WAGENINGEN

UNIVERSITY & RESEARCH

Soil type and content of macro-elements determine hotspots of Cu
and Ni accumulation in soils of subarctic industrial barren :
inference from a cascade machine learning

Environmental Pollution
Dvornikov, Yury; Slukovskaya, Marina; Gurinov, Artem; Vasenev, Viacheslav
https://doi.org/10.1016/j.envpol.2025.126457

This publication is made publicly available in the institutional repository of Wageningen University
and Research, under the terms of article 25fa of the Dutch Copyright Act, also known as the
Amendment Taverne.

Article 25fa states that the author of a short scientific work funded either wholly or partially by
Dutch public funds is entitled to make that work publicly available for no consideration following a
reasonable period of time after the work was first published, provided that clear reference is made to
the source of the first publication of the work.

This publication is distributed using the principles as determined in the Association of Universities in
the Netherlands (VSNU) 'Article 25fa implementation' project. According to these principles research
outputs of researchers employed by Dutch Universities that comply with the legal requirements of
Article 25fa of the Dutch Copyright Act are distributed online and free of cost or other barriers in
institutional repositories. Research outputs are distributed six months after their first online
publication in the original published version and with proper attribution to the source of the original
publication.

You are permitted to download and use the publication for personal purposes. All rights remain with
the author(s) and / or copyright owner(s) of this work. Any use of the publication or parts of it other
than authorised under article 25fa of the Dutch Copyright act is prohibited. Wageningen University &
Research and the author(s) of this publication shall not be held responsible or liable for any damages
resulting from your (re)use of this publication.

For questions regarding the public availability of this publication please contact

openaccess.library@wur.nl


https://doi.org/10.1016/j.envpol.2025.126457
mailto:openaccess.library@wur.nl

Environmental Pollution 377 (2025) 126457

Contents lists available at ScienceDirect

Environmental Pollution

FI. SEVIER

journal homepage: www.elsevier.com/locate/envpol

Check for

Soil type and content of macro-elements determine hotspots of Cu and Ni [
accumulation in soils of subarctic industrial barren: inference from a
cascade machine learning™

a,b,* a,c,d

Yury Dvornikov , Marina Slukovskaya , Artem Gurinov ©', Viacheslav Vasenev ¢

& Smart Urban Nature laboratory, Peoples’ Friendship University of Russia, Miklukho-Maklaya, 8/2, Moscow, 117198, Russia

Y Laboratory of Carbon Monitoring in Terrestrial Ecosystems, Institute of Physicochemical and Biological Problems of Soil Science of the Russian Academy of Sciences,
Institutskaya str., 2, Pushchino, 142290, Russia

¢ Tananaey Institute of Chemistry and Technology of Rare Elements and Mineral Raw Materials, Kola Science Centre, Russian Academy of Sciences, Apatity, Academic
Campus 26a, 184209, Russia

d Laboratory of Nature-inspired Technologies and Environmental Safety of the Arctic region, Kola Science Centre, Russian Academy of Sciences, Apatity, Fersmana str.
14, 184209, Russia

€ Laboratory of Geomorphology, Institute of Geography, Russian Academy of Sciences, Staromonetny Lane, 29/4, Moscow, 119017, Russia

f Faculty of Geography and Geoinformation Technologies, National Research University Higher School of Economics, Myasnitskaya str., 20, Moscow, 101000, Russia
8 Soil Geography and Landscape Group, Wageningen University, Wageningen, 6700AA, Netherlands

ARTICLE INFO ABSTRACT

Keywords: Aerial technogenic pollution from the activity of ferrous and non-ferrous metallurgy resulting in degradation of

Heavy metals vulnerable natural ecosystems is a principal environmental problem in Russian Arctic. The industrial barren in

1(\3]u the vicinity of Monchegorsk (Kola Peninsula) has been forming since 1950-s in the impact zone of the copper-
1

nickel smelter. Soil heterogeneity, complete or partial degradation of vegetation, and rugged terrain intensi-
fied by soil erosion result in complex lateral spatial redistribution patterns of aerial depositions of Cu and Ni
emitted by the smelter. In this research, we applied cascade machine learning (gradient boosting machines) to
quantitatively describe these patterns. An extensive soil sampling campaign (n=506) across an area of 343 ha has
revealed an extremely high levels of contamination (max bulk concentrations of Cu and Ni - 29.87 and 30.12 g/
kg). We showed that soil types and the content of macro-elements (Ca and Fe) mapped based on the conventional
set of predictors (topography, hydrology, landscape’ spectral properties) explained spatial variability and
especially hotspots of Cu and Ni contents with a higher accuracy compared to the models where interactions
between macro-elements and heavy metals are not considered. This approach is a promising tool for mapping
heavy metals’ distribution in eroded, degraded, and highly polluted areas, which can be very useful to support
land reclamation plans and allocate bioremediation measures.

Digital soil mapping
Gradient boosting machines
Smelter impact

Aerial pollution

metallurgical company (MMC) (formerly «Severonikel») is among the
leading global producers of nickel, copper, and cobalt and, therefore,
one of the most significant sources of HM emissions in Northern Europe

1. Introduction

Aerial technogenic pollution and degradation of ecosystems (espe-

cially vulnerable Arctic and Subarctic environments) resulted from the
activity of ferrous and non-ferrous metallurgy are an important
ecological problems. According to Arctic Monitoring and Assessment
Programme (AMAP) 2002 report, aerial emissions of heavy metals (HM)
from the industry in Kola Peninsula largely contribute to overall HM
pollution in the Arctic (AMAP, 2005). Copper-nickel (Cu-Ni) smelter in
the vicinity of Monchegorsk town belonging to Kola mining and

* This paper has been recommended for acceptance by Dr Hefa Cheng.

