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ARTICLE INFO ABSTRACT
Keywords: Smallholder farmers in Ethiopia generally do not have access to soil testing services for nutrient management
Ethiopia planning decisions; as soil analysis is too costly for most farmers. Fertiliser advice is generally accessible via

Diagnostic features
Environmental covariate
Nutrient content

blanket recommendations at a national scale. Hence, an alternative approach is needed to estimate soil nutrient
content across the diverse landscapes of Ethiopia. In this study, we propose using diagnostic features to estimate
soil nutrient content, which could contribute to the development of fertiliser recommendations. To achieve this
the following objectives were defined: (i) to estimate soil nutrient content as influenced by soil diagnostic fea-
tures; and (ii) to elucidate the influence of environmental covariates and diagnostic features on the estimation of
soil nutrient levels in the Ethiopian context. Data from 550 soil profiles, distributed across Ethiopia, were
collected from a range of published sources, collated and harmonised. The data were cleaned, and 496 soil
profiles were prepared for modelling. To identify which diagnostic characteristics were present across these soils
we applied a presence/absence scoring method to identify dominant diagnostic features. Multiple linear
regression analyses were used to predict soil chemical properties from the diagnostic features and diagnostic
features along with environmental covariates. The performance of the models was evaluated by applying a 10-
fold cross-validation using mean error (ME), Lin’s concordance correlation coefficient (LCCC), root mean square
error (RMSE) and model efficiency coefficient (MEC). The MEC values for pH, TN, and CEC derived from a
combination of diagnostic features and environmental covariates were 0.38, 0.33, and 0.38. The corresponding
RMSE values were 0.78, 0.07 %, and 13 cmol kg’l. Additionally, the LCCC values for pH, TN, and CEC were 0.62,
0.58, and 0.62, respectively. The cross-validation results for soil chemical properties showed that the model’s
performance improved when environmental covariates were added. Precipitation, temperature, geology and land
cover were the most important environmental covariates for estimating nutrient content, along with diagnostic
features of Ethiopian soils. In conclusion, the diagnostic approach offers a useful starting point for estimating soil
nutrient content. However, the variation in nutrient content across the six diagnostic features was not adequately
quantified, and the model’s predictive performance remains insufficient for practical application at the local
scale. Further expansion of the dataset is required to fully exploit the potential of these models for underpinning
nutrient management decisions across Ethiopia and in other regions where access to soil test information is
limited.
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1. Introduction

Achieving food security was one of the Global Sustainable Devel-
opment Goals (SDGs) approved by all member countries of the United
Nations (UN) in 2015. The goal is to end extreme poverty and malnu-
trition and promote inclusive economic growth in all forms globally by
2030 (Assefa et al., 2017). However, ensuring food security in a world
with a growing and more demanding population is an urgent and
complex global challenge (Bhat et al., 2023). The situation is exacer-
bated by changing climate conditions, environmental degradation and
often geo-political instability. In countries that are not part of the Or-
ganization for Economic Co-operation and Development (OECD), such
as Ethiopia, food insecurity has been a serious problem for several de-
cades (Paul et al., 2016). The Ethiopian government instigated a na-
tional food security framework in line with the goals for SDG 2 (zero
hunger) in 2015 to reduce population undernourishment O’Keeffe
(2016), with the goal to enhance agricultural productivity (by providing
farmers with better seeds, fertilisers, irrigation systems and training on
sustainable farming techniques). This was further supported by the
productive safety net programme, which aims to provide a critical safety
net for chronically food insecure households (Wubetie et al., 2023).
However, despite the remarkable progress that has been achieved, large
parts of Ethiopia continue to face limited food production due to envi-
ronmental degradation, exacerbated by lack of support for farmers to
implement effective nutrient and soil management practices (Bizikova
et al., 2022, 2023).

One of the challenges limiting agricultural productivity in Ethiopia is
suboptimal nutrient management and declining soil fertility. The
country faces high rates of soil nutrient mining, which further hampers
crop yield and sustainable farming (Tesfay et al., 2010; Van Beek et al.,
2016). For example, in a Teff-based (Ethiopian cereal) farming system,
Haileslassie et al. (2005) reported negative partial nutrient balances for
N (-25kgN ha~! yearfl) and K (—87 kg K ha! year’l) in the central
highlands of Ethiopia. Abegaz et al. (2007) studied the nutrient balance
of three soil types from the Atsbi catchment of Tigray and showed
nutrient depletion rates of 76 kg ha™! and 63 kg ha™! for N and K,
respectively. More widely, Haileslassie et al. (2005) calculated that the
national nutrient depletion rate for N, P and K were 122 kg N ha™?
year !, 13 kg P ha ! year ! and 82 Kg K ha! year™?, respectively. This
issue is further compounded by the country’s diverse soil landscape,
which is influenced by varying topographical and geological conditions
(Berhane et al., 2013; Tura, 2017). This geological diversity has given
rise to major soil groups such as Vertisols, Cambisols, Nitisol, Luvisols,
Leptosols and Fluvisols, which are distributed across different regions of
the country (Ali et al., 2024). This variation in soil reference groups
requires a more nuanced site-specific management approach to address
the nutrient depletions, as this is not currently achieved through the
blanket fertiliser recommendations.

