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A B S T R A C T

Aerial technogenic pollution from the activity of ferrous and non-ferrous metallurgy resulting in degradation of 
vulnerable natural ecosystems is a principal environmental problem in Russian Arctic. The industrial barren in 
the vicinity of Monchegorsk (Kola Peninsula) has been forming since 1950-s in the impact zone of the copper- 
nickel smelter. Soil heterogeneity, complete or partial degradation of vegetation, and rugged terrain intensi
fied by soil erosion result in complex lateral spatial redistribution patterns of aerial depositions of Cu and Ni 
emitted by the smelter. In this research, we applied cascade machine learning (gradient boosting machines) to 
quantitatively describe these patterns. An extensive soil sampling campaign (n=506) across an area of 343 ha has 
revealed an extremely high levels of contamination (max bulk concentrations of Cu and Ni - 29.87 and 30.12 g/ 
kg). We showed that soil types and the content of macro-elements (Ca and Fe) mapped based on the conventional 
set of predictors (topography, hydrology, landscape’ spectral properties) explained spatial variability and 
especially hotspots of Cu and Ni contents with a higher accuracy compared to the models where interactions 
between macro-elements and heavy metals are not considered. This approach is a promising tool for mapping 
heavy metals’ distribution in eroded, degraded, and highly polluted areas, which can be very useful to support 
land reclamation plans and allocate bioremediation measures.

1. Introduction

Aerial technogenic pollution and degradation of ecosystems (espe
cially vulnerable Arctic and Subarctic environments) resulted from the 
activity of ferrous and non-ferrous metallurgy are an important 
ecological problems. According to Arctic Monitoring and Assessment 
Programme (AMAP) 2002 report, aerial emissions of heavy metals (HM) 
from the industry in Kola Peninsula largely contribute to overall HM 
pollution in the Arctic (AMAP, 2005). Copper-nickel (Cu-Ni) smelter in 
the vicinity of Monchegorsk town belonging to Kola mining and 

metallurgical company (MMC) (formerly «Severonikel») is among the 
leading global producers of nickel, copper, and cobalt and, therefore, 
one of the most significant sources of HM emissions in Northern Europe 
(Kashulina et al., 2014). The industrial barren (IB) around the Kola MMC 
today is considered one of the largest in the World (Kozlov and Zvereva, 
2007). The influence of the smelter emissions on vegetation and soils of 
the IB as well as the effects of reclamation and remediation measures 
have been thoroughly investigated by several monitoring studies, survey 
campaigns, national and international projects summarized on the 
scheme (Fig A.1 in the Supplement).
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It is likely that IB has been growing since 1950 because the pro
duction before this year was quite low, and later has increased twofold 
(Pozniakov, 1993), and IB patches could be visible over an area 2–3 km 
from the pollution source (to the North and South) according to pre
vailing meridional winds (Barcan and Kovnatsky, 1998). However, the 
extension of the impact area is uneven and is related to local topographic 
and landscape factors (Rees and Kapitsa, 1994). Nowadays, the 
impacted area continues to expand towards background landscape 
despite the decline of aerial emissions (Lyanguzova et al., 2016). This is 
associated with the low leaching rate of HM (100–200 years for Cu and 
160–270 years Ni) from native soils (Barcan, 2002). The exact area of IB 
is debatable, but its patches can be traced up to 6–10 km from the 
pollution source (Kryuchkov, 1993).

For the first time, research on the direct impact of aerial pollution on 
soils and vegetation has begun after the establishment of a joint Russian- 
Norwegian pollution commission in 1988 (Norseth, 1994). Later, 
extremely high concentrations of Cu and Ni in soils of IB have been 
confirmed and various effects of aerial pollution were published 
(Evdokimova, 1995; Kozlov et al., 1993). Several attempts have already 
been made to investigate the spatial distribution and temporal dynamics 
of PTE (potentially toxic elements) in soils of the IB at sites located up to 
75 km away from the smelter (Kashulina, 2018, 2017; Lyanguzova et al., 
2016), and an exponential decrease in the contaminants’ content with 
the distance from the pollution source was reported (Lyanguzova et al., 
2016). Although the general patterns in spatial-temporal variability of 
soil pollution within IB were described, there are still gaps in quantita
tive assessments of local variations related to topography, soil types and 
properties. A detailed map based on proximal sensing and regression 
kriging was developed in 2020 (Dvornikov et al., 2022) for a pilot plot - 
two ha within the IB. Soil type and topographic wetness index (TWI) 
were the most important predictors of HM at 1.5 m resolution. This 
research aims to expand our 2020 attempts to a larger area of IB (~343 
ha) by using the cascade machine learning approach. Machine learning 
(ML) methods for mapping HM and generally PTE in soils is largely 
applied in digital soil mapping (DSM) (Wadoux et al., 2020) since many 
processes in soils including HM accumulation and redistribution hold a 
certain non-linear character. Given the well-established guidelines for 
estimating the uncertainties of these methods, they appear to be 
promising if applied even to the relatively large areas. In highly polluted 
areas such as IB where the buffer capacity of soils is exceeded, the choice 
of optimal covariates for predicting the spatial distribution of HM in 
accordance with the traditional scopran principle (McBratney et al., 
2003) is challenging (Yang et al., 2021). The spatial distribution of 
target variables is firstly influenced by the anthropogenic factors and 
can secondly be controlled by geomorphological processes: erosion, 
accumulation, and within-soil-processes. In these cases, a clear hy
pothesis on potential HM environmental drivers must be defined 
(Wadoux and McBratney, 2021) for avoiding the use of this method as a 
black box.

