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A B S T R A C T

Smallholder farmers in Ethiopia generally do not have access to soil testing services for nutrient management 
planning decisions; as soil analysis is too costly for most farmers. Fertiliser advice is generally accessible via 
blanket recommendations at a national scale. Hence, an alternative approach is needed to estimate soil nutrient 
content across the diverse landscapes of Ethiopia. In this study, we propose using diagnostic features to estimate 
soil nutrient content, which could contribute to the development of fertiliser recommendations. To achieve this 
the following objectives were defined: (i) to estimate soil nutrient content as influenced by soil diagnostic fea
tures; and (ii) to elucidate the influence of environmental covariates and diagnostic features on the estimation of 
soil nutrient levels in the Ethiopian context. Data from 550 soil profiles, distributed across Ethiopia, were 
collected from a range of published sources, collated and harmonised. The data were cleaned, and 496 soil 
profiles were prepared for modelling. To identify which diagnostic characteristics were present across these soils 
we applied a presence/absence scoring method to identify dominant diagnostic features. Multiple linear 
regression analyses were used to predict soil chemical properties from the diagnostic features and diagnostic 
features along with environmental covariates. The performance of the models was evaluated by applying a 10- 
fold cross-validation using mean error (ME), Lin’s concordance correlation coefficient (LCCC), root mean square 
error (RMSE) and model efficiency coefficient (MEC). The MEC values for pH, TN, and CEC derived from a 
combination of diagnostic features and environmental covariates were 0.38, 0.33, and 0.38. The corresponding 
RMSE values were 0.78, 0.07 %, and 13 cmol kg− 1. Additionally, the LCCC values for pH, TN, and CEC were 0.62, 
0.58, and 0.62, respectively. The cross-validation results for soil chemical properties showed that the model’s 
performance improved when environmental covariates were added. Precipitation, temperature, geology and land 
cover were the most important environmental covariates for estimating nutrient content, along with diagnostic 
features of Ethiopian soils. In conclusion, the diagnostic approach offers a useful starting point for estimating soil 
nutrient content. However, the variation in nutrient content across the six diagnostic features was not adequately 
quantified, and the model’s predictive performance remains insufficient for practical application at the local 
scale. Further expansion of the dataset is required to fully exploit the potential of these models for underpinning 
nutrient management decisions across Ethiopia and in other regions where access to soil test information is 
limited.
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1. Introduction

Achieving food security was one of the Global Sustainable Devel
opment Goals (SDGs) approved by all member countries of the United 
Nations (UN) in 2015. The goal is to end extreme poverty and malnu
trition and promote inclusive economic growth in all forms globally by 
2030 (Assefa et al., 2017). However, ensuring food security in a world 
with a growing and more demanding population is an urgent and 
complex global challenge (Bhat et al., 2023). The situation is exacer
bated by changing climate conditions, environmental degradation and 
often geo-political instability. In countries that are not part of the Or
ganization for Economic Co-operation and Development (OECD), such 
as Ethiopia, food insecurity has been a serious problem for several de
cades (Paul et al., 2016). The Ethiopian government instigated a na
tional food security framework in line with the goals for SDG 2 (zero 
hunger) in 2015 to reduce population undernourishment O’Keeffe 
(2016), with the goal to enhance agricultural productivity (by providing 
farmers with better seeds, fertilisers, irrigation systems and training on 
sustainable farming techniques). This was further supported by the 
productive safety net programme, which aims to provide a critical safety 
net for chronically food insecure households (Wubetie et al., 2023). 
However, despite the remarkable progress that has been achieved, large 
parts of Ethiopia continue to face limited food production due to envi
ronmental degradation, exacerbated by lack of support for farmers to 
implement effective nutrient and soil management practices (Bizikova 
et al., 2022, 2023).

One of the challenges limiting agricultural productivity in Ethiopia is 
suboptimal nutrient management and declining soil fertility. The 
country faces high rates of soil nutrient mining, which further hampers 
crop yield and sustainable farming (Tesfay et al., 2010; Van Beek et al., 
2016). For example, in a Teff-based (Ethiopian cereal) farming system, 
Haileslassie et al. (2005) reported negative partial nutrient balances for 
N (− 25 kg N ha− 1 year− 1) and K (− 87 kg K ha− 1 year− 1) in the central 
highlands of Ethiopia. Abegaz et al. (2007) studied the nutrient balance 
of three soil types from the Atsbi catchment of Tigray and showed 
nutrient depletion rates of 76 kg ha− 1 and 63 kg ha− 1 for N and K, 
respectively. More widely, Haileslassie et al. (2005) calculated that the 
national nutrient depletion rate for N, P and K were 122 kg N ha− 1 

year− 1, 13 kg P ha− 1 year− 1 and 82 Kg K ha− 1 year− 1, respectively. This 
issue is further compounded by the country’s diverse soil landscape, 
which is influenced by varying topographical and geological conditions 
(Berhane et al., 2013; Tura, 2017). This geological diversity has given 
rise to major soil groups such as Vertisols, Cambisols, Nitisol, Luvisols, 
Leptosols and Fluvisols, which are distributed across different regions of 
the country (Ali et al., 2024). This variation in soil reference groups 
requires a more nuanced site-specific management approach to address 
the nutrient depletions, as this is not currently achieved through the 
blanket fertiliser recommendations.

