
D
ow

nl
oa

de
d 

fr
om

 w
w

w
.a

nn
ua

lre
vi

ew
s.

or
g.

  G
ue

st
 (

gu
es

t)
 IP

:  
13

7.
22

4.
25

2.
11

 O
n:

 T
hu

, 1
2 

Ju
n 

20
25

 1
4:

16
:2

0

FO16_Art02_Boom ARjats.cls April 7, 2025 11:48

Annual Review of Food Science and Technology

Machine Learning in
Automated Food Processing:
A Mini Review
Lu Zhang, Remko M. Boom, and Yizhou Ma
Laboratory of Food Process Engineering, Wageningen University & Research, Wageningen,
The Netherlands; email: remko.boom@wur.nl

Annu. Rev. Food Sci. Technol. 2025. 16:25–37

The Annual Review of Food Science and Technology is
online at food.annualreviews.org

https://doi.org/10.1146/annurev-food-111523-
122039

Copyright © 2025 by the author(s). This work is
licensed under a Creative Commons Attribution 4.0
International License, which permits unrestricted
use, distribution, and reproduction in any medium,
provided the original author and source are credited.
See credit lines of images or other third-party
material in this article for license information.

Keywords

Industry 4.0, machine learning, smart food manufacturing, automation,
data-driven approach, food personalization

Abstract

Industrial food processing is rapidly transforming into automation and
digitalization. Automated food processing systems adapt to variations in
raw materials and product quality requirements. Implementing automated
processing systems can potentially improve the sustainability of our food
systems by improving productivity while reducing environmental impacts.
Nevertheless, the adoption of automated food processing systems is still
relatively low. In this review, we discuss the concept of automated food
processing and summarize the recent advances in applications of machine
learning technologies to enable automated food processing. Machine learn-
ing can find its applications in formulation development, process control,
and product quality assessment. We share our vision on the potential of au-
tomated food processing systems to adapt to complex raw materials, mass
customization, personalized nutrition, and human–machine interaction. Fi-
nally, we pinpoint relevant research questions and stress that future research
on automated food processing requires multidisciplinary approaches.
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1. INTRODUCTION

A new era of agri-food production called Agri-Food 4.0 has been emerging, with strong focuses
on digitalization, automation, connectivity, and efficient and sustainable usage of natural resources
(Miranda et al. 2019). Several representative technologies in this era include the Internet of Things
(IoT) for connectivity, data science and machine learning for decision-making, automated robotic
systems for flexible hardware design and manufacturing, and cloud computing for real-time data
processing. “Automation,” “intelligence,” and “smart” therefore become keywords describing the
modern development of food processing. Integrating automated processing in food production
can improve productivity, efficiency, accuracy, and reliability, resulting in more consistent product
quality with less waste and minimal risk of contamination via human contact (Gray &Davis 2013).
Across the agri-food production chain, automated robotic systems or manipulators have been
developed for agricultural production such as processing of raw meat, poultry, and fish; harvesting
fruits and vegetables; and packing and palletizing finished food products (Chua et al. 2003).

Industrial food processing, as a critical step in the agri-food production chain, focuses on con-
verting raw food ingredients into consumer products. Food processing has always been carried
out with manufacturing equipment, which has become more automated over the years. Equip-
ment or machinery in food processing systems such as a spray dryer or a pasteurizer is used
in modern food factories to produce food products aiming to achieve standardized and consis-
tent product quality at large scale. Industrial robotic systems such as manipulator-like articulated
structures are employed in food factories to achieve preprogrammed, large-volume productions
(Khan et al. 2018, 2022). Nevertheless, most of the current automation in food processing still
focuses on high-throughput production of standardized products with limited variations. These
systems lack adaptability to the variability and complexity of raw ingredients, product specifica-
tions, and personalized consumer needs. Although conventional automated robotic systems are
often programmed in a deterministic fashion (i.e., rule-based programming), the design of au-
tomated food processing further requires independent decision-making and high adaptation to
varying and new situations (e.g., new ingredients and processing condition drifts) during food
processing. Inspired by the Agri-Food 4.0 paradigm, future food processing units should consist
of (a) (semi)autonomous units that are equipped with sensors to monitor environmental and pro-
cessing conditions, (b) a control unit to analyze signal data and make decisions (e.g., by using a
machine learning approach), and (c) actuators to perform real-time actions. This type of opera-
tion paradigm (i.e., sensing, machine learning, and robotics) has been successfully adopted in the
agriculture industry, such as in intelligent greenhouses, sun trackers, hexapod robots for fieldmon-
itoring, agricultural drones, and harvesting robots (Miranda et al. 2019). However, this approach
has not yet been implemented in automated food processing.