In this research, we attempted to predict two main contaminants in 
IB topsoil – bulk concentrations of Cu and Ni by applying ML with many 
predictors explaining the spatial variability of main landscape parame
ters (topography, vegetation, geology, geomorphology, and soil type/ 
chemistry) at high (2 m) spatial resolution. We’ve applied a cascade ML, 
where content of macro-elements (Ca and Fe) in soils better predicted by 
conventional environmental drivers are further transferred to the set of 
predictors for explaining topsoil HM spatial variability that is less 
related to initial set of covariates. Our initial research hypotheses were 
as follows: 1) distance from the pollution source (anthropogenic factor) 
is not the leading factor controlling the spatial variability of HM in the 
topsoil; 2) soil pollution largely depends on soil type (organic matter 
content) and TWI (geomorphology) as shown in a previous study 
(Dvornikov et al., 2022); 3) HM concentration doesn’t dependent on the 
geology and outcrops; 4) cascade ML with prediction of other elements 
(connectors) in soils (Ca and Fe) may provide a better accuracy of the 
final HM distribution maps if used as predictors.

2. Materials and methods

2.1. Study site description

The research area is located on the Kola Peninsula over the Polar 
Circle. The regional subarctic climate is considered cold with no dry 
season and cold summers - Dfc according to updated Köppen-Geiger 
classification (Beck et al., 2018). The native vegetation of the area 
around Kola MMC before the smelter establishment was dominated by 
northern taiga species: Picea abies and Pinus sylvestris (Manninen et al., 
2015).

The study site (67.95 N, 32.82 E) is in the vicinity of Monchegorsk 
situated at 3.5 km to the west from the city and minimum at 967 m from 
the nearest pollution source within the impact zone of the smelter, max 
~3.5 km (Fig. 1). The sampling area covers ~343 ha including both the 
smelter impact zone and area with partially preserved natural vegeta
tion on the slopes of Travyanaya Varaka (hill); mapping area excluding 
lakes and anthropogenic objects is 329.5 ha. The studied industrial area 
is sparsely vegetated with the domination of Salix L. sp. and Betula 
pubescens Ehrh. trees (Koptsik et al., 2016). The site has a diverse 
meso-topography, including the top of the hill, hill slopes with rock 
outcrops, a few local depressions and surrounding moraine terrain - 
alternating hummocks, crests and hollows. The prevailing soil types are 
Skeletic Leptic Entic Podzol (Arenic, Toxic) (hilltop and slopes) (further 
– Podzol) and Dystric Rheic Hemic Histosol (Toxic) (local depressions) 
(further - Histosol), according to IUSS World Reference Base (IUSS 
Working Group WRB, 2015). Semi-natural soils of remediation sites are 
here identified as Skeletic Leptic Entic Podzol (Arenic, Organo
transportic, Toxic) (further here – Histosol/Podzol). Some patches of 
artificially deposited sands and gravel are distributed along anthropo
genic objects. The previous research showed that the identified soil 
types differ in the capacity to accumulate the HM, and in the ratio of 
soluble and non-soluble forms of metals. In Podzol, Ni was mainly 
accumulated in non-soluble forms with the bioavailability of 1.5 %, 
while Cu was predominantly (60 %) available for plants (Slukovskaya 
et al., 2019). Metal bioavailability in Histosols was 19 % for Ni and 57 % 
for Cu (Slukovskaya et al., 2021).

2.2. Sampling design

Prior to the field work, we have defined a geospatial coordinates of 
sampling units (Fig. 1). Here, we define sampling unit as point in space 
within the study area where topsoil material was further collected, ac
cording to (de Gruijter et al., 2007). Two different strategies were 
selected for this experiment: 1) conditioned Latin Hypercube Sampling 
(cLHS) (Minasny and McBratney, 2006) to distribute sampling units in 
space for the model training (n=400); 2) spatially stratified random 
sampling (SSRS) to distribute the independent set of sampling units for 
the validation of final maps (map accuracy) (n=82). At each sampling 
unit, we have collected a composite of topsoil material in June 23–29, 
2022. Each composite consisted of five aliquots bulked together (de 
Gruijter et al., 2007). Each aliquot represents a 100 cm3 of soil material 
collected from the upper 5 cm of the soil profile by soil drill AM-7. A 
significant decline of HM concentrations below upper 5 cm of soil has 
been reported (Kashulina, 2017). We used a ~2×2 m envelope strategy 
to define the positions for collecting aliquots, where the geospatial co
ordinates of the sampling unit correspond to centre of the envelope. 
Since the planned mapping resolution was chosen to be 2 m (aligned to 
ArcticDEM resolution), samples were collected over the area corre
sponding to one pixel. The rationale of chosen sampling design is further 
discussed in Section A.1 in the Supplement.

