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1. Introduction

Where we are and what defines our environment has impact on how we live and how we feel. It has
influence on our happiness [1] and our health [2]. It is hard to define what makes one location different
from another and there are thus many ways to abstract such locations. A common way to define the
environment of a location is by how the space is used, for example for forest, as urban living space or
for agriculture. Another is to try and define how much and what kind of vegetation is present at a
location. Inherently all of these representations are an abstraction of the complex nature of all factors
which represent our environment.

In spatial modelling of anything, the objective is to find how a location where something is known
relates to a location where the same thing is unknown. The classical approach to relating known
locations to unknown locations is often based on Tobler’s First Law of Geography, which states that
‘everything is related to everything else, but near things are more related than distant things’ [3]. This
idea forms the basis of spatial interpolation methods like inverse distance weighting [4] and Kriging
[5]. This idea is intuitive and allows us to compare two locations by their spatial distance.

For predicting something at an unknown location another assumption can be made: everything is
related to everything else, but similar things are more related than dissimilar things. This is the
concept of the semantic distance between two locations. The idea here is that while two locations
could be spatially close, they do not have to be similar. Take the prediction of population density
as an example. In an area there are two cities, with a bunch of rural land in between. Between the
two cities there is a large spatial distance, but a small semantic distance. Each of the cities is only a
walk away from rural land, but have a larger semantic distance to the rural location than to the other
city. When predicting the population density of a new location, what if interpolation could be done
semantically alongside spatially?

To be able to semantically define a new location, we can use remotely sensed imagery taken from
space. One of the satellite image products is Sentinel-2 [6]. Sentinel-2 covers all land areas and
is freely available at weekly time intervals. Furthermore, Sentinel-2 is multi-spectral and allows for
capture of radiance outside the visible light spectrum. Multi-spectral satellite images are an accessible
source of environmental data for any location on Earth and are commonly used for environmental
indices like the NDVI [7] or the Temperature suitability [8]. These indices are the traditional way
to attribute semantic information to a location by applying carefully engineered functions to the
multi-spectral images.

A more recent strategy for attributing semantic meaning to a location is by analysing the correspond-
ing satellite images with deep learning models. Computer vision has revolutionised image processing,
enabling models to automatically extract meaningful patterns and features from visual data. Advance-
ments in architectures which were initially made for RGB three-channel images [9, 10, 11], are able
to be modified to allow multi-spectral images. As their artificial neural networks contain adjustable
weights, deep learning models can be trained to extract the most relevant patterns in an image. The
part of a deep learning model that is used for this feature extraction is known as an encoder. Encoders
are models which encode their input, typically into a n-dimensional vector, called an embedding.
Embeddings are an thus an interpretation of the input by an encoder, mapped to a set of representable
numbers.

Locations can be encoded with image encoders by extracting the embedding of a satellite image at
that location. In order for image encoders to extract meaningful information, the models are usually
pre-trained to find the most discriminating features. Pre-training can be done in with supervision, by
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learning from examples with labels. More recently, the advancements in self-supervised learning
(SSL) have allowed image encoders to be pre-trained without the need for labels. Instead, these
methods learn to extract relevant features from a representable image dataset by solving auxiliary
tasks. The tasks use different strategies, such as predicting missing parts [12], contrasting similar and
dissimilar samples [13, 14] or aligning representations [15]. With these objectives, SSL allows encoders
to learn semantically rich representations from different kinds of image datasets.

Models can be pre-trained on satellite imagery to get encoders capable of extracting a semantic
representation for a location. Taking satellite image embeddings for different locations, the similarity
between these locations can be analysed. Furthermore, variables can be interpolated for new locations
based on their semantic similarity. Apart from (satellite) image encoders, a different kind of strategy
for embedding locations was recently introduced. They use SSL to learn semantic representations
directly from coordinates [16, 17, 18]. These location encoders can be pre-trained with images to
learn image-based representations without the need for any images to encode locations later.

Representing locations and environmental factors is an important part in the context of disease map-
ping. Disease mapping models use incidence or mortality data on specific diseases and apply spatial
Bayesian methods to predict localised disease risk [19, 20, 21]. These models can use random effects to
smooth out the variation in risk spatially, following Tobler’s first law by assuming neighbouring areas
have more similar risks. However, this variation can alternatively be partially or completely explained
with relevant semantic covariates like pollution levels, demographics or land cover [22].

Instead of known covariates, more abstract semantic representation could help with approximating
relative disease risk. The embeddings of locations from deep learning encoders could help with repre-
senting for the disease mapping. The pre-trained image and location encoders extract different kinds
of semantic features depending on architecture and pre-training data and objective. What kind of
encoder model could be best suited for disease mapping?

Research questions

1. What distinguishing visual patterns emerge on maps when comparing spatial embeddings?

2. What kinds of embeddings have strongest correlation with selected disease predictor tasks?

3. What is the effect of taking embeddings of satellite imagery from an intermediate layer of a
convolution-based encoder?

4. What is the effect of sampling disease prediction variables spatially?

Research objective The goal of this thesis is to compare different strategies for encoding locations
with deep learning models. These models differ in their neural network architecture and their pre-
training strategies, where most of the models will rely on extracting location-specific image features
from Sentinel-2 satellite imagery. Evaluating the models is done both qualitatively and quantitively.
For the qualitative part, the embeddings are visualised on maps to find out what distinguishing
semantic patterns are encoded spatially. Quantitatively, the embeddings are tested by correlating them
to various downstream prediction tasks related to human diseases. The research further explores the
use of embeddings from intermediate layers in convolutional neural networks and the effect of spatial
sampling on the downstream tasks. Ultimately, the main goal of this thesis is to contribute to assessing
the kind of encoding model that provides the most relevant semantic environmental features for use
in disease mapping.
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Figure 1. Schematic overview of how a set of locations L gets encoded. Each location l ∈ L is defined by a
coordinate pair (λ, ϕ) and gets encoded into an embedding vector el . Encoding L with an image
encoder model f img results in the embedding set Efimg

L and encoding with a location encoder model
floc results in Efloc

L .

2. Encoder models

To determine which encoder models are best suited for disease mapping, this section defines spatial
embeddings and explains how they are generated by encoder models. For this research, a location l is
defined as a point on the S2 sphere of Earth with a corresponding latitude-longitude coordinate pair
(λ, ϕ). To get a spatial embedding vector e, this location needs to be encoded with a spatial encoding
model f, where e = f(l). Given a set of locations L = {l1, l2, . . . , ln}, f can be used to generate the
spatial embeddings Ef

L = {f(l) | l ∈ L} = {e1, e2, . . . , en}.

The embeddings of the location li come from models that are broadly separated in three categories by
their neural network (NN) architecture. Image encoder models require images for their embedding.
Encoding li with an image encoder f img thus entails getting an image Ii at li. The spatial embeddings
for L using f img are then generated by Efimg

L = {fimg(I) | I at l, l ∈ L}. Location encoders do not
require images to embed locations. These models generate embeddings from just the coordinates. An
location encoder f loc generates the spatial embeddings Efloc

L = {floc(l) | l ∈ L}.1

A schematic overview of how image and locations encoders extract embeddings is in Figure 1. The
architectures and pre-training methods for these two categories of models will be explained in this
section. The third category of models is the baselines, which contain models that are not based
on NN’s and are used to compare the encoder models against. The baseline models are explained in
section 4.
1 The models can also be explained as Remote Sensing Foundation Models, following the terminology used by Guo et

al. [23]. The image encoders are then known as Remote Sensing Vision Foundation Models, and the location encoders
as Remote Sensing Vision-Location Foundation Models.
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2.1. Image Encoders

2.1.1. Architecture
This category of models uses trainable weights to extract features from images. In modern deep
learning, two main functions are used to extract these features, either with convolutions or self-
attention.

Convolutions are done by sliding a weighted kernel window over the input tensor to find localised
patterns in the input image and result in feature layers for the image. By putting multiple convolutions
in succession, features of different levels of complexity can be embedded. A residual network (RN
or ResNet)[10] has five blocks of convolutional layers and improved image processing by including
skip connections between each block and the next. A ResNet architecture typically does a global
pooling operation after the last block of convolutions followed by a final fully connected layer without
convolutions. This last layer is typically used to relate patterns of features to targets relevant for
specific tasks.

A transformer [24] is an architecture which uses self-attention functions on a sequence of token-
vectors to learn relations. It was originally developed for natural language processing. A Vision
Transformer (ViT)[11] is an adapted version of this idea, using images as input. To use images
with this architecture, the image is first reshaped into a sequence of flattened patches before being
mapped with a linear projection. This projection is used to encode patches of 16×16 pixels as tokens.
To make up for the loss of spatial relations within the image, each of the embedded patch tokens
receives a learnable positional encoding as well. These patches then operate as the tokens for the
transformer part of the ViT. ViT adds a learnable [class] token, whose representation is used with
a fully connected layers as the last function of the architecture. This serves a similar purpose to the
global pooling and fully connected layer of a ResNet in that it considers the entire image and uses the
extracted features for task-specific purposes.