A major challenge in estimating the nutrient content of soils in
Ethiopia is not the lack of spatially explicit soil data, but rather the
fragmented and scattered nature of existing datasets. These data are
distributed across various institutions and individuals, limiting their
widespread use Ali et al. (2020) and many soil profiles lack soil chemical
property data, which is needed for nutrient management strategies. To
overcome this challenge, initiatives such as the Coalition of the Willing
(CoW) are working to consolidate existing soil datasets into one acces-
sible platform (Ali et al., 2024). In the absence of a locally relevant soil
information system, soil fertility management decisions are mostly made
based upon blanket national recommendations or by making regional
specific fertilisers which include a blend of nutrients derived from the
EthioSIS soil fertility map (Elias et al., 2023). These blends are recom-
mended to farmers to replace the national blanket recommendations,
but are often not suitable at a local (field) scale, as they rely on district
level soil fertility conditions that do not account for local soil variability
or specific farmer needs. At a national scale the soils of Ethiopia have
been mapped at an exploratory scale (1:2,000,000), which does not
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provide the detailed information needed for soil management decisions
at the finer spatial scales of farm or field. More recently, there has been a
renewed focus on the need for more local soil information. For example,
Elias (2016) and Leenaars et al. (2020) described the soils of the Ethi-
opian highlands at a scale of 1: 250,000 in 30 high potential districts for
crop production, aiming to formulate fertiliser recommendations and
develop integrated soil fertility management tools. Similar efforts were
made to map soil properties of Africa at 250 m resolution for the esti-
mation of soil nutrient content (Hengl et al., 2017). However, existing
maps still lack the accuracy needed for site-specific nutrient recom-
mendations. On the other hand, laboratory analyses (or soil scanners)
are inaccessible to most smallholder farmers, due to the unaffordable
costs of logistics of sampling and sending samples to the labs (Gobezie
and Biswas, 2023). This requires the need for an alternative tool, which
would be freely available to farmers to help them predict the nutrient
content of their soils, as a contribution to improving their understanding
of the nutrient content of their fields and the associated fertiliser
requirements.

Recent studies have focused on addressing these gaps through
diagnostic approaches that integrate soil characterization, classifica-
tions and mapping. Leenaars et al. (2021) conducted a semi-detailed
survey across Ethiopia, disentangling WRB soil classification into diag-
nostic features and mapping them using environmental covariates. This
approach provides insight into soil nutrient variation and supported the
formulation of site-specific fertiliser recommendation. Diagnostic fea-
tures, a central component of this approach, serve as practical proxies
for soil properties, offering an alternative to extensive laboratory ana-
lyses. While the diagnostic approach does not provide the detailed
assessment of nutrient availability of a specific soil as laboratory anal-
ysis would, it provides a more nuanced approach compared to blanket
recommendations. Building on these achievements, in this paper we
propose the concept of diagnostic classes to characterise the variation in
nutrient status for six diagnostic features commonly found in Ethiopia.
The diagnostic approach involves the use of diagnostic features derived
from the WRB classification to describe differences between contrasting
soils (IUSS Working Group WRB, 2015). These diagnostic classes were
then assessed for the variation in soil properties related to soil nutrient
content. In this paper, we harmonised data from 550 soil profiles from
across Ethiopia to: (i) estimate soil nutrient content as influenced by the
diagnostic features; and (ii) elucidate the influence of environmental
covariates and soil diagnostic features on the estimation of soil nutrient
levels in an Ethiopian context.

2. Materials and methods
2.1. Data collation method

In total, data from 550 soil profiles were collated across the country
of Ethiopia. Input data were derived from soil scientists, institutions,
published papers and grey literature (Suppl. Table: SI1). While several
initiatives have focused on improving soil fertility information across
Ethiopia or mapping and classification of soils (Ali et al., 2024), these
two types of soil information are rarely considered together. This paper
recognises the variation in soil forming process, which leads to differ-
ences in genetic soil horizons, materials and properties, and focuses on
the relationship between these genetic features and chemical properties.
This has resulted in the compilation and harmonization of soil profile
data from 550 soil profiles across Ethiopia with associated soil nutrient
laboratory data (Fig. 1).

2.2. Scoring of dominant diagnostic features

The dominant diagnostic features within the WRB framework are
diagnostic horizons, properties and materials. Reference soil groups
(RSGs) were classified according to the WRB framework. These classi-
fied RSGs were further categorised using a presence/absence probability
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Fig. 1. Spatial distribution of the soil reference groups across Ethiopia, as mapped by Ali et al. (2024) and the distribution of 550 soil profiles collected for this study
across the country. Most of soil profiles are concentrated in the highlands of Ethiopia where intensive agricultural activities are employed.

approach, grouping them based on dominant diagnostic features. This
does not imply that it lacks other diagnostic features or characteristics,
rather it may or may not contain additional diagnostic features and
characteristics together with the dominant horizon. Thus, the approach
provides a practical means of assessing the presence/absence of the
dominant diagnostic features (Minasny et al., 2010; IUSS Working
Group WRB, 2015; Simo et al., 2015; Michéli et al., 2016). These can be
applied either in the field during examination and classification of a soil
profile or applied where legacy data and descriptions exist from previous
surveys. For Ethiopia, a comparable approach has been applied by
Leenaars et al. (2021) who disentangled and mapped some 50 diagnostic
features from surveyed and classified profile data. The diagnostic fea-
tures are determined from specific combinations of soil properties which
have developed as a result of dominant soil forming processes. These
features generally manifest in the subsoil, though with a likeliness to
influence the chemical properties of the surface soil. This approach
considers that surface soil properties are influenced by subsurface
diagnostic horizons, materials and qualifiers. For example, a vertic ho-
rizon characterized by shrink-swell clays, affects surface soil properties
through a self-mulching process. The argic horizon influences the sur-
face horizon by depleting clay and nutrient through eluviation, which
can reduce soil fertility, affect water movement and alter soil structure.
The surface properties of leptic soils can be strongly representative of the
very shallow depth to underlying rock or parent material, which often
occurs within 25 cm depth. These relationships highlight the intercon-
nection between subsurface features and surface soil chemical charac-
teristics. Accordingly, only soil chemical data relating to the surface are
presented in this paper, as the most critical soil layer for nutrient
management decisions. Presence or absence of diagnostic features was
identified according to the method described by Minasny and McBrat-
ney (2007). The dominant diagnostic feature were coded ‘0’ when not
present in the soil profile and ‘1’ when the diagnostic feature is a cri-
terion or dominant for the selected soil profile. This approach was used
to assign scores of dominant identifier diagnostics from all soil profiles
collected. For example, we found 156 soil profiles that had vertic