(Kashulina et al., 2014). The industrial barren (IB) around the Kola MMC
today is considered one of the largest in the World (Kozlov and Zvereva,
2007). The influence of the smelter emissions on vegetation and soils of
the IB as well as the effects of reclamation and remediation measures
have been thoroughly investigated by several monitoring studies, survey
campaigns, national and international projects summarized on the
scheme (Fig A.1 in the Supplement).
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It is likely that IB has been growing since 1950 because the pro-
duction before this year was quite low, and later has increased twofold
(Pozniakov, 1993), and IB patches could be visible over an area 2-3 km
from the pollution source (to the North and South) according to pre-
vailing meridional winds (Barcan and Kovnatsky, 1998). However, the
extension of the impact area is uneven and is related to local topographic
and landscape factors (Rees and Kapitsa, 1994). Nowadays, the
impacted area continues to expand towards background landscape
despite the decline of aerial emissions (Lyanguzova et al., 2016). This is
associated with the low leaching rate of HM (100-200 years for Cu and
160-270 years Ni) from native soils (Barcan, 2002). The exact area of IB
is debatable, but its patches can be traced up to 6-10 km from the
pollution source (Kryuchkov, 1993).

For the first time, research on the direct impact of aerial pollution on
soils and vegetation has begun after the establishment of a joint Russian-
Norwegian pollution commission in 1988 (Norseth, 1994). Later,
extremely high concentrations of Cu and Ni in soils of IB have been
confirmed and various effects of aerial pollution were published
(Evdokimova, 1995; Kozlov et al., 1993). Several attempts have already
been made to investigate the spatial distribution and temporal dynamics
of PTE (potentially toxic elements) in soils of the IB at sites located up to
75 km away from the smelter (Kashulina, 2018, 2017; Lyanguzova et al.,
2016), and an exponential decrease in the contaminants’ content with
the distance from the pollution source was reported (Lyanguzova et al.,
2016). Although the general patterns in spatial-temporal variability of
soil pollution within IB were described, there are still gaps in quantita-
tive assessments of local variations related to topography, soil types and
properties. A detailed map based on proximal sensing and regression
kriging was developed in 2020 (Dvornikov et al., 2022) for a pilot plot -
two ha within the IB. Soil type and topographic wetness index (TWI)
were the most important predictors of HM at 1.5 m resolution. This
research aims to expand our 2020 attempts to a larger area of IB (~343
ha) by using the cascade machine learning approach. Machine learning
(ML) methods for mapping HM and generally PTE in soils is largely
applied in digital soil mapping (DSM) (Wadoux et al., 2020) since many
processes in soils including HM accumulation and redistribution hold a
certain non-linear character. Given the well-established guidelines for
estimating the uncertainties of these methods, they appear to be
promising if applied even to the relatively large areas. In highly polluted
areas such as IB where the buffer capacity of soils is exceeded, the choice
of optimal covariates for predicting the spatial distribution of HM in
accordance with the traditional scopran principle (McBratney et al.,
2003) is challenging (Yang et al., 2021). The spatial distribution of
target variables is firstly influenced by the anthropogenic factors and
can secondly be controlled by geomorphological processes: erosion,
accumulation, and within-soil-processes. In these cases, a clear hy-
pothesis on potential HM environmental drivers must be defined
(Wadoux and McBratney, 2021) for avoiding the use of this method as a
black box.

In this research, we attempted to predict two main contaminants in
IB topsoil — bulk concentrations of Cu and Ni by applying ML with many
predictors explaining the spatial variability of main landscape parame-
ters (topography, vegetation, geology, geomorphology, and soil type/
chemistry) at high (2 m) spatial resolution. We’ve applied a cascade ML,
where content of macro-elements (Ca and Fe) in soils better predicted by
conventional environmental drivers are further transferred to the set of
predictors for explaining topsoil HM spatial variability that is less
related to initial set of covariates. Our initial research hypotheses were
as follows: 1) distance from the pollution source (anthropogenic factor)
is not the leading factor controlling the spatial variability of HM in the
topsoil; 2) soil pollution largely depends on soil type (organic matter
content) and TWI (geomorphology) as shown in a previous study
(Dvornikov et al., 2022); 3) HM concentration doesn’t dependent on the
geology and outcrops; 4) cascade ML with prediction of other elements
(connectors) in soils (Ca and Fe) may provide a better accuracy of the
final HM distribution maps if used as predictors.
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2. Materials and methods
2.1. Study site description

The research area is located on the Kola Peninsula over the Polar
Circle. The regional subarctic climate is considered cold with no dry
season and cold summers - Dfc according to updated Koppen-Geiger
classification (Beck et al., 2018). The native vegetation of the area
around Kola MMC before the smelter establishment was dominated by
northern taiga species: Picea abies and Pinus sylvestris (Manninen et al.,
2015).