Convolutions force a local receptive field where a pixel can only be influenced by neighbours within
the kernel window. The attention mechanism present within a transformer instead allows a ViT to
attend all other patches globally, enabling long-range dependencies.

2.1.2. Pre-training
Methods which use self-supervised learning allow models to be trained on a dataset without the
need for any of the samples to be annotated. For image-based models, self-supervised methods like
SimCLR [14] instead use a contrastive objective to find the most defining features in an image. This
works by providing two augmented positive views of an image and comparing the output embeddings.
The models are then trained by rewarding similarity between the positive pair while penalising sim-
ilarity with negative samples.MoCo [13] uses a similar strategy, but trains two encoders separately.
The query encoder is trained with back-propagation and gradient descent. The other is instead up-
dated with a slow-moving average of the query encoder’s weights, called momentum. This momentum
encoder uses a queue of negative samples, which allows for consistency across batches.

DINO [15] also uses a momentum update, but does not require negative samples to find the most
defining features. Instead this uses knowledge distilation [25] with no labels. It’s loss function still
matches augmented views, but instead of trying to minimise the similarity to negative samples, DINO
tries to create a cluster of outputs specific to that image. Not only does this mean that DINO does not
require the queue MoCo does, it also means that if the dataset includes some similar images, DINO
would not penalise the model for generating similar outputs.
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Models pre-trained with MoCo or DINO are very useful for taking generalised image embeddings, as
they are by definition trained to find the most distinguishing features in their training dataset. For
Sentinel-2 satellite imagery, one such dataset is SSL4EO-S12 [26]. The dataset contains Sentinel-
1 and Sentinel-2 images for over 250,000 locations around the world. Moreover, pre-trained image
encoders which have been trained on this dataset are freely available.

A different way to pre-train image encoders is with Masked Autoencoding (MAE) [12]. Instead of
learning to match augmentations, MAE masks part of the input before encoding. The objective of
MAE is then to reconstruct the original image using a decoder. Multi-pretext MAE (MP-MAE) does
not just encode and decode images, but also other relevant information at the same location. MP-
MAE is used with an ConvNeXt V2 architecture [27] on the MMEarth [28] dataset to pre-train
an image encoder. This dataset contains modalities for 1.2 million locations which includes satellite
imagery from Sentinel-1 and Sentinel-2, as well as other pixel and image-level modalities like land cover,
elevation and temperature. While both an encoder and decoder are necessary for the pre-training,
just the pre-trained encoder is used to extract the embeddings.

2.2. Location encoders

2.2.1. Architecture
A different strategy to encode locations is with geographic location encoders. These encoders are
typically a combination of a non-parametric positional encoding PE(·) for l and a trainable neural
network NN(·). The embedding vector is then obtained with e = NN(PE(l)). PE(l) is a deterministic
function that transforms the coordinates into a positional embedding vector, while NN(·) provides a
learnable component to the location encoder. These location encoders can then be trained with
supervision to learn the interaction between input coordinates and target labels [16].

SatCLIP [18] uses spherical harmonics(SH) [29] for its positional encoding and a SIREN neural
network [30]. The spherical harmonics have a history in Earth sciences and are particularly suited
for coordinates on the surface of spheres. Their spatial smoothness is controlled by the number of
Legendre polynomials L. The SIREN network uses periodic activation functions which are particularly
suited for implicit neural representations of complex natural signals. This makes it a logical choice for
SatCLIP, as its goal is to encode satellite image features implicitly into coordinate pairs.

GeoCLIP [17] has a positional encoder which transforms l into the Equal Earth projection (EEP) [31]
before extracting features using Random Fourier Features (RFF) [32]. RFF allow for high-frequency
embeddings from low-dimensional inputs. The frequency in RFF is varied to capture features at
three different spatial scales and for each scale a MLP is pre-trained on the image model to get a
hierarchical representation. The embeddings from different levels are then summed element-wise to
obtain the location embedding for l.

2.2.2. Pre-training
One way to train a location encoder for generalised spatial embeddings is by providing image em-
beddings. This subset of location encoders use a contrastive objective to learn to match location
embeddings to the embeddings of an image at the same location. The idea for this is that by pre-
training with an image encoder, the location encoder can infer image features without the need for the
images themselves. This Contrastive Location-Image Pre-training (CLIP) is based on the Contrastive
Language-Image Pre-training [33]. Both of the models mentioned in the previous section are trained
with this CLIP objective.
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SatCLIP is pre-trained on satellite imagery samples from around the globe, allowing for particularly
good results in areas that traditionally have less sample coverage. SatCLIP models are pre-trained on
their own dataset of Sentinel-2 imagery, S2-100K. The location encoder is then trained contrastively
against the image encoder. The MoCo pre-trained ResNet and ViT image encoders from SSL4EO
[26], explained in section 2.1.2, were used for this purpose.

GeoCLIP has instead been pre-trained on a dataset of geo-tagged terrestrial RGB images from Flickr
created for the 2016 MediaEval workshop [34]. This model also has another difference to the SatCLIP
models. The ViT image encoder to learn from was pre-trained with the Contrastive Language-Image
Pre-training [33], effectively embedding language, image and location-based features for each l.

7
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Figure 2. Boundaries of the Spanish municipalities [35] used in this thesis.

3. Data

3.1. Study area

For this thesis, researchers at the Public University of Navarre (UPNA) provided data consisting of the
modelled expected and truly observed cases for three rare diseases. The data was provided aggregated
at municipal level in Spain and the research area comprises all municipalities of peninsular (continental)
Spain. Accordingly, the research does not consider the Canary Islands, the Balearic Islands nor the
autonomous regions at the coast of Africa. Furthermore, some small regions of peninsular Spain
are too sparsely populated to provide meaningful data, and are also not considered. The municipal
dataset [35] has 7954 municipalities, which are mapped out in Figure 2. The municipalities vary
significantly in population size and area. According to 2022 population data [36], the most populous
municipality (Madrid) has over 3.2 million inhabitants while the least populous municipality (Illán de
Vacas) has only three. Similarly, the largest municipality (Cáceres) in this dataset has an area of just
over 1750km2 and the smallest (Emperador) an area of about 0.025km22.
2 A 2022 review of the municipal boundaries by the Valencian Cartographic Institute measured a different smallest

municipality (Llocnou de la Corona), but this change was not yet in the data for this thesis.

8



MSc thesis: Comparing image and location encoder models in the context of disease mapping

(a) Lcentroid (b) LSRS20k

Figure 3. Sampling locations for the satellite image datasets.

Sentinel-2 satellite imagery

For the thesis, two distinct sets of locations were used. These locations are mapped out in Figure 3.
For every location in both dataset, multi-spectral (13-band) 256×256 Sentinel-2 L1C images were
downloaded using the Google Earth Engine [37], such that the location is at the centre of the Sentinel-
2 image. For the first dataset, Lcentroid, the locations are the centroids of each municipality resulting
in 7954 locations and images.

For the second dataset, locations were sampled using a stratified random sampling strategy where
the number of locations sampled in each municipality was depended on the area of the municipality.
This dataset has 20,000 locations in total. To ensure compatibility with municipal level data, at least
one location was sampled for each municipality. The remaining 12,046 locations were distributed
proportionally to the area and sampled randomly within those municipalities. The resulting Stratified
Random Sample of locations with corresponding images is the LSRS20k dataset.

3.2. Data for downstream tasks

The municipal data for the diseases was provided by researchers at the UPNA. There are three different
diseases in this dataset. For confidentiality reasons, it is not revealed which diseases are in the dataset,
which is not a problem for the scope of this thesis. Following the naming convention of the original
data, these diseases are referred to as D1, D2 and D3. For each of the diseases, both the observed
and the expected counts are provided, O and E. This expected count is based on the age distribution
of the population within each municipality and takes into account the relative disease risk for each
age group [38]. To normalise E, the rate per 100,000 inhabitants was calculated based on municipal
population data [36], resulting in E100k1, E100k2 and E100k3 respectively.

This thesis uses four disease predictors along with the disease data for the downstream tasks. The first
is the most recent CORINE Land Cover (CLC) dataset [39]. This dataset from 2018 offers 44 thematic
land cover classes. From a global temperature dataset [40] the minimum (Tmin) and maximum
temperature (Tmax) are used. The temperature data is from June of 2019 and was converted to °C.
The last dataset[41] has been created for the particulate matter concentration smaller than 2.5µm
(PM2.5), averaged over 2022.

9
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4. Experimental setup

Models

Following the objective for the thesis, different kinds of encoding models were compared both qualita-
tively and quantitatively. An overview of the encoder models used is in Table 1. As mentioned in the
encoders section, image encoders extracted embeddings with a feed-forward encoding of the satellite
images, while the location encoders extracted embeddings from the location coordinate pair.

All of the image encoder models apart from MMEarth [28] were pre-trained on SSL4EO-S12[26].
The SSL4EO models vary in model architecture and pre-training methodology and were implemented
using TorchGeo [42]. To get the embeddings from the MMEarth model, an average pooling operation
was added after the encoding of the Sentinel-2 imagery.