A major challenge in estimating the nutrient content of soils in 
Ethiopia is not the lack of spatially explicit soil data, but rather the 
fragmented and scattered nature of existing datasets. These data are 
distributed across various institutions and individuals, limiting their 
widespread use Ali et al. (2020) and many soil profiles lack soil chemical 
property data, which is needed for nutrient management strategies. To 
overcome this challenge, initiatives such as the Coalition of the Willing 
(CoW) are working to consolidate existing soil datasets into one acces
sible platform (Ali et al., 2024). In the absence of a locally relevant soil 
information system, soil fertility management decisions are mostly made 
based upon blanket national recommendations or by making regional 
specific fertilisers which include a blend of nutrients derived from the 
EthioSIS soil fertility map (Elias et al., 2023). These blends are recom
mended to farmers to replace the national blanket recommendations, 
but are often not suitable at a local (field) scale, as they rely on district 
level soil fertility conditions that do not account for local soil variability 
or specific farmer needs. At a national scale the soils of Ethiopia have 
been mapped at an exploratory scale (1:2,000,000), which does not 

provide the detailed information needed for soil management decisions 
at the finer spatial scales of farm or field. More recently, there has been a 
renewed focus on the need for more local soil information. For example, 
Elias (2016) and Leenaars et al. (2020) described the soils of the Ethi
opian highlands at a scale of 1: 250,000 in 30 high potential districts for 
crop production, aiming to formulate fertiliser recommendations and 
develop integrated soil fertility management tools. Similar efforts were 
made to map soil properties of Africa at 250 m resolution for the esti
mation of soil nutrient content (Hengl et al., 2017). However, existing 
maps still lack the accuracy needed for site-specific nutrient recom
mendations. On the other hand, laboratory analyses (or soil scanners) 
are inaccessible to most smallholder farmers, due to the unaffordable 
costs of logistics of sampling and sending samples to the labs (Gobezie 
and Biswas, 2023). This requires the need for an alternative tool, which 
would be freely available to farmers to help them predict the nutrient 
content of their soils, as a contribution to improving their understanding 
of the nutrient content of their fields and the associated fertiliser 
requirements.

Recent studies have focused on addressing these gaps through 
diagnostic approaches that integrate soil characterization, classifica
tions and mapping. Leenaars et al. (2021) conducted a semi-detailed 
survey across Ethiopia, disentangling WRB soil classification into diag
nostic features and mapping them using environmental covariates. This 
approach provides insight into soil nutrient variation and supported the 
formulation of site-specific fertiliser recommendation. Diagnostic fea
tures, a central component of this approach, serve as practical proxies 
for soil properties, offering an alternative to extensive laboratory ana
lyses. While the diagnostic approach does not provide the detailed 
assessment of nutrient availability of a specific soil as laboratory anal
ysis would, it provides a more nuanced approach compared to blanket 
recommendations. Building on these achievements, in this paper we 
propose the concept of diagnostic classes to characterise the variation in 
nutrient status for six diagnostic features commonly found in Ethiopia. 
The diagnostic approach involves the use of diagnostic features derived 
from the WRB classification to describe differences between contrasting 
soils (IUSS Working Group WRB, 2015). These diagnostic classes were 
then assessed for the variation in soil properties related to soil nutrient 
content. In this paper, we harmonised data from 550 soil profiles from 
across Ethiopia to: (i) estimate soil nutrient content as influenced by the 
diagnostic features; and (ii) elucidate the influence of environmental 
covariates and soil diagnostic features on the estimation of soil nutrient 
levels in an Ethiopian context.

2. Materials and methods

2.1. Data collation method

In total, data from 550 soil profiles were collated across the country 
of Ethiopia. Input data were derived from soil scientists, institutions, 
published papers and grey literature (Suppl. Table: SI1). While several 
initiatives have focused on improving soil fertility information across 
Ethiopia or mapping and classification of soils (Ali et al., 2024), these 
two types of soil information are rarely considered together. This paper 
recognises the variation in soil forming process, which leads to differ
ences in genetic soil horizons, materials and properties, and focuses on 
the relationship between these genetic features and chemical properties. 
This has resulted in the compilation and harmonization of soil profile 
data from 550 soil profiles across Ethiopia with associated soil nutrient 
laboratory data (Fig. 1).

2.2. Scoring of dominant diagnostic features

The dominant diagnostic features within the WRB framework are 
diagnostic horizons, properties and materials. Reference soil groups 
(RSGs) were classified according to the WRB framework. These classi
fied RSGs were further categorised using a presence/absence probability 
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approach, grouping them based on dominant diagnostic features. This 
does not imply that it lacks other diagnostic features or characteristics, 
rather it may or may not contain additional diagnostic features and 
characteristics together with the dominant horizon. Thus, the approach 
provides a practical means of assessing the presence/absence of the 
dominant diagnostic features (Minasny et al., 2010; IUSS Working 
Group WRB, 2015; Simo et al., 2015; Michéli et al., 2016). These can be 
applied either in the field during examination and classification of a soil 
profile or applied where legacy data and descriptions exist from previous 
surveys. For Ethiopia, a comparable approach has been applied by 
Leenaars et al. (2021) who disentangled and mapped some 50 diagnostic 
features from surveyed and classified profile data. The diagnostic fea
tures are determined from specific combinations of soil properties which 
have developed as a result of dominant soil forming processes. These 
features generally manifest in the subsoil, though with a likeliness to 
influence the chemical properties of the surface soil. This approach 
considers that surface soil properties are influenced by subsurface 
diagnostic horizons, materials and qualifiers. For example, a vertic ho
rizon characterized by shrink-swell clays, affects surface soil properties 
through a self-mulching process. The argic horizon influences the sur
face horizon by depleting clay and nutrient through eluviation, which 
can reduce soil fertility, affect water movement and alter soil structure. 
The surface properties of leptic soils can be strongly representative of the 
very shallow depth to underlying rock or parent material, which often 
occurs within 25 cm depth. These relationships highlight the intercon
nection between subsurface features and surface soil chemical charac
teristics. Accordingly, only soil chemical data relating to the surface are 
presented in this paper, as the most critical soil layer for nutrient 
management decisions. Presence or absence of diagnostic features was 
identified according to the method described by Minasny and McBrat
ney (2007). The dominant diagnostic feature were coded ‘0’ when not 
present in the soil profile and ‘1’ when the diagnostic feature is a cri
terion or dominant for the selected soil profile. This approach was used 
to assign scores of dominant identifier diagnostics from all soil profiles 
collected. For example, we found 156 soil profiles that had vertic 

diagnostic horizons, 97 of which were dominant for vertic properties 
and 59 not dominant yet containing vertic properties. In this paper, six 
commonly found diagnostic features (vertic, cambic, argic, fluvic, nitic 
and leptic) were coded according to the aforementioned approach 
(Table 1). Diagnostic features that did not fit into the six main categories 
were classified as ‘other’. A total of fifty-four diagnostic horizons fell 
into this ‘other’ category and were subsequently removed from the 
analysis, therefore resulting in 496 profiles for further data analysis.