The study site (67.95 N, 32.82 E) is in the vicinity of Monchegorsk
situated at 3.5 km to the west from the city and minimum at 967 m from
the nearest pollution source within the impact zone of the smelter, max
~3.5 km (Fig. 1). The sampling area covers ~343 ha including both the
smelter impact zone and area with partially preserved natural vegeta-
tion on the slopes of Travyanaya Varaka (hill); mapping area excluding
lakes and anthropogenic objects is 329.5 ha. The studied industrial area
is sparsely vegetated with the domination of Salix L. sp. and Betula
pubescens Ehrh. trees (Koptsik et al., 2016). The site has a diverse
meso-topography, including the top of the hill, hill slopes with rock
outcrops, a few local depressions and surrounding moraine terrain -
alternating hummocks, crests and hollows. The prevailing soil types are
Skeletic Leptic Entic Podzol (Arenic, Toxic) (hilltop and slopes) (further
— Podzol) and Dystric Rheic Hemic Histosol (Toxic) (local depressions)
(further - Histosol), according to IUSS World Reference Base (IUSS
Working Group WRB, 2015). Semi-natural soils of remediation sites are
here identified as Skeletic Leptic Entic Podzol (Arenic, Organo-
transportic, Toxic) (further here — Histosol/Podzol). Some patches of
artificially deposited sands and gravel are distributed along anthropo-
genic objects. The previous research showed that the identified soil
types differ in the capacity to accumulate the HM, and in the ratio of
soluble and non-soluble forms of metals. In Podzol, Ni was mainly
accumulated in non-soluble forms with the bioavailability of 1.5 %,
while Cu was predominantly (60 %) available for plants (Slukovskaya
etal., 2019). Metal bioavailability in Histosols was 19 % for Ni and 57 %
for Cu (Slukovskaya et al., 2021).

2.2. Sampling design

Prior to the field work, we have defined a geospatial coordinates of
sampling units (Fig. 1). Here, we define sampling unit as point in space
within the study area where topsoil material was further collected, ac-
cording to (de Gruijter et al., 2007). Two different strategies were
selected for this experiment: 1) conditioned Latin Hypercube Sampling
(cLHS) (Minasny and McBratney, 2006) to distribute sampling units in
space for the model training (n=400); 2) spatially stratified random
sampling (SSRS) to distribute the independent set of sampling units for
the validation of final maps (map accuracy) (n=82). At each sampling
unit, we have collected a composite of topsoil material in June 23-29,
2022. Each composite consisted of five aliquots bulked together (de
Gruijter et al., 2007). Each aliquot represents a 100 cm® of soil material
collected from the upper 5 cm of the soil profile by soil drill AM-7. A
significant decline of HM concentrations below upper 5 cm of soil has
been reported (Kashulina, 2017). We used a ~2x2 m envelope strategy
to define the positions for collecting aliquots, where the geospatial co-
ordinates of the sampling unit correspond to centre of the envelope.
Since the planned mapping resolution was chosen to be 2 m (aligned to
ArcticDEM resolution), samples were collected over the area corre-
sponding to one pixel. The rationale of chosen sampling design is further
discussed in Section A.1 in the Supplement.

During the fieldwork, location of 20 training sampling units has been
shifted due to the hampered access to them: mean shift distance was 8.1
m, maximal - 22 m. Three training sampling units could not practically
be accessed due to high water level in the vicinity of water bodies and
were therefore excluded. In addition, we have randomly chosen 27
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Fig. 1. Location of sampling points over the study area (red outlined): sampling units for model training were defined by cLHS, for validation — by SCSS (a), view on a
Travyanaya Varaka Hill with patches of artificially planted vegetation (b); sampling unit scheme connected to ArcticDEM reference pixel (2 x 2 m): red dots indicate
collected aliquots (c). (For interpretation of the references to colour in this figure legend, the reader is referred to the Web version of this article.)

sampling units for assessing short-distance variability of HM concen-
trations. These units were sampled twice (1-2 m away from the original
sampling pixel location) by applying the same sampling strategy. In
total, 506 samples were collected: 397 for model training, 82 for vali-
dation, and 27 for the assessment of short-distance variability.

2.2.1. Conditioned Latin Hypercube Sampling (cLHS)

We have used eleven raster ancillary data for cLHS: elevation, slopes,
aspect, upslope contributing area (flow accumulation), flow direction,
total curvature, TWI (Beven and Kirkby, 1979), topographic position
index (TPI) and TPI-based landform classification (Weiss, 2001),
geological formations, Euclidian distance from pollution sources, and
land cover raster (Table A.1 in the Supplement). All topographic vari-
ables were derived from ArcticDEM at 2 m spatial resolution (Porter
et al., 2018). Geological formations (intrusive, effusive) were manually
digitized from 1:50,000 geological map of this region prepared in 1971,
resulted from geological survey in this area undertaken in 1969-1972
(Zaytsevskiy, 1971). Distances from the pollution sources were calcu-
lated as raster data using distanceFromPoints function of the package
raster in R environment (R Core Team, 2021). Land cover map was ob-
tained by classifying ESA Copernicus Sentinel-2 composite image. Land
cover map has also been used for masking anthropogenic objects and
define areas with different prevailing soil types having the great impact
of spatial HM variation (Dvornikov et al., 2022) (Table A.1). Vector data
were rasterized and resampled to ArcticDEM resolution. We performed
cLHS using clhs package (Roudier et al., 2012) available in R environ-
ment (R Core Team, 2021).

2.2.2. Spatially stratified random sampling (SSRS)

For sampling units assigned for the validation of the final map (test
set), we have divided the entire study area into 41 hexagonal grid cells
according to Uber H3 Grid using package h3jsr available in R environ-
ment. Within each hexagon (level=9), we have randomly selected two
points (sampling units).