While the location encoder models from SatCLIP [18] all use the same architecture and pre-training
method, these vary in two other pre-training parameters. The first is the image encoder they were
pre-trained with, either a ResNet18, a ResNet50 or a Visual Transformer [10, 11]. Each of these
models also come in two levels of smoothness, L = 10 or L = 40.

Along with the pre-trained encoders, two baseline models were used. These models have no encoding
architecture and are used as a baseline evaluation to compare the encoders to. ‘Random’ contains
embeddings with 10 uniformly random sampled values between 0 and 1. ‘Mean reflection’ is a baseline
embedding of length 13 which is calculated by taking the mean average reflectance per band for the
Sentinel-2 image at each location.

For each model, three sets of embeddings were extracted. The first two are obtained by passing the
coordinates or images from the Lcentroid and LSRS20k datasets directly through the models. Encoding
locations L with f thus gives the embedding matrix Ef

L ∈ Rn×D where M has an output embedding
size of D dimensions for n locations in L. For example, running the images of Lcentroid through the
SSL4EO ViT-DINO model gives embeddings EViT-DINO

LSRS20k
∈ R20000×1000. The third set of embeddings

EM
avg-muni was calculated by averaging the embeddings from LSRS20k per municipality to be able to

use them for tasks on municipal level. Averaging the example embedding EViT-DINO
LSRS20k

then results in
EViT-DINO

avg-muni ∈ R7954×1000.

Table 1. Encoder models used and the baselines (BL). Includes the encoder architecture, the self-supervised
learning (SSL) method, the data used and the output embedding dimension size.

Model Encoder architecture SSL method Pre-training dataset Data type Dimension size

B
L Mean reflection - - - L1C Sentinel-2 13

Random - - - - 10

Im
ag

e
E

nc
. RN18-MoCofc ResNet18 MoCo SSL4EO-S12 L1C Sentinel-2 1000

RN50-MoCofc ResNet50 MoCo SSL4EO-S12 L1C Sentinel-2 1000
RN50-DINOfc ResNet50 DINO SSL4EO-S12 L1C Sentinel-2 1000
ViT-DINO ViT-16 DINO SSL4EO-S12 L1C Sentinel-2 1000
ViT-MoCo ViT-16 MoCo SSL4EO-S12 L1C Sentinel-2 1000
MMEarth ConvNeXt V2 MP-MAE MMEarth Multi-modal 320

L
oc

at
io

n
E

nc
. SatCLIP-RN18L=10 SirenNet(SH) CLIP S2-100K L2A Sentinel-2 256

SatCLIP-RN18L=40 SirenNet(SH) CLIP S2-100K L2A Sentinel-2 256
SatCLIP-RN50L=10 SirenNet(SH) CLIP S2-100K L2A Sentinel-2 256
SatCLIP-RN50L=40 SirenNet(SH) CLIP S2-100K L2A Sentinel-2 256
SatCLIP-ViTL=10 SirenNet(SH) CLIP S2-100K L2A Sentinel-2 256
SatCLIP-ViTL=40 SirenNet(SH) CLIP S2-100K L2A Sentinel-2 256
GeoCLIP RFF with MLP’s CLIP MP-16 Flickr images 512

10
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4.1. Embedding pattern visualisation

To answer the first research question regarding the distinguishing visual patterns which emerge on
maps when comparing spatial embeddings, the embedded locations were visualised spatially and com-
pared. Two locations l1 and l2 are compared by the relation between the geographic distance and the
embedded semantic distance. Patterns between embeddings can then be analysed by relating spatial
closeness to semantic closeness. This was done visually on maps that show a semantic comparison.
Maps show geographic closeness inherently and by visualising semantic distance, spatial embedding
patterns can be compared. The semantic distance was approximated with two different methods which
show different semantic properties.

The first method relies on principal component analysis (PCA), which is a dimensionality reduction
technique used to capture the largest variance within a dataset in p principal components. These
principal component vectors can then be used for a transformation, reducing the embedding dimension
to p. By choosing p = 3 and normalising the values to integers between 0 and 255, PCA was utilised
as a RGB-transformation, mapping the largest variance within the embeddings to red, green and blue
values. This RGB transformation was done on Ef

SRS20k and the resulting RGB points were mapped
onto Thiessen polygons (geographical Voronoi diagram) for improved visual readability.

The second method involves the cosine similarity (cos_sim) metric. This metric is used to calculate
the similarity between a specific embedding and all others within the same embedding set. The
cosine similarity between the embeddings of two locations is then calculated with cos_sim(e1, e2) =

e1·e2
∥e1∥∥e2∥ The semantic distance between two locations is then the inverse of their similarity. While
the PCA-transformation shows how embeddings all compare to one another, cosine similarity can
be used to visualise how a specific location l compares to all other. This is done by calculating
cos_sim(f(l), f(li)) for all li ∈ L. To visualise the cosine similarity, the municipal locations from
Lcentroid were used to compare all municipal embeddings to the embedding of Madrid. The municipality
of Madrid was chosen as a target municipality to compare against to find whether other theoretically
semantically similar urban areas show high similarity to it.

4.2. Downstream tasks

To answer the second research question, the encoder models were compared on their ability to correlate
to disease predictor variables. The embeddings were validated on several downstream regression
tasks, based on the disease predictor variables mentioned in section 3.2. The objective here is to find
out which pre-calculated embeddings are best able to correlate to these disease predictors, and not
necessarily to find the best correlation or approximation.

The disease predictor variables were sampled at the locations from both Lcentroid and LSRS20k dataset.
For Tmin, Tmax, PM2.5 ,E100k1, E100k2 and E100k3, predictions were fit with a linear regression. A
linear regression fits slope parameters β and an intercept α such that the predictions ŷ = Ef

L · β + α

result in the lowest residual sum of squares (SSres) compared to the predictor values y. A linear
regression thus tries to minimise SSres =

∑n
i (yi − ŷi)

2, for the n locations in the training set. Half
of the available samples (50%) of a predictor variable were selected randomly for training. The other
half of the samples were used for testing.

The R2 coefficient was calculated over the test set and used for evaluation of the linear fit. This coeffi-
cient is calculated as shown in Equation 1 by dividing the sum of the residual sum of squares (SSres),
with the total variance in the downstream task dataset known as the total sum of squares(SStot).
This fraction is subtracted from one to get the proportion of variance in the dataset which can be
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predicted from the embeddings. Note that R2 has an upper bound of 1, but no lower bound. An R2

of 0 is often thought of as a lower bound, implying no correlation. A constant prediction of ȳ for all
samples would give this R2. An R2 lower than 0 implies negative correlation. This can for example
happen when the training sample is not representable for the entire dataset.

R2 = 1− SSres
SStot

= 1−
∑n

i (yi − ŷi)
2∑n

i (yi − ȳ)2
where n = number of evaluated locations

yi = dataset sample value for li
ȳ = mean value of samples
ŷi = predicted value for li = f(li) · β + α

β = fitted slope vector of the regression
α = intercept of the regression

(1)

For the CLC prediction, the same 50-50 test-train split was used, but its nominal data was fit using a
logistic regression instead. A detailed explanation of the logistic regression objective is in Appendix C.
For learning this regression, a maximum of 100 iterations were used. After the training, the fit was
used with the test set and the % top-one accuracy is calculated as evaluation metric.

4.3. ResNet intermediate layer embeddings

Residual networks encode low and high-level features depending on the depth of the model. A residual
network is made up of 5 blocks of convolutions with residual connections between them. A schematic
visualisation for the ResNet50 architecture is shown in Figure 4. The early blocks encode low-level
features, e.g. corners, edges and simple relations between bands. The deeper layers encode more
high-level features, which are usually complex patterns and objects. For research question 3, embed-
dings were taken directly from intermediate layers of the ResNet model. This was done by removing
deeper layers and applying a global average pooling function over the feature maps after the residual
connection. The embeddings from the different convolutional layers were evaluated on their disease
predictor correlation ability by repeating the experimental setup from subsection 4.2. These deeper
embeddings were also compared to the embeddings from the final fully connected (fc) layer.

Figure 4. Schematic description of a ResNet50 image encoding model. Embeddings were taken after the
residual connection (+) from each of the convolutional (conv) layers.

12
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4.4. West-East split sampling

To further test each the ability of each encoder to generalise locations, the downstream tasks were
repeated on a spatially sampled training set. Instead of sampling the test and training split randomly
from L, sampling was done purely spatially. The 50% most western samples (by longitude) were used
for the training set and the 50% most eastern samples for testing. This creates a spatially clustered
sample which is by design no longer representable for the entire dataset. The rest of the experiment
followed the downstream task evaluation as mentioned in subsection 4.2.

(a) Reference satellite imagery (b) Random: 18% (c) Mean reflection: 99%

(d) SSL4EO-RN18-MoCo: 32% (e) SSL4EO-RN50-MoCo: 34% (f) MMEarth: 41%

(g) SatCLIP-ViTL=10: 97% (h) SatCLIP-ViTL=40: 74% (i) GeoCLIP: 18%

Figure 5. The first three principal components of an embedding mapped to red, green and blue respectively.
Includes the percentage of the total variance explained by these components.
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5. Results

5.1. Embedding pattern visualisation

PCA maps In Figure 5 the results of the principal component transformations are mapped to RGB.
These are shown along with the percentage of the total variance within each embedding dataset which
can be explained by these components. In this figure, map (a) is a reference satellite image. The other
maps ((b)-(i)) are the output of the PCA transformation on the embeddings from selected models.
In these maps, locations with similar colours have similar embeddings. Maps (b) and (c) visualise
the embedding space of the baseline embeddings. As expected, the random model (b) shows noise,
indicating no spatial awareness and no ability to distinguish locations meaningfully.

