, optimized the
speed of this process by introducing a more efficient
single-stage detection framework. The MultiPath Network
of [63] leveraged multi-scale features to enhance object
recognition and segmentation. Faster R-CNN pioneered the
use of a Region Proposal Network (RPN) for faster object
detection [64]. Mask R-CNN [65] expanded on Faster
R-CNN’s foundations by introducing pixel-level instance
segmentation. Non-local neural networks [66] improved
image understanding by capturing long-range feature depen-
dencies. PANet [67] proposed a pyramid attention network
for better feature integration. Hybrid Task Cascade by [68]
improved performance by cascading multiple tasks, such
as object detection and instance segmentation. GCNet [69]
incorporated global context information into convolutional
networks for better object recognition. Yolact [70] broke
ground in real-time instance segmentation using a single-
stage detection framework. A Tensor Mask R-CNN model
from [71] introduced a tensor-based method for efficient
instance segmentation. In the work presented in [72],
the authors introduce a transformer-based architecture that
directly predicts polygons by using instance Mask R-
CNN segmentations as the ground truth supervision for
computing the loss. Moreover, the study by [73] proposes a
simple and compact ViT architecture called Universal Vision
Transformer (UViT), leveraging a constant feature resolution
and hidden size throughout the encoder blocks. Through
this iterative architecture development process, the DNN
models have shown significant performance improvement in
instance-based segmentation, their computational efficiency
has enhanced, and their domain application has expanded
from medical imaging [74] or autonomous driving [75] to
precision agriculture [76].
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For hyperspectral data, neural networks can be used to
tackle tasks such as spectral-spatial feature extraction [77],
[78], [79] and segmentation [79], [80], [81] where they
are used to identify and segment individual pixels or
regions corresponding to specific materials or surfaces in
the scene. Recent research studies propose methods for
adaptation of deep learning-based instance segmentation
models for application on hyperspectral data, such as multi-
scale networks [77], [78], [82], spectral-spatial fusion [47],
[77], [83], or attention-based models [66], [84], [85]. These
methods aim to exploit the spectral and spatial information in
hyperspectral data and address the limitations of deep learn-
ing models for high-dimensional data. Multi-scale networks
are utilized to capture spatial information at different scales,
while spectral-spatial fusion methods are used to integrate
spectral and spatial information for improved performance
on segmentation tasks. The attention-based models weigh the
importance of different features or bands for the instance
segmentation task.

The existing deep learning-based instance segmentation
models are pre-trained on large RGB datasets and can usually
be fine-tuned for specific tasks on smaller datasets. These
pre-trained models can be further used as a starting point for
different tasks without the need to train a deep neural network
from scratch, which results in saving time for training and
computational resources and usually an improvement in the
performance of the final model. In this way, the pre-trained
models can be leveraged to apply the knowledge they have
learned from natural images and employ it on hyperspectral
images. This approach is particularly useful in cases where
the number of labeled hyperspectral images is limited.

This study investigates the integration of HSI with deep
learning-based instance segmentation through the application
of Mask R-CNN architectures. Specifically, three backbone
networks—Faster R-CNN, Deformable ConvNet, and FPN—
are examined in combination with four spectral encoding
techniques- PCA, ICA, PPCA, and NMF- applied to HSIs
of the Brioso tomato variety. The objective is to system-
atically evaluate the impact of these encoding strategies
on the performance of instance segmentation networks.
To assess the models’ generalization capabilities, transfer
learning is applied to a secondary dataset comprising three
additional tomato varieties: Capricia, Provine, and Sao
Paolo. Additionally, the study proposes the design of a
custom convolutional layer initialized with spectral encoding
coefficients, particularly from NMF, to facilitate an end-to-
end, adaptive learning pipeline for robust and accurate tomato
sepal instance segmentation in HSI data.

In the following, we reviewed the usually employed
dimensionality reduction techniques, putting them in the
context of encoding spectral information within HSI.

B. ENCODING HSI SPECTRAL INFORMATION
Consider the hyperspectral image as a 3-order tensor X ∈

RR×C×D, where R,C corresponds to spatial dimensions (i.e.

the image width and height respectively) while D denotes the
spectral dimension (i.e. a number of wavelengths). Pixels of
the hyperspectral image, associated with the D-dimensional
spectral measurements, correspond to the vectors xn ∈

RD,n = 1, . . . ,RC within the tensor X. Although the higher
values of D, and therefore the number of features in the
spectral domain, can have an immense impact on the analysis
of the observed phenomena (e.g. plant diseases, fungal infec-
tion) [86], [87], this can also pose challenges in computation
during hyperspectral image processing. Therefore, finding
a suitable trade-off between the computational resources
required and the amount of information represented in the
spectral domain becomes necessary. The overview [49] of
methods used to select the most informative spectral bands
and techniques for spectral information encoding, according
to hyperspectral image applications, is reported. Within this
study, we propose the usage of four techniques for encoding
spectral information of hyperspectral images: Principal
Component Analysis (PCA) and its probabilistic version
(PPCA), Independent Component Analysis (ICA), and Non-
negative Matrix Factorization (NMF). All four techniques
find common applications as initial preprocessing steps in
hyperspectral image analysis, serving multiple purposes such
as dimensionality reduction, encoding spectral information,
signal-to-noise ratio enhancement, and the mitigation of
complexity of computation during subsequent data analysis
and machine learning tasks [49].
PCA, also known as the Karhunen-Loève transform, is a

commonly used technique for dimensionality reduction or
feature extraction [88]. According to [89], PCA can be
defined as the orthogonal linear projection of the data onto
a lower-dimensional, so-called principal subspace, which
maximizes the variance within it. Consider a data set of
hyperspectral responses per pixel {xn ∈ RD

|n = 1,2, . . . ,N }

where N = RCL, (i.e., RC is the image width and height,
respectively, and L is the number of images). Denoting with
x̄ the sample mean of the considered set, a sample covariance
matrixM ∈ RD×D is computed as