During the fieldwork, location of 20 training sampling units has been 
shifted due to the hampered access to them: mean shift distance was 8.1 
m, maximal - 22 m. Three training sampling units could not practically 
be accessed due to high water level in the vicinity of water bodies and 
were therefore excluded. In addition, we have randomly chosen 27 
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sampling units for assessing short-distance variability of HM concen
trations. These units were sampled twice (1–2 m away from the original 
sampling pixel location) by applying the same sampling strategy. In 
total, 506 samples were collected: 397 for model training, 82 for vali
dation, and 27 for the assessment of short-distance variability.

2.2.1. Conditioned Latin Hypercube Sampling (cLHS)
We have used eleven raster ancillary data for cLHS: elevation, slopes, 

aspect, upslope contributing area (flow accumulation), flow direction, 
total curvature, TWI (Beven and Kirkby, 1979), topographic position 
index (TPI) and TPI-based landform classification (Weiss, 2001), 
geological formations, Euclidian distance from pollution sources, and 
land cover raster (Table A.1 in the Supplement). All topographic vari
ables were derived from ArcticDEM at 2 m spatial resolution (Porter 
et al., 2018). Geological formations (intrusive, effusive) were manually 
digitized from 1:50,000 geological map of this region prepared in 1971, 
resulted from geological survey in this area undertaken in 1969–1972 
(Zaytsevskiy, 1971). Distances from the pollution sources were calcu
lated as raster data using distanceFromPoints function of the package 
raster in R environment (R Core Team, 2021). Land cover map was ob
tained by classifying ESA Copernicus Sentinel-2 composite image. Land 
cover map has also been used for masking anthropogenic objects and 
define areas with different prevailing soil types having the great impact 
of spatial HM variation (Dvornikov et al., 2022) (Table A.1). Vector data 
were rasterized and resampled to ArcticDEM resolution. We performed 
cLHS using clhs package (Roudier et al., 2012) available in R environ
ment (R Core Team, 2021).

2.2.2. Spatially stratified random sampling (SSRS)
For sampling units assigned for the validation of the final map (test 

set), we have divided the entire study area into 41 hexagonal grid cells 
according to Uber H3 Grid using package h3jsr available in R environ
ment. Within each hexagon (level=9), we have randomly selected two 
points (sampling units).

2.2.3. Laboratory analytics
All samples were delivered to certified Soil Ecological Laboratory of 

RUDN University (SEL RUDN, https://selab.rudn.ru/) where they were 
1) dried at a room temperature, 2) partially grinded (peat samples), 3) 
sieved through 1 mm, 4) cleaned from plant remnants. All prepared 
samples were further filled and compacted into ~10 cm3 plastic cuvettes 
and measured using Olympus© Vanta C portable X-ray fluorescence 
analyzer (pXRF) – a method that was tested for IB samples giving 
comparable results with ICP-MS measurements (Paltseva et al., 2022). 
All samples were measured three to four times (three measurements 
with ~1.5 min exposure, nine-twelve measurements per sample) with 
different placements of pXRF analyzer.

In addition, a set of samples (n=56) was measured again by pXRF to 
estimate an analytical error (Table A.2 in the Supplement). These sam
ples were randomly chosen both from Histosol set (high organic matter 
concentrations) and Podzol set (wide range of concentrations). From the 
initial list of pXRF estimated elements, we have selected concentrations 
of Cu and Ni (main target variables) as well as Ca and Fe (auxiliary 
variables).

2.2.4. Pre-processing of measured concentrations
Pre-processing of laboratory analytics included subtraction of blank 

cuvette concentrations, estimations of internal pXRF error, variability of 
HM concentrations between measurements, variability between unit 
sub-samplings, and variability between sub-measurements (n=56) 
(analytical error) (Table A.2). We have re-measured one sample with 
standard deviation significantly exceeding 30 % of the mean value 
across three measurements and excluded the outlier. According to in
ternal pXRF assessments, mean measurement error across all samples 
didn’t exceed 1 %, maximal didn’t exceed 6 %, 5 %, 2 %, and 1 % for Cu, 
Ni, Ca, and Fe respectively (Table A.2).

Mean analytical error was found to be 18.7, 14.8, 7.8, and 7.4 % for 
Cu, Ni, Ca, and Fe respectively (percentage of root-squared differences 
between two sets from the mean set’s values) (n=56). It should be noted 
that highest differences (percentages) (>30 %) correspond to relatively 

Fig. 1. Location of sampling points over the study area (red outlined): sampling units for model training were defined by cLHS, for validation – by SCSS (a), view on a 
Travyanaya Varaka Hill with patches of artificially planted vegetation (b); sampling unit scheme connected to ArcticDEM reference pixel (2 × 2 m): red dots indicate 
collected aliquots (c). (For interpretation of the references to colour in this figure legend, the reader is referred to the Web version of this article.)
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low concentrations (<1 g/kg for Cu and Ni). High concentrations are less 
sensitive in this case (Table A.2).

Measured concentrations were characterized by a high short- 
distance variability: up to 90 % for four elements (max – for Cu) 
(n=27). Mean root-squared difference from the mean of two values was 
found to be 29.6, 29.8, 11.1, 11.9 % for Cu, Ni, Ca, and Fe respectively 
(Table A.2).

We have also applied a correction coefficients to pXRF concentra
tions which is an accepted technique for obtaining accurate results 
(Peralta et al., 2020). A methodological work has recently been done for 
Olympus Vanta C analyser using the artificially polluted substrates with 
various concentrations of HM and organic matter (Romzaykina et al., 
2024). Final concentrations of Cu, Ni, Ca, and Fe have been corrected by 
multiplying values with coefficients from these findings: 0.83, 0.88, 
0.89, and 0.69.