All of the models which were run with the multispectral satellite imagery (c - f) follow the main
geographic features of Spain, as can be seen by comparing to the reference satellite image (a). In
map for the mean reflection model (c) this generalised pattern is recognizable, but there is little shade
variance within the large areas of blue indicating that the model shows low capability to distinguish
locations semantically. This compared to the embeddings from the image encoders (d - f), that show
more variation in colour. This difference in colours indicates that the image encoder models are more
specific in distinguishing certain semantic types of areas. For example, map (c) shows no distinction
between the border area with Portugal on the left side of the map and the more land inward area
around Barcelona.

The maps (g-i) resulting from the location encoders do not follow the main geographical features
of Spain; instead these maps show a colour gradient rather than distinct sections of colour. There
was a very high spatial correlation in the location encoder maps, seen by large smooth areas of
similar colours. This difference is especially noticeable when compared to the image encoder maps
around the mountain area in the south. All image encoder models show a ’line’ in the south-west
area of Spain, there is no similar line visible in the location encoder maps. There is a clear visual
difference between the SatCLIP PCA maps (g, h) and the GeoCLIP map (i). This was due to the
distinct strategies these models employ for embedding a location from the location’s coordinates. The
differences between SatCLIP and GeoCLIP within the context of this thesis will be discussed in more
detail in the discussion section.

Cosine similarity maps The cosine similarity with respect to Madrid were calculated for the
different kinds of models. In Figure 6, these results are shown for three encoder models, all of which
had their features pre-trained based on visual transformers. The cosine similarity maps are shown
above with matching histograms of the values below. The maps show how similar the embedding of
the centroid of the municipality of Madrid is to all municipalities within the Lcentroid dataset. Cosine
similarity is between 0 and 1, with Madrid having a perfect similarity of 1 with itself. The histograms
below show the distribution of similarity values across the entire dataset.

The location encoder model from SatCLIP (c) shows very strong spatial similarity, where the em-
beddings of the geographically closest municipalities also have a high cosine similarity to Madrid.
Looking at the histogram, this also results in a high average cosine similarity in the embedding space
with a mean cosine similarity of 0.79. This shows that the global SatCLIP model is not able to make
highly localised semantic inferences. In other words, as the model was pre-trained for a global covering
objective, it’s not able to encode different urban areas on the scale of Spain.

The maps and histograms for the image encoders (a-b) show a larger discrepancy between the embed-
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(a) SSL4EO-ViT-MoCo (b) SSL4EO-ViT-DINO (c) SatCLIP-ViTL=40

Figure 6. Cosine similarity of the embedding of Madrid and all other embedded municipalities in ELcentroid . For
each model, the spatial distribution is mapped out on top and a histogram of the cosine similarity
values is shown below.

ding of Madrid and the other municipalities. For both, very few other municipalities are considered
close in the embedding space. The municipalities which are the closest are often other urban areas,
showing an ability of the image encoders to encode semantic similarity. Take for example the larger
Barcelona area, which ’lights up’ on these maps. This shows that these pre-trained image encoders
encode the the satellite images of Madrid and Barcelona to a similar place in the embedding space,
giving them a strong semantic similarity.

Comparing the SSL4EO MoCo model to the DINO model, the average similarity to Madrid differs
quite a bit between these models. The MoCo model has the mean average cosine similarity of 0.42 with
respect to Madrid, while this is 0.27 for DINO. However, the 99% quantile, which encompasses the
80 most similar municipalities, starts at a comparable value of 0.73 for the MoCo pre-trained model
and 0.71 for the DINO pre-trained model. These differences in representation between the MoCo and
DINO are further discussed in section 6.1.
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5.2. Downstream tasks

The results for the downstream tasks are in Table 2 for EM
Lcentroid

. The results for the downstream task
evaluation on EM

LSRS20k
and EM

avg-muni can be found in Appendix D with Table 5 and Table 6 respectively.
The evaluation on the disease predictor correlation tasks show that there was no single model which
performed best on all of these tasks. Which of the encoding models had the strongest correlation thus
depended on the type of disease predictor variable.

The results of the CORINE Land Cover (CLC) classification task show that the image encoder models
significantly outperformed the location encoder models for all embedding sets. For the embeddings
from the centroids of the municipalities as seen in Table 2, there was a difference of at least 10%
accuracy between the best image encoder and the worst location encoder. Looking at the prediction
maps shown in Figure 7, the SatCLIP location encoder model (d) was unable to model the fine-
grained land cover differences. Instead, the fit seems to have predicted the most common land cover
type within a larger area. The image encoder models (b-c) predicted a wider variety of different land
cover classes and were able to model differences in land cover on small spatial scales.

On the rest of the linear regression tasks, the embedded locations from SatCLIP’s models with higher
smoothness (L=40) generally had the strongest correlation. In Table 2, an image encoder only finds
a higher correlation on one of the 6 other tasks, with the RN50-DINOfc model on the maximum
temperature (Tmax). This model is also notable for showing the strongest correlations among the
different image encoder models. This result is consistent across the different embedding sets.

Table 2. Downstream task performance for baseline (BL), image and location embeddings on the locations in
the ELcentroid embeddings. The scores are averaged over 10 independently initialised runs and standard
deviation is given. The best performing embeddings per task are highlighted.

CLC Tmin Tmax PM2.5 E100k1 E100k2 E100k3

Model ↓ Task → % Accuracy R2 R2 R2 R2 R2 R2

B
L Mean reflection 33.53 ± 0.66 0.69 ± 0.01 0.71 ± 0.01 0.38 ± 0.01 0.29 ± 0.01 0.22 ± 0.01 0.32 ± 0.01

Random 24.60 ± 0.38 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00

Im
ag

e
E

nc
. RN18-MoCofc 46.93 ± 0.68 0.65 ± 0.01 0.77 ± 0.00 0.44 ± 0.01 0.28 ± 0.01 0.13 ± 0.01 0.28 ± 0.02

RN50-DINOfc 47.50 ± 0.56 0.80 ± 0.00 0.87 ± 0.00 0.54 ± 0.02 0.37 ± 0.01 0.21 ± 0.02 0.37 ± 0.02
RN50-MoCofc 46.21 ± 0.61 0.73 ± 0.01 0.83 ± 0.00 0.49 ± 0.01 0.32 ± 0.02 0.16 ± 0.02 0.33 ± 0.01
ViT-DINO 44.83 ± 0.66 0.79 ± 0.00 0.85 ± 0.00 0.49 ± 0.02 0.32 ± 0.02 0.19 ± 0.01 0.33 ± 0.01
ViT-MoCo 49.69 ± 0.37 0.76 ± 0.01 0.81 ± 0.00 0.42 ± 0.02 0.29 ± 0.01 0.15 ± 0.01 0.29 ± 0.01
MMEarth 44.70 ± 0.69 0.71 ± 0.01 0.80 ± 0.00 0.44 ± 0.02 0.33 ± 0.02 0.24 ± 0.01 0.34 ± 0.01

L
oc

at
io

n
E

nc
. SatCLIP-RN18L=10 30.30 ± 0.38 0.75 ± 0.22 0.73 ± 0.23 0.43 ± 0.45 0.44 ± 0.05 0.35 ± 0.05 0.45 ± 0.02

SatCLIP-RN18L=40 31.91 ± 0.90 0.86 ± 0.02 0.84 ± 0.02 0.62 ± 0.03 0.50 ± 0.01 0.39 ± 0.02 0.50 ± 0.02
SatCLIP-RN50L=10 30.25 ± 0.45 0.82 ± 0.06 0.80 ± 0.03 0.48 ± 0.18 0.43 ± 0.05 0.34 ± 0.05 0.35 ± 0.17
SatCLIP-RN50L=40 32.25 ± 0.64 0.87 ± 0.01 0.84 ± 0.01 0.53 ± 0.40 0.51 ± 0.01 0.40 ± 0.02 0.51 ± 0.01
SatCLIP-ViTL=10 30.46 ± 0.81 0.69 ± 0.16 0.77 ± 0.10 -0.07 ± 1.84 0.19 ± 0.65 0.18 ± 0.46 0.38 ± 0.10
SatCLIP-ViTL=40 32.25 ± 0.49 0.87 ± 0.00 0.84 ± 0.01 0.63 ± 0.04 0.50 ± 0.03 0.42 ± 0.01 0.51 ± 0.01
GeoCLIP 30.29 ± 0.82 0.83 ± 0.00 0.82 ± 0.00 0.59 ± 0.01 0.46 ± 0.01 0.34 ± 0.01 0.46 ± 0.01
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Legend

(a) CLC samples (b) SSL4EO-ViT-DINO: 48.07%

(c) MMEarth: 47.41% (d) SatCLIP-ViTL=40: 30.69%

Figure 7. Prediction maps for the CORINE Land Cover (CLC) classification task. Map (a) contains the true
classes for the task. The other maps were fit on EM

SRS20k with logistic regression. Includes the top-1
% accuracy.