2.2.3. Laboratory analytics

All samples were delivered to certified Soil Ecological Laboratory of
RUDN University (SEL RUDN, https://selab.rudn.ru/) where they were
1) dried at a room temperature, 2) partially grinded (peat samples), 3)
sieved through 1 mm, 4) cleaned from plant remnants. All prepared
samples were further filled and compacted into ~10 cm® plastic cuvettes
and measured using Olympus© Vanta C portable X-ray fluorescence
analyzer (pXRF) — a method that was tested for IB samples giving
comparable results with ICP-MS measurements (Paltseva et al., 2022).
All samples were measured three to four times (three measurements
with ~1.5 min exposure, nine-twelve measurements per sample) with
different placements of pXRF analyzer.

In addition, a set of samples (n=56) was measured again by pXRF to
estimate an analytical error (Table A.2 in the Supplement). These sam-
ples were randomly chosen both from Histosol set (high organic matter
concentrations) and Podzol set (wide range of concentrations). From the
initial list of pXRF estimated elements, we have selected concentrations
of Cu and Ni (main target variables) as well as Ca and Fe (auxiliary
variables).

2.2.4. Pre-processing of measured concentrations

Pre-processing of laboratory analytics included subtraction of blank
cuvette concentrations, estimations of internal pXRF error, variability of
HM concentrations between measurements, variability between unit
sub-samplings, and variability between sub-measurements (n=56)
(analytical error) (Table A.2). We have re-measured one sample with
standard deviation significantly exceeding 30 % of the mean value
across three measurements and excluded the outlier. According to in-
ternal pXRF assessments, mean measurement error across all samples
didn’t exceed 1 %, maximal didn’t exceed 6 %, 5 %, 2 %, and 1 % for Cu,
Ni, Ca, and Fe respectively (Table A.2).

Mean analytical error was found to be 18.7, 14.8, 7.8, and 7.4 % for
Cu, Ni, Ca, and Fe respectively (percentage of root-squared differences
between two sets from the mean set’s values) (n=>56). It should be noted
that highest differences (percentages) (>30 %) correspond to relatively
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low concentrations (<1 g/kg for Cu and Ni). High concentrations are less
sensitive in this case (Table A.2).

Measured concentrations were characterized by a high short-
distance variability: up to 90 % for four elements (max — for Cu)
(n=27). Mean root-squared difference from the mean of two values was
found to be 29.6, 29.8, 11.1, 11.9 % for Cu, Ni, Ca, and Fe respectively
(Table A.2).

We have also applied a correction coefficients to pXRF concentra-
tions which is an accepted technique for obtaining accurate results
(Peralta et al., 2020). A methodological work has recently been done for
Olympus Vanta C analyser using the artificially polluted substrates with
various concentrations of HM and organic matter (Romzaykina et al.,
2024). Final concentrations of Cu, Ni, Ca, and Fe have been corrected by
multiplying values with coefficients from these findings: 0.83, 0.88,
0.89, and 0.69.

2.2.5. Covariates

For model training, we added 23 more covariates based on ESA
Copernicus Sentinel-2 satellite data. These variables included surface
reflectance values in ten spectral bands (VIS-NIR-SWIR ranges) at native
resolution of 10-20 m, Tasseled Cap Transformation (TCT) bands
namely brightness, greenness, wetness, and ten spectral indices: widely
used vegetation indices NDVI, SAVI, and EVI, modified normalized
difference water index - MNDWI (Xu, 2006), bare soil index (BSI) (Diek
et al., 2017), normalized burn ratio (NBR) (Key and Benson, 1999) since
IB area is vulnerable to fires (Kozlov and Zvereva, 2007), clay-mineral
ratio (CMR) (Alasta, 2011), plant senescence reflectance index (PSRI)
(Merzlyak et al., 1999), red-edge chlorophyll index (Clyeq.edge) (Gitelson
et al., 2003), heavy metal stress sensitive index (HMSSI) (Zhang et al.,
2018). TCT coefficients were derived from (Nedkov, 2017) and applied
to Level-1C data (TOA). Other bands were calculated based on Level-2A
(SR) data. All covariates were derived from the median July—August
composites across 2021-2023 (six acquisitions in total — two per summer
season of 2021, 2022, and 2023.

From the initial set of layers used in cLHS (n=11) we have excluded
total curvature as having relatively stable values across study area and
land cover map which was replaced by digital soil map prepared using
our field survey descriptions and very-high resolution satellite mosaics.
Flow accumulation raster was log-transformed. Additionally, we’ve
added raster layer of geomorphons (Jasiewicz and Stepinski, 2013),
Landsat-8/9 derived land surface temperature (LST) for late June 2023
as in (Ermida et al., 2020), snow depth estimation (similarly to (Meyer
et al., 2022)), proxy of pollution distribution according to prevailing
wind directions and exponential decrease of concentrations with dis-
tance from pollution source (Lyanguzova et al., 2016), and canopy
height (Tolan et al., 2024). Thus, we have prepared 38 covariates
compiled as a single multi-band raster file with spatial resolution of 2 m
corresponding to ArcticDEM resolution. These covariates quantitatively
describe the geology, geomorphology, soils, vegetation, hydrology, and
anthropogenic factors potentially influencing the spatial HM distri in
soils. For all predictors, equality of distributions between sampling
points and the entire statistical population (SP) (raster values of the
study area considered) was checked by T-test for numeric variables and
Chi-Squared test for categorial variables.