2.2.5. Covariates
For model training, we added 23 more covariates based on ESA 

Copernicus Sentinel-2 satellite data. These variables included surface 
reflectance values in ten spectral bands (VIS-NIR-SWIR ranges) at native 
resolution of 10–20 m, Tasseled Cap Transformation (TCT) bands 
namely brightness, greenness, wetness, and ten spectral indices: widely 
used vegetation indices NDVI, SAVI, and EVI, modified normalized 
difference water index - MNDWI (Xu, 2006), bare soil index (BSI) (Diek 
et al., 2017), normalized burn ratio (NBR) (Key and Benson, 1999) since 
IB area is vulnerable to fires (Kozlov and Zvereva, 2007), clay-mineral 
ratio (CMR) (Alasta, 2011), plant senescence reflectance index (PSRI) 
(Merzlyak et al., 1999), red-edge chlorophyll index (CIred-edge) (Gitelson 
et al., 2003), heavy metal stress sensitive index (HMSSI) (Zhang et al., 
2018). TCT coefficients were derived from (Nedkov, 2017) and applied 
to Level-1C data (TOA). Other bands were calculated based on Level-2A 
(SR) data. All covariates were derived from the median July–August 
composites across 2021–2023 (six acquisitions in total – two per summer 
season of 2021, 2022, and 2023.

From the initial set of layers used in cLHS (n=11) we have excluded 
total curvature as having relatively stable values across study area and 
land cover map which was replaced by digital soil map prepared using 
our field survey descriptions and very-high resolution satellite mosaics. 
Flow accumulation raster was log-transformed. Additionally, we’ve 
added raster layer of geomorphons (Jasiewicz and Stepinski, 2013), 
Landsat-8/9 derived land surface temperature (LST) for late June 2023 
as in (Ermida et al., 2020), snow depth estimation (similarly to (Meyer 
et al., 2022)), proxy of pollution distribution according to prevailing 
wind directions and exponential decrease of concentrations with dis
tance from pollution source (Lyanguzova et al., 2016), and canopy 
height (Tolan et al., 2024). Thus, we have prepared 38 covariates 
compiled as a single multi-band raster file with spatial resolution of 2 m 
corresponding to ArcticDEM resolution. These covariates quantitatively 
describe the geology, geomorphology, soils, vegetation, hydrology, and 
anthropogenic factors potentially influencing the spatial HM distri in 
soils. For all predictors, equality of distributions between sampling 
points and the entire statistical population (SP) (raster values of the 
study area considered) was checked by T-test for numeric variables and 
Chi-Squared test for categorial variables.

2.2.6. Model tuning
Gradient boosting machines (GBM) is a widely applied ensemble 

algorithm based on decision tree but builds a numerous decision trees 
consecutively learning from the previous (Friedman, 2001). The algo
rithm doesn’t require data normalization and performs well both with 
numerical and categorial variables. GBM requires several hyper
parameters to be tuned: i) number of trees, ii) tree/interaction depth 
(number of nodes in each tree), iii) learning rate/shrinkage, iv) mini
mum observation in a node. We have tested a set of hyperparameters to 
reveal the best performing. To avoid overfitting, we used repeated (n=5) 
10-fold cross-validation. We looped through interaction depths [3, 5, 10, 

15], number of trees [500, 1000, 3000], learning rate [0.001, 0.01] and 
minimum observations in nodes [5, 10, 15]. Separate models were ob
tained for Ca, Fe, Cu, and for Ni with 38 predictors and 397 observa
tions. Predicted values (Kempen et al., 2010) of Ca were used for Cu 
modelling, predicted values of Ca, Fe were used for Ni modelling 
(cascade ML). The selection of these macro-elements (Ca and Fe) relies 
on 1) their high concentrations in both dominating soil types (Ca in 
Podzols, and Fe in Histosols), and 2) their presence in aerial technogenic 
dusts and particles (Evdokimova, 1995; Slukovskii et al., 2020). Further, 
the high Ca content in Podzols over the study area may strongly 
differentiate these soils from Histosols with the highest organic matter 
content. In its turn, soil organic matter acts as an important agent in the 
processes of Cu accumulation due to the formation of stable complexes 
with humic substances (Zamulina et al., 2022). Therefore, we expect to 
capture this negative dependence between Ca and Cu. In contrast, Fe 
must have a connection with Ni as it acts as a siderophile (Vodyanitsky, 
2008) on one hand, and might deposit from the technogenic iron sul
phide particles (Slukovskii et al., 2020) on the other.

Model tuning, building, retrieval of relative influence have been 
performed using caret package (Kuhn, 2008) in R environment (R Core 
Team, 2021). We have assessed the uncertainty of all models by 
cross-validation RMSE (RMSEcv). Both dependent variables (concen
trations) and independent ones (predictors) didn’t undergo any trans
formations prior to modelling. Workflow diagram of sampling, 
modelling, and validation is shown on Fig. A.2 (Supplement).

2.2.7. Mapping
Accuracy of maps has been evaluated through comparing predicted 

values and measured Ca, Fe, Cu and Ni bulk concentrations of a test set 
(n=82) using the widely used metrics (R2

test, RMSEtest, and MAEtest) 
calculated using MLmetrics package in R environment. RMSEcv values 
obtained at the previous stage were considered for all predicted pixels as 
a metric of the uncertainty (Fig. A.2).