2.3. Assessing the variation of soil properties across the different soil 
diagnostic features

For the diagnostic features presented in Table 1, summary statistics 
were derived by extracting diagnostic features and their associated soil 
properties. The diagnostic features were then assessed for variation in 
soil properties and in particular soil nutrient concentrations. The soil 
chemical properties included in this study were pH, OC (%), TN (%), P 
(mg kg− 1), and K, Ca, Mg and CEC, all expressed in cmol kg− 1. Details on 
the laboratory procedures are provided in the supplementary informa
tion (Suppl. Table: SI2). Box and whisker plots were used to reveal the 
minimum, maximum, median and quartiles of chemical properties for 
individual diagnostic features.

2.4. Multiple linear regression analysis

To estimate the soil nutrient content, we performed multiple 

Fig. 1. Spatial distribution of the soil reference groups across Ethiopia, as mapped by Ali et al. (2024) and the distribution of 550 soil profiles collected for this study 
across the country. Most of soil profiles are concentrated in the highlands of Ethiopia where intensive agricultural activities are employed.

Table 1 
Dominant and present diagnostic features.

Diagnostic features vertic cambic argic nitic fluvic Leptic

Dominant (D) 97 107 114 70 23 85
Present but not dominant 

(P)
59 7 40 0 13 65

Dominant and Present (D 
+ P)

156 114 154 70 36 150
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regression analyses to evaluate the relationship between soil properties 
(dependent variables) and diagnostic features, as well as diagnostic 
features combined with environmental covariates (independent vari
ables). Initially, we conducted multiple regression analyses using only 
the diagnostic features as covariates to assess their ability to explain 
variation in soil chemical properties and estimate nutrient content. 
Subsequently, we performed additional multiple regression analyses 
incorporating environmental covariates along with the diagnostic fea
tures, to evaluate their combined contribution to explaining soil nutrient 
content. Around fifteen environmental covariates related to soil forming 
factors were considered (Regmi and Rasmussen, 2018). These environ
mental covariates were collected from ISRIC-World Soil Information, 
organised for Ethiopia at 250 m resolution from various sources (Suppl. 
Table: SI3). In each step, the environmental covariates are evaluated for 
addition to or subtraction from the set of covariates based on the step 
Akaike Information Criterion (stepAIC) (Zhang, 2016). The subtraction 
step iteratively eliminates the least informative covariates from the 
model. Accordingly, seven environmental covariates were finally 
selected based on their significance and ability to explain the variation 
in soil chemical properties, which included terrain slope, elevation, 
topographic position index, geology, land cover, mean annual temper
ature and precipitation. These selected covariates were considered as 
environmental indicators that influence the spatial distribution of soil 
chemical properties in the study area along with the diagnostic features. 
In multiple regression models, categorical variables for diagnostic fea
tures and environmental covariates were dummy-coded, with one 
category set as the reference class (intercept). This baseline allowed the 
effects of other categories to be interpreted relative to the reference class 
or intercept. The reference classes we used were cambic for diagnostic 
feature, basic volcanic for geology, natural vegetation for land cover, 
humid for precipitation, sloping for slope terrain, middle slope for 
topographic position index and cold for temperature. Among the dataset 
OC, TN, P and K content did not show a normal distribution hence, prior 
to regression modelling we applied a natural logarithm transformation 
method to better meet the normal distribution assumptions (Suppl. 
Figure: SI1). Subsequently, most of the observations were symmetrically 
distributed around the mean, except logTN, which was still somewhat 
skewed to the right. After analysing the log-transformed data, the results 
were back-transformed to their original scale for presentation. However, 
the data transformation step was not applied for the summary statistics, 
which were calculated on the raw data.

2.5. Validation and model evaluation

Prediction performance of the multiple linear regression model was 
evaluated using a 10-fold cross-validation procedure, using R software. 
The original dataset is randomly divided into ten equally sized subsets. 
The model is trained on nine of these subsets and tested on the 
remaining subset, ensuring that no data from the same profile appears in 
both training and test datasets. This procedure is done ten times itera
tions, each time withholding a different subset for testing. Performance 
metrics are computed over all test sets combined so that these metrics 
are effectively based on all observations. Four metrics were used to 
verify the performance of MLR models: the mean error (ME), root mean 
square error (RMSE), model efficiency coefficient (MEC) and Lin’s 
concordance correlation coefficient (LCCC). These metrics were 
computed as follows. 

ME =
1
n
∑n

i=1
(Pi − Oi) (1) 

RMSE =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
1
n
∑n

i=1
(Pi − Oi)

2

√

(2) 

MEC = 1 −

∑n
i=1(Pi − Oi)

2

∑n

i=1
(Oi − Ō)

2
(3) 

LCCC =
2rσoσp

σ2
O + σ2

P + (O − P )
2 (4) 

where Pi and Oi are the predicted and observed soil chemical properties; 
n is the number of observations; P and O are the means for the predicted 
and observed soil nutrient content; σ2

O and σ2
P are the variances of 

observed and predicted values; and r is the Pearson correlation coeffi
cient between the predicted and observed values. ME indicates possible 
bias, RMSE measures the quality of the predictions, MEC measures the 
predictive performance of the model, and LCCC measures the degree to 
which the predicted and observed values follow the 1:1 line.