M =
1
N

N∑
n=1

(xn− x̄)(xn− x̄)T . (1)

From the factorization of theM using eigendecomposition:

M = U3UT (2)

where U is an orthogonal matrix in RD×D, whose columns
are the eigenvectors of M, and 3 ∈ RD×D is a diagonal
matrix where the corresponding eigenvalues are on diagonal.
By selecting only the K < D dominant eigenvectors (i.e.,
principal components) u1, . . .uK that are associated with the
largest eigenvalues {λ1, . . . ,λK } on 3’s diagonal, a truncated
orthogonal projection matrixUK is formed. Then the spectral
information in xn is encoded withK principal components as:

zn = UT
K (xn− x̄) (3)
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where zn ∈ RK is a representation of xn within the K -
dimensional principal subspace.

The reformulation of the PCA, as a probabilistic model (i.e.
PPCA) was proposed in [90] and was closely related to factor
analysis [91], [92]. Within PPCA, an explicit latent variable
zn ∈ RK , corresponding to the principal subspace spanned by
the columns of W ∈ RD×K , is introduced and refers to the
observed variable x ∈ RD through linear transformation:

x = Wz+ ε (4)

where ε ∈ RD and ε ∼ N (µ,σ 2I). Given that the prior
distribution is p(z) =N (0,I) and the conditional distribution
is p(x|z)=N (Wz+µ,σ 2I), the linear-Gaussian model from
equation 4 and using Bayes’ rule, the posterior distribution is

p(z|x) =N (C−1WT (x− µ),σ 2C−1),

where
C = WTW+σ 2I.

[90], [93]. With the maximum likelihood estimation of
p(z|x) parameters denoted as WML,µML,σML any latent
representation of x is summarized through the mean of p(z|x)
as:

Ep(z|x)[z] = C−1WT
ML(x− µML). (5)

with µML = x̄ and

WML = UT
K (3K −σ 2I)

1/2
R. (6)

where R ∈ RK×K is an arbitrary orthogonal rotation matrix
and matrices UK ∈ RD×K ,3K ∈ RK×K are truncated version
of matrices U,3 obtained by eigendecomposition of covari-
ance matrix M from equation 2. In the limit when σ 2

→ 0,
C−1

→ (WT
MLWML)−1 equation 5 represents an orthogonal

projection into the latent principal subspace and thus standard
PCA spectral information encoding is performed.

Unlike PCA or its probabilistic counterpart PPCA, which
focuses on maximizing variance, ICA aims to find statisti-
cally independent components in the hyperspectral signature,
which can be particularly useful for separating spectral
sources corresponding to different materials [94], [95], [96].
Consider the data matrix Y ∈ RD×N obtained by centering
columns of the data matrix X ∈ RD×N by equation:

yn = xn− x̄. (7)

The ICA technique models the centered data matrix Y as:

Y = AS, (8)

where A ∈ RD×D represents the mixing matrix for linear
combinations of independent components, while S ∈ RD×N

is the source matrix, with the independent components as
its columns. Then the goal of ICA is to find an orthogonal
unmixing matrix Q ∈ RD×D such that:

S = QY. (9)

With the application of the unmixing matrix to the centered
data yn, the spectral information is encoded with K-
independent components:

sn = QKyn, (10)

where sn ∈ RK represents the yn within the K -dimensional
subspace, obtained by linear transformation QK ∈ RK×D.

The last technique we employed in this study for encoding
spectral information, NMF, aims to factorize the data matrix
XD×N into two non-negative matrices, V ∈ RD×K and H ∈

RK×N :

X = VH, (11)

where K is the desired reduced dimensionality of the
subspace where spectral information is encoded. An essential
aspect of NMF is that bothV andH are constrained to contain
non-negative elements. This non-negativity constraint helps
reveal additive components within the data. This approach
involves iterative optimization techniques to minimize the
reconstruction error between the original data X and its
factorization VH. Once the factorization is obtained, the data
xn can be represented in the reduced K -dimensional space as:

zn = HT xn, (12)

where zn ∈ RK captures the representation of xn within the
K -dimensional NMF subspace.

C. INSTANCE SEGMENTATION OF TOMATO SEPALS
In this study, we dealt with the problem of adapting
a hyperspectral image for training and testing existing
DNN instance segmentation models on a tomato sepal
detection task. Although the main advantage of this type
of data is its richness in spectral information, offering
wide application directions, it still requires high com-
putational costs. Advanced instance segmentation DNN
models are usually pre-trained on RGB images [97], [98],
[99]. Utilization of the transfer learning approach on pre-
trained DNN instance segmentation models to detect tomato
sepals in hyperspectral images requires the compression
of image spectral information from a high-dimensional
to at least a three-dimensional latent space. Specifically,
within this study, our methodology involves employing
linear techniques from Subsection II-B to effectively encode
the spectral information within noise-reduced hyperspec-
tral images by preserving the most significant spectral
information for further fine-tuning pre-trained instance
segmentation DNN-basedmodels by using a transfer learning
approach.