3. Results

3.1. Concentrations of Cu, Ni, Ca, and Fe

Bulk concentrations of Cu and Ni in a training set (n=397) were 
positively linearly correlated excluding high values (R=0.72) reaching 
max values of 29.87 and 30.12 g/kg (Fig. A.3 in the Supplement), their 
mean concentrations were 2.29 and 3.61 g/kg respectively while me
dians were 0.87 and 1.56 g/kg. Distributions are shown on Fig. A.4a in 
the Supplement. Concentration of Ca and Fe were less related to other 
elements with a more uniform distribution (Fig. A.4b in the Supple
ment). Their mean concentrations were 18.72 and 33.92 g/kg. We have 
observed a moderate inverse correlation between Ca and Cu (R=-0.35) 
and between Ca and Ni (R=-0.29), and a higher dependence between Fe 
and Ni (R=0.53) among the training set.

3.2. Distribution of predictor’s values

Distributions of 36 predictors among 38 at sampling locations of 
training and training+test sets were statistically equal to the distribution 
of the SP (p-value varied from 0.059 to 0.983 for the test set only and 
from 0.117 to 1 for the training+test). For the training set, aspect and 
flowdir distributions differed from SP (p-value = 0.034–0.037, t-test). For 
the entire set of sampling points, aspect distribution differed from SP (p- 
value = 0.04, t-test).

3.3. Model outputs

GBM model for Ca was the most robust among the four target vari
ables: Ca spatial distribution was in a strong relation with topographic, 
soil, and spectral properties of landscapes (surface reflectance in visible 
– near infrared – short-wave infrared ranges). With the best tuning 
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parameters [3, 5, 1000, 0.01] for the interaction depth, min observa
tions in a node, number of trees, and shrinkage, the model has shown 
robust results at a cross-validation (RMSEcv = 4.85 g/kg) and validation 
with independent test set (RMSEtest = 3.9 g/kg) (Table A.3 in the Sup
plement). The inclusion of a test set into training could further improve 
the model performance (RMSEcv = 4.63 g/kg), but not significantly.

The considered predictors (n=38) could explain spatial distribution 
of Fe but have shown the weakest relation to this target variable 
(Table A.3) among all four elements. The model tended to regress to the 
mean value underestimating highest values (Fe > 40 g/kg) and over
estimating lowest values (Fe < 20 g/kg) due to (1) low spatial variability 
of Fe in the study area, and (2) inability of predictors considered to 
explain this spatial variability. However, the cross-validation metrics 
(RMSEcv = 11.27 g/kg) were close to metrics obtained by comparing 
with the independent test set (RMSEtest = 8.52 g/kg) (Table A.3). The 
inclusion of a test set into training couldn’t help to improve the model 
performance (RMSEcv = 10.69 g/kg) but slightly reduced the angle be
tween the regression and 1:1 lines. Compared to Ca, the model for Fe 
needed a smaller learning rate (0.001) with a higher number of trees 
(3000) to reduce the total RMSE, but at the same time the larger number 
of observations in a node (n=15) (Table A.3) due to lower spatial 
variability.

Predicted Ca concentrations were included as an independent pre
dictor to train the GBM model for Cu – one of two important target 
variables. More complex nature of relationships between Cu concen
tration in the topsoil and the environmental drivers has resulted in a 
high RMSEcv (2.34 g/kg) and RMSEtest (2.37 g/kg) values (Table A.3) 
close to the mean value due to inability to reproduce mean concentra
tions of SP (highest uncertainty).

Although Ni had an even more complex spatial distribution 
compared to Cu as revealed for the initial model with predictors (data 
not shown), a stronger GBM model was obtained for Ni due to the in
clusion of previously predicted values of Ca and Fe into the training. The 
inclusion of Cu into prediction (data not shown) has helped to gain 
higher quality metrics of the model (RMSEcv = 2.67 g/kg) but has 
resulted in weaker metrics on the test dataset (RMSEtest = 4.0 g/kg). We 
have therefore decided to keep predicted Ca and Fe in the model for Ni 
(RMSEcv = 3.34 g/kg) characterized by not significant differences be
tween cross-validation and test metrics. The highest model uncertainty 
can be observed for most observations (close to mean) whereas lowest 
and highest values are predicted relatively accurately.

3.4. Environmental drivers of topsoil macro-elements, Cu and Ni bulk 
concentrations

The influence of environmental drivers was considered for models 
created using the entire sample set (n=479). In general, fitted Ca, Fe, Cu 
and Ni concentrations were in a good agreement with observed con
centrations: 80 %, 44 %, 83 % and 85 % of variance was explained 
(Table A.3). All models were characterised by a predominance of one 
predictor (see Table A.4 in the Supplement for details).

The distribution of Ca was mainly driven by soil type (belonging to 
Histosol units) (18.4 %) – lower concentrations, compared to other soil 
types. The increase in Ca concentrations coincided with the increase in 
the surface reflectance in green range (560 nm) between 5 % and 10 % 
(relative influence 4.9 %) and with the increase in the surface reflec
tance in near-infrared range (705 nm) but in a more complex way with 
peaks at 14 % and >32 % surface reflectance (relative influence 4.6 %) – 
impact of vegetation patches. Inverse relationship was observed with 
elevation – the highest concentrations at low levels (<170 m) (relative 
influence 5.6 %) and a complex relationship with TCT wetness (relative 
influence 5.0 %). It can therefore be concluded that Ca distribution was 
rather driven by natural factors (soil, vegetation, topography, and hu
midification regime).