2.6. Software and statistical packages used in this study

All statistical analyses and modelling were conducted in R software 
version 4.3.1 (R Core Team, 2023). Point data were overlain on the 
environmental covariate maps to extract the associated covariate values 
for each soil profile location creating a spatial data frame using the “sp” 
R package. Data were assessed for regression assumptions using the 
“car” R package. In this study, the argument stepAIC function was 
assigned to a combination of forward and backward elimination in the 
“Mass” package (Zhang, 2016). The relative importance of each envi
ronmental covariate in MLR model was assessed by the “relweights” 
function in the “car” package assesses the relative importance of cova
riates in a regression model and calculates these relative weights by 
evaluating how each covariate contributes to the model’s explanatory 
power across all possible sub models (Kabacoff, 2011). The “hydroGOF” 
and “relaimpo” R statistical packages were used to measure the pre
dictions of a statistical model align with the observed data and compute 
cross-validation metrics, respectively.

3. Results

3.1. Variation of soil chemical properties across the diagnostic features

Table 1 shows the number of profiles where the dominant diagnostic 
features were classified (i.e. designated as a diagnostic feature) and 
where features were recognised as diagnostic properties, but this did not 
result in a diagnostic horizon designation (present but not dominant 
properties).

Fig. 2 displays boxplots of soil properties across diagnostic features. 
These boxplots provide a visual summary of the distribution of each of 
the soil properties associated with each diagnostic feature. The central 
tendency of the data is highlighted by the median, while the inter
quartile range indicates the variability within each class.

3.2. Diagnostic features as predictors of soil chemical properties

Multiple linear regression coefficients in Table 2 show that there 
were significant variations in soil pH, organic carbon (OC), total nitro
gen (TN), available phosphorous (P), exchangeable Mg and K and cation 
exchange capacity (CEC) contents among the diagnostic features. In this 
analysis, the cambic horizon was used as the reference class. The lowest 
average pH value was found in nitic and argic horizons (5.9), which had 
significantly lower pH values compared to the cambic horizon. Simi
larly, the highest average contents of OC (3.2 %), TN (1.2 %) and CEC 
(41 cmol kg− 1) were found in both the nitic and argic horizons with 
significantly higher values compared to the cambic horizon, whereas the 
lowest values for these three parameters were obtained in soils with a 
leptic diagnostic horizon. Total nitrogen and CEC were also significantly 
higher in soils with vertic properties compared to a cambic horizon. In 
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soils with fluvic features CEC was also significantly higher compared to a 
cambic horizon. Some of the exchangeable bases varied significantly 
among the diagnostic features. Exchangeable Mg concentrations were 
found to be significantly higher in soils with vertic properties compared 
to a cambic horizon. Similarly, nitic, vertic and argic were obtained to be 
statistically significant for K when compared to soils characterized by a 
cambic horizon. The diagnostic features demonstrated varying degree of 
explanatory power for different soil chemical properties, as measured by 
the MEC. For all soil chemical attributes, the diagnostic features 

accounted for less than 10 % of the variance, only those with a MEC >
10 % presented as an example. The model efficiency coefficient from the 
multiple linear regression analysis showed that the diagnostic features 
when considered in isolation, accounted for only 15 % of the variability 
across the soil profiles for pH, 17 % for TN and 18 % for CEC (Table 4). 
These values indicates that the diagnostic features captured a moderate 
proportion of the variability in these three properties. For the remaining 
soil chemical properties, the explanatory power was more limited.

Fig. 2. Comparison among diagnostic features against the soil chemical properties with data sets of (vertic = 97; argic = 114; cambic = 107; leptic = 85; nitic = 70 
and fluvic = 23). The dark lines represent the median value, box represents the interquartile range, tails represent minimum and maximum values, and the outliers 
are represented by dots for the selected soil chemical properties (pH, OC, TN, P, Ca, Mg, K and CEC).
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3.3. Diagnostic features and environmental covariates as predictors of soil 
chemical properties

The model efficiency coefficient from the multiple linear regression 
analysis showed that the diagnostic features when considered in isola
tion was limited. Further multiple regression analyses were used to 
ascertain if other environmental covariates could improve the explained 
variance. This further analysis showed some improvement in the 

model’s accuracy for predicting the soil chemical properties (Table 3). 
The environmental covariates: precipitation, diagnostic features and 
land cover together explained 38 % of the total variability in pH. 
Temperature did not significantly contribute to variance in pH. In the 
model prediction, argic and nitic diagnostic horizons had significantly 
lower pH compared to the cambic horizon. Similarly, among the pre
cipitation categories, soils in moist, sub- moist and sub-humid regions 
had significantly higher pH values compared to humid regions. For TN, 

Table 2 
Results of multiple linear regression coefficients for prediction models of the diagnostic features (estimates with SE in parenthesis*).

diag. feat. pH OC (%) TN (%) P (mg kg− 1) Ca (cmol kg− 1) Mg (cmol kg− 1) K (cmol kg− 1) CEC (cmol kg− 1)

Intercept 6.7 (0.08) 2.5 (1.03) 1.13 (1.00) 12 (1.07) 16 (0.92) 5.9 (0.33) 1.4 (1.03) 28 (1.41)
Argic − 0.75*** (0.12) 0.58*** (0.04) 0.07*** (0.01) − 2.2* (0.13) 2.2 (1.28) 0.026 (0.46) 0.15* (0.05) 7.4*** (1.95)
Fluvic 0.38 (0.20) 0.07 (0.07) 0.03 (0.02) − 1.6 (0.23) 3.4 (2.19) − 0.47 (0.79) 0.18 (0.07) 6.6* (3.34)
Leptic 0.10 (0.13) − 0.26* (0.04) − 0.31** (0.01) 2.8 (0.13) − 0.21 (1.30) − 0.56 (0.50) − 0.06 (0.04) − 7.4*** (2.11)
Nitic − 0.76*** (0.14) 0.69*** (0.14) 0.08*** (0.03) − 2.9** (0.14) 1.9 (1.46) − 0.032 (0.53) 0.31*** (0.05) 13*** (2.23)
Vertic − 0.19 (0.12) 0.13 (0.15) 0.05** (0.01) − 2.2 (0.13) 2.6 (1.33) 2.6*** (0.48) 0.31*** (0.04) 10*** (2.04)

*Estimate (SE) = estimated coefficient and standard error; Diagnostic features (diag. Feat.): Highlighting distinctive features of soil profile; *, ** and *** indicates 
significance at the 5 %, 1 % and 0.1 % probability level, respectively.