Innovations in automated food processing systems are demanded from two aspects. On one
hand, food processing systems should be flexible and robust in handling process disturbances such
as variability from rawmaterials (especially when plant-based ingredients are used). Rawmaterials
used in food production can vary in composition, shape, color, and other material properties (e.g.,
rheological properties) (Kjetil Jørgensen 2004), which can impact the process itself and the final
product. Even if the material properties of raw ingredients can be characterized in advance, our
current understanding of their complex interactions with processing conditions and the quality
of final products often remains empirical. Hence, simply automating repetitive operations does
not suit the needs for automated food processing. Case-by-case adjustment and optimization of
processing parameters are often necessary to manufacture food products with consistent quality
and safety assurance. This is an ongoing effort in food manufacturing, which requires extensive
expert experience, manual trial and error, and precise implementation of process control. On the
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other hand, the increasing demand for mass customization and personalization among consumers
requires modern food manufacturing systems to be more flexible and intelligent. On-demand
food production requires modern food processing techniques to quickly optimize processing
conditions to adapt to specific consumer demands based on preferences and nutritional needs.
Therefore, adaptive, interactive, and smart automated food processing systems can potentially
overcome the challenges set by the variability of raw food ingredients and implement robust
process optimization to manufacture food products that meet the needs of individual consumers.

This review aims to provide an overview of recent developments in machine learning applica-
tions for automated food processing and discuss relevant research topics that can further advance
this field. We also provide a case study on the applications of machine learning and computer vi-
sion to optimize extrusion-based 3D food printing. In the literature survey, we specifically focus
on the application of machine learning for food processing (i.e., manufacturing raw food mate-
rials into consumer products). The scope of food processing includes formulation development
prior to processing, optimization, and control of unit operations during processing, and quality
assessment of products after processing. Machine learning applications in primary food produc-
tion, postharvesting (e.g., grading, classifying of fruits), and packaging and distribution of food
products have been intensively reviewed and discussed elsewhere (Nayak et al. 2020, Zhu et al.
2021) and therefore are not included in this review.

2. MACHINE LEARNING FOR AUTOMATED FOOD PROCESSING

2.1. Automated Food Processing

Automation already plays an important role in modern farming and postharvesting to achieve
tasks such as weather prediction, pesticide usage, weed and water management, and crop disease
prevention ( Jha et al. 2019, Nturambirwe & Opara 2020). These technologies are beneficial for
producing high-quality raw materials for food processing and reducing the cost of harvesting and
sorting. Conversely, food processing factories are usually automized through central control sys-
tems that aim at steady-state processing or follow a set procedure for batch operations that are in
compliance with predetermined settings. Following the Agri-Food 4.0 paradigm, automated food
processing extends the current automation development to adapt to variabilities originating from
raw food ingredients and mass customization consumer demands. Specifically, automated food
processing systems would collect multimodal data via (inline) sensors to characterize properties
(e.g., viscosity, color, and chemical composition) of incoming rawmaterials and (semi)finished food
products. The obtained sensor data are further analyzed by signal processing. Machine learning
algorithms can be built based on these data to predict and eventually control specific functional
properties of the end food products in relation to processing conditions and properties of the raw
materials. Actionable tasks or a set of adapted control variables can then be generated based on
the control algorithms and forwarded to the actuation system (see Figure 1).When actuations are
required (e.g., real-time adjustment of processing parameters), machine learning models are espe-
cially useful for decision-making purposes with complex food production processes for which the
underlying mechanisms are not fully established. As a final step in the automated food processing
cycle, the robotic system takes actions to adjust itself to adapt or further process the foodmaterials.
After having made the adjustments, a new cycle of automated food processing begins with newly
collected sensing data to continuously characterize functional properties of the food products.
Such a processing cycle continues until desirable functional properties have been achieved.