This approach exemplifies the broader concept of transfer
learning in machine learning, which has gained popularity
due to its potential applications [100]. Transfer learning
involves improving learning in a new task by transferring
knowledge from a related task that has already been learned
to improve performance in the target task, as presented in
this study. The principle of transfer learning often involves
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mapping characteristics from one task to another to establish
correspondences, ultimately aiming to achieve higher initial
performance, a steeper learning curve, or a higher final
performance level through transfer learning by avoiding
negative transfer (this occurs when knowledge learned from
one task hinders or degrades the performance of a model
on a different but related task) and automating the mapping
process [101]. By doing so, transfer learning can overcome
the challenges of limited data, reduce training time, and
improve the performance of machine learning models in
various domains.

Based on the result of applied linear techniques for
encoding spectral information, we initiated fine-tuning of
pre-trained deep learning models on encoded hyperspectral
images to detect and segment tomato sepals. In this work,
we focus on Mask R-CNN [65], which is a two-stage and
well-known architecture for instance segmentation tasks.
It builds upon the Faster R-CNN framework by adding
an additional branch for generating object Mask R-CNNs
alongside bounding box predictions [64]. Hence, Mask
R-CNN detects and segments multiple objects within an
image simultaneously. The architecture of Mask R-CNN
consists of two main components: a backbone network
and two task-specific subnetworks. The backbone network
is based on a pre-trained CNN such as ResNet [102] to
extract high-level features from the input image, which
further propagate through two parallel subnetworks: the
region proposal network (RPN), which generates potential
object proposals by predicting bounding boxes, and the
second, which takes the proposed regions from the RPN and
refines their bounding box coordinates while simultaneously
predicting the class probabilities for each object category.
In addition, it generates a binary mask for each proposed
region, delineating the objects at the pixel level. Since the
output of Mask R-CNN contains an object mask, it is a
reasonable and appropriate choice for tasks that require
precise object localization and segmentation, such as tomato
sepals.

Another advantage of Mask R-CNN is its facility for trans-
fer learning and its adaptability to new problems [103]. The
Mask R-CNN models used in this study are pre-trained on
Microsoft’s Common Objects in Context, or COCO dataset,
a large-scale dataset with 200k images [98]. Three types
of backbones are used: FPN (ResNet + FPN), C4 (ResNet)
[64] and DC5 or Dilated-C5 (ResNet with dilations in the
conv5 backbone) [104]. The selection of these backbones was
guided by their architectural features: FPN was chosen for its
multi-scale feature extraction, C4 (ResNet) for its robust per-
formance, and DC5 (Dilated-C5) for its suitability for tasks
demanding dense predictions and precise spatial information.
The proposed pipeline for detection of tomato sepals and seg-
mentation of their regions within HSI is depicted in Figure 1,
starting with encoding spectral information, and then across
fine-tuning Mask R-CNN models with three different
backbones.

D. DATASETS
This study employs two datasets containing hyperspectral
images of different tomato varieties. Hyperspectral images
are acquired using the SPECIM FX17 camera, which
measures reflectance within the spectral range from 900 nm
to 1700 nm with a resolution step of 3.46 nm thus
providing 224 spectral bands per image. To mitigate the
influence of lighting conditions on hyperspectral imaging,
all image acquisitions were conducted in a controlled
darkroom environment, utilizing halogen lamps as the sole
illumination source. This setup ensured uniform lighting
conditions and eliminated potential interference from exter-
nal light sources, thereby enhancing the reliability of the
spectral data. This ensured that the hyperspectral dataset
remained unaffected by external illumination inconsistencies
while minimizing redundant spectral information, thereby
improving the reliability and reproducibility of the study. The
dataset acquisition procedure was performed at Wageningen
Food and Biobased Research (WFBR) within Wageningen
University and Research.

The first dataset contains hyperspectral images of the
Brioso cultivar (6 batches) formed after harvest by five
different growers based in the Netherlands and Belgium.
After being harvested in greenhouses without supplementary
lighting, tomatoes were delivered the same day for imaging
and stored at a temperature of 15◦C. Tomatoes were pruned
and distributed into trusses, containing three or four tomatoes,
which were then imaged. Having six trusses per batch
resulted in 36 hyperspectral images of tomato trusses,
with an average number of 19 tomato sepals per image
(approximately 5 sepals per tomato) [32] (see Table 1).

The second dataset was acquired under a distinct exper-
imental protocol, involving a reduced count of tomatoes
(one tomato as opposed to three or four from the first
dataset image acquisition). Furthermore, a discrepancy in
the sensor-to-object distance during data collection led to
decreased resolution (i.e. number of pixels per object of
interest such as tomato sepals) for the second dataset. This
discrepancy arose due to the tomatoes being positioned at a
greater distance from the sensor, ultimately contributing to
the observed disparity in resolution between the two datasets.
The tomatoes of four varieties: Brioso, Capricia, Provine,
and Sao Paolo were used during the creation of the second
dataset. Tomatoes were produced in a greenhouse in De Lier,
the Netherlands, and supplied by Growers United at WFBR.
Among varieties, there are noticeable differences in size.
Brioso is medium to large, as is Provine, while Capricia and
Sao Paolo are generally smaller in size, often referred to
as cherry tomatoes. Moreover, Sao Paolo has a distinctive
deep red color. The second dataset contains two hyperspectral
images containing 32 tomatoes for Brioso and Sao Paolo
varieties, and two hyperspectral images with 16 tomatoes
each per Capricia and Provine varieties (see Table 1).
For achieving similar scales of tomatoes, thus sepals

between datasets, hyperspectral images from the second
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FIGURE 1. The workflow of the HSI data processing pipeline.

FIGURE 2. Hyperspectral responses of tomato fruit and tomato sepal on
examples from the a) first and the b) second dataset.