Table 3 
Results of multiple linear regression coefficients for prediction models of diagnostic features and environmental covariates (estimates with SE in parenthesis*).

Environmental covariates Model coefficient of soil chemical properties

pH OC TN P Ca Mg K CEC

% % mg kg− 1 cmol kg− 1

Intercept 5.2 (0.48) 4.9 (1.18) 1.2 (1.06) 3.7 (1.77) 10 (4.99) 4.1 (1.76) 1.6 (1.07) 45 (7.76)

D_h

Argic
− 0.36** 
(0.11) 0.48* (0.05) 0.05** (0.01) − 0.33 (0.22) 2.10 (1.31) − 0.53 (0.45) ns 3.3 (1.93)

Fluvic 0.28 (0.18) 0.31 (0.08) 0.04 (0.02) − 0.39 (0.38) 3.60 (2.16) − 0.03 (0.74) ns 6.6* (3.13)
Leptic 0.08 (0.11) − 0.36 (0.04) − 0.03** (0.01) 0.64* (0.22) 0.87 (1.37) − 0.16 (0.47) ns − 4.5* (2.02)

Nitic
− 0.37** 
(0.12) 0.42 (0.06) 0.05** (0.01) − 0.62 (0.26) 1.50 (1.52) − 0.95 (0.52) ns 7.3** (2.26)

Vertic − 0.07 (0.11) 1.00 (0.05) 0.04* (0.02) − 0.42 (0.22) 2.30 (1.34) 2.3*** (0.45) ns 6.4** (1.95)

Precip

Moist 1.2*** (0.10) − 1.1*** (0.04)
− 0.06*** 
(0.01)

1.9*** 
(0.19) 0.28 (1.17) − 0.73 (0.41) − 0.16* (0.04) − 3.7* (1.74))

Semi_arid 0.93 (0.57) 2.27 (0.34) 0.01 (0.06) 6.4 (1.78) 0.99 (6.80) − 0.07 (2.31) − 0.06 (0.31) − 0.03 (9.91)

Sub_humid 0.75*** (0.09)
− 0.60** 
(0.04)

− 0.04*** 
(0.01)

2.0*** 
(0.17)

2.60* (1.04) 0.55 (0.35) − 0.03 (0.03) − 1.8 (1.53)

Sub_moist 1.10*** (0.16) − 1.15** 
(0.07)

− 0.08*** 
(0.02)

2.0* (0.33) − 1.31 
(2.01)

− 2.2** (0.69) − 0.29** (0.07) − 11.1** 
(3.00)

Geo

Carbonate ns 1.0 (0.04) − 0.03 (0.01) 0.41 (0.23)
− 1.72 
(1.46)

− 1.11* 
(0.50) − 0.16* (0.06) − 7.8*** (2.14)

Metamorphic ns − 0.60* (0.06)
− 0.06*** 
(0.02) 2.7** (0.26)

− 3.13 
(1.60) − 1.01 (0.55)

− 0.31*** 
(0.05) − 8.6*** (2.37)

Siliciclastic 
sediment ns − 0.19 (0.05) − 0.03* (0.01) 1.9** (0.21) 0.51 (1.34) 0.65 (0.45) − 0.12 (0.05) − 0.43 (1.98)
Unconsol. sediment ns 0.15 (0.08) 0.01 (0.02) 0.89 (0.35) 3.90 (2.01) 0.33 (0.68) 0.20 (0.08) − 0.29 (3.03)

LC

Crop land 0.23 (0.14) − 0.23 (0.07) − 0.4 (0.02) 0.15 (0.28) − 1.71 
(1.73)

− 0.63 (0.58) 0.08 (0.07) − 3.1 (2.56)

Grass land 0.97** (0.30) 0.05 (0.16) 0.01 (0.03) − 0.47 (0.74) 3.72 (3.65) 2.31(1.24) 0.24 (0.45) 4.2 (5.32)

Herbaceous cover 0.32 (0.30) 0.21 (0.16) − 0.01 (0.03) − 1.2 (0.74)
− 3.30 
(3.54) − 3.8** (1.21) 0.28 (0.45) − 5.1 (5.13)

Tree cover 1.10*** (0.27) − 1.2** (0.14) − 0.09** (0.02) 4.0* (0.65) 7.91* (3.03) 1.42 (1.04) 0.05 (0.11) 8.6* (4.47)

Tem

Cool 0.35 (0.47) − 1.5** (0.22) ns 12.1* (1.73) 9.53 (4.76) 2.80 (1.67) ns − 6.2 (7.29)
Tepid 0.63 (0.46) − 1.2 (0.22) ns 6.7 (1.73) 6.61 (4.71) 1.71 (1.65) ns − 11 (7.22)
Warm 0.39 (0.47) − 1.5* (0.22) ns 2.8 (1.78) 4.51(4.84) 0.53* (1.70) ns − 16 (7.41)

Slope

Flat ns 1.9* (0.14) ns ns ns ns 0.33 (0.13) 2.3 (5.39)
Gently slopping ns 1.0 (0.04) ns ns ns ns − 0.02 (0.03) − 0.82 (1.68)
Mod. steep ns 0.15 (0.05) ns ns ns ns − 0.12 (0.04) − 6.3** (2.09)
Nearly level ns 0.49 (0.06) ns ns ns ns 0.07 (0.05) 0.41 (2.32)
Steep ns − 0.05 (0.10) ns ns ns ns − 0.12 (0.09) − 9.21* (3.53)
Strongly slopping ns 0.42 (0.06) ns ns ns ns − 0.09 (0.05) − 4.21 (2.16)
Vgently slopping ns 0.21 (0.06) ns ns ns ns 0.03 (0.05) − 0.67 (2.31)