Overall decrease in Fe bulk concentration in the topsoil coincided 
with the distance from the pollution source (from 1000 to 3500 m) 

(relative influence 13.8 %), with the increase in LST from 24 to 35 ◦C 
(relative influence 7 %), and increase of wind factor (>0.7) (relative 
influence 8.4 %). Similarly to Ca, surface reflectance in near infrared 
range impacted distribution of Fe (relative influence 11.5 %) – higher 
concentrations in wet vegetated patches. Inverse relationship was also 
observed for elevation (relative influence 4.5 %): higher concentrations 
at a lowest geomorphic position. It can be concluded that the Fe in 
topsoil was driven rather by non-natural factor (proximity and position 
relative to source of emissions). Relative influence of natural drivers – 
vegetation and landscape properties of Podzol-dominated areas 
(captured by LST), and topography (higher concentrations for lower 
geomorphic position of Histosol-dominated areas) has also been found.

Concentration of Cu was remarkably higher in Histosols (15.6 %). 
Inverse non-linear relationship between Cu and Ca concentrations was 
also captured by the model: a gradual Cu concentration decrease from 5 
to 2 g/kg was observed at Ca concentration range from 10 to 24.5 g/kg 
(relative influence 9.3 %) – these concentrations are characteristic of 
eroded, sparsely vegetated Podzols (most of the study area). Other 
important predictors were from topography group: flow accumulation 
(log-transformed) and elevation (8.1 % and 6.9 %, respectively): these 
explained the spatial variability of Cu within Histosol-dominated areas 
(zones of accumulation). Surface reflectance in NIR2 (865 nm) range 
>28 % associated with vegetation patches (wet conditions) have shown 
a higher Cu concentrations compared to other Podzol-dominated 
patches (relative influence: 5.8 %). Further, an inverse relationship 
was observed with the distance from the pollution source (at values 
ranging from 1100 to 2200 m) (relative influence 5.4 %). At longer 
distances, no effect of this predictor could be seen. The Cu concentration 
was obviously driven by the organic matter content: all environmental 
drivers implicitly indicate this. Within eroded Podzols with degraded 
and eroded organic layer, macro-element Ca explain the spatial vari
ability through the proportion of mineral component. Within Histosol- 
dominated areas, topographic patterns (accumulations) are also 
important for re-distribution of Cu in the topsoil.

Predicted Fe concentration has significantly helped to explain the 
variability of Ni concentration with a relative influence of 22.4 %: an 
almost linear gradual increase in Ni concentrations from 3 to 14 g/kg 
coincided with the increase of Fe bulk concentration from 30 to 55 g/kg. 
It was followed by soil type (Histosols – higher Ni concentrations 
compared to other soil types) – 14.3 %, and further by TWI – higher 
concentrations at non-slopes, Ca concentration - similar patterns to Cu, 
and elevation - also similar patterns to Cu – spatial distribution within 
Histosol-dominated areas) (4.8, 4.3, and 4.2 % respectively).

3.5. Final maps of Cu and Ni distribution and uncertainty

Map for Ca has demonstrated a uniform spatial distribution for the 
study area revealed by the model (Fig. 2a). Histosol-dominated land
scapes and gully-bottoms on the Eastern slopes of Travyanaya Varaka 
Hill were characterized by lower concentrations. Vegetated stream 
valley patches at footslopes were characterized by concentrations above 
average (>30 g/kg). Average concentrations characterized most of the 
area covered by Podzols. Within Podzol patches the variation was driven 
by the vegetation, wetness regime and topographic patterns. Uncer
tainty was assessed by RMSEcv (4.63 g/kg) being robust at all concen
tration levels.

Patterns of high Fe concentration (>45 g/kg) are associated with 
peat distribution (predominantly Histosols) in the flat wet area in the 
South-East which is quantitatively described by LST (<27 ◦C) (Figs. 2b 
and 3). At the same time, the distance from the pollution source 
explained lower concentrations of similar patches in the North of the 
study area. Average Fe concentrations (~40 g/kg) were associated with 
small dense vegetation patterns. Uncertainty was assessed by RMSEcv 
(10.69 g/kg), but mostly this metric describes the uncertainty of lowest 
and highest values.

The highest Cu and Ni contents (Fig. 2c and d) were associated with 
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Histosols. Outside of these patches, the distribution of Cu was associated 
with Ca, while Ni – with Fe (Fig. 3). Models were unable to reproduce 
the highest concentrations of Cu and Ni, observed in the laboratory. The 
highest uncertainties are fair for the lowest concentrations, and it was 
estimated by RMSEcv for both elements (Table A.3).