Automated food processing has three key elements, i.e., data acquisition, decision-making, and
automated actuations. Data acquisition is realized by implementation of sensing, which in gen-
eral refers to the capability of a system to detect events, acquire data, and measure changes that
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Figure 1

A conceptual illustration of automated food processing with high adaptability. Data acquisition through
sensors obtain information from the foods that are produced. This information is translated into functional
properties of the foods through mechanistic models, machine learning, or a combination of these. This
information is compared to the desired functional properties, and automated decisions on corrective
real-time adjustments can be made.

occurred in a physical environment (Miranda et al. 2019). Sensors are used for nondestructive
detection of the quality and safety indicators of food (Abasi et al. 2018, Bouzembrak et al. 2019).
Sensors in food manufacturing mostly measure operational conditions such as temperature, mo-
tion and displacement, velocity, and force and pressure or quality indicators (or so-called functional
properties) of products such as density, pH, size, shape, and color. Some sensors surpass human
perceptions to measure product physical and/or chemical properties by using hyperspectral imag-
ing, near-infrared, ultrasound, and microwaves. Data collected by sensors can then be analyzed by
various algorithms for decision-making purposes such as training a machine learning model based
on classification or regression (Berrie 2013).

As the second key element, control algorithms form the intelligent connection between sensing
and actuation, i.e., the decision-making “brains” of the process.Motion control of industrial robot
manipulators is done via different approaches such as independent joint control and proportional–
integral–derivative (PID) control. PID control is simple, and its settings are easily understood and
quantified,which is preferable in industry.However, if the operation should complete complicated
tasks in which the system may encounter unknown situations that are hard to predetermine, it
should be able to reason the appropriate approach by itself. In this case, machine learning is a
good approach to decision-making in automated food processing (see Figure 1). Such a machine
learning approach is further elaborated in the subsequent sections.

Finally, automated food processing requires an “action.” These “actions” can be as simple as
opening and closing a valve to control liquid flow in a pipe, or as advanced as controlling a set of
modern robotic actuators to handle discrete products. Here, we briefly discuss robotic actuators
for food processing. Three types of actuators that are commonly used in industrial robots are
electromagnetic, hydraulic, and pneumatic. Electric servomotors can accurately realize the desired
position, velocity, and torque that change frequently and abruptly. For example, these types of
motors are often used in driving the motion of a printhead or piston during extrusion-based 3D
printing.Hydraulic actuators are suited for employment of large forces and high power-to-weight
ratios but are less accurate than servomotors. Pneumatic actuators provide cost-effective and good
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performance in point-to-point motion, are not as accurate as servomotors, and are not suitable
for applications requiring large forces (Siciliano & Khatib 2016). Different types of actuators can
be combined in one system for specific applications. Inventories of different actuators used in
industrial robots are available in the literature (Chua et al. 2003).

Sensors, machine learning algorithms, and robotic actuators together establish the pillars of
automated food processing in the new era of Agri-Food 4.0. Although the three components have
been separately developed into various food processing applications, automated food processing
requires all three components to be integrated. The decision-making step, powered by machine
learning, therefore becomes a crucial link between the measured data from food processing and
the resulting effective actuations. Tailored machine learning algorithms are robust and interpret
complex signals obtained from various food processing operations and optimize manufacturing
actions to address variability coming from raw materials and consumer demands.

2.2. Machine Learning

Machine learning is a subfield of artificial intelligence and deals with using data to create mod-
els for decision-making purposes. The food sector has been making use of processing data for
monitoring and anomaly detection purposes. For example, multivariate statistical process con-
trol (MSPC) was applied to monitor and diagnose faulty operations of a food pasteurization
process (Tokatli et al. 2005). Although the MSPC approach prioritizes process consistency, it
is not designed to address variabilities coming from raw materials (i.e., preprocessing varia-
tions) and consumer demands of customized food products (i.e., product requirement variations).
Machine learning builds on top of MSPC to apply a set of algorithms to identify patterns in
high-dimensional data. Because of the diverse range of algorithms available, machine learning is
capable of linking multiple inputs and outputs together, creating robust models to capture various
sources of variations found in food processing life cycles. The machine learning workflow gener-
ally includes (a) acquisition of training data, (b) selecting and/or engineering features, (c) model
training, and (d) model validation and testing. Nturambirwe & Opara (2020) provide a compre-
hensive overview of common machine learning algorithms and corresponding learning tasks with
regard to applications in food processing.