TPI

Flat ns ns ns ns ns 2.23 (1.05) ns 9.91* (4.68)
Lower slope ns ns ns ns ns 4.2*** (1.11) ns 8.52 (4.87)
Rige ns ns ns ns ns 1.22 (0.94) ns 3.90 (4.06)
Upper slope ns ns ns ns ns 0.42 (1.27) ns 2.41 (5.44)
Valley ns ns ns ns ns 0.73 (0.93) ns 2.90 (4.05)

*Estimate (SE) = estimated coefficient and standard error; ns = Not selected for the model to the respective parameter; Precip = Precipitation; D_h = Diagnostic 
features; LC = land cover; geo = Geology; Temp = Temperature; TPI = Topographic position index; *, ** and *** indicates significance at the 5 %, 1 % and 0.1 % 
probability level, respectively.
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the inclusion of environmental covariates (precipitation, land cover, 
geology and temperature) alongside the diagnostic features (D_h) 
explained around 33 % of the total variability (Table 4). Furthermore, 
the regression model revealed that the argic, nitic and vertic diagnostic 
horizons had significantly higher TN levels compared to cambic, while 
the leptic horizon was associated with lower TN content. Among 
geological classes, soils based on metamorphic materials exhibited 
significantly lower TN levels compared to basic volcanic parent mate
rials. Precipitation also had a significant impact on TN, with climatic 
conditions of moist, sub-humid and sub-moist conditions associated 
with lower TN levels compared to humid conditions. Land cover type 
such as crop land, grass land and herbaceous cover did not significantly 
affect TN content. However, the presence of trees was strongly related 
with lower TN levels compared to natural vegetation class. Both diag
nostic horizons and environmental covariates (precipitation, land cover, 
slope gradient, slope position) explained around 38 % of the total 
variability in CEC across the 496 profiles. Among the soil diagnostic 
features, fluvic, nitic and vertic classes had significantly higher CEC 
compared to cambic horizons, suggesting that such soils are more 
capable of retaining essential nutrients i.e. nutrient cations. Conversely, 
leptic horizons were linked with the lower CEC. In terms of geological 
classes, both metamorphic and siliciclastic sediment parent materials 
resulted in a significant decrease in CEC compared to soils developed 
from basic volcanic parent materials, indicating that these parent ma
terials were associated with soils with lower nutrient retention and ex
change capacity. The presence of tree cover resulted in significantly 
higher CEC when compared to natural vegetation. The slope of the land 
affects CEC, with different slope conditions showing varied impacts. 
Moderately steep and steep slopes were associated with significantly 
lower CEC compared to middle slope. Whereas no significant difference 
was found for flat and nearly level or gentle slopes, compared to the 
middle slope. The topographic position index showed that flat areas had 
significantly higher CEC, indicating better conditions for nutrient 
retention compared to middle slope. Sites with warm temperatures had 
significantly lower CEC compared to regions with cold temperatures. 
This suggests that soils in warmer climates have a reduced capacity to 
retain and exchange cations. Precipitation levels also impacted CEC, 
with moist and sub-moist conditions significantly decreasing CEC, when 
compared to humid condition.

3.4. Evaluation of model performance

Table 4 presents the 10-fold cross-validation statistics used to assess 
the predictive performance of the models. The model metrics ranged 
from 0.02 to 0.38 for the MEC, 0.03 to 14.4 for RMSE and 0.27 to 0.62 
for LCCC. The predication models for TN and Mg show relatively low 
RMSE values and good LCCC scores, indicating accurate and reliable 
predictions. Models for pH and CEC have moderate RMSE and LCCC 
values, suggesting reasonably good predictions. However, the models 
for P, Ca and K have higher RMSE values and lower MEC, indicating that 
these models may require further improvement. The zero ME across the 
all the metrics suggest that the models were unbiased.

3.5. Relative importance of covariates

The importance of the environmental covariates and diagnostic co- 
variables for each dependent variable (soil chemical properties) are 
shown in Fig. 3. Precipitation and diagnostic horizon had the highest 
effect on the majority of soil chemical properties assessed, in particular 
pH, OC, TN, P and Ca. In the final model prediction, of TN, variation 
across sites was explained by the co-variables; precipitation, diagnostic 
horizons, temperature, geology and land cover. From these significant 
environmental covariates that explained TN, the most influential pre
dictors were precipitation (contributing about 35 %), diagnostic hori
zons (contributing about 28 %) and geology (contributing about 20 %). 
Precipitation, diagnostic horizon, geology were also important pre
dictors describing the variability in P, however, temperature and land 
cover had a greater influence, and the effect of precipitation was less 
pronounced than on TN. For pH and OC, precipitation was the most 
dominant descriptor. For Mg and K, the effect of precipitation was less 
dominant, with the diagnostic horizon and the geology as the most 
significant covariates.

4. Discussion

The current fertiliser recommendation system in Ethiopia primarily 
relies on blanket advice at the national level, where nitrogen fertiliser in 
the form of urea is recommended, while at the district/regional level, 
blended fertilisers are recommended, based on the EthioSIS soil fertility 
map (Elias et al., 2019; Dargie et al., 2022). However, at community 
level the agricultural landscapes within these regions exhibit high 
variability in soil properties, due to factors such as management prac
tices, parent materials and the landscape characteristics (Sileshi, 2022). 
This variability underscores the need for more localised site-specific 
fertiliser management to maximise the efficiency of the applied fertil
iser (Reda et al., 2019; Cheng et al., 2023). Currently blend fertilisers are 
applied throughout the country. However, their use as a generalised 
solution often leads to nutrient imbalance, with some (micro) nutrients 
being applied insufficiently to meet the crop demand, while other are 
over-applied where they are not needed, reducing the capacity to reach 
optimal yields (Elias et al., 2019). While high resolution soil fertility 
maps may offer a relatively easy and practical alternative for guiding 
fertiliser recommendations, their use would still benefit from integration 
with localised soil observations such as key diagnostic features and 
environmental covariates that originally underpinned these maps. 
Furthermore, although infrared proximal soil sensors are currently 
under trial to estimate soil nutrient status, but are not yet effective for 
application at the local scale (Gobezie and Biswas, 2024; Najdenko et al., 
2024). To explore other alternatives, this paper assessed whether it was 
possible to predict the nutrient status for macro-nutrient concentrations 
(using existing soil chemical properties) from 496 described profiles 
across Ethiopia, utilising the main descriptors of soil diagnostic features 
and environmental covariates. If feasible this would provide advisors 
with a baseline assessment from which farmers could receive more 
nuanced advice on fertilisation based on the major soil diagnostic fea
tures and the environmental characteristics.