4. Discussion

4.1. Soil contamination and environmental drivers of macro-elements, Cu 
and Ni concentrations in the topsoil of IB

4.1.1. Anthropogenic emissions and impact
Concentrations of Cu, Ni, and Fe in aerosols can reach 3.48, 33.1, and 

52 g/kg (Opekunova et al., 2021) (Table A.5 in the Supplement). 
Although it is obvious, that the main source of elevated concentrations 
of these elements in soils is the deposition from the atmosphere, the 
relation of the topsoil concentrations with e.g. amount of precipitations 
has a more complex nature. Temporal monitoring of HM in the topsoil 
has shown a negative correlation between concentrations and 

precipitation amount of the year before sampling (Kashulina, 2018). 
Hyperbolic or exponential decline of HM concentrations in soils at a 
regional scale has been mentioned in many previous studies (Barcan and 
Kovnatsky, 1998; Evdokimova et al., 2011; Lyanguzova et al., 2016). If 
the local impact area of IB is considered, this effect of the distance from 
the pollution source seems to be more complex: many other factors like 
soil type and chemistry as well as vegetation and geomorphology do 
prevail in this case, as it was also suggested in (Kashulina, 2018).

We have found that only Fe has a distinctive relationship with non- 
natural re-distribution factors: distance and direction to pollution 
source, at least in the Northern direction. Native Al-Fe-humus Podzols 
are rich in Fe, but the situation is also hampered by the additional aerial 
technogenic deposition of Fe from the smelter in forms of pentlandite 
(Ni,Fe)9S8, pyrrotite Fe7S8(Nix), chalcopyrite CuFeS2 along with 
chalcosite Cu2S, covellite CuS, cuprite Cu2O, tenorite CuO, and metals 
Cu and Ni (Barcan, 2002). To a lower extent, the Fe concentrations are 
controlled by a natural factor (tree vegetation).

Fig. 2. Maps of target variables based on GBM models with a sample set (n=479): bulk concentrations of Ca (a), Fe (b), Cu (c), and Ni (d) given in g/kg. As solid 
shown is the profile line – from NW to SE (Fig. 3).

Y. Dvornikov et al.                                                                                                                                                                                                                             Environmental Pollution 377 (2025) 126457 

6 



4.1.2. Natural factors and re-distribution patterns
Maximal concentrations of Cu and Ni in the topsoil found in this 

research are comparable with those in Noril’sk ore (Boyd et al., 2009) 
and generally coincide with maximal concentrations found in other 
studies through ~40 years (Table A.5 in the Supplement). In general, 
bulk concentrations of Ni exceed concentrations of Cu both in Podzols 
and Histosols which seems to be the same even outside the impact area 
of the smelter (up to 47 km) (Lyanguzova and Barcan, 2019).

Bulk concentrations of Cu and Ni in the topsoil within IB are not 
associated with intrusive geological formations (Zaytsevskiy, 1971): the 
modelling results have therefore supported (median Cu and Ni sampled 
close to outcrops are 0.41 and 1.47 g/kg, respectively) our initial hy
pothesis stated in the beginning of this study. This was also partially 
confirmed in (Barcan, 2002).

In earlier publications devoted to soil pollution in the impact area it 
was argued that maximal proportion of pollutants belong to illuvial 
horizons of native soils (including the upper part of the subsoil) – 85–95 
% (Barcan and Kovnatsky, 1998) and later - in the topsoil – organic 
horizon O or eroded illuvial horizon BFer (>80 % of acid-extractable 
forms of HM) (Elsukova et al., 2019; Kashulina, 2017; Lyanguzova 

et al., 2015). This is especially true for Cu content in organic-rich 
non-eroded Histosols since Cu is a stronger complexing agent and can 
be leached less effectively (Evdokimova et al., 2011). This pattern has 
been clearly captured by our GBM model for Cu. However, the reduction 
of organic matter content in the topsoil of Histosols may trigger the 
migration of a large portion of HM down the soil profile (Kashulina, 
2017). In this study, we’ve found an inverse relation of Cu with Ca 
whose concentrations are considerably lower in Histosols, because 1) 
Histosol has a lower mineral proportion, and 2) Ca served as an alkaline 
geochemical barrier for metals deposited from atmospheric emissions 
(Slukovskaya et al., 2021). Within Histosol units, Cu and Ni are further 
re-distributed by topographic factors (flow accumulation and TWI) – 
concentrations of these elements are lower on slopes, as it was also 
shown in our pilot study (Dvornikov et al., 2022). Within 
Podzol-dominated landscapes Cu is strongly controlled by Ca which has 
a clear natural spatial variability. Forested areas on the western slope of 
Travyanaya Varaka Hill are characterized by lower Ca concentration 
compared to impacted eroded vegetation-free Podzol-dominated areas 
(Fig. 3) being absorbed by plant roots. Within them, no relations be
tween Ca and Cu could be observed. At the same time, young vegetated 

Fig. 3. Concentrations of pollutants with relation to other important environmental drivers along a representative two km profile within the impact zone of the 
smelter. Codes for soil types: H – Histosols, P – Podzols, HP – Histosol/Podzol, S – technogenic sand. Black crosses – parent rock outcrops. Profile line is shown on 
maps (Fig. 2).