Optimizing food processes often requires creating a model of the system. A mechanistic un-
derstanding of a food processing operation can be difficult to obtain because of the intertwined
influences of processing parameters on the product quality, i.e., multiple inputs and multiple
outputs, and the complexity of the food materials. A typical example of such a system that has
challenged food technologists for decades is extrusion. Operators struggle to identify unambigu-
ous relations between the extrusion performance (e.g., finished product quality) and independent
variables (e.g., barrel temperature). Developing mechanistic models (a white-box model) to fully
capture the extrusion performance is challenging and often unrealistic because of the intercon-
nection between many processing variables and the complex and often nonlinear response of
the extruded materials. As a result, semimechanistic models are commonly applied to identify
qualitative and/or semiquantitative relations between the inputs and outputs (Walstra 2002).

Data-driven machine learning (i.e., a black-box model) circumvents the requirement for
mechanistic insights by capturing the correlations between the input parameters and the em-
pirical performance. Nonlinear and multidimensional machine learning models make it possible
to include the complexity of food materials and products. The models are therefore trained
purely based on linking inputs and outputs from experimental data. Training such a model
for a reasonably complex system requires large amounts of well-structured data. Such training
data commonly exist in the form of images and spectra, leading to deep learning–based models
to evaluate food qualities (e.g., detection of fruit damage and color change during storage)

www.annualreviews.org • Machine Learning in Automated Food Processing 29
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Figure 2

A conceptual illustration of different modeling approaches: black-box models (purely data-driven models),
gray-box models (a hybrid modeling approach), and white-box models (mechanistic models). Inputs for
gray-box models are collected and structured based on mechanistic insights into problems to be solved.
Gray-box models make predictions based on data input. The models are validated with unseen data from the
same database and can be deployed in the existing production system. Finally, analyzing the models may
provide semi-mechanistic insights into the domain problems.

(Nayak et al. 2020). However, extending the black-box approach to model process parameters and
raw ingredient compositions poses difficulties due to data scarcity and lack of relevant validations.

Because these black-box models solely capture empirical correlations in the existing data set,
they are not well suited to extrapolate to unknown combinations of process parameters and/or
raw ingredients. In the case that some insight into the system’s behavior is known in advance, a
hybrid approach (a gray box) combining the genericity of mechanistic models and the effectiveness
of machine learning models can be preferable (see Figure 2). A gray-box modeling approach
combines data-driven machine learning and first-principle models. This combination can reduce
the model’s complexity and consequently reduce the amount of data needed to train the model
by using mechanistic insight to generate a decision from measured data. The concept of gray-box
models is elaborated below, and examples are given in the form of a case study in the extrusion-
based 3D printing of food.

2.3. Recent Development and Potential Applications

Machine learning may help solve problems and challenges in the food domain with high accuracy
and efficiency, which are not easily solved by using traditional approaches (Sharma et al. 2020).
Machine learning finds applications in the domain of food processing, ranging from formulation
development and process (and unit operation) optimization to product quality assessment. For
example, the techno-functional properties (e.g., viscosity) that raw food ingredients affect in end
products can be predicted using machine learning models (Lie-Piang et al. 2023). Optimization
of unit operations in food manufacturing such as dough mixing (Aljaafreh 2017) and beer fermen-
tation (Bowler et al. 2021) is achieved by training models on process data acquired via sensors,
which are then employed to continually adjust the process parameters. Moreover, food quality
assessment tools, such as for sensorial evaluation of cheese (Rocha et al. 2020) and classifying the
crispiness-related freshness of puffed snacks (Sanahuja et al. 2018), are being developed using ma-
chine learning. Table 1 lists some representative studies related to using machine learning for
food processing applications.

30 Zhang • Boom • Ma



D
ow

nl
oa

de
d 

fr
om

 w
w

w
.a

nn
ua

lre
vi

ew
s.

or
g.