diagnostic horizons, 97 of which were dominant for vertic properties
and 59 not dominant yet containing vertic properties. In this paper, six
commonly found diagnostic features (vertic, cambic, argic, fluvic, nitic
and leptic) were coded according to the aforementioned approach
(Table 1). Diagnostic features that did not fit into the six main categories
were classified as ‘other’. A total of fifty-four diagnostic horizons fell
into this ‘other’ category and were subsequently removed from the
analysis, therefore resulting in 496 profiles for further data analysis.

2.3. Assessing the variation of soil properties across the different soil
diagnostic features

For the diagnostic features presented in Table 1, summary statistics
were derived by extracting diagnostic features and their associated soil
properties. The diagnostic features were then assessed for variation in
soil properties and in particular soil nutrient concentrations. The soil
chemical properties included in this study were pH, OC (%), TN (%), P
(mg kg™1), and K, Ca, Mg and CEG, all expressed in cmol kg . Details on
the laboratory procedures are provided in the supplementary informa-
tion (Suppl. Table: SI2). Box and whisker plots were used to reveal the
minimum, maximum, median and quartiles of chemical properties for
individual diagnostic features.

2.4. Multiple linear regression analysis

To estimate the soil nutrient content, we performed multiple

Table 1
Dominant and present diagnostic features.
Diagnostic features vertic ~ cambic  argic nitic  fluvic  Leptic
Dominant (D) 97 107 114 70 23 85
Present but not dominant 59 7 40 0 13 65
®)
Dominant and Present (D 156 114 154 70 36 150

+P)
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regression analyses to evaluate the relationship between soil properties
(dependent variables) and diagnostic features, as well as diagnostic
features combined with environmental covariates (independent vari-
ables). Initially, we conducted multiple regression analyses using only
the diagnostic features as covariates to assess their ability to explain
variation in soil chemical properties and estimate nutrient content.
Subsequently, we performed additional multiple regression analyses
incorporating environmental covariates along with the diagnostic fea-
tures, to evaluate their combined contribution to explaining soil nutrient
content. Around fifteen environmental covariates related to soil forming
factors were considered (Regmi and Rasmussen, 2018). These environ-
mental covariates were collected from ISRIC-World Soil Information,
organised for Ethiopia at 250 m resolution from various sources (Suppl.
Table: SI3). In each step, the environmental covariates are evaluated for
addition to or subtraction from the set of covariates based on the step
Akaike Information Criterion (stepAIC) (Zhang, 2016). The subtraction
step iteratively eliminates the least informative covariates from the
model. Accordingly, seven environmental covariates were finally
selected based on their significance and ability to explain the variation
in soil chemical properties, which included terrain slope, elevation,
topographic position index, geology, land cover, mean annual temper-
ature and precipitation. These selected covariates were considered as
environmental indicators that influence the spatial distribution of soil
chemical properties in the study area along with the diagnostic features.
In multiple regression models, categorical variables for diagnostic fea-
tures and environmental covariates were dummy-coded, with one
category set as the reference class (intercept). This baseline allowed the
effects of other categories to be interpreted relative to the reference class
or intercept. The reference classes we used were cambic for diagnostic
feature, basic volcanic for geology, natural vegetation for land cover,
humid for precipitation, sloping for slope terrain, middle slope for
topographic position index and cold for temperature. Among the dataset
OC, TN, P and K content did not show a normal distribution hence, prior
to regression modelling we applied a natural logarithm transformation
method to better meet the normal distribution assumptions (Suppl.
Figure: SI1). Subsequently, most of the observations were symmetrically
distributed around the mean, except logTN, which was still somewhat
skewed to the right. After analysing the log-transformed data, the results
were back-transformed to their original scale for presentation. However,
the data transformation step was not applied for the summary statistics,
which were calculated on the raw data.

2.5. Validation and model evaluation

Prediction performance of the multiple linear regression model was
evaluated using a 10-fold cross-validation procedure, using R software.
The original dataset is randomly divided into ten equally sized subsets.
The model is trained on nine of these subsets and tested on the
remaining subset, ensuring that no data from the same profile appears in
both training and test datasets. This procedure is done ten times itera-
tions, each time withholding a different subset for testing. Performance
metrics are computed over all test sets combined so that these metrics
are effectively based on all observations. Four metrics were used to
verify the performance of MLR models: the mean error (ME), root mean
square error (RMSE), model efficiency coefficient (MEC) and Lin’s
concordance correlation coefficient (LCCC). These metrics were
computed as follows.

Ign
ME="% ' (Pi—0) )}

_ AN e 02
RMSE = HZ(PI 0) 2

i=1
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where P; and O; are the predicted and observed soil chemical properties;
n is the number of observations; P and O are the means for the predicted
and observed soil nutrient content; 63 and 63 are the variances of
observed and predicted values; and r is the Pearson correlation coeffi-
cient between the predicted and observed values. ME indicates possible
bias, RMSE measures the quality of the predictions, MEC measures the
predictive performance of the model, and LCCC measures the degree to
which the predicted and observed values follow the 1:1 line.