2.2.6. Model tuning

Gradient boosting machines (GBM) is a widely applied ensemble
algorithm based on decision tree but builds a numerous decision trees
consecutively learning from the previous (Friedman, 2001). The algo-
rithm doesn’t require data normalization and performs well both with
numerical and categorial variables. GBM requires several hyper-
parameters to be tuned: i) number of trees, ii) tree/interaction depth
(number of nodes in each tree), iii) learning rate/shrinkage, iv) mini-
mum observation in a node. We have tested a set of hyperparameters to
reveal the best performing. To avoid overfitting, we used repeated (n=>5)
10-fold cross-validation. We looped through interaction depths [3, 5, 10,
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15], number of trees [500, 1000, 3000], learning rate [0.001, 0.01] and
minimum observations in nodes [5, 10, 15]. Separate models were ob-
tained for Ca, Fe, Cu, and for Ni with 38 predictors and 397 observa-
tions. Predicted values (Kempen et al., 2010) of Ca were used for Cu
modelling, predicted values of Ca, Fe were used for Ni modelling
(cascade ML). The selection of these macro-elements (Ca and Fe) relies
on 1) their high concentrations in both dominating soil types (Ca in
Podzols, and Fe in Histosols), and 2) their presence in aerial technogenic
dusts and particles (Evdokimova, 1995; Slukovskii et al., 2020). Further,
the high Ca content in Podzols over the study area may strongly
differentiate these soils from Histosols with the highest organic matter
content. In its turn, soil organic matter acts as an important agent in the
processes of Cu accumulation due to the formation of stable complexes
with humic substances (Zamulina et al., 2022). Therefore, we expect to
capture this negative dependence between Ca and Cu. In contrast, Fe
must have a connection with Ni as it acts as a siderophile (Vodyanitsky,
2008) on one hand, and might deposit from the technogenic iron sul-
phide particles (Slukovskii et al., 2020) on the other.

Model tuning, building, retrieval of relative influence have been
performed using caret package (Kuhn, 2008) in R environment (R Core
Team, 2021). We have assessed the uncertainty of all models by
cross-validation RMSE (RMSE.,). Both dependent variables (concen-
trations) and independent ones (predictors) didn’t undergo any trans-
formations prior to modelling. Workflow diagram of sampling,
modelling, and validation is shown on Fig. A.2 (Supplement).

2.2.7. Mapping

Accuracy of maps has been evaluated through comparing predicted
values and measured Ca, Fe, Cu and Ni bulk concentrations of a test set
(n=82) using the widely used metrics (RZs;, RMSE es;, and MAEeqp)
calculated using MLmetrics package in R environment. RMSE., values
obtained at the previous stage were considered for all predicted pixels as
a metric of the uncertainty (Fig. A.2).

3. Results
3.1. Concentrations of Cu, Ni, Ca, and Fe

Bulk concentrations of Cu and Ni in a training set (n=397) were
positively linearly correlated excluding high values (R=0.72) reaching
max values of 29.87 and 30.12 g/kg (Fig. A.3 in the Supplement), their
mean concentrations were 2.29 and 3.61 g/kg respectively while me-
dians were 0.87 and 1.56 g/kg. Distributions are shown on Fig. A.4a in
the Supplement. Concentration of Ca and Fe were less related to other
elements with a more uniform distribution (Fig. A.4b in the Supple-
ment). Their mean concentrations were 18.72 and 33.92 g/kg. We have
observed a moderate inverse correlation between Ca and Cu (R=-0.35)
and between Ca and Ni (R=-0.29), and a higher dependence between Fe
and Ni (R=0.53) among the training set.

3.2. Distribution of predictor’s values

Distributions of 36 predictors among 38 at sampling locations of
training and training+test sets were statistically equal to the distribution
of the SP (p-value varied from 0.059 to 0.983 for the test set only and
from 0.117 to 1 for the training+test). For the training set, aspect and
flowdir distributions differed from SP (p-value = 0.034-0.037, t-test). For
the entire set of sampling points, aspect distribution differed from SP (p-
value = 0.04, t-test).

3.3. Model outputs

GBM model for Ca was the most robust among the four target vari-
ables: Ca spatial distribution was in a strong relation with topographic,
soil, and spectral properties of landscapes (surface reflectance in visible
— near infrared — short-wave infrared ranges). With the best tuning
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parameters [3, 5, 1000, 0.01] for the interaction depth, min observa-
tions in a node, number of trees, and shrinkage, the model has shown
robust results at a cross-validation (RMSE,, = 4.85 g/kg) and validation
with independent test set (RMSE = 3.9 g/kg) (Table A.3 in the Sup-
plement). The inclusion of a test set into training could further improve
the model performance (RMSE,, = 4.63 g/kg), but not significantly.

The considered predictors (n=38) could explain spatial distribution
of Fe but have shown the weakest relation to this target variable
(Table A.3) among all four elements. The model tended to regress to the
mean value underestimating highest values (Fe > 40 g/kg) and over-
estimating lowest values (Fe < 20 g/kg) due to (1) low spatial variability
of Fe in the study area, and (2) inability of predictors considered to
explain this spatial variability. However, the cross-validation metrics
(RMSE,, = 11.27 g/kg) were close to metrics obtained by comparing
with the independent test set (RMSE,.;; = 8.52 g/kg) (Table A.3). The
inclusion of a test set into training couldn’t help to improve the model
performance (RMSE,, = 10.69 g/kg) but slightly reduced the angle be-
tween the regression and 1:1 lines. Compared to Ca, the model for Fe
needed a smaller learning rate (0.001) with a higher number of trees
(3000) to reduce the total RMSE, but at the same time the larger number
of observations in a node (n=15) (Table A.3) due to lower spatial
variability.

Predicted Ca concentrations were included as an independent pre-
dictor to train the GBM model for Cu — one of two important target
variables. More complex nature of relationships between Cu concen-
tration in the topsoil and the environmental drivers has resulted in a
high RMSE,, (2.34 g/kg) and RMSE; (2.37 g/kg) values (Table A.3)
close to the mean value due to inability to reproduce mean concentra-
tions of SP (highest uncertainty).