  G
ue

st
 (

gu
es

t)
 IP

:  
13

7.
22

4.
25

2.
11

 O
n:

 T
hu

, 1
2 

Ju
n 

20
25

 1
4:

16
:2

0

FO16_Art02_Boom ARjats.cls April 7, 2025 11:48

Table 1 Selected studies on machine learning for (automated) food processing systems

Reference Topic
Lie-Piang et al. 2023 Machine learning models to predict techno-functional properties of less-refined food ingredients
Ma et al. 2021 Predicting extrudability of 3D food printing based on printing settings and rheological data of food

inks
Bowler et al. 2020 A review on inline sensing techniques used to optimize industrial mixing processes of liquid–liquid,

gas–liquid, solid–liquid, solid–gas–liquid, and solids
Sun et al. 2019 A review on intelligent drying technologies and applications
Simeone et al. 2018 Optical monitoring system based on a digital camera and ultraviolet light source to assess fouling in

process tanks and predict the required cleaning time
Bowler et al. 2021 Predicting the alcohol concentration during beer fermentation with machine learning models built

on ultrasonic sensor data
da Silva Cotrim et al. 2021 Nondestructive tool to classify bread-baking stages based on color changes of the crust
Du & Sun 2006 A review on applications of computer vision for food quality evaluation
Yu et al. 2018 A review on computer-based approaches to flavor and sensory analysis
Jimenez-Carvelo et al. 2019 A review on data-analyzing methods applied in food quality and authenticity
Sanahuja et al. 2018 Classification of puffed snack freshness based on crispness-related properties using data obtained

from mechanical tests (i.e., force and sound)
Gonzalez Viejo et al. 2018 Assessing beer quality based on foamability and chemical composition using computer vision and

near-infrared spectroscopy

The available studies mainly aimed to use machine learning models to achieve production con-
sistency (i.e., addressing variations within the process operation itself ) and/or demonstrate the
process of developing machine learning models and evaluating their performances. The integra-
tion of sensing and machine learning–based decision-making into one automated food processing
system is still in early development. Here, we discuss the potential of automated food processing
in terms of its adaptability to (a) raw material variations and (b) varying product quality require-
ments. Consistency, accuracy, and reliability are key requirements for successful automated food
processing.

Industrial food production starts with formulation development using raw ingredients. Raw
food materials are often quite variable because of their nature as biological matter. The variability
of raw food materials is expected to increase as we transition toward lower degrees of refinement
to reduce the environmental footprint and address the societal pressure to produce less-processed
foods. In a recent study, multiple techno-functional properties of ingredient blends from different
origins were predicted using machine learning.This study demonstrated its potential to formulate
food products (Lie-Piang et al. 2022, 2023). Once established, these models were used to find
the parameter space available for achieving the desired products and then optimized within this
space toward sustainability (e.g., global warming potential). The trained models could also aid
in the identification of alternative raw materials to maintain functionality consistency for a given
product application.

Variations in raw materials can complicate a production process, causing process disturbances
and undesired variations in finished products. Integrating advanced sensing technologies into
robotic or automated food production machinery or systems can potentially alleviate these com-
plications.Conventional equipment in the food industry works most efficiently with large volumes
of materials and products of constant quality. Raw food materials may be complex and are not al-
ways amenable to automated processing procedures (Chua et al. 2003). For example, food raw
materials are not uniform in size, shape, and consistency and are often used to prepare not one
but a variety of products. A sensor-integrated automated food processing system could potentially

www.annualreviews.org • Machine Learning in Automated Food Processing 31
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adapt to such complexity. For example, a 3D-vision-guided robotic concept could be developed
for chicken fillet harvesting, which could potentially increase yield and reduce waste (Misimi et al.
2016). The developed robotic system could adapt to the birds’ anatomical variations. A machine
learning algorithm processes images of the fillets from an RGB-D camera, uses this information to
locate the initial contact point for a grasping motion, and then employs a feed-forward algorithm
to control the robot arm and generate the motions to cut off the fillet (i.e., grasp and hold, pull
down, and release).