Table 4 
Model performance of multiple linear regression through cross-validation metrics.

Covariates Metrics pH OC TN P Ca Mg K CEC

Diagnostic features

ME 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
RMSE* 0.90 0.33 0.08 0.77 9.19 3.44 0.31 14.4
MEC 0.15 0.10 0.17 0.05 0.02 0.09 0.07 0.18
LCCC 0.40 0.37 0.44 0.24 0.13 0.30 0.27 0.44

Diagnostic features and environmental covariates

ME 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
RMSE* 0.78 0.30 0.07 0.72 0.08 0.03 0.30 13.00
MEC 0.38 0.29 0.33 0.18 0.14 0.27 0.16 0.38
LCCC 0.62 0.54 0.58 0.43 0.38 0.52 0.40 0.62

* RMSE is expressed in the same unit as the dependent variable (soil chemical properties).
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Fig. 3. Bar plots describing the relative importance metrics of environmental variables generated using the R statistical package for the prediction models of pH, OC, 
TN, P, Ca, Mg, K and CEC. D_h, diagnostic horizons; Precip, mean annual precipitation; Temp, mean annual temperature; geo, geology; LC, land cover; TPI, 
topographic position index; slope, terrain slope.
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4.1. Utilising diagnostic features to estimate soil nutrient content

The multiple linear regression analyses highlight the role of diag
nostic features in estimating nutrient content at local level. While the 
diagnostic features reflect important soil forming processes, their ability 
to predict chemical properties remains insufficient (Table 4). However, 
to demonstrate how the diagnostic approach can be used to estimate soil 
nutrient content, we derived estimated values for TN, pH and CEC by 
comparing each of the diagnostic features to the cambic horizon, which 
serves as a reference class. For TN, the baseline content in the cambic 
horizon was (1.13 ± 0.08 %). Soils with a vertic horizon were associated 
with a 0.05 % unit increase in TN, leading to an estimated TN content of 
1.18 ± 0.12 %. Similarly, soils with argic, fluvic, leptic and nitic features 
were estimated to have TN contents of 1.2 % ± 0.12, 1.1 ± 0.20 %, 0.82 
± 0.13 % and 1.2 ± 0.14 %, respectively. The differences in TN content 
among the diagnostic features can be attributed to variations in their 
pedogenic processes, organic matter content and drainage conditions. 
Argic and nitic horizons exhibited higher TN levels due to their ability to 
accumulate organic matter as a result of weathering processes and 
relatively stable structural characteristics that support nitrogen reten
tion. Similar findings have been reported in soils with well -developed 
horizons (Smith et al., 2015). In contrast the leptic class had the lowest 
TN content, which can be explained by their shallow nature and limited 
organic matter accumulation. Soils with argic and nitic horizons 
exhibited significantly lower pH values compared to cambic horizon 
(6.7 ± 0.08), with an estimated pH of 5.9 ± 0.12 for argic and 5.9 ±
0.14 for nitic. This can be described by the characteristics of argic and 
nitic horizons, which are rich in clay and influenced by processes such as 
illuviated clay accumulation and weathering of primary minerals in
crease soil acidity, respectively. In contrast, fluvic and leptic soils 
exhibited a higher pH (7.1 ± 0.20 and 6.8 ± 0.13, respectively), which 
could be attributed to the relatively young and less weathered nature of 
fluvic materials and the parent materials underling the leptic class. The 
pH soils with a dominant vertic horizon (6.5 ± 0.12) did not differ 
significantly from those with a cambic horizon, likely due to clay 
swelling and shrinkage processes that affect vertic horizons. For CEC, 
the baseline content in the cambic horizon was 28 ± 1.41 cmol kg− 1. 
Vertic, nitic and argic horizons showed significant differences compared 
to cambic horizon, with increases of 10 cmol kg− 1 for vertic, 13 cmol 
kg− 1 for nitic and 7.4 cmol kg− 1 for argic. This resulted in estimated CEC 
values of 38 ± 2.04 cmol kg− 1, 41 ± 2.23 cmol kg− 1 and 35 ± 1.95 cmol 
kg− 1, respectively. The leptic soil class had lower CEC, estimated at 21 
± 2.11 cmol kg− 1. Cation exchange capacity has been widely reported to 
be influenced by soil texture, organic matter content and the presence of 
clay minerals Solly et al. (2020), which could explain the variation 
observed across different horizons in this study. On the other hand, the 
analysis using environmental covariates alone resulted in relatively 
modest model efficiencies compared to the diagnostic feature, and lower 
than those obtained from the combined model of diagnostic features and 
environmental covariates (Suppl. Table: SI4).