TABLE 1. Datasets description.

dataset are divided such that there is one tomato per image
and the image is resized to correspond to the size of the region
which covers one tomato in the image in the first dataset.
Fig 2 shows examples of spectral responses of tomato fruit
and tomato sepals for the same variety Brioso in both datasets.
Hyperspectral responses confirmed the initial hypothesis that
the reflectances from the tomato fruit and tomato sepals in
the observed range correlate among the two datasets. The
correlation among the tomato sepals is 0.8859 with p-value
0.87 * 10-35, and among tomato fruits is 0.8953 with p-value
1.75 * 10-35. Figure 3 illustrates the variability in tomato
sepal width (50-125 pixels), height ( 35-120 pixels), and
area ( 500-4200 pixels), providing crucial information on the
morphological diversity within the second dataset and among
datasets.

The preprocessing steps for hyperspectral images that
consist of black-and-white correction followed by noise
reduction per spectral band are adopted from [32] where
they are briefly discussed. After the noise reduction
step, the first thirteen and last sixteen spectral bands
from initial 224 are removed due to low signal-to-noise
ratio [32] leaving 196 spectral bands for further analysis.
These bands are then subjected to standard normal variate
(SNV) spectral correction technique. By applying SNV
correction, we got enhanced spectral feature extraction,
reduced effects of unwanted variations, such as baseline
shifts and scaling, and improved comparability between
spectra [105].
The hyperspectral images are additionally divided such

that newly created images contain only one tomato per
image. All ground truth polygon-wised masks for the
detection of tomato sepals are created using LabelMe
software [106]. Groundtruth for counting tomato sepals is
obtained by numbering the marked tomato sepals from
JSON files made in LabelMe software. The methodology
is implemented in Python v3.9 using the following open-
source libraries: Spectral Python (SPy) [107] and Scikit-
Image (skimage) [108] for data preprocessing, Scikit-Learn
(scikit) for the implementation of spectral information
encoding techniques [109], and detectron2 [110] for employ-
ing DNN instance segmentation models for tomato sepal
detection.

E. HARDWARE
In this study, complex computational operations were exe-
cuted using a single high-performance graphics processing
unit (GPU). The GPU employed for deep learning task was
the NVIDIA GeForce RTX 2080 Ti. With 4352 CUDA
cores and 11 gigabytes of high-bandwidth memory (HBM2),
it provides the necessary computational resources to expedite
the training and inference phases of considered deep neural
network models.
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FIGURE 3. The diversity in heights, widths, and areas of tomato sepals in both datasets across varieties.

F. EVALUATION METRICS
In this study, the mean average precision (mAP) metric
is used for the performance evaluation of instance seg-
mentation models. Since we consider the single-class case
problem [111], [112], in the following, with mAP we denote
mAP50 where the adopted threshold for IoU calculation
was set to 50% of the overlap among a ground truth
and predicted region which corresponds to tomato sepal
(i.e. mAP - 50 will be denoted as mAP in the following
text). Intending to estimate the precision in the number of
detected sepals, we highlight two error rates: under- and
over-predictions, which give us a better insight into the
performances of the models [113], [114]. Estimating the
type of errors is important for future operational usage (e.g.,
logistic and transport optimization, assessment of shelf life)
where decision-making would be performed by aggregating
sepal level predictions at individual tomato or tomato truss
level. The over-prediction error pertains to the count of
identified sepals in a test image not present in the ground
truth data. In other words, it signifies instances where the
algorithm falsely detects sepals that are not genuinely part of
the tomato (false positive). Conversely, the under-prediction
errors refer to cases where the algorithm fails to detect tomato
sepals that are verified as part of the ground truth data for a
given test image. The motivation for using these two metrics
comes from the fact that when the simple mean absolute error
is used, these values (missed or false detections) can cancel
each other out through averaging. Through the following
equations:

e =
FP
P

, e =
FN
P

(13)

the errors of over e or under e predicted tomato sepals are
calculated, where P is the number of sepals within ground
truth, FP is the number of falsely detected sepals, and FN
denotes the number of non-detected sepals.

III. RESULTS
A. EVALUATION OF THE PROPOSED METHODOLOGY
A detailed analysis of how the choice of technique for
encoding spectral information of hyperspectral images in
conjunction with one of the deep learning-based instance
segmentation models affects the final identification accuracy
of tomato sepals is presented below. The PCA often focuses
on detecting linear correlations among variables, which may

TABLE 2. For each technique for encoding spectral information, the sum
of standard deviations for all coefficients, estimated for projection onto a
three-dimensional subspace, across all folds is reported.

not be ideal for capturing complex relationships present
among hyperspectral bands, and it might face limitations
in scenarios where mean and covariance statistics alone
fail to adequately represent the data’s intricate structure.
The PPCA, a probabilistic extension of PCA, can capture
the underlying probabilistic structure of data, which may
be particularly relevant when dealing with uncertainty in
hyperspectral information. The ICA, on the other hand, aims
to discover statistically independent sources within the data,
which can unveil underlying physical or chemical properties
in hyperspectral imagery [115]. The NMF, with its non-
negative constraints, can reveal additive components and
part-based representations in the data, which is valuable
for interpreting complex and detailed spectral information
esspecially in segmentation domain, because objects in
images are often composed of additive parts, and negative
values can be meaningless in many physical contexts (e.g.,
spectral reflectance or pixel intensities) This characteristics
make NMF advantageous for tasks like hyperspectral image
segmentation, where pixel intensities (and their derived
features) must be non-negative. This constraint ensures that
the extracted features (components) are more interpretable,
as they represent additive combinations of the original
features, which is essential when analyzing biological
structures like tomato sepals. Additionally, NMF focuses
on extracting meaningful parts-based representations of the
data, which aligns well with the goal of segmenting tomato
sepals. In contrast, PCA and ICA focus on maximizing
variance and statistical independence, respectively. However,
they may not always lead to parts-based features that
are directly interpretable or well-suited for segmentation
tasks. The ability of NMF to discover components that
represent additive parts makes it a more effective method
for isolating distinct regions or features in hyperspectral
images. While PCA and ICA tend to produce components
with lower variability (as indicated by their lower standard
deviations), these components are often more abstract and
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FIGURE 4. Encoded spectral information of one image from dataset 1 within a three-dimensional subspace using: a) PCA, b) ICA, c) PPCA, and
d) NMF techniques represented through a three-channel false-color image.