Mass customization is the progressive hypersegmentation of food products toward specific
archetypes of consumers. We, as consumers, all like to prepare special and new foods to cele-
brate and enjoy each other’s company and vary our foods to keep our palate interested, and we all
have different nutritional requirements. Preferences in foods may stem from our state of nutri-
tion (under- or overweight) or general health, our age, or our genetic or phenotypic susceptibility
(Braconi et al. 2019). The current food industry excels in efficiently producing very large numbers
of the same foods but not in providing every consumer with their own personal product. There is
an increasing demand to address the specific needs of targeted groups of consumers. Personalized
nutrition is especially useful for specific consumer archetypes such as recovering patients, preg-
nant women, school children, and athletes. However, our current production processes are not
suitable for mass customization. Automated food processing systems and machine learning could
aid in making processes more flexible toward production of smaller numbers of different products.

Automated food processing could also directly help consumers. For example, an automatic food
image recognition systemwas developed to estimate the food intake of Parkinson’s disease patients
(e.g., classification and recognition of food and drink). This tool or similar ones can provide a
dietary assessment to help reduce undernutrition (Mezgec & Korousic Seljak 2017) or could help
with evaluation of the nutritional intake for dysphagia patients (Pfisterer et al. 2018). Sharing
these data with food manufacturers could directly help product innovation. This is an example of
bringing consumers closer to innovation in the food sector.

The ultimate form of automated and personalized food processing would be direct consumer–
machine interaction. For example, researchers developed automated image analysis methods to
validate 3D food printing accuracy measurements based on inputs from human evaluators (Ma
et al. 2023b) and contextualize the computed fibrousness ratings of meat analogs with expert
panel evaluations (Ma et al. 2024). Both studies show automated image analysis methods could
become a standard tool integrated into formulation development, quality control, and assessment
in food production.

2.4. Case Study: Machine Learning for Extrusion-Based 3D Food Printing

As an integrated process concerning both raw ingredient variations and the diverse range of
consumer demand, 3D food printing positions itself as a representative case to illustrate the
contribution of machine learning to empower automated food processing. Although the case is
application specific, the challenges highlighted here are generic and may be translated to other
types of food processing.

3D food printing, or additive food manufacturing technology, may help realize the mass cus-
tomization and personalized nutrition that was discussed in the previous section because of its
capability of rapid prototyping (Sun et al. 2018). However, currently available 3D food printing
technology still has low adaptability to the complexity and variability of raw materials and highly
customizable product designs. The variations in the functional properties of food materials con-
taining multiple compositions (e.g., rheological properties) make both formulation design and
process optimization challenging and time-consuming (Ma & Zhang 2022). The limited under-
standing of the relationship between the functionality of ingredients and the printing behavior
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of food materials (e.g., extrudability and stability) restricts the range of food product personaliza-
tion. 3D food printing presents a representative case of variability challenges from raw materials
and mass customizations in the field of food processing. In this case study, we discuss the use
of automated food processing strategies to improve the efficiency of extrusion-based 3D food
printing.

The rapid development of sensing technologies, machine learning algorithms, and robotic
technologies offers new opportunities to develop the next-generation 3D food printer (Urhal et al.
2019). Specifically, the printing behavior of foodmaterials can bemonitored by vision sensors such
as a digital camera or infrared camera (Ma et al. 2022).Material properties of a given food material
(so-called food inks) can be reliably calibrated using computer vision techniques under relevant
processing conditions (Ma et al. 2023a).Using data collected by these vision sensors, advanced sig-
nal processing based on computer vision is used to optimize processing parameters in 3D printing,
e.g., printing temperature, printing speed, and moving profiles of the printhead. Some vision sen-
sor applications can also evaluate the success and failure of the 3D printing job to quantitatively
assess the degree of printing accuracy and defect rate as compared to the original digital design
(Roland Outrequin et al. 2024).

The rapid and automated quality assessment based on machine vision sensors can also pro-
vide valuable labels for training machine learning models. When the monitoring and evaluation
sensors are deployed to 3D food printing operations, acquired data are collected into a food
printing database for machine learning applications. For example, machine learning models were
built to link material rheological properties of the printed material to printing parameters based
on the XGBoost algorithm (Roland Outrequin et al. 2024). Although instrumental rheological
measurements can serve as valid model inputs to characterize food printing material variabil-
ities, Ma et al. (2021) applied the Hagen–Poiseuille model for flow (i.e., mechanistic insights)
to produce 3D-printer-generated variables for a gray-box prediction model that predicted the
extrudability of food materials based on printing parameters and material properties. By using
3D-printer-generated variables, the gray-box model simplifies the rheological measurements for
high-throughput data collection.