Although Ni had an even more complex spatial distribution
compared to Cu as revealed for the initial model with predictors (data
not shown), a stronger GBM model was obtained for Ni due to the in-
clusion of previously predicted values of Ca and Fe into the training. The
inclusion of Cu into prediction (data not shown) has helped to gain
higher quality metrics of the model (RMSE., = 2.67 g/kg) but has
resulted in weaker metrics on the test dataset (RMSEs = 4.0 g/kg). We
have therefore decided to keep predicted Ca and Fe in the model for Ni
(RMSE,, = 3.34 g/kg) characterized by not significant differences be-
tween cross-validation and test metrics. The highest model uncertainty
can be observed for most observations (close to mean) whereas lowest
and highest values are predicted relatively accurately.

3.4. Environmental drivers of topsoil macro-elements, Cu and Ni bulk
concentrations

The influence of environmental drivers was considered for models
created using the entire sample set (n=479). In general, fitted Ca, Fe, Cu
and Ni concentrations were in a good agreement with observed con-
centrations: 80 %, 44 %, 83 % and 85 % of variance was explained
(Table A.3). All models were characterised by a predominance of one
predictor (see Table A.4 in the Supplement for details).

The distribution of Ca was mainly driven by soil type (belonging to
Histosol units) (18.4 %) — lower concentrations, compared to other soil
types. The increase in Ca concentrations coincided with the increase in
the surface reflectance in green range (560 nm) between 5 % and 10 %
(relative influence 4.9 %) and with the increase in the surface reflec-
tance in near-infrared range (705 nm) but in a more complex way with
peaks at 14 % and >32 % surface reflectance (relative influence 4.6 %) —
impact of vegetation patches. Inverse relationship was observed with
elevation — the highest concentrations at low levels (<170 m) (relative
influence 5.6 %) and a complex relationship with TCT wetness (relative
influence 5.0 %). It can therefore be concluded that Ca distribution was
rather driven by natural factors (soil, vegetation, topography, and hu-
midification regime).

Overall decrease in Fe bulk concentration in the topsoil coincided
with the distance from the pollution source (from 1000 to 3500 m)
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(relative influence 13.8 %), with the increase in LST from 24 to 35 °C
(relative influence 7 %), and increase of wind factor (>0.7) (relative
influence 8.4 %). Similarly to Ca, surface reflectance in near infrared
range impacted distribution of Fe (relative influence 11.5 %) — higher
concentrations in wet vegetated patches. Inverse relationship was also
observed for elevation (relative influence 4.5 %): higher concentrations
at a lowest geomorphic position. It can be concluded that the Fe in
topsoil was driven rather by non-natural factor (proximity and position
relative to source of emissions). Relative influence of natural drivers —
vegetation and landscape properties of Podzol-dominated areas
(captured by LST), and topography (higher concentrations for lower
geomorphic position of Histosol-dominated areas) has also been found.

Concentration of Cu was remarkably higher in Histosols (15.6 %).
Inverse non-linear relationship between Cu and Ca concentrations was
also captured by the model: a gradual Cu concentration decrease from 5
to 2 g/kg was observed at Ca concentration range from 10 to 24.5 g/kg
(relative influence 9.3 %) — these concentrations are characteristic of
eroded, sparsely vegetated Podzols (most of the study area). Other
important predictors were from topography group: flow accumulation
(log-transformed) and elevation (8.1 % and 6.9 %, respectively): these
explained the spatial variability of Cu within Histosol-dominated areas
(zones of accumulation). Surface reflectance in NIR2 (865 nm) range
>28 % associated with vegetation patches (wet conditions) have shown
a higher Cu concentrations compared to other Podzol-dominated
patches (relative influence: 5.8 %). Further, an inverse relationship
was observed with the distance from the pollution source (at values
ranging from 1100 to 2200 m) (relative influence 5.4 %). At longer
distances, no effect of this predictor could be seen. The Cu concentration
was obviously driven by the organic matter content: all environmental
drivers implicitly indicate this. Within eroded Podzols with degraded
and eroded organic layer, macro-element Ca explain the spatial vari-
ability through the proportion of mineral component. Within Histosol-
dominated areas, topographic patterns (accumulations) are also
important for re-distribution of Cu in the topsoil.

Predicted Fe concentration has significantly helped to explain the
variability of Ni concentration with a relative influence of 22.4 %: an
almost linear gradual increase in Ni concentrations from 3 to 14 g/kg
coincided with the increase of Fe bulk concentration from 30 to 55 g/kg.
It was followed by soil type (Histosols — higher Ni concentrations
compared to other soil types) — 14.3 %, and further by TWI - higher
concentrations at non-slopes, Ca concentration - similar patterns to Cu,
and elevation - also similar patterns to Cu - spatial distribution within
Histosol-dominated areas) (4.8, 4.3, and 4.2 % respectively).

3.5. Final maps of Cu and Ni distribution and uncertainty

Map for Ca has demonstrated a uniform spatial distribution for the
study area revealed by the model (Fig. 2a). Histosol-dominated land-
scapes and gully-bottoms on the Eastern slopes of Travyanaya Varaka
Hill were characterized by lower concentrations. Vegetated stream
valley patches at footslopes were characterized by concentrations above
average (>30 g/kg). Average concentrations characterized most of the
area covered by Podzols. Within Podzol patches the variation was driven
by the vegetation, wetness regime and topographic patterns. Uncer-
tainty was assessed by RMSE,, (4.63 g/kg) being robust at all concen-
tration levels.