less interpretable. In contrast, NMF’s components, while
showing slightly higher variability than PCA and ICA, are
still relatively stable (as evidenced by the smaller standard
deviations compared to FA). This suggests that NMF strikes
a good balance between feature extraction and stability.
Moreover, as supported in the literature [116], NMF provides
a robust framework for hyperspectral unmixing due to its non-
negativity constraint and the interpretability of the resulting
components. Additionally, hyperspectral image segmentation
was successfully accomplished, after NMF in [117], as in
our study. Therefore, the choice between the mentioned
techniques for hyperspectral data analysis should be guided
by the specific goals, characteristics, and complexities of the
dataset and the intended downstream tasks, acknowledging
the distinct advantages and limitations of each method.

For this purpose, we used Dataset 1 from Table 1 in
which 36 images are distributed in training, validation, and
test set in a ratio: 84%, 8%, and 8% respectively (30-3-3).
The projection for each technique for encoding spectral
information is learned by running a 6-fold cross-validation
with the adopted dataset division ratio.

We have included a summary of the sum of standard devi-
ations for all coefficients, estimated for the projection onto
a three-dimensional subspace, across all folds (see Table 2).
This provides a quantitative comparison of the variability
across the different encoding techniques (PCA, PPCA, ICA,
and NMF) and further supports the rationale for choosing
NMF for tomato sepal segmentation. While NMF shows the
highest sum of standard deviations across all folds, this is not
necessarily a disadvantage. The increased variability reflects
the method’s ability to capture more complex features that are
well-suited for the segmentation task. NMF’s non-negative
constraint ensures that these components are interpretable
and correspond to real-world regions in the image, which
is crucial for tasks like identifying distinct parts of tomato
sepals. By comparing to the with other techniques, PCA and
PPCA have smaller sums of standard deviations, indicating
that their components are more stable but less complex and
less informative in the context of hyperspectral data. They
are good for dimensionality reduction but might not provide
the detailed, parts-based features necessary for accurate

segmentation. ICA captures independent components but
introduces larger variability, making it less reliable for
segmentation, especially for tasks requiring consistent and
interpretable features. We found that differences in learned
projections among the folds were not statistically significant
for each technique (see Table 2). Since the variations between
the folds were observed only at the level of the fourth
decimal point, we randomly selected one of the possible six
learned transformations per technique and used it in future
experiments. Examples of a transformed hyperspectral image
from Dataset 1 with learned projections are given in Figure 4.

TABLE 3. The mean and standard deviation of mAP across 6 validation
folds for three Mask R-CNN model variants (FPN, C4, and DC5) and used
techniques for encoding spectral information (PCA, NMF, ICA, and PPCA).

The proposed pre-trained instance segmentation mod-
els [64], [65], [104] (see Section II-C) are further fine-
tuned on hyperspectral images in which noise-reduced 196-
dimensional spectral information is encoded within a three-
dimensional subspace with techniques from Section II-B).
The augmentation applied during inference involves resizing
the input image while preserving its aspect ratio. This
process is governed based on dataset statistics related to the
desired minimum size of the shorter edge and the maximum
allowable size of the longer edge. This essentially means
that the image’s specific size is randomly selected from
within the specified range. This augmentation guarantees
that the image is resized to have a minimum shorter edge
while maintaining its aspect ratio. Nevertheless, this type of
augmentation induces modifications through transformations
applied to the images, giving diverse representations to
provide variety and improve the model’s robustness. The
changes made are based on resizing and flipping operations.
We chose these techniques to address the challenge of varying
tomato sepal positions within the image. The flip technique
helps simulate different sepal orientations, ensuring that the
model can recognize sepals in various orientations, while
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resize helps to standardize image sizes, making the sepal’s
features more consistent for analysis. Together, these simple
augmentation techniques allow better handling of diverse
sepal directions, improving the model’s ability to accurately
assess them regardless of their position in the image.