The empirically collected data were then used for predictive modeling, which further advances
the experimental measurements into data-driven models. A combination of sensor development
and predictive modeling demonstrates the concept of adaptive additive manufacturing as a show-
case of an automated food processing system (see Figure 3). Such a 3D food printer could also be
used to develop functional food products for the general public or consumers with special needs
such as astronauts, school children, elderly people, and dysphagia patients.

3. CHALLENGES AND RELEVANT RESEARCH QUESTIONS

Some challenges for the future development of automated processing systems for smarter food
manufacturing are foreseeable. In an industrial setting, the adaptation of robotic systems is mainly
based on raw materials and semifinished product variations. Real-time parameter adjustment re-
quires high operation speed and a very short latency time between sensing and actuation. For
example, image acquisition and analysis via vision cameras could be computationally intensive,
but optimized machine learning algorithms may meet the requirement for calculation speed to
overcome this challenge, especially when carried out with dedicated neural processing units. In the
meantime, process monitoring data may exist in different forms as images, spectra, and other mul-
tidimensional sensing signals. Developing suitable multimodal data structures therefore becomes
an emerging area of research. Pre-trained foundation models in deep learning may be able to ad-
dress this challenge, as these large-scale models are capable of encoding various data sources such
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Figure 3

A conceptual design of an extrusion-based 3D food printing system integrated with vision controllers and a responsive database.
Figure adapted from Ma (2024).

as images, text, and numerical inputs.The encoded data can then be further trained into specialized
machine learning models that can predict parameters of interests related to food processing tasks.

In general, the cost of implementation and maintenance of such systems in existing manufac-
turing cycles is of great concern to food companies, as foods are low-margin products that only
generate substantial profits at large quantities. Tasks performed by any automated food process-
ing system should bring commercial advantages (e.g., increased operator safety or product quality)
and should be technically feasible at low cost. Designing modular and retrofitted automated food
processing units may be desirable to popularize our proposed approach. In the meantime, proper
investment into digitization and automation grants opportunities to food companies to transform
their current ways of working.

In a consumer or retail setting, automated systems could collect direct feedback from con-
sumers on the changing needs and preferences. In the setting of a kitchen, restaurant, supermarket,
or warehouse, automated food process systems could offer direct interaction between the machine
and the consumer. These systems should operate safely under conditions that are benign to hu-
mans and would require human intervention, such as selection from amenu or changing cartridges
for a 3D food printer, but would also allow feedback that could be directly translated into the adap-
tation of the formulation or product design, thus creating a consumer-driven product automation
feedback loop.

Future development of automated process systems for sustainable food production requires a
multidisciplinary approach that combines knowledge in the fields of process engineering,mechan-
ical engineering, systems engineering, and social science (e.g., human–robot interaction, consumer
behavior). Implementing closed-loop control strategies will help deploy automated sensor data
analysis methods in real food production. When designing control algorithms based on inline
sensor data, inputs from users of the machinery could also be taken into account to improve the
relevance of the control action (e.g., changing 3D printing settings to achieve print quality that
is approved by the consumers). In addition, to further implement a functionality-driven approach
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for food formulation, developing a robotic platform equipped with analytical instruments (e.g.,
inline sensors) to automatically measure the properties of food materials is necessary to avoid
a labor-intensive experiment. For this, standardized analytical methods (e.g., gelling properties,
water-holding capacity, emulsifying properties) for food material properties need to be developed
to ensure the quality of the obtained data and improve the applicability of the results in different
lab settings.

4. CONCLUSIONS

In this review, we discussed machine learning applications that enable automated food processing
with high adaptability against raw material variations and mass customization. Such adaptivity
will eventually be beneficial in designing healthy and tasty foods, optimizing process conditions
for sustainable food production, realizing mass customization of food for personalized nutrition,
and facilitating human–machine interaction. We also expect that further development of such
systems will accelerate the integration of a more sustainable food supply chain based on the joint
force from academia and industry.
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