Y. Dvornikov et al.                                                                                                                                                                                                                             Environmental Pollution 377 (2025) 126457 

7 



patches, often in a wet condition, previously described as «birch tran
sitional community» or «birch woodlands» (Kozlov, 2001), are charac
terized by highest Ca concentration (>30 g/kg). These patches could 
confidently be captured by near-infrared band (>32 % surface reflec
tance) of Sentinel-2 composite. Here, the Ca distribution impact on Cu is 
high and was clearly captured by a GBM model. High topsoil concen
trations of Cu within all vegetated patches can be related to developed 
A0 organic horizon of Podzols serving as a biogeochemical barrier 
(fixation) for migration of pollutants down the soil profile (Lyanguzova 
et al., 2015). Another (or additional) explanation of higher HM con
centrations within those patches can be their higher load in spring due to 
thicker snow trapped by vegetation patches. The concentrations of 
Cu/Ni were in a good agreement with winter deposition amount of these 
elements (Kashulina, 2017) and the concentration of HM in the snow 
cover (Kashulina, 2018). However, we haven’t found any relationships 
between estimated snow thickness and concentrations of Cu and Ni in 
our study area. In a vegetation-free Podzol-dominated landscapes, Cu 
and Ni might undergo further migration down the soil profile.

Spatial distribution of Ni (Fig. 2d) within IB has more complex pat
terns, than for Cu. Geochemically, Ni element is a siderophile 
(Vodyanitsky, 2008). In IB, the bulk content of Ni in the upper organic 
horizon exceeds the bulk content of Cu whereas acid-extractable forms 
of these metals demonstrate an opposite tendency (Lyanguzova et al., 
2016). Lower ability of Ni to form complexes with humic and fulvic 
acids suggests a lower influence of soil type on the Ni spatial distribution 
captured by the GBM model. Spatial variation of Ni correlates with Fe to 
a larger extent explained by the distance to the pollution source and LST 
(from 24 to 35 ◦C) – these temperatures are recorded in 
Podzol-dominated landscapes since lower temperatures (21–24 ◦C) 
correspond to waterlogged depressions occupied by Histosols with 
incomparable high concentrations of Fe (Figs. 2b and 3). The relation
ships between Ni and Fe contents can be explained by the absorption of 
technogenic magnetite Fe3O4 particles within Podzols (Lyanguzova 
et al., 2016) at a surface layer (topsoil). Interestingly, none of the 
geomorphological predictors (TPI or geomorphons) had a significant 
relative influence in our models. The geomorphological impact was 
rather expressed by means of other variables: for degraded Podzols 
covering the larger proportion of the study area, the intense erosion (by 
wind and water) seems to promote the further redistribution of pollut
ants within the landscape.

4.1.3. Conceptual model of HM contamination within IB
In our previous pilot research, we have shown that in a small plot 

(two ha) within a highly degraded landscape, Histosol-dominated areas 
are characterized by maximal Cu and Ni concentrations. Within this soil 
type unit, the distribution of these pollutants is controlled by TWI 
(Dvornikov et al., 2022). This study has confirmed these patterns. 
However, the distribution of HM pollutants within Podzol-dominated 
landscapes, that predominate in this region, has a way more complex 
structure. Cu as largely controlled by Ca whose spatial variability has a 
clear natural background and indicates the organic matter content in 
soils. In these areas, we expect the migration of atmospherically polluted 
Cu down the soil profile into illuvial horizon as well as down the lower 
geomorphic levels. For this reason, no relations between anthropogenic 
controls (distance and direction from the pollution source) and Cu could 
be captured by GBM model. And that is not the case for Ni, that depends 
on Fe concentration to a large extent. In its turn, the concentration of Fe 
is controlled by a direct anthropogenic impact (deposition from aerial 
emissions). Scarce vegetated patches have the own impact: they are 
indicative for elevated Cu and Ni due to an additional load of organic 
matter as well as Fe from aerial deposition, and the variability of Ca 
doesn’t explain the variability of Cu anymore here, except in the «birch 
woodlands».

We have also found a high spatial variability of HM pollutants at 
short distances (Table A.2 in the Supplement). This hampers the accu
rate estimations of HM at a high resolution, but the major patterns could 

still be captured (Fig. 2). The conceptual model presented in this paper, 
can further help to undertake a cost-efficient measure for the remedia
tion of IB.

5. Conclusions

Two main conclusions can be drawn out of this research. First, it is a 
methodological conclusion. In highly polluted areas, prediction of HM 
concentrations must be done with the consideration of other macro- 
elements in soils that, in its turn, are explained by conventionally used 
covariates related to topography, hydrology, and spectral properties. 
The ML-DSM approach in this case must first be applied to elements 
explained by natural (or anthropogenic, if considered) factors (in our 
case Ca and Fe). Further, predicted values of these elements must sub
sequently be used as new covariates for predicting aerially transported 
pollutants (HM, Cu and Ni in this case). Such cascade ML has helped to 
increase the accuracy of Cu and Ni maps and to reduce their uncertainty.

Second conclusion describes the within-landscape processes of HM 
deposition and redistribution. In this study, we were able to create a 
detailed picture of spatial distribution of main HM pollutants which is in 
a general agreement with patterns found in our earlier research (at some 
extent), but our GBM models could quantitatively describe the non- 
linear relationships between Cu and Ni concentration and other natu
ral and anthropogenic drivers. These two pollutants had a different 
pattern of spatial distribution. Cu is rather controlled by natural factor 
(namely organic matter content). Ni is more strongly associated with 
anthropogenic emissions (through Fe). These complex quantitatively 
described HM spatial variability patterns have a clear practical appli
cation, as they allow to identify key areas of the territory that most 
require a bioremediation measures.
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