Through the 6-fold cross-validation training process,
we employed one image per batch (each containing around
20 sepals or instances) to optimize memory efficiency
when transferring data to and from the GPU for both
datasets separately and merged. This strategy aimed to
improve generalization performance on new data [118],
[119]. Additionally, we used a warm-up cosine learning rate
scheduling [120] that gradually increased the learning rate
from a base value (0.001) to its target value a priori, which
then subsequently decreased over a specified number of
epochs (5000), following a cosine curve. This approach facil-
itates gentle parameter space exploration, averts significant
updates that might disrupt the optimization trajectory within
parameter space, and fosters smooth adjustments during fine-
tuning and convergence [120], [121], [122].
Table 3 presents the performances of the proposed Mask

R-CNN model with different backbones in terms of mAP,
with considered four techniques for spectral information
encoding. The overall assessment of the model’s performance
encompasses a dual perspective: firstly, through the utiliza-
tion of the mAP metric to evaluate the success of instance
segmentation of tomato sepals, and secondly, by considering
detecting precision. The primary metric is the mean average
precision, where the NMF technique in conjunction with
the Mask R-CNN + FPN backbone (in further text denoted
as NMFMaskFPN) achieves the best results, reaching a
mAP of 94.05 ± 3.25%. Figure 5 presents the results
obtained by the Mask R-CNN + FPN model with all four
techniques for spectral information encoding, accompanied
by the obtained binary masks and predictions of the tomato
sepal identification. In addition to the mAP, further insights
into model efficiency were gleaned from three supplementary
metrics: accuracy, false negative rate, and false positive rate
through training epochs. The average accuracy and sensitivity
values for the evaluated models (FPN, DC5, and C4) exhibit
minimal variation, with the average accuracy values being
0.9288, 0.9256, and 0.9135. The average sensitivity values
are 0.8821, 0.8788, and 0.8695, respectively, indicating a
high degree of similarity in their performance. Besides these
metrics, the false negative and the false positive rates also
exhibit comparable performance across the used Mask R-
CNN configurations on hyperspectral data images encoded
by the NMF technique (see Figure 6); evenmarginal enhance-
ments in these metrics could yield discernible improvements
in the precision of tomato sepal detection outcomes.

Each of the four techniques for encoding spectral informa-
tion addresses the presence of specular reflection differently.
Notably, seen in Figure 4, both sepal tips and regions
under specular reflection exhibit similar responses after
encoding spectral information. This can lead to potential
misclassification of sepals. Since the primary objective of

this study is to accurately detect and segment the region of
the sepals, for further use as input to a prediction model
from [32], and for evaluation of the accuracy of the model
in sepal detection, an approach with two-sided perspective
is employed. This approach considers errors in both under-
predicted and over-predicted numbers of tomato sepals,
which are briefly explained in the section II-F. The study’s
findings are presented in Table 4, where the form e/e is used
to denote errors in the prediction of tomato sepals on the test
set. The NMFMaskFPN approach stands out as it achieves
zero under-predictions across all categories, demonstrating
better prediction performance on the test set in terms of both
over- and under-predictions compared to other backbones,
attaining a perfect 100% accuracy in detecting sepals.

TABLE 4. The e/e prediction errors of tomato sepals on the test set
expressed in percentage.

Further, we evaluate NMFMaskFPN trained on hyperspec-
tral images of Brioso variety i.e. Dataset 1, on hyperspectral
images of the same variety from Dataset 2. The hyperspectral
images from Dataset 2 are prepared by following the same
procedure as for Dataset 1. Even though the obtained mAP
on the second dataset is very low, the model detected 37%
of the total number of sepals (61/164 on 32 images), from
which 77% are true positive and 0.29% are false positive,
including 2 sepals with double detection. The poor metrics
during validation on Dataset 2 could be caused by the
distribution shift between the two datasets. In Dataset 1,
the model was trained to recognize tomato sepals in a
truss of four tomatoes, where it learned to detect more
complex shapes and relationships between multiple fruits
and sepals. In contrast, Dataset 2 contains images with only
one tomato containing a few sepals, which is significantly
different and may cause poor performance. Other factors,
such as different contexts and scale differences (where the
individual sepal is likely larger compared to a sepal in a
truss) and the model’s focus on recognizing tomato sepals
in a truss rather than individual sepals, can all contribute to
this issue. Additionally, if the model is overfitted to specific
characteristics, it might struggle to generalize to isolated
tomato fruit images. To improve performance, we consider
fine-tuning the model on Dataset 2 and employing transfer
learning to adapt the model trained on Dataset 1.

We conducted further training of theNMFMaskFPNmodel
through 8-fold cross-validation, using 86% of data from
Dataset 2 for training (28 of 32 (28/32) images for each
variety which is 130 tomato sepals per variety, or all varieties
merged together: 112/128 images which is 570 sepals), and
with the 7% data (2/23 images for each variety which is
16 tomato sepals or 8/112 images of all varieties which
is 41 tomato sepals) for each validation and testing set.
We follow the same training procedure conducted with
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FIGURE 5. Detected instances of tomato sepals by NMFMaskFPN model utilizing: a) PCA b) ICA c) PPCA d) NMF techniques for
spectral information encoding (the first row), and belonging binary masks (the second row).

FIGURE 6. Performance analysis of Mask R-CNN models through epochs with different backbones (FPN, DC5, and C4) evaluated on
encoded hyperspectral images from the validation set by the NMF technique.

Dataset 1, containing only one variety (Brioso), now for
four varieties individually from Dataset 2, and all four
varieties merged from Dataset 2. The performances of the
NMFMaskFPN model after additional training are shown in
Table 5.

TABLE 5. The mean and standard deviation of mAP for NMFMaskFPN
across 8-fold-cross validation.

The presented results demonstrated that the proposed
transfer learning approach achieves better performance and
shows robustness on the altered experimental design and var-
ied instances per image, showing the improved generalization
among different varieties (see Figure 7).
The proposed approach showed the best results on the test

dataset for the Provine variety. In contrast, the poorest results
were obtained for Sao Paolo, attributable to the very small
size of the fruit, tomato sepals, and lower resolution. Despite
lower precision in segmentation for some varieties the final
accuracy in detecting sepals is not affected. The model from
Table 5 demonstrated efficiency in the detecting of tomato

sepals within the second dataset for Brioso, Provine, and
Sao Paolo varieties, achieving 98.52% precision on the test
set. For Capricia, the model exhibited a single false-positive
detection on the test set.