2.6. Software and statistical packages used in this study

All statistical analyses and modelling were conducted in R software
version 4.3.1 (R Core Team, 2023). Point data were overlain on the
environmental covariate maps to extract the associated covariate values
for each soil profile location creating a spatial data frame using the “sp”
R package. Data were assessed for regression assumptions using the
“car” R package. In this study, the argument stepAIC function was
assigned to a combination of forward and backward elimination in the
“Mass” package (Zhang, 2016). The relative importance of each envi-
ronmental covariate in MLR model was assessed by the “relweights”
function in the “car” package assesses the relative importance of cova-
riates in a regression model and calculates these relative weights by
evaluating how each covariate contributes to the model’s explanatory
power across all possible sub models (Kabacoff, 2011). The “hydroGOF”
and “relaimpo” R statistical packages were used to measure the pre-
dictions of a statistical model align with the observed data and compute
cross-validation metrics, respectively.

3. Results
3.1. Variation of soil chemical properties across the diagnostic features

Table 1 shows the number of profiles where the dominant diagnostic
features were classified (i.e. designated as a diagnostic feature) and
where features were recognised as diagnostic properties, but this did not
result in a diagnostic horizon designation (present but not dominant
properties).

Fig. 2 displays boxplots of soil properties across diagnostic features.
These boxplots provide a visual summary of the distribution of each of
the soil properties associated with each diagnostic feature. The central
tendency of the data is highlighted by the median, while the inter-
quartile range indicates the variability within each class.

3.2. Diagnostic features as predictors of soil chemical properties

Multiple linear regression coefficients in Table 2 show that there
were significant variations in soil pH, organic carbon (OC), total nitro-
gen (TN), available phosphorous (P), exchangeable Mg and K and cation
exchange capacity (CEC) contents among the diagnostic features. In this
analysis, the cambic horizon was used as the reference class. The lowest
average pH value was found in nitic and argic horizons (5.9), which had
significantly lower pH values compared to the cambic horizon. Simi-
larly, the highest average contents of OC (3.2 %), TN (1.2 %) and CEC
(41 cmol kg™!) were found in both the nitic and argic horizons with
significantly higher values compared to the cambic horizon, whereas the
lowest values for these three parameters were obtained in soils with a
leptic diagnostic horizon. Total nitrogen and CEC were also significantly
higher in soils with vertic properties compared to a cambic horizon. In
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Fig. 2. Comparison among diagnostic features against the soil chemical properties with data sets of (vertic = 97; argic = 114; cambic = 107; leptic = 85; nitic = 70
and fluvic = 23). The dark lines represent the median value, box represents the interquartile range, tails represent minimum and maximum values, and the outliers
are represented by dots for the selected soil chemical properties (pH, OC, TN, P, Ca, Mg, K and CEC).

soils with fluvic features CEC was also significantly higher compared to a
cambic horizon. Some of the exchangeable bases varied significantly
among the diagnostic features. Exchangeable Mg concentrations were
found to be significantly higher in soils with vertic properties compared
to a cambic horizon. Similarly, nitic, vertic and argic were obtained to be
statistically significant for K when compared to soils characterized by a
cambic horizon. The diagnostic features demonstrated varying degree of
explanatory power for different soil chemical properties, as measured by
the MEC. For all soil chemical attributes, the diagnostic features

accounted for less than 10 % of the variance, only those with a MEC >
10 % presented as an example. The model efficiency coefficient from the
multiple linear regression analysis showed that the diagnostic features
when considered in isolation, accounted for only 15 % of the variability
across the soil profiles for pH, 17 % for TN and 18 % for CEC (Table 4).
These values indicates that the diagnostic features captured a moderate
proportion of the variability in these three properties. For the remaining
soil chemical properties, the explanatory power was more limited.
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Results of multiple linear regression coefficients for prediction models of the diagnostic features (estimates with SE in parenthesis*).

diag. feat. pH 0OC (%) TN (%) P (mgkg™ 1) Ca (cmol kg 1) Mg (cmol kg™1) K (cmol kg™") CEC (cmol kg™1)
Intercept 6.7 (0.08) 2.5 (1.03) 1.13 (1.00) 12 (1.07) 16 (0.92) 5.9 (0.33) 1.4 (1.03) 28 (1.41)
Argic —0.75%** (0.12) 0.58*** (0.04) 0.07*** (0.01) —2.2* (0.13) 2.2 (1.28) 0.026 (0.46) 0.15* (0.05) 7.4*%* (1.95)
Fluvic 0.38 (0.20) 0.07 (0.07) 0.03 (0.02) —1.6 (0.23) 3.4 (2.19) —0.47 (0.79) 0.18 (0.07) 6.6* (3.34)
Leptic 0.10 (0.13) —0.26* (0.04) —0.31** (0.01) 2.8 (0.13) —0.21 (1.30) —0.56 (0.50) —0.06 (0.04) —7.4%%* (2.11)
Nitic —0.76*** (0.14) 0.69*** (0.14) —2.9%*% (0.14) 1.9 (1.46) —0.032 (0.53) xxx (2.23)
Vertic —-0.19 (0.12) 0.13 (0.15) —2.2(0.13) 2.6 (1.33) 2.6%** (0.48)

*Estimate (SE) = estimated coefficient and standard error; Diagnostic features (diag. Feat.): Highlighting distinctive features of soil profile; *, ** and *** indicates

significance at the 5 %, 1 % and 0.1 % probability level, respectively.

3.3. Diagnostic features and environmental covariates as predictors of soil
chemical properties

The model efficiency coefficient from the multiple linear regression
analysis showed that the diagnostic features when considered in isola-
tion was limited. Further multiple regression analyses were used to
ascertain if other environmental covariates could improve the explained
variance. This further analysis showed some improvement in the

Table 3

model’s accuracy for predicting the soil chemical properties (Table 3).
The environmental covariates: precipitation, diagnostic features and
land cover together explained 38 % of the total variability in pH.
Temperature did not significantly contribute to variance in pH. In the
model prediction, argic and nitic diagnostic horizons had significantly
lower pH compared to the cambic horizon. Similarly, among the pre-
cipitation categories, soils in moist, sub- moist and sub-humid regions
had significantly higher pH values compared to humid regions. For TN,

Results of multiple linear regression coefficients for prediction models of diagnostic features and environmental covariates (estimates with SE in parenthesis*).