Patterns of high Fe concentration (>45 g/kg) are associated with
peat distribution (predominantly Histosols) in the flat wet area in the
South-East which is quantitatively described by LST (<27 °C) (Figs. 2b
and 3). At the same time, the distance from the pollution source
explained lower concentrations of similar patches in the North of the
study area. Average Fe concentrations (~40 g/kg) were associated with
small dense vegetation patterns. Uncertainty was assessed by RMSE,,
(10.69 g/kg), but mostly this metric describes the uncertainty of lowest
and highest values.

The highest Cu and Ni contents (Fig. 2¢ and d) were associated with
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Fig. 2. Maps of target variables based on GBM models with a sample set (n=479): bulk concentrations of Ca (a), Fe (b), Cu (c), and Ni (d) given in g/kg. As solid

shown is the profile line — from NW to SE (Fig. 3).

Histosols. Outside of these patches, the distribution of Cu was associated
with Ca, while Ni — with Fe (Fig. 3). Models were unable to reproduce
the highest concentrations of Cu and Ni, observed in the laboratory. The
highest uncertainties are fair for the lowest concentrations, and it was
estimated by RMSE,, for both elements (Table A.3).

4. Discussion

4.1. Soil contamination and environmental drivers of macro-elements, Cu
and Ni concentrations in the topsoil of IB

4.1.1. Anthropogenic emissions and impact

Concentrations of Cu, Ni, and Fe in aerosols can reach 3.48, 33.1, and
52 g/kg (Opekunova et al., 2021) (Table A.5 in the Supplement).
Although it is obvious, that the main source of elevated concentrations
of these elements in soils is the deposition from the atmosphere, the
relation of the topsoil concentrations with e.g. amount of precipitations
has a more complex nature. Temporal monitoring of HM in the topsoil
has shown a negative correlation between -concentrations and

precipitation amount of the year before sampling (Kashulina, 2018).
Hyperbolic or exponential decline of HM concentrations in soils at a
regional scale has been mentioned in many previous studies (Barcan and
Kovnatsky, 1998; Evdokimova et al., 2011; Lyanguzova et al., 2016). If
the local impact area of IB is considered, this effect of the distance from
the pollution source seems to be more complex: many other factors like
soil type and chemistry as well as vegetation and geomorphology do
prevail in this case, as it was also suggested in (Kashulina, 2018).

We have found that only Fe has a distinctive relationship with non-
natural re-distribution factors: distance and direction to pollution
source, at least in the Northern direction. Native Al-Fe-humus Podzols
are rich in Fe, but the situation is also hampered by the additional aerial
technogenic deposition of Fe from the smelter in forms of pentlandite
(Ni,Fe)9S8, pyrrotite Fe7S8(Nix), chalcopyrite CuFeS2 along with
chalcosite Cu2S, covellite CuS, cuprite Cu20, tenorite CuO, and metals
Cu and Ni (Barcan, 2002). To a lower extent, the Fe concentrations are
controlled by a natural factor (tree vegetation).
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4.1.2. Natural factors and re-distribution patterns

Maximal concentrations of Cu and Ni in the topsoil found in this
research are comparable with those in Noril’sk ore (Boyd et al., 2009)
and generally coincide with maximal concentrations found in other
studies through ~40 years (Table A.5 in the Supplement). In general,
bulk concentrations of Ni exceed concentrations of Cu both in Podzols
and Histosols which seems to be the same even outside the impact area
of the smelter (up to 47 km) (Lyanguzova and Barcan, 2019).

Bulk concentrations of Cu and Ni in the topsoil within IB are not
associated with intrusive geological formations (Zaytsevskiy, 1971): the
modelling results have therefore supported (median Cu and Ni sampled
close to outcrops are 0.41 and 1.47 g/kg, respectively) our initial hy-
pothesis stated in the beginning of this study. This was also partially
confirmed in (Barcan, 2002).

In earlier publications devoted to soil pollution in the impact area it
was argued that maximal proportion of pollutants belong to illuvial
horizons of native soils (including the upper part of the subsoil) — 85-95
% (Barcan and Kovnatsky, 1998) and later - in the topsoil — organic
horizon O or eroded illuvial horizon BFer (>80 % of acid-extractable
forms of HM) (Elsukova et al., 2019; Kashulina, 2017; Lyanguzova