TABLE 6. The mAP obtained through pre-initialization of ConvMaskFPN
using coefficients derived from the following techniques: XavierN,
KaimingN, Uniform, and normal.

We further explore the performance of the Mask R-CNN
model by adding a convolutional layer at the beginning
of the architecture (named ConvMaskFPN in further text)
for encoding spectral information of hyperspectral images.
We first, investigate various weight initializations of this
added layer using four initialization techniques: XavierNor-
mal (XavierN), KaimingNormal (KaimingN), Uniform, and
Normal [123]. The results (see Table 6) on a merged dataset
are obtained by fine-tuning the baseline model, Mask R-CNN
with FPN backbone, with an additional 5k epochs.We can see
that the performances of ConvMaskFPN are similar to those
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FIGURE 7. Results of tomato sepals detection on four cultivars from the dataset 2: a) Brioso b) Capricia c) Provine d) Sao Paolo with
NMFMaskFPN.

of XavierN and KaimingN and slightly better than those with
Uniform and Normal weight initialization.

TABLE 7. The mAP obtained with pre-initialization of ConvMaskFPN using
coefficients derived from used spectral information encoding techniques.

Moreover, we initialized weights of the added layer with
learned coefficients from the spectral information encoding
techniques. Further, we fine-tuned the entire ConvMaskFPN,
evaluated the performance on the validation and test datasets,
and compared it with the performance of the baseline
Mask R-CNN model, NMFMaskFPN. Our findings revealed
a slight improvement in overall precision, giving more
stable predictions. On the merged dataset comprising diverse
varieties, the addition of the extra layer led to a notable
1% enhancement in precision with NMF coefficients as
initialization (see Table 5 and Table 7). The final model
demonstrated a heightened ability to comprehend the NMF
representation of hyperspectral images, resulting in more
robust detections and enhanced precision. This observation
underscores the substantial potential of leveraging the Mask
R-CNN framework pre-initialization with NMF coefficients,
which contributes to improved performance in tomato sepal
detection.

IV. DISCUSSION
Within the framework of the presented study on the
segmentation of tomato sepal instances, the performance
of the Mask R-CNN model with different backbones (C4,
DC5, and FPN) and different spectral information encoding
techniques was compared. The Mask R-CNN model with
an FPN backbone and integrated with NMF as an adopted
spectral information encoding technique for hyperspectral

data transformation, named as NMFMaskFPN, achieved the
highest mAP and demonstrated superior stability, making it
a reliable choice for the instance segmentation of tomato
sepals.

Additionally, considering the variation in over- and under-
prediction of tomato sepals for different models and spectral
information encoding techniques suggests that both choices
can significantly impact the accuracy of results depending on
specific tomato structures. This highlights the importance of
adapting pre-trained models to new datasets, especially when
the conditions during image acquisition vary. Fine-tuning the
selected NMFMaskFPN model on the target dataset helped
to optimize its performance and improve its generalization,
demonstrating the robustness of the proposed approach across
different tomato varieties. Moreover, the incorporation of
an extra custom layer through the ConvMaskFPN model
and initializing it with NMF coefficients, yielded a modest
yet discernible enhancement in overall precision of 1%,
reaching the highest mAP of 87.4%, fostering more reliable
predictions.

The differences in simple morphometric characteristics
of sepals across tomato varieties (see Figure 3) expressed
through the number of pixels indicate the difficulty of
the precise sepal segmentation problem. The percentage of
border pixels within the tomato sepals directly influences
the mean and standard deviation of the hyperspectral
response per sepal, and incorrect segmentation of the border
pixels can drastically change this response and potentially
lead to the misclassification of infected sepals [32]. The
segmentation masks generated in this work are intended to
facilitate future investigations by ensuring that each pixel is
accurately segmented, thereby preserving critical structural
details of the sepals. This is particularly important for the
tips of the sepals, which are exceptionally thin and highly
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FIGURE 8. Normalized NMF and PPCA spectral encoded Dataset1 HSI of three principal components. A dominant peak in Component 3, obtained
by NMF, is observed at 1398.6 nm, overlapping with the 1390–1420 nm region (highlighted) previously reported by [32] as significant for
water-related differentiation.

susceptible to segmentation errors but retain the most critical
information [124]. Even minor inaccuracies in these regions
could lead to the loss of crucial morphological informa-
tion, potentially affecting the robustness of susceptibility
assessments. In this analysis, we evaluated and compared
the dominant wavelength contributions represented in the top
three principal components derived from NMF, which was
identified as the best-performing method in our previously
presented results table, followed by PPCA (see Table 3)
and Table 7). These components were extracted from the
raw hyperspectral data (Dataset1) to identify the most
significant spectral features and compare them with the
findings from [32].
The components were plotted across the full spectral

range of 900–1700 nm, with each curve normalized to
facilitate comparison (Figure 8). A clear peak was observed
in Component 3, obtained by NMF, around 1398.6 nm,
aligning well with the range identified by [32] as critical
for water content discrimination in tomato tissues. This
correspondence suggests that our data-driven NMF spectral
encoding reinforces findings from the previous study and
further validates the utility of this spectral window for
distinguishing between tomato sepals and tomato fruit.
Additionally, Component 1, by NMF, exhibited a prominent
peak near 1050 nm, commonly associated with the estimation