Environmental covariates

Model coefficient of soil chemical properties

pPH oC TN P Ca Mg K CEC
% % mg kg ! cmol kg !
Intercept 5.2 (0.48) 4.9 (1.18) 1.2 (1.06) 3.7 (1.77) 10 (4.99) 4.1 (1.76) 1.6 (1.07) 45 (7.76)
—0.36**
Argic (0.11) 0.48* (0.05) 0.05** (0.01) —0.33(0.22)  2.10(1.31) —0.53 (0.45) ns 3.3(1.93)
Fluvic 0.28 (0.18) 0.31 (0.08) 0.04 (0.02) —0.39(0.38)  3.60 (2.16) —0.03 (0.74) ns 6.6* (3.13)
Leptic 0.08 (0.11) —0.36 (0.04) —0.03** (0.01) 0.64* (0.22) 0.87 (1.37) —0.16 (0.47) ns —4.5% (2.02)
_0.37'1(7‘:
Nitic (0.12) 0.42 (0.06) 0.05** (0.01) —0.62 (0.26)  1.50 (1.52) —0.95 (0.52) ns 7.3%* (2.26)
Dh Vertic —0.07 (0.11) 1.00 (0.05) 0.04* (0.02) —0.42 (0.22) 2.30 (1.34) 2.3%** (0.45) ns 6.4** (1.95)
i dokk *kk —0.06%** 1.9%x* _ _ * _ *
Moist 1.2%** (0.10) 1.1%%* (0.04) 0.01) (0.19) 0.28 (1.17) 0.73 (0.41) 0.16* (0.04) 3.7* (1.74))
Semi_arid 0.93 (0.57) 2.27 (0.34) 0.01 (0.06) 6.4 (1.78) 0.99 (6.80) —0.07 (2.31) —0.06 (0.31) —0.03 (9.91)
Precip . o —0.60** —0.04*** 2.0%%* " B B
Sub_humid 0.75*** (0.09) (0.04) 0.01) 0.17) 2.60* (1.04) 0.55 (0.35) 0.03 (0.03) 1.8 (1.53)
—1.15%* —0.08*** -1.31 —11.1%*
1 ek % _ ek . %%
Sub_moist 1.10 (0.16) 0.07) (0.02) 2.0* (0.33) 2.01) 2.2**(0.69) 0.29%* (0.07) (3.00)
-1.72 -1.11*
Carbonate ns 1.0 (0.04) —0.03 (0.01) 0.41 (0.23) (1.46) (0.50) —0.16* (0.06) —7.8%%*% (2.14)
—0.06%** -3.13 —0.31%%**
Metamorphic ns —0.60* (0.06) (0.02) 2.7** (0.26) (1.60) —1.01 (0.55) (0.05)
Siliciclastic
sediment ns —0.19 (0.05) —0.03* (0.01) 1.9%* (0.21) 0.51 (1.34) 0.65 (0.45) —0.12 (0.05) —0.43 (1.98)
Geo Unconsol. sediment ns 0.15 (0.08) 0.01 (0.02) 0.89 (0.35) 3.90 (2.01) 0.33 (0.68) 0.20 (0.08) —0.29 (3.03)
Crop land 0.23 (0.14) —0.23 (0.07) —0.4 (0.02) 0.15 (0.28) (_11721) —0.63 (0.58) 0.08 (0.07) —3.1 (2.56)
e Grass land 0.97** (0.30) 0.05 (0.16) 0.01 (0.03) —0.47 (0.74) 3.72 (3.65) 2.31(1.24) 0.24 (0.45) 4.2 (5.32)
Herbaceous cover 0.32 (0.30) 0.21 (0.16) —0.01 (0.03) -1.2 (0.74) (_335:;(; —3.8%%(1.21)  0.28 (0.45) —-5.1 (5.13)
Tree cover 1.10*** (0.27) —1.2%* (0.14) —0.09%* (0.02) 4.0* (0.65) 7.91* (3.03) 1.42(1.04) 0.05 (0.11) 8.6* (4.47)
Cool 0.35 (0.47) —1.5%* (0.22) ns 12.1* (1.73) 9.53 (4.76) 2.80 (1.67) ns —6.2 (7.29)
Tepid 0.63 (0.46) -1.2(0.22) ns 6.7 (1.73) 6.61 (4.71) 1.71 (1.65) ns —11 (7.22)
Tem Warm 0.39 (0.47) —1.5% (0.22) ns 2.8 (1.78) 4.51(4.84) 0.53* (1.70) ns —16 (7.41)
Flat ns 1.9% (0.14) ns ns ns ns 0.33(0.13) 2.3 (5.39)
Gently slopping ns 1.0 (0.04) ns ns ns ns —0.02 (0.03) —0.82 (1.68)
Mod. steep ns 0.15 (0.05) ns ns ns ns —0.12 (0.04) —6.3** (2.09)
Slope Nearly level ns 0.49 (0.06) ns ns ns ns 0.07 (0.05) 0.41 (2.32)
Steep ns —0.05 (0.10) ns ns ns ns —0.12 (0.09) —9.21* (3.53)
Strongly slopping ns 0.42 (0.06) ns ns ns ns —0.09 (0.05) —4.21 (2.16)
Vgently slopping ns 0.21 (0.06) ns ns ns ns 0.03 (0.05) —0.67 (2.31)
Flat ns ns ns ns ns 2.23 (1.05) ns 9.91* (4.68)
Lower slope ns ns ns ns ns 4.2%**% (1.11) ns 8.52 (4.87)
TPI Rige ns ns ns ns ns 1.22 (0.94) ns 3.90 (4.06)
Upper slope ns ns ns ns ns 0.42 (1.27) ns 2.41 (5.44)
Valley ns ns ns ns ns 0.73 (0.93) ns 2.90 (4.05)