5.3. ResNet intermediate layer embeddings

The disease predictor tasks were repeated on embeddings from different layers of ResNet models as
explained in subsection 4.3. The results of these regression fits with the embeddings on Lcentroid are
in Table 3. For the other embedding sets, the results are in Table 7 and Table 8 in Appendix D.
These tables show for each of the SSL4EO models with a ResNet architecture the downstream task
performance. Here, not only the best performing embedding per task is highlighted, but also the best
performing embedding from different layers in each model.

Across the three tables and for every task, the final fully connected (fc) layer was never the best
performing for a model. This is quite unexpected, as the established practice for the use of pre-
trained models involves including these final-layer embeddings. The results further show that it is
depended on the task which convolutional level has the strongest correlation. In general, the land
cover classification (CLC) shows stronger correlation with the features from convolutional layers 4
and 5 while the linear regression fits have a stronger correlation to the earlier layers (2, 3 and 4).
The land cover prediction thus benefits from using high-level features. Similarly, the linear regression
is able to correlate better to lower level features. Comparing Table 3 to Table 2 shows that while
the embeddings from the intermediate layers outperformed the embeddings from the fully connected,
the models from SatCLIP still show a stronger correlation on Tmin, PM2.5, E100k1, E100k2 and
E100k3.
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Table 3. Scores for the downstream tasks on the centroid dataset when taking embeddings from deeper parts
of a pre-trained ResNet model. Best performing per pre-trained model and task are highlighted. All
ResNet models were pre-trained on the SSL4EO [26] dataset.

CLC Tmin Tmax PM2.5 E100k1 E100k2 E100k3

Model ↓ Task → % Accuracy R2 R2 R2 R2 R2 R2

RN18-MoCofc 46.93 ± 0.68 0.65 ± 0.01 0.77 ± 0.00 0.44 ± 0.01 0.28 ± 0.01 0.13 ± 0.01 0.28 ± 0.02
RN18-MoCo5 47.68 ± 0.52 0.70 ± 0.01 0.80 ± 0.00 0.51 ± 0.01 0.37 ± 0.01 0.26 ± 0.01 0.39 ± 0.01
RN18-MoCo4 45.70 ± 0.54 0.76 ± 0.00 0.83 ± 0.00 0.52 ± 0.01 0.39 ± 0.01 0.30 ± 0.01 0.42 ± 0.01
RN18-MoCo3 41.93 ± 0.49 0.79 ± 0.00 0.84 ± 0.00 0.53 ± 0.01 0.40 ± 0.01 0.30 ± 0.01 0.41 ± 0.01
RN18-MoCo2 40.43 ± 0.51 0.77 ± 0.00 0.83 ± 0.00 0.48 ± 0.01 0.36 ± 0.01 0.27 ± 0.01 0.38 ± 0.01
RN18-MoCo1 39.33 ± 0.74 0.78 ± 0.00 0.83 ± 0.01 0.50 ± 0.02 0.36 ± 0.01 0.28 ± 0.01 0.39 ± 0.01

RN50-MoCofc 46.21 ± 0.61 0.73 ± 0.01 0.83 ± 0.00 0.49 ± 0.01 0.32 ± 0.02 0.16 ± 0.02 0.33 ± 0.01
RN50-MoCo5 49.34 ± 0.67 0.64 ± 0.01 0.77 ± 0.01 0.28 ± 0.03 -0.01 ± 0.03 -0.28 ± 0.05 -0.03 ± 0.02
RN50-MoCo4 46.93 ± 0.52 0.80 ± 0.00 0.86 ± 0.00 0.51 ± 0.01 0.31 ± 0.01 0.16 ± 0.02 0.32 ± 0.02
RN50-MoCo3 44.39 ± 0.75 0.83 ± 0.02 0.89 ± 0.01 0.55 ± 0.03 0.38 ± 0.03 0.26 ± 0.02 0.42 ± 0.02
RN50-MoCo2 41.71 ± 0.60 0.82 ± 0.01 0.87 ± 0.01 0.54 ± 0.02 0.40 ± 0.05 0.30 ± 0.01 0.43 ± 0.02
RN50-MoCo1 38.40 ± 0.48 0.77 ± 0.00 0.81 ± 0.00 0.50 ± 0.01 0.36 ± 0.01 0.28 ± 0.01 0.38 ± 0.01

RN50-DINOfc 47.50 ± 0.56 0.80 ± 0.00 0.87 ± 0.00 0.54 ± 0.02 0.37 ± 0.01 0.21 ± 0.02 0.37 ± 0.02
RN50-DINO5 47.43 ± 0.59 0.74 ± 0.01 0.83 ± 0.01 0.34 ± 0.02 0.04 ± 0.03 -0.25 ± 0.04 0.06 ± 0.03
RN50-DINO4 49.05 ± 0.70 0.82 ± 0.00 0.87 ± 0.00 0.54 ± 0.02 0.37 ± 0.02 0.20 ± 0.01 0.38 ± 0.01
RN50-DINO3 47.36 ± 0.70 0.83 ± 0.00 0.88 ± 0.00 0.57 ± 0.01 0.41 ± 0.01 0.27 ± 0.02 0.42 ± 0.01
RN50-DINO2 44.96 ± 0.50 0.84 ± 0.00 0.88 ± 0.00 0.57 ± 0.02 0.43 ± 0.01 0.31 ± 0.01 0.44 ± 0.01
RN50-DINO1 41.09 ± 0.48 0.77 ± 0.03 0.82 ± 0.01 0.52 ± 0.02 0.35 ± 0.07 0.27 ± 0.05 0.40 ± 0.02

5.4. West-East split sampling

The results of the experiment outlined in subsection 4.4 are in Table 4. Since the training and
test samples are consistent by design (west-most samples are for training, east-most for testing), no
repetition done and scores are shown for a single run. For all models and all tasks, the evaluation
scores are lower than with the random sampling. For many of the regressions, the fit to the spatial
training data led to a negative correlation (R2 < 0). The only model which was able to fit a positive
correlation (R2 > 0) for all tasks is the mean reflection baseline model.

What is mainly striking in Table 4 is the consistent very strong negative correlation (R2 ≪ 0) fits
with the various SatCLIP models. These models show an extreme extrapolation when subjected to a
spatially disjunct training and test sample. For example, the SatCLIP-ViTL=40 fit on Tmax has an
R2 of −6.33×108, using this spatial split. This R2 is able to be this low as the predicted temperatures
are extrapolated.

Table 4. Scores for the downstream tasks using east-west train-test split on the centroid dataset.
CLC Tmin Tmax PM2.5 E100k1 E100k2 E100k3

Model ↓ Task → % Accuracy R2 R2 R2 R2 R2 R2

B
L Mean reflection 27.96 0.54 0.53 0.14 0.11 0.02 0.21

Random 20.29 -0.30 -0.05 -0.07 -0.11 -0.18 -0.05

Im
ag

e
E

nc
. RN18-MoCofc 39.07 0.36 0.46 0.12 -0.11 -0.25 0.00

RN50-DINOfc 30.70 0.46 0.58 0.03 -0.26 -0.37 -0.12
RN50-MoCofc 39.25 0.50 0.61 0.04 0.01 -0.13 0.10
ViT-DINO 29.47 0.65 0.67 0.20 -0.01 -0.22 0.12
ViT-MoCo 40.18 0.49 0.61 0.14 0.04 -0.12 0.14
MMEarth 29.62 0.42 0.46 -0.02 -0.04 -0.15 0.09

L
oc

at
io

n
E

nc
. SatCLIP-RN18L=10 19.41 -1.01×1018 -5.54×1017 -5.09×1017 -2.60×1018 -2.13×1018 -1.66×1018

SatCLIP-RN18L=40 9.00 -9.03×108 -1.11×1010 -1.25×1010 -1.97×109 -6.36×109 -4.88×108

SatCLIP-RN50L=10 17.22 -3.58×1017 -5.19×1014 -3.61×1017 -9.40×1015 -2.46×1017 -8.64×1015

SatCLIP-RN50L=40 16.34 -4.94×109 -1.86×109 -1.35×108 -3.96×109 -4.48×109 -6.35×109

SatCLIP-ViTL=10 19.69 -4.31×1017 -1.09×1017 -1.73×1017 -2.69×1018 -5.31×1018 -1.50×1018

SatCLIP-ViTL=40 12.87 -6.00×107 -6.33×108 -4.48×108 -3.95×108 -2.49×108 -4.53×108

GeoCLIP 23.61 0.58 0.47 0.12 -0.24 -0.34 -0.14
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(a) SSL4EO ViT-DINO: R2 = 0.67 (b) SatCLIP-ViTL=40: R2 = −6.33× 108

Figure 8. Prediction maps of Tmax in °C for two encoding models. The 50% westernmost samples were used
for training and the easternmost were used testing. R2 score for the fit on the test set is given.