of chlorophyll content [125], [126] and indicative of sepal-
related spectral features, while Component 2 byNMF showed
a peak at 1592 nm, which is typically attributed to noise
or background signals. Conversely, the PPCA components
are slightly shifted compared to those derived from NMF.
Component 1 showed a peak at 1180 nm, suggesting
a broader spectral response of the sepal or overlapping
biochemical signals. Component 2 peaked at 1550 nm,
associated with water content and tissue scattering. Com-
ponent 3 exhibited a peak at 1350 nm, reflecting structural
differences between plant organs, such as tomato sepals and
tomato fruit surfaces. These shifts are expected due to the
probabilistic nature of PPCA, which blends signals across
adjacent spectral bands, resulting in more distributed peaks
than NMF. These findings, support the hypothesis that the
1398.6 nm region is particularly dominant in hyperspectral
segmentation tasks, especially for distinguishing moisture-
rich fruit from relatively drier sepals. The obtained results are
consistent with those reported in [32], which identified the
near-infrared (NIR) range between 1390–1420 nm as critical
for separating water-rich and dry tissue zones.

Moreover, to evaluate the precision of the segmentation
of the best-performing ConvMaskFPN model, initializing
it with NMF coefficients, we calculated the mean and
standard deviation for each wavelength (i.e., features) of
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FIGURE 9. Dominant wavelengths contributing to the PCA projection formed from datasets of features calculated using ground truth masks and
obtained from ConvMaskFPN model on the test sets on (a) Dataset 1 and (b) Dataset 2.

the original 196-dimensional hyperspectral response from
both datasets per sepal by selecting those pixels per sepal
denoted by the ground-truth mask and the estimated mask
obtained by the selected model on test data. The Pearson
correlation coefficients between vectorized values of features
inferred from the ground-truth masks and masks generated
by the ConvMaskFPN are: for Dataset 1 r = 0.8100, with
a p-value of p = 1.1940 × 10−9 and for Dataset 2 r =

0.7523, with a p-value of p = 6.2944× 10−9, which further
confirms the high overall accuracy and precision of tomato
sepal instance segmentation. Although we obtained quite a
high correlation, precise pixel-level segmentation remains a
challenge for this type of data, as each pixel carries a large
amount of information, particularly when it is located at a
key position, in this case, at the top of the tomato sepals.
To further investigate the precision of the obtained sepals
masks by ConvMaskFPN compared with the ground-truth
masks, we conduct PCA for these two created datasets of
features. Projecting the estimated feature vectors containing
the means and standard deviations of each wavelength
onto a two-dimensional subspace reveals, through the PCA
loadings, the contribution of each feature to the creation
of the PC component. In Figure 9, each arrow represents
the highest contribution of a feature to the both principal
components for both created datasets from the ground-
truth and estimated masks. The most contributing features
are similar. This region likely plays a significant role in
guiding the model’s decision-making process to predict the
susceptibility of freshly harvested tomatoes and sepals to
future fungal infections. Unveiling NMF components, along
with obtaining results with ConvMaskFPN, demonstrates
that this spectral region also provides valuable information
for the sepals’ segmentation task. In future work, we will
investigate more deeply the causes of uncertainty in the
detection of highly complex tomato sepal structures that
could lead to improvements in model training or data
preprocessing strategies. Although proposed spectral infor-
mation encoding techniques are computationally efficient
and easy to implement, [127] they have limitations. Further,

advanced unsupervised deep learning-based techniques, such
as autoencoders [128], [129] and variational autoencoders
(VAEs) [130], [131] can improve the spectral information
encoding step for hyperspectral images by learning data
representations that are not limited to linear combinations
of original features. This will enable the unveiling of more
complex, nonlinear relationships in the data within the spec-
tral dimension. Additionally, we intend to investigate self-
supervised segmentation approaches, which offer promising
potential in domains where generating high-quality labeled
data is challenging, such as in hyperspectral imaging with
domain-specific classes.

V. CONCLUSION
This research study demonstrates the effectiveness of tomato
sepal instance segmentation within hyperspectral images
by integrating well-established techniques PCA, PPCA,
ICA, and NMF for encoding spectral information, with
pre-trained deep learning models. Transfer learning proved
to be a valuable approach, as models pre-trained on the
COCO dataset and fine-tuned on the hyperspectral images
with encoded spectral information achieved outstanding
performances. Among the tested models, Mask R-CNN with
the FPN backbone and NMF technique for encoding spectral
information (NMFMaskFPN), showed the most stable and
reliable performance, providing accurate segmentations with
a low standard deviation of mAP. Additionally, initializing
the weights of the added layer with pre-trained coefficients,
obtained through spectral encoding with the NMF technique,
led to a slight improvement in overall precision. This marks
progress towards developing an end-to-end framework for
encoding spectral information within hyperspectral imagery
and further segmenting regions of interest within them.
The variation in over- and under-prediction of sepals across
different models and encoding techniques further emphasized
the need for careful selection and optimization of models
for specific tomato structures. The findings of this study
show the possibilities for advanced practical applications of
hyperspectral imaging in the fields of post-harvest supply
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chain management, including quality assessment, defect
detection, and monitoring of the consequences of storage
conditions on harvested tomatoes.

Further research could address in more detail the opti-
mization of parameters for transfer learning and explore
more advanced methods for spectral information encoding
tailored to the unique characteristics of hyperspectral data.
Moreover, such research might concentrate on refining and
customizing the proposed model for specific tomato varieties
or adapting it to address challenges posed by varying
environmental conditions. The presented interdisciplinary
research not only provides valuable insights into the current
state of hyperspectral imaging for tomato analysis but also
suggests future avenues of research and practical applications
within the agricultural domain.
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