*Estimate (SE) = estimated coefficient and standard error; ns = Not selected for the model to the respective parameter; Precip = Precipitation; D_h = Diagnostic
features; LC = land cover; geo = Geology; Temp = Temperature; TPI = Topographic position index; *, ** and *** indicates significance at the 5 %, 1 % and 0.1 %

probability level, respectively.
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the inclusion of environmental covariates (precipitation, land cover,
geology and temperature) alongside the diagnostic features (D_h)
explained around 33 % of the total variability (Table 4). Furthermore,
the regression model revealed that the argic, nitic and vertic diagnostic
horizons had significantly higher TN levels compared to cambic, while
the leptic horizon was associated with lower TN content. Among
geological classes, soils based on metamorphic materials exhibited
significantly lower TN levels compared to basic volcanic parent mate-
rials. Precipitation also had a significant impact on TN, with climatic
conditions of moist, sub-humid and sub-moist conditions associated
with lower TN levels compared to humid conditions. Land cover type
such as crop land, grass land and herbaceous cover did not significantly
affect TN content. However, the presence of trees was strongly related
with lower TN levels compared to natural vegetation class. Both diag-
nostic horizons and environmental covariates (precipitation, land cover,
slope gradient, slope position) explained around 38 % of the total
variability in CEC across the 496 profiles. Among the soil diagnostic
features, fluvic, nitic and vertic classes had significantly higher CEC
compared to cambic horizons, suggesting that such soils are more
capable of retaining essential nutrients i.e. nutrient cations. Conversely,
leptic horizons were linked with the lower CEC. In terms of geological
classes, both metamorphic and siliciclastic sediment parent materials
resulted in a significant decrease in CEC compared to soils developed
from basic volcanic parent materials, indicating that these parent ma-
terials were associated with soils with lower nutrient retention and ex-
change capacity. The presence of tree cover resulted in significantly
higher CEC when compared to natural vegetation. The slope of the land
affects CEC, with different slope conditions showing varied impacts.
Moderately steep and steep slopes were associated with significantly
lower CEC compared to middle slope. Whereas no significant difference
was found for flat and nearly level or gentle slopes, compared to the
middle slope. The topographic position index showed that flat areas had
significantly higher CEC, indicating better conditions for nutrient
retention compared to middle slope. Sites with warm temperatures had
significantly lower CEC compared to regions with cold temperatures.
This suggests that soils in warmer climates have a reduced capacity to
retain and exchange cations. Precipitation levels also impacted CEC,
with moist and sub-moist conditions significantly decreasing CEC, when
compared to humid condition.

3.4. Evaluation of model performance

Table 4 presents the 10-fold cross-validation statistics used to assess
the predictive performance of the models. The model metrics ranged
from 0.02 to 0.38 for the MEC, 0.03 to 14.4 for RMSE and 0.27 to 0.62
for LCCC. The predication models for TN and Mg show relatively low
RMSE values and good LCCC scores, indicating accurate and reliable
predictions. Models for pH and CEC have moderate RMSE and LCCC
values, suggesting reasonably good predictions. However, the models
for P, Ca and K have higher RMSE values and lower MEC, indicating that
these models may require further improvement. The zero ME across the
all the metrics suggest that the models were unbiased.
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3.5. Relative importance of covariates

The importance of the environmental covariates and diagnostic co-
variables for each dependent variable (soil chemical properties) are
shown in Fig. 3. Precipitation and diagnostic horizon had the highest
effect on the majority of soil chemical properties assessed, in particular
pH, OC, TN, P and Ca. In the final model prediction, of TN, variation
across sites was explained by the co-variables; precipitation, diagnostic
horizons, temperature, geology and land cover. From these significant
environmental covariates that explained TN, the most influential pre-
dictors were precipitation (contributing about 35 %), diagnostic hori-
zons (contributing about 28 %) and geology (contributing about 20 %).
Precipitation, diagnostic horizon, geology were also important pre-
dictors describing the variability in P, however, temperature and land
cover had a greater influence, and the effect of precipitation was less
pronounced than on TN. For pH and OC, precipitation was the most
dominant descriptor. For Mg and K, the effect of precipitation was less
dominant, with the diagnostic horizon and the geology as the most
significant covariates.

4. Discussion

The current fertiliser recommendation system in Ethiopia primarily
relies on blanket advice at the national level, where nitrogen fertiliser in
the form of urea is recommended, while at the district/regional level,
blended fertilisers are recommended, based on the EthioSIS soil fertility
map (Elias et al., 2019; Dargie et al., 2022). However, at community
level the agricultural landscapes within these regions exhibit high
variability in soil properties, due to factors such as management prac-
tices, parent materials and the landscape characteristics (Sileshi, 2022).
This variability underscores the need for more localised site-specific
fertiliser management to maximise the efficiency of the applied fertil-
iser (Reda et al., 2019; Cheng et al., 2023). Currently blend fertilisers are
applied throughout the country. However, their use as a generalised
solution often leads to nutrient imbalance, with some (micro) nutrients
being applied insufficiently to meet the crop demand, while other are
over-applied where they are not needed, reducing the capacity to reach
optimal yields (Elias et al., 2019). While high resolution soil fertility
maps may offer a relatively easy and practical alternative for guiding
fertiliser recommendations, their use would still benefit from integration
with localised soil observations such as key diagnostic features and
environmental covariates that originally underpinned these maps.
Furthermore, although infrared proximal soil sensors are currently
under trial to estimate soil nutrient status, but are not yet effective for
application at the local scale (Gobezie and Biswas, 2024; Najdenko et al.,
2024). To explore other alternatives, this paper assessed whether it was
possible to predict the nutrient status for macro-nutrient concentrations
(using existing soil chemical properties) from 496 described profiles
across Ethiopia, utilising the main descriptors of soil diagnostic features
and environmental covariates. If feasible this would provide advisors
with a baseline assessment from which farmers could receive more
nuanced advice on fertilisation based on the major soil diagnostic fea-
tures and the environmental characteristics.