4.2. Utilising diagnostic features and environmental covariates to estimate 
soil nutrient content

The utilisation of multiple regression analyses of diagnostic features 
and environmental covariates to estimate nutrient content associated 
with the 496 site locations provided some nuance, in understanding the 
main factors that affected nutrient estimation. The reference class co
efficient can be either an increase or decrease, depending on how the 
covariates interact with the diagnostic features. This interaction can lead 
to a recalibration of the baseline reference class values as the model 
accounts for the influence of broader environmental factors. For the 
majority of soil chemical properties, precipitation classes and soil 
diagnostic features were the most important predictors. The inclusion of 
environmental covariates along with diagnostic features for TN, the 
baseline content in the cambic horizon was 1.2 ± 1.06 %. For argic and 

nitic horizons, resulting in an estimated TN content of 1.3 ± 0.01 %. 
Similarly, vertic and fluvic soils had estimated TN content of 1.2 ± 0.02 
%, while leptic soils were estimated at 1.1 ± 0.01 %. Environmental 
factors, including climate and vegetation further modulated TN content. 
The baseline value in pH was estimated 5.2. To estimate a pH value for 
vertic and argic horizons in semi-arid climate for the arable land, can be 
estimated 6.3 and 6.0, respectively. While fluvic and leptic soils 
approximately estimated around 6.6 and 6.4. The inclusion of envi
ronmental covariates and diagnostic features also revealed significant 
differences in CEC compared to the cambic horizon (45 cmol kg− 1). The 
estimated CEC for vertic, argic and nitic horizons in semi-arid climate 
arable soils with calcium carbonate content, can be estimated 40.5 cmol 
kg− 1, 37.4 cmol kg− 1 and 41.4 cmol kg− 1, respectively. Fluvic and leptic 
soils in similar conditions approximately estimated around 40.6 cmol 
kg− 1 and 29.6 cmol kg− 1, respectively. This increment in CEC, could be 
due to increased organic matter decomposition and mineral weathering 
processes (Solly et al., 2020). The estimated values of pH, TN and CEC 
based solely on diagnostic features were relatively higher compared to 
those obtained from the combined model. This is likely because diag
nostic features reflect the intrinsic characteristics of the soil. When 
environmental covariates such as climate, topography and land use were 
added to the model, they introduce site-specific variability and con
straints that can either increase or reduce the estimated values, 
depending on the local conditions.

4.3. Model evaluation performance

Overall, the performance metrics indicated weak to moderate pre
dictive accuracy, with low mean errors across all chemical properties. 
Among variables assessed pH, TN, and CEC showed relatively better 
model performance. The MEC values for TN, pH, and CEC using diag
nostic features were 0.17, 0.15, and 0.18, and the corresponding RMSE 
values were 0.90, 0.08 %, and 14.4 cmol kg− 1, respectively. Addition
ally, the LCCC values for pH, TN, and CEC were 0.40, 0.44, and 0.62, 
respectively. While environmental covariates were included alongside 
the diagnostic features, the model accuracy improved, with MEC values 
increasing to 0.38, 0.33, and 0.38, and RMSE values decreasing to 0. 78, 
0.07 %, and 13 cmol kg− 1 for pH, TN, and CEC, respectively. The LCCC 
values also improved to 0.52, 0.58, and 0.74, for pH, TN and CEC, 
respectively. The model that incorporates both diagnostic features and 
environmental covariates performed better than the model based solely 
on diagnostic features or environmental covariates. However, despite 
this improvement, the overall performance of the model remains rela
tively poor. These findings suggest that a significant portion of soil 
property variability remains challenging to predict using diagnostic 
features and the selected environmental covariates. This limited im
provements in prediction accuracy can be attributed to several factors. 
First, the legacy soil profiles used in the model were inadequately 
distributed across the country, offering a restricted range of soils and 
diagnostic features. Additionally, these datasets were derived from 
multiple sources, often containing measurement and positional errors, 
introducing additional variability where the models were not parame
terized to account for. Another source of uncertainty lies in the presence 
-absence probabilities used to derive the dominant diagnostic features, 
which further limited the predictive reliability of the models. Further, 
we assumed that a soil profile can have only one diagnostic feature (for 
example, if it is argic, then it can not be nitic or fluvic or another 
feature), though this is not always the case. These limitations underscore 
that the initial soil nutrient level estimations should be regarded as 
merely the first step in an ongoing process of refinement. While this 
approach may not offer the precision of laboratory soil tests, it may 
bridge the gap between blanket recommendations (often not fit for the 
context in which they are applied) and tailored solutions, allowing for 
more site-specific interventions.

G.T. Reda et al.                                                                                                                                                                                                                                 Geoderma Regional 41 (2025) e00962 

9 



4.4. Limitation of the study

In this study, a clear regional clustering pattern is observed in the 
datasets, which is more than likely influenced by the different main 
agricultural systems in the studied area. Areas with fewer soil profiles, 
possibly due to the lower intensity of agricultural practices compared to 
areas where crop cultivation or mixed farming systems are more prev
alent. In these areas soil data collection is more common. The applica
tion of this approach to farmers and even extension agents may face 
challenges in accurately identifying diagnostic features, specifically 
without specialized training. Another limitation is the lack of a 
centralized repository for soil data, making it challenging to utilize soil 
information effectively. While there are some existing systems for data 
storage, they often fail to integrate both soil diagnostic and soil prop
erties, leaving gaps in the overall understanding of the soil conditions. 
Recent initiatives have started to address these challenges; however, 
these efforts are still developing, and there is a pressing need to refine 
and harmonise the data collection practices applied across Ethiopia. 
Hence, incorporating soil diagnostics into future sampling campaigns is 
vital for advancing soil research and management in Ethiopia. This 
approach will lead to more precise data analyses and more effective 
solutions for soil management related challenges. Therefore, further 
expansion of the dataset is required.

5. Conclusion

The diagnostic approach offers a useful starting point for estimating 
soil nutrient content. However, the variation in nutrient content across 
the six diagnostic features was not adequately quantified, and the 
model’s predictive performance remains insufficient for practical 
application at the local scale. These findings highlight the need for 
ongoing methodological refinements to better capture the complexities 
of soil nutrient assessments. Future studies should adopt more advanced 
modelling techniques, incorporating environmental covariates, as these 
have shown potential to improve model performance when used 
alongside diagnostic features. Furthermore, combining this approach 
with existing soil maps could enhance both spatial accuracy and prac
tical relevance. Expanding the dataset and including multiple diagnostic 
features per profile will also be crucial for strengthening the robustness 
of the predictions.
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