The predictions for this example are mapped in Figure 8, with the SatCLIP model in map (b) and
an image encoder in map (Figure 8a). The SatCLIP model’s predicted maximum temperature values
are between ≈ −250, 000 and ≈ 50, 000 °C. These values are far from the actual data range of the
samples, and the discrepancy seems to increase if the geometric distance to the training samples
increases. Similar extrapolation happens for the linear regression fits of each of the different SatCLIP
models. The extrapolation is even stronger for the SatCLIP models with L = 10. Following the
example, the SatCLIP-ViTL = 10 model had an R2 of -1.09×1017 on this task instead.

The best performing model for this maximum temperature example, mapped in (Figure 8a), does not
have the extrapolation problem, though also suffered in correlation compared to random sampling.
The value range of these Tmax predictions are between ≈ 18 and ≈ 34 °C, which is within expectations.
With a reasonable R2 of 0.67, this map shows that this model was still able to correlate the embedding
of a location to the maximum temperature even if the training data contained no training samples
which were geometrically close.
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6. Discussion

6.1. Embedding pattern visualisation
The results from the embedding pattern visualisation show clear differences between the image en-
coders and location encoders. These differences were expected and were visualised mainly to show
how the embedded features are related in space. The relation between locations can be purely spatial,
following Tobler’s First law [3], purely semantic or a combination of both. Both the embeddings from
the image encoders and the embeddings from the location encoder show a combination of both.

The image encoders embed a similarity which is mostly semantic in nature as the embeddings are
just an interpretation of an image. In both the PCA maps and the cosine similarity maps, these
embeddings indeed show ability to differentiate between areas based on what’s visible from space
at that location. These models still show spatial patterns (patches of clustered similar colours) in
the PCA maps when visualising the embedding space however, showing that often locations close in
space end up close in semantic similarity. This means mainly that the encoders interpret the satellite
images of locations which are close geometrically as containing most similar information, which is not
unexpected. The fact that image encoders have no inherent spatial awareness still allows locations to
be close semantically while far away geometrically. Similarly, it also allows locations which are close
geographically to be dissimilar semantically.

The location encoders do have an inherent spatial awareness, as they’re encoding based on the main
formal identifier of the location in space, the coordinates. The SatCLIP models show this clearly
in the resulting PCA and cosine similarity maps which are very smooth. In these maps, the spatial
relation is very strong, meaning that locations which are close geometrically are also close semantically.
While this shows the location encoders can infer spatial relation with ease, it does not allow for large
semantic changes between to geometrically close locations. There is an obvious explanation for this.
The SatCLIP models are pre-trained globally and have only had 600 training points on the scale of
peninsular Spain.

Comparing SatCLIP and GeoCLIP Like SatCLIP, GeoCLIP shows large sections of similar
colours in the PCA maps. However, the map (i) shows a sort of speckle, with localised differences
among greater patterns in colour. I assume three reasons for this, based on the main differences be-
tween SatCLIP and GeoCLIP. Firstly, GeoCLIP uses a hierarchical strategy for the location encoding,
which considers features on different levels of spatial resolution. The larger areas of similar colour are
thus the result of similar encoding on a high spatial level. The localised differences are then the result
of the lower-level encoding. The other difference is in training size. On the scale of Spain, GeoCLIP
had significantly more images to pre-train with. This allows for more fine-grained features. Finally,
GeoCLIP is pre-trained on terrestrial images to include language features, which would explain why
the PCA would not exactly follow the geographical features of the reference satellite imagery (a). This
means that compared to all other models in this thesis, GeoCLIP should mainly have an edge when
embedding locations with a high-population density.

Comparing MoCo and DINO Figure 6 compared the cosine similarity of embeddings to that of
Madrid. There is an interesting difference between result for the MoCo [13] pre-trained model and the
[15] pre-trained model. This difference in how the histograms look can be explained by the difference in
pre-training objective. MoCo uses a form of contrastive learning, meaning the objective is to maximise
the semantic distance of the target embedding (in this case Madrid) to all other embeddings in the
dataset. In other words, MoCo needs negative samples to identify specific semantic features. DINOs
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objective is not contrastive. Instead, it’s goal is to learn semantic features from augmented positive
images, allowing semantically similar images to cluster naturally.

This difference between embeddings from models pre-trained on MoCo and embeddings pre-trained
on DINO can be seen in the histograms of 6a and 6b. The cosine similarity for the MoCo model fol-
lows a normal (Gaussian) distribution, centred around a moderate similarity value. This is expected
considering the pre-training objective is focussed around having each embedding be as far apart as
possible in the embedding space. In contrast, DINO cosine similarity has a lower average similarity
which is positively skewed. This positive skew shows that the pre-training was successful in encod-
ing Madrid’s most representative features without penalising other municipalities which are close in
semantic similarity.

6.2. Downstream tasks

CLC task The poor result of the SatCLIP model on the CLC task is expected given the patterns
explained in the previous section. When using the globally trained location encoder on the relatively
small scale of Spain, the encoded semantic features are to coarse to be able to differentiate between
areas enough to predict the land cover. Looking at the prediction maps shown in Figure 7, the pre-
trained location encoder is unable to predict fine-grained land cover classes and its best fit is found
by spatially extrapolating the most common class in a region. This comparison between image and
location encoders on a land cover prediction task is interesting, but ultimately unfair. Not only was
the CLC dataset created by utilising the Sentinel-2 imagery, which the image encoders have been
given to but the location encoders. Furthermore, logistic regression has by design 44 times as many
parameters to tune and might therefore inherently work better with the more semantically complex
image encoding models. Similarly, as the SatCLIP model was trained on only about 600 images in
Spain, the Land Cover task with all 44 classes is too spatially specific for the globally trained SatCLIP
even with the higher smoothness.

Another problem is the spatial resolution of the CLC, which is 100m. It raises the question what the
location entails. The CLC samples were taken from a 100 by 100 patch at the centre of the Sentinel
2 image, which is 2560 by 2560 meter. This also means that only 100 of the 65536 pixels within the
image are certain to contain the sampled land cover class. This could have been considered during
sampling, for example by choosing the reference land cover class for a location as the most common
CLC class within the image receptive field. The importance of having the relevant class in the receptive
field of an image encoder can also be seen by comparing the CLC scores for Ef

Lcentroid
(Table 2) against

the scores for Ef
Lavg-muni

(Table 6). In the latter case, the location embeddings were averaged over all
embeddings within the municipality, which means the CLC patch was never directly, and often not at
all in the receptive field.

Linear tasks Considering the coarse patterns of SatCLIP’s embeddings for these tasks, it was
somewhat unexpected it showed stronger correlation for Tmin, PM2.5, and all of the expected disease
cases tasks than the image encoders. However, this result might be related to the nature of these
tasks. In all of these tasks, the goal is to find correlation between the semantic interpretation of a
location and an aspect of a location which can not be detected visually.

Especially for the expected disease case tasks, the image encoder found weaker correlation than the
location encoder. The features embedded by the image encoders are never enough to be able to
represent each and every aspect of a location which are related to relative disease counts. The image
encoders used for this part all encode high-level, complex patterns which might be important for
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detecting urban areas but offer too specific semantic representations for explaining relative disease
risk. And in the cases where the semantic representation does not suffice, it is important to have some
of Tobler’s First Law in your model to ensure that ‘near things are more related than distance things’
[3].

6.3. ResNet intermediate layer embeddings

From the tables which compare embeddings from different layers of a ResNet model (Table 3, 7 and 8),
it’s clear that using the features of intermediate layers is beneficial for correlating to disease predictors.
This is unexpected as taking embeddings from the final fully connected layer, using the entire model,
is the de facto standard. However, it is important to note that the matter in which pre-trained
convolutional neural networks are used for this thesis, is not the standard. For most use-cases, these
pre-trained models are used with fine-tuning or transfer learning. This means that while generally
the feature extraction weights are frozen, the models are still trained to a specific task. With these
methods, the fully connected layer is usually modified to fit a specific task. But since fully connected
layer is practically the same as a regression, fine-tuning with a pre-trained ResNet is comparable to
taking the embeddings from the last convolution layer and fitting them separately.

While the result that embeddings from lower-level convolutional layers is somewhat unexpected, pre-
vious studies have highlighted the effectiveness of pooling from intermediate ResNet layers [43]. In-
terestingly, this study also shows that combining pooled features from "various CNN layers is effective
in collecting evidences from both low and high level descriptors". Finding out whether combining
embeddings from different layers helps with the correlation to disease predictors could be interesting
for future research. Another study shows that the deep level features are less depended on pre-training
data and that they could provide a general knowledge representation without fine-tuning [44].

It was explained in subsection 4.3 and shown in Figure 4 that the earlier convolutional layers encode
low-level features like corners and edges, while the later convolutional layers encode more complex
patterns. However, the ResNet models which are used were trained on 13-band multispectral data.
This means that along with corners and edges, relevant low-level features can also encode relations
between the different bands in the data, akin to traditional remote sensing indices.