Table 4
Model performance of multiple linear regression through cross-validation metrics.
Covariates Metrics pH oC TN P Ca Mg K CEC
ME 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
Diagnostic features RMSE* 0.90 0.33 0.08 0.77 9.19 3.44 0.31 14.4
MEC 0.15 0.10 0.17 0.05 0.02 0.09 0.07 0.18
LCCC 0.40 0.37 0.44 0.24 0.13 0.30 0.27 0.44
ME 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
Diagnostic features and environmental covariates RMSE* 0.78 0.30 0.07 0.72 0.08 0.03 0.30 13.00
MEC 0.38 0.29 0.33 0.18 0.14 0.27 0.16 0.38
LCCC 0.62 0.54 0.58 0.43 0.38 0.52 0.40 0.62

" RMSE is expressed in the same unit as the dependent variable (soil chemical properties).
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Fig. 3. Bar plots describing the relative importance metrics of environmental variables generated using the R statistical package for the prediction models of pH, OC,
TN, P, Ca, Mg, K and CEC. D_h, diagnostic horizons; Precip, mean annual precipitation; Temp, mean annual temperature; geo, geology; LC, land cover; TPI,
topographic position index; slope, terrain slope.
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4.1. Utilising diagnostic features to estimate soil nutrient content

The multiple linear regression analyses highlight the role of diag-
nostic features in estimating nutrient content at local level. While the
diagnostic features reflect important soil forming processes, their ability
to predict chemical properties remains insufficient (Table 4). However,
to demonstrate how the diagnostic approach can be used to estimate soil
nutrient content, we derived estimated values for TN, pH and CEC by
comparing each of the diagnostic features to the cambic horizon, which
serves as a reference class. For TN, the baseline content in the cambic
horizon was (1.13 + 0.08 %). Soils with a vertic horizon were associated
with a 0.05 % unit increase in TN, leading to an estimated TN content of
1.18 + 0.12 %. Similarly, soils with argic, fluvic, leptic and nitic features
were estimated to have TN contents of 1.2 % + 0.12, 1.1 4+ 0.20 %, 0.82
+0.13 % and 1.2 + 0.14 %, respectively. The differences in TN content
among the diagnostic features can be attributed to variations in their
pedogenic processes, organic matter content and drainage conditions.
Argic and nitic horizons exhibited higher TN levels due to their ability to
accumulate organic matter as a result of weathering processes and
relatively stable structural characteristics that support nitrogen reten-
tion. Similar findings have been reported in soils with well -developed
horizons (Smith et al., 2015). In contrast the leptic class had the lowest
TN content, which can be explained by their shallow nature and limited
organic matter accumulation. Soils with argic and nitic horizons
exhibited significantly lower pH values compared to cambic horizon
(6.7 £+ 0.08), with an estimated pH of 5.9 + 0.12 for argic and 5.9 +
0.14 for nitic. This can be described by the characteristics of argic and
nitic horizons, which are rich in clay and influenced by processes such as
illuviated clay accumulation and weathering of primary minerals in-
crease soil acidity, respectively. In contrast, fluvic and leptic soils
exhibited a higher pH (7.1 £+ 0.20 and 6.8 + 0.13, respectively), which
could be attributed to the relatively young and less weathered nature of
fluvic materials and the parent materials underling the leptic class. The
pH soils with a dominant vertic horizon (6.5 + 0.12) did not differ
significantly from those with a cambic horizon, likely due to clay
swelling and shrinkage processes that affect vertic horizons. For CEC,
the baseline content in the cambic horizon was 28 + 1.41 cmol kg ™.
Vertic, nitic and argic horizons showed significant differences compared
to cambic horizon, with increases of 10 cmol kg’1 for vertic, 13 cmol
kg™! for nitic and 7.4 cmol kg ! for argic. This resulted in estimated CEC
values of 38 + 2.04 cmol kg%, 41 + 2.23 cmol kg ! and 35 + 1.95 cmol
kg™, respectively. The leptic soil class had lower CEC, estimated at 21
+ 2.11 emol kg L. Cation exchange capacity has been widely reported to
be influenced by soil texture, organic matter content and the presence of
clay minerals Solly et al. (2020), which could explain the variation
observed across different horizons in this study. On the other hand, the
analysis using environmental covariates alone resulted in relatively
modest model efficiencies compared to the diagnostic feature, and lower
than those obtained from the combined model of diagnostic features and
environmental covariates (Suppl. Table: S14).