et al., 2015). This is especially true for Cu content in organic-rich
non-eroded Histosols since Cu is a stronger complexing agent and can
be leached less effectively (Evdokimova et al., 2011). This pattern has
been clearly captured by our GBM model for Cu. However, the reduction
of organic matter content in the topsoil of Histosols may trigger the
migration of a large portion of HM down the soil profile (Kashulina,
2017). In this study, we’ve found an inverse relation of Cu with Ca
whose concentrations are considerably lower in Histosols, because 1)
Histosol has a lower mineral proportion, and 2) Ca served as an alkaline
geochemical barrier for metals deposited from atmospheric emissions
(Slukovskaya et al., 2021). Within Histosol units, Cu and Ni are further
re-distributed by topographic factors (flow accumulation and TWI) —
concentrations of these elements are lower on slopes, as it was also
shown in our pilot study (Dvornikov et al., 2022). Within
Podzol-dominated landscapes Cu is strongly controlled by Ca which has
a clear natural spatial variability. Forested areas on the western slope of
Travyanaya Varaka Hill are characterized by lower Ca concentration
compared to impacted eroded vegetation-free Podzol-dominated areas
(Fig. 3) being absorbed by plant roots. Within them, no relations be-
tween Ca and Cu could be observed. At the same time, young vegetated
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patches, often in a wet condition, previously described as «birch tran-
sitional community» or «birch woodlands» (Kozlov, 2001), are charac-
terized by highest Ca concentration (>30 g/kg). These patches could
confidently be captured by near-infrared band (>32 % surface reflec-
tance) of Sentinel-2 composite. Here, the Ca distribution impact on Cu is
high and was clearly captured by a GBM model. High topsoil concen-
trations of Cu within all vegetated patches can be related to developed
A0 organic horizon of Podzols serving as a biogeochemical barrier
(fixation) for migration of pollutants down the soil profile (Lyanguzova
et al., 2015). Another (or additional) explanation of higher HM con-
centrations within those patches can be their higher load in spring due to
thicker snow trapped by vegetation patches. The concentrations of
Cu/Ni were in a good agreement with winter deposition amount of these
elements (Kashulina, 2017) and the concentration of HM in the snow
cover (Kashulina, 2018). However, we haven’t found any relationships
between estimated snow thickness and concentrations of Cu and Ni in
our study area. In a vegetation-free Podzol-dominated landscapes, Cu
and Ni might undergo further migration down the soil profile.

Spatial distribution of Ni (Fig. 2d) within IB has more complex pat-
terns, than for Cu. Geochemically, Ni element is a siderophile
(Vodyanitsky, 2008). In IB, the bulk content of Ni in the upper organic
horizon exceeds the bulk content of Cu whereas acid-extractable forms
of these metals demonstrate an opposite tendency (Lyanguzova et al.,
2016). Lower ability of Ni to form complexes with humic and fulvic
acids suggests a lower influence of soil type on the Ni spatial distribution
captured by the GBM model. Spatial variation of Ni correlates with Fe to
a larger extent explained by the distance to the pollution source and LST
(from 24 to 35 °C) - these temperatures are recorded in
Podzol-dominated landscapes since lower temperatures (21-24 °C)
correspond to waterlogged depressions occupied by Histosols with
incomparable high concentrations of Fe (Figs. 2b and 3). The relation-
ships between Ni and Fe contents can be explained by the absorption of
technogenic magnetite Fe304 particles within Podzols (Lyanguzova
et al., 2016) at a surface layer (topsoil). Interestingly, none of the
geomorphological predictors (TPI or geomorphons) had a significant
relative influence in our models. The geomorphological impact was
rather expressed by means of other variables: for degraded Podzols
covering the larger proportion of the study area, the intense erosion (by
wind and water) seems to promote the further redistribution of pollut-
ants within the landscape.

4.1.3. Conceptual model of HM contamination within IB

In our previous pilot research, we have shown that in a small plot
(two ha) within a highly degraded landscape, Histosol-dominated areas
are characterized by maximal Cu and Ni concentrations. Within this soil
type unit, the distribution of these pollutants is controlled by TWI
(Dvornikov et al., 2022). This study has confirmed these patterns.
However, the distribution of HM pollutants within Podzol-dominated
landscapes, that predominate in this region, has a way more complex
structure. Cu as largely controlled by Ca whose spatial variability has a
clear natural background and indicates the organic matter content in
soils. In these areas, we expect the migration of atmospherically polluted
Cu down the soil profile into illuvial horizon as well as down the lower
geomorphic levels. For this reason, no relations between anthropogenic
controls (distance and direction from the pollution source) and Cu could
be captured by GBM model. And that is not the case for Ni, that depends
on Fe concentration to a large extent. In its turn, the concentration of Fe
is controlled by a direct anthropogenic impact (deposition from aerial
emissions). Scarce vegetated patches have the own impact: they are
indicative for elevated Cu and Ni due to an additional load of organic
matter as well as Fe from aerial deposition, and the variability of Ca
doesn’t explain the variability of Cu anymore here, except in the «birch
woodlands».

We have also found a high spatial variability of HM pollutants at
short distances (Table A.2 in the Supplement). This hampers the accu-
rate estimations of HM at a high resolution, but the major patterns could
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still be captured (Fig. 2). The conceptual model presented in this paper,
can further help to undertake a cost-efficient measure for the remedia-
tion of IB.

5. Conclusions

Two main conclusions can be drawn out of this research. First, it is a
methodological conclusion. In highly polluted areas, prediction of HM
concentrations must be done with the consideration of other macro-
elements in soils that, in its turn, are explained by conventionally used
covariates related to topography, hydrology, and spectral properties.
The ML-DSM approach in this case must first be applied to elements
explained by natural (or anthropogenic, if considered) factors (in our
case Ca and Fe). Further, predicted values of these elements must sub-
sequently be used as new covariates for predicting aerially transported
pollutants (HM, Cu and Ni in this case). Such cascade ML has helped to
increase the accuracy of Cu and Ni maps and to reduce their uncertainty.

Second conclusion describes the within-landscape processes of HM
deposition and redistribution. In this study, we were able to create a
detailed picture of spatial distribution of main HM pollutants which is in
a general agreement with patterns found in our earlier research (at some
extent), but our GBM models could quantitatively describe the non-
linear relationships between Cu and Ni concentration and other natu-
ral and anthropogenic drivers. These two pollutants had a different
pattern of spatial distribution. Cu is rather controlled by natural factor
(namely organic matter content). Ni is more strongly associated with
anthropogenic emissions (through Fe). These complex quantitatively
described HM spatial variability patterns have a clear practical appli-
cation, as they allow to identify key areas of the territory that most
require a bioremediation measures.
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