The more generalisable semantic image embeddings might be beneficial for the disease mapping. Using
embeddings for the fixed effects in the Bayesian disease mapping model scales heavy with embedding
output dimension. For this reason, the embedding was planned to be reduced in dimension (PCA)
anyway, potentially losing out on relevant semantic features. A recent study has created a selective
principal component layer, which incorporates PCA into ResNet Conv block to remove redundant
features [45]. This study shows that the intermediate PCA over the layers can improve a model, while
doing a PCA at the end usually limits it.

6.4. West-East split sampling

This sampling strategy led to a situation where the training set was not representable for the entire
dataset. This is proven by looking at the evaluation of the Random embedding on the linear regression
tasks. The R2 score for the linear fits of ERandom

SRS20k with randomly selected training samples (Table 2)
is consistently 0.00. In Table 4 the correlation of the Random embedding with the predictor variables
is consistently negative, showing that the spatial clustering has also led to a semantic clustering. This
explains why all of the models perform worse on this task than on the original experiment.
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The main goal of this experiment was to fit a relation between semantic features and the disease
predictors on one side of the research area and find out how well this relation transfers to the other
side. The fact that the image encoders are still able to find a correlation can be attributed to the
location independent features which these models encode. In contrast, the embeddings from the
location encoders are inherently related to the coordinates. The extrapolation of SatCLIP shows that
the features of this model are so strongly correlated to the locations that it over-fits when subjected
to the experiment.

The GeoCLIP location encoder does not produce this extrapolation. It’s hierarchical location encoder
allows for feature embedding on different spatial scales. The reason GeoCLIP was likely able to
produce these localised features, whereas SatCLIP struggles is likely due to the higher training sample
density in Spain to learn from. The original SatCLIP paper stated that the pre-trained model has
‘limited spatial scales, dictated by the L parameter of the location encoder ’ [18]. On the scale of Spain,
the global model is not suitable for the kinds of spatial comparisons done by this experiment. A
SatCLIP model would either require a model to be trained with either more Legendre polynomials
and more data or with a different kind of location encoder on a smaller scale.

I believe that while the discrepancy in spatial training sample density can explain why GeoCLIP out-
performs SatCLIP on this task, the results might show a limitation of the SatCLIP model. SatCLIP’s
embeddings are presented as general purpose and globally representable. From this, one could assume
that a relation learned in one area of the globe would be transferable to a new area. As far as I can
tell, the results show that SatCLIP can have a tendency to over-fit spatially, making it susceptible to
extrapolation when predicting a variable in this new area.

6.5. Recommendations on encoding locations for disease mapping

A model for the disease mapping objective needs to have a general applicability and be able to be
correlated to various disease predictors. Looking at the results, the perfect embedding of a location
has spatial awareness while keeping the ability to encode fine-grained differences to geographically
close other locations. This is why a combination of a satellite image encoder and a location encoder
would be recommended. The most obvious strategy to combine these is to pre-train a Spain specific
SatCLIP or other location-image model. This thesis originally planned to do this, but due to time
constraints this model was never trained. There are however other ways of combining location and
image encoders which would not require any new pre-training.

The embeddings from an image encoder and a location encoder could for example be concatenated.
This concatenated embedding should technically encode both location encoder and image encoder fea-
tures to a single location. As a proof-of-concept, PM2.5 was fit and predicted with this concatenated
embedding with the test setup from subsection 4.2. The prediction maps of the SSL4EO pre-trained
image encoder, the SatCLIP encoder and the concatenated embedding is in Appendix E. This con-
catenated embedding shows a strong correlation to PM2.5, with an R2 of 0.85, 0.11 higher than the
best performing model in Table 5. Since pre-training new models is computationally costly, it might
be interesting to look into this and other strategies for combining the embeddings from existing models
in future research.
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7. Conclusion

To conclude this thesis, the following section revisits the research questions outlined in the introduction
and summarizes the key findings.

What distinguishing visual patterns emerge on maps when comparing spatial embed-
dings? The embeddings which have been extracted from locations allowed for comparing a semantic
distance along with the geographical distance. The maps have shown that satellite image encoders are
able to encode fine-grained feature-rich semantic representations. The embeddings from the location
encoders showed high spatial correlation, meaning that locations that are close geographically share
semantic similarities. On the scale of Spain the cosine similarity maps showed that the image encoders
are suited to detect high semantic similarity even if geographically relatively distant.

What kinds of embeddings have strongest correlation with selected disease predictor
tasks? Evaluation of the correlation tasks showed that the image encoders were better at predicting
land cover classes than the location encoders, which was expected given the complex image features
encoded by image encoders. On the other disease predictor tasks the location encoders and specifically
the high-smoothness SatCLIP model (L=40) had stronger correlation to these tasks than the image
encoders. This was relatively unexpected and accentuated the ability of this location encoder to
correlate to disease predictors without the need for high-complexity localised representation.

What is the effect of taking embeddings of satellite imagery from an intermediate layer
of a convolution-based encoder? As expected, the high-level embeddings from the later convolu-
tional layers of a pre-trained convolutional image encoder were useful for extracting features relating
to the classification of land cover classes. However, more interesting is that embeddings from the
earlier convolutional layers proved more effective for extracting features which can correlated to the
other disease tasks. Specifically, embeddings from final convoluted layers are thus not necessarily most
suitable for disease correlation tasks and low-level features might provide representations which are
better suited.

What is the effect of sampling disease prediction variables spatially? As expected, having a
complete east-west split hurts correlation between all embeddings and the disease predictor variables.
Still, the image-based features fit to one area could still showed correlation to disease predictors if
tested in a spatially separate area. In contrast, the embeddings from SatCLIP’s pre-trained models
made extremely extrapolated predictions on the test samples, hinting at a potential vulnerability to
spatial over-fitting within the model.

In general, pre-trained models allow for extracting semantic information from locations without the
need for any costly training. Satellite imagery is becoming increasingly easy to access and the im-
age encoders allow for semantically-rich representation which is able to correlate to various disease
predictors. Extracting embeddings of locations from pre-trained location encoders is even easier, as
they do not require any resources apart from the coordinates of a location. These embeddings are
able to encode spatially aware semantic features, which makes them particularly suited for location
representation in existing models.

In the context of disease mapping, the encoding of a location should be able to represent the environ-
mental conditions which affect the relative disease risk. From the results in this thesis, the expectation
is that a model which encodes both location as image based features would be most suitable.
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Use of generative AI

Generative AI was used in various stages in the thesis analysis and writing. Automatic completion
was used to write faster code documentation. I occasionally asked LLM-based chat models with
help writing code, and with coming up with solutions to bugs. While these chat models have given
suggestions for the LaTeX formatting of the report, no text was directly written with the help of AI.
Some examples of prompts asked to the generative pre-trained large-language models:

• I’m using LaTeX and have an generated table of contents. I have some loose sections and appen-
dices at the end. How do I reduce the whitespace in the TOC for a section without subsections?

• I’m formatting some maps in LaTeX. I have 4 maps and the legend, each a separate image. I
would like to have the legend on the left, taking up 0.32
textwidth and the 4 maps on the right 2 by two with each map taking up also 0.32
textwidth. How would I do this?

• What does it mean if L2 regularisation is used as penalty?

• I’m using ArcGIS. I have a map with predictions. I also have the ground truth for the predictions
in a different column in the same shapefile. How do I show the predictions with the lower and
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A. Overview of the methodology

Figure 9. An simplified overview of the main data flows in the methodology.

B. Explanation of the research data

The zip-file provided with this thesis contains the following:

• The thesis report.

• This documentation on file structure.

• Two posters created for the thesis, the midterm poster and the poster for the NWO-NAC.

• The slides for the colloquium.

• A repository folder, which is a modified version of my git repository.

This repository further contains the following:

• A readme file further explaining how to use the repository.

• The required relevant data used in the Data folder.

• A python package called disease_mapping, which contains python modules.

• Jupyter notebooks with scripts and explanations of the methods used.

• An environment file with the dependencies to run some of the notebooks.
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C. Logistic regression

The logistic regression was trained to fit the 44 CORINE Land Cover classes. A location li from L
has a corresponding land cover class LC(li). Logistic regression uses a softmax function to calculate
the probability that a location li has class c given ei as follows:

P (LC(li) = c | ei) =
eei·wc∑C
j=1 e

ei·wj
(2)

The model is trained with the optimiser algorithm L-BFGS [46]. The class-specific weights wc are
updated by calculating the gradient of the loss function L with respect to wc. Logistic regression uses
a negative log-likelihood (NLL) as L defined by:

L = −
n∑

i=1

44∑
c=1

∆(LC(li) = c) lnP (LC(li) = c | ei) (3)

where ∆(LC(li) = c) is an indicator function that gives 1 if the true land cover class at li is c and
0 otherwise. For the test set, the land cover class at li is predicted by calculating the class with the
highest probability.

ˆLC(li) = arg max
c

P (LC(li) = c | ei) (4)
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D. Additional tables

Downstream task scores on ELSRS20k

Table 5. Downstream task performance of ELSRS20k . The scores are averaged over 10 independently initialised
runs and the best performing embeddings per task are highlighted.