4.2. Utilising diagnostic features and environmental covariates to estimate
soil nutrient content

The utilisation of multiple regression analyses of diagnostic features
and environmental covariates to estimate nutrient content associated
with the 496 site locations provided some nuance, in understanding the
main factors that affected nutrient estimation. The reference class co-
efficient can be either an increase or decrease, depending on how the
covariates interact with the diagnostic features. This interaction can lead
to a recalibration of the baseline reference class values as the model
accounts for the influence of broader environmental factors. For the
majority of soil chemical properties, precipitation classes and soil
diagnostic features were the most important predictors. The inclusion of
environmental covariates along with diagnostic features for TN, the
baseline content in the cambic horizon was 1.2 &+ 1.06 %. For argic and
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nitic horizons, resulting in an estimated TN content of 1.3 £+ 0.01 %.
Similarly, vertic and fluvic soils had estimated TN content of 1.2 £ 0.02
%, while leptic soils were estimated at 1.1 4+ 0.01 %. Environmental
factors, including climate and vegetation further modulated TN content.
The baseline value in pH was estimated 5.2. To estimate a pH value for
vertic and argic horizons in semi-arid climate for the arable land, can be
estimated 6.3 and 6.0, respectively. While fluvic and leptic soils
approximately estimated around 6.6 and 6.4. The inclusion of envi-
ronmental covariates and diagnostic features also revealed significant
differences in CEC compared to the cambic horizon (45 cmol kg 1). The
estimated CEC for vertic, argic and nitic horizons in semi-arid climate
arable soils with calcium carbonate content, can be estimated 40.5 cmol
kg1, 37.4 cmol kg ! and 41.4 cmol kg ™!, respectively. Fluvic and leptic
soils in similar conditions approximately estimated around 40.6 cmol
kg~! and 29.6 cmol kg !, respectively. This increment in CEC, could be
due to increased organic matter decomposition and mineral weathering
processes (Solly et al., 2020). The estimated values of pH, TN and CEC
based solely on diagnostic features were relatively higher compared to
those obtained from the combined model. This is likely because diag-
nostic features reflect the intrinsic characteristics of the soil. When
environmental covariates such as climate, topography and land use were
added to the model, they introduce site-specific variability and con-
straints that can either increase or reduce the estimated values,
depending on the local conditions.

4.3. Model evaluation performance

Overall, the performance metrics indicated weak to moderate pre-
dictive accuracy, with low mean errors across all chemical properties.
Among variables assessed pH, TN, and CEC showed relatively better
model performance. The MEC values for TN, pH, and CEC using diag-
nostic features were 0.17, 0.15, and 0.18, and the corresponding RMSE
values were 0.90, 0.08 %, and 14.4 cmol kg’l, respectively. Addition-
ally, the LCCC values for pH, TN, and CEC were 0.40, 0.44, and 0.62,
respectively. While environmental covariates were included alongside
the diagnostic features, the model accuracy improved, with MEC values
increasing to 0.38, 0.33, and 0.38, and RMSE values decreasing to 0. 78,
0.07 %, and 13 cmol kg’1 for pH, TN, and CEC, respectively. The LCCC
values also improved to 0.52, 0.58, and 0.74, for pH, TN and CEC,
respectively. The model that incorporates both diagnostic features and
environmental covariates performed better than the model based solely
on diagnostic features or environmental covariates. However, despite
this improvement, the overall performance of the model remains rela-
tively poor. These findings suggest that a significant portion of soil
property variability remains challenging to predict using diagnostic
features and the selected environmental covariates. This limited im-
provements in prediction accuracy can be attributed to several factors.
First, the legacy soil profiles used in the model were inadequately
distributed across the country, offering a restricted range of soils and
diagnostic features. Additionally, these datasets were derived from
multiple sources, often containing measurement and positional errors,
introducing additional variability where the models were not parame-
terized to account for. Another source of uncertainty lies in the presence
-absence probabilities used to derive the dominant diagnostic features,
which further limited the predictive reliability of the models. Further,
we assumed that a soil profile can have only one diagnostic feature (for
example, if it is argic, then it can not be nitic or fluvic or another
feature), though this is not always the case. These limitations underscore
that the initial soil nutrient level estimations should be regarded as
merely the first step in an ongoing process of refinement. While this
approach may not offer the precision of laboratory soil tests, it may
bridge the gap between blanket recommendations (often not fit for the
context in which they are applied) and tailored solutions, allowing for
more site-specific interventions.



G.T. Reda et al.
4.4. Limitation of the study

In this study, a clear regional clustering pattern is observed in the
datasets, which is more than likely influenced by the different main
agricultural systems in the studied area. Areas with fewer soil profiles,
possibly due to the lower intensity of agricultural practices compared to
areas where crop cultivation or mixed farming systems are more prev-
alent. In these areas soil data collection is more common. The applica-
tion of this approach to farmers and even extension agents may face
challenges in accurately identifying diagnostic features, specifically
without specialized training. Another limitation is the lack of a
centralized repository for soil data, making it challenging to utilize soil
information effectively. While there are some existing systems for data
storage, they often fail to integrate both soil diagnostic and soil prop-
erties, leaving gaps in the overall understanding of the soil conditions.
Recent initiatives have started to address these challenges; however,
these efforts are still developing, and there is a pressing need to refine
and harmonise the data collection practices applied across Ethiopia.
Hence, incorporating soil diagnostics into future sampling campaigns is
vital for advancing soil research and management in Ethiopia. This
approach will lead to more precise data analyses and more effective
solutions for soil management related challenges. Therefore, further
expansion of the dataset is required.

5. Conclusion

The diagnostic approach offers a useful starting point for estimating
soil nutrient content. However, the variation in nutrient content across
the six diagnostic features was not adequately quantified, and the
model’s predictive performance remains insufficient for practical
application at the local scale. These findings highlight the need for
ongoing methodological refinements to better capture the complexities
of soil nutrient assessments. Future studies should adopt more advanced
modelling techniques, incorporating environmental covariates, as these
have shown potential to improve model performance when used
alongside diagnostic features. Furthermore, combining this approach
with existing soil maps could enhance both spatial accuracy and prac-
tical relevance. Expanding the dataset and including multiple diagnostic
features per profile will also be crucial for strengthening the robustness
of the predictions.
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