Land Cover Tmin Tmax PM2.5
Model ↓ Task → % Accuracy R2 R2 R2

B
L Mean reflection 33.71 ± 0.68 0.63 ± 0.01 0.72 ± 0.01 0.41 ± 0.01

Random 20.29 ± 0.41 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00

Im
ag

e
E

nc
. RN18-MoCofc 48.57 ± 0.71 0.68 ± 0.01 0.83 ± 0.00 0.56 ± 0.01

RN50-DINOfc 49.50 ± 0.38 0.83 ± 0.01 0.91 ± 0.00 0.67 ± 0.01
RN50-MoCofc 48.52 ± 0.59 0.77 ± 0.00 0.88 ± 0.00 0.60 ± 0.01
ViT-DINO 50.45 ± 0.94 0.82 ± 0.00 0.89 ± 0.00 0.60 ± 0.01
ViT-MoCo 48.86 ± 0.38 0.78 ± 0.00 0.87 ± 0.00 0.54 ± 0.01
MMEarth 48.28 ± 0.50 0.70 ± 0.01 0.84 ± 0.00 0.50 ± 0.01

L
oc

at
io

n
E

nc
. SatCLIP-RN18L=10 26.69 ± 0.49 0.85 ± 0.01 0.84 ± 0.00 0.69 ± 0.06

SatCLIP-RN18L=40 29.92 ± 0.52 0.86 ± 0.00 0.86 ± 0.00 0.74 ± 0.01
SatCLIP-RN50L=10 26.87 ± 0.47 0.84 ± 0.03 0.83 ± 0.04 0.71 ± 0.02
SatCLIP-RN50L=40 29.53 ± 0.44 0.86 ± 0.00 0.86 ± 0.00 0.73 ± 0.01
SatCLIP-ViTL=10 26.73 ± 0.58 0.85 ± 0.00 0.85 ± 0.00 0.72 ± 0.01
SatCLIP-ViTL=40 29.74 ± 0.69 0.86 ± 0.00 0.86 ± 0.00 0.74 ± 0.01
GeoCLIP 32.28 ± 0.87 0.82 ± 0.00 0.84 ± 0.00 0.64 ± 0.01

Downstream task scores on ELavg-muni

Table 6. Downstream task performance of ELavg-muni . The scores are averaged over 10 independently initialised
runs and the best performing embeddings per task are highlighted.

CLC Tmin Tmax PM2.5 E100k1 E100k2 E100k3

Model ↓ Task → % Accuracy R2 R2 R2 R2 R2 R2

B
L Mean reflection 31.49 ± 1.00 0.67 ± 0.01 0.66 ± 0.01 0.37 ± 0.01 0.29 ± 0.02 0.22 ± 0.01 0.32 ± 0.01

Random 24.30 ± 0.62 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00

Im
ag

e
E

nc
. RN18-MoCofc 40.77 ± 1.18 0.67 ± 0.01 0.77 ± 0.01 0.44 ± 0.02 0.31 ± 0.02 0.19 ± 0.01 0.31 ± 0.02

RN50-DINOfc 42.65 ± 0.59 0.83 ± 0.01 0.87 ± 0.00 0.57 ± 0.02 0.43 ± 0.01 0.28 ± 0.02 0.42 ± 0.01
RN50-MoCofc 40.57 ± 1.06 0.77 ± 0.01 0.83 ± 0.00 0.50 ± 0.03 0.39 ± 0.03 0.25 ± 0.01 0.38 ± 0.01
ViT-DINO 39.25 ± 0.77 0.80 ± 0.01 0.84 ± 0.01 0.52 ± 0.02 0.37 ± 0.02 0.22 ± 0.01 0.39 ± 0.02
ViT-MoCo 39.84 ± 1.16 0.78 ± 0.01 0.82 ± 0.01 0.44 ± 0.03 0.31 ± 0.02 0.21 ± 0.02 0.33 ± 0.02
MMEarth 38.20 ± 0.96 0.73 ± 0.01 0.79 ± 0.01 0.47 ± 0.02 0.38 ± 0.02 0.29 ± 0.02 0.37 ± 0.02

L
o c

at
io

n
E

nc
. SatCLIP-RN18L=10 30.23 ± 0.71 0.85 ± 0.03 0.81 ± 0.03 0.58 ± 0.18 0.48 ± 0.03 0.39 ± 0.02 0.48 ± 0.05

SatCLIP-RN18L=40 31.87 ± 0.59 0.88 ± 0.00 0.85 ± 0.01 0.68 ± 0.02 0.52 ± 0.01 0.41 ± 0.02 0.52 ± 0.02
SatCLIP-RN50L=10 30.28 ± 1.00 0.84 ± 0.03 0.83 ± 0.02 0.60 ± 0.10 0.49 ± 0.02 0.38 ± 0.04 0.46 ± 0.05
SatCLIP-RN50L=40 32.34 ± 0.82 0.88 ± 0.01 0.85 ± 0.01 0.66 ± 0.03 0.52 ± 0.01 0.41 ± 0.02 0.51 ± 0.02
SatCLIP-ViTL=10 30.11 ± 0.67 0.84 ± 0.05 0.78 ± 0.09 0.45 ± 0.30 0.47 ± 0.04 0.40 ± 0.01 0.46 ± 0.07
SatCLIP-ViTL=40 32.81 ± 0.48 0.87 ± 0.01 0.85 ± 0.01 0.66 ± 0.02 0.53 ± 0.02 0.43 ± 0.01 0.53 ± 0.01
GeoCLIP 32.08 ± 0.77 0.84 ± 0.01 0.83 ± 0.01 0.62 ± 0.03 0.50 ± 0.02 0.38 ± 0.02 0.50 ± 0.02
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Downstream task scores on intermediate ResNet embeddings for LSRS20k

Table 7. Scores for the downstream tasks on the dataset when taking embeddings from deeper parts of a pre-
trained ResNet model. Best performing per pre-trained model and task are highlighted.

Model Land Cover Tmin Tmax PM2.5

RN18-MoCofc 48.34 ± 0.42 0.67 ± 0.00 0.82 ± 0.00 0.54 ± 0.01
RN18-MoCo5 48.98 ± 0.23 0.69 ± 0.00 0.83 ± 0.00 0.56 ± 0.01
RN18-MoCo4 47.82 ± 0.33 0.74 ± 0.00 0.85 ± 0.00 0.55 ± 0.01
RN18-MoCo3 45.52 ± 0.42 0.77 ± 0.00 0.86 ± 0.00 0.55 ± 0.01
RN18-MoCo2 44.12 ± 0.49 0.73 ± 0.00 0.85 ± 0.00 0.52 ± 0.01
RN18-MoCo1 42.62 ± 0.46 0.73 ± 0.00 0.84 ± 0.00 0.52 ± 0.01

RN50-MoCofc 48.61 ± 0.45 0.76 ± 0.00 0.87 ± 0.00 0.58 ± 0.01
RN50-MoCo5 50.69 ± 0.27 0.77 ± 0.01 0.88 ± 0.00 0.57 ± 0.01
RN50-MoCo4 49.21 ± 0.37 0.83 ± 0.00 0.91 ± 0.00 0.60 ± 0.01
RN50-MoCo3 47.12 ± 0.26 0.84 ± 0.00 0.92 ± 0.00 0.63 ± 0.01
RN50-MoCo2 44.55 ± 0.44 0.82 ± 0.00 0.90 ± 0.00 0.60 ± 0.01
RN50-MoCo1 41.31 ± 0.32 0.72 ± 0.00 0.83 ± 0.00 0.52 ± 0.01

RN50-DINOfc 48.74 ± 0.54 0.82 ± 0.00 0.91 ± 0.00 0.64 ± 0.00
RN50-DINO5 49.04 ± 0.46 0.84 ± 0.00 0.91 ± 0.00 0.65 ± 0.01
RN50-DINO4 50.05 ± 0.62 0.85 ± 0.00 0.92 ± 0.00 0.65 ± 0.01
RN50-DINO3 49.38 ± 0.52 0.84 ± 0.00 0.91 ± 0.00 0.61 ± 0.00
RN50-DINO2 47.81 ± 0.39 0.82 ± 0.00 0.90 ± 0.00 0.60 ± 0.00
RN50-DINO1 43.97 ± 0.43 0.74 ± 0.00 0.84 ± 0.00 0.54 ± 0.00

Downstream task scores on intermediate ResNet embeddings on ELavg-muni

Table 8. Scores for the downstream tasks on the ELavg-muni when taking embeddings from deeper parts of a
pre-trained ResNet model. Best performing per pre-trained model and task are highlighted.

Model Land Cover Tmin Tmax PM2.5 E100k1 E100k2 E100k3

RN18-MoCofc 40.13 ± 0.73 0.64 ± 0.01 0.74 ± 0.01 0.38 ± 0.02 0.23 ± 0.01 0.08 ± 0.02 0.23 ± 0.02
RN18-MoCo5 40.56 ± 0.34 0.70 ± 0.00 0.78 ± 0.00 0.46 ± 0.02 0.36 ± 0.01 0.23 ± 0.02 0.36 ± 0.01
RN18-MoCo4 39.24 ± 0.79 0.76 ± 0.00 0.81 ± 0.00 0.49 ± 0.01 0.39 ± 0.01 0.29 ± 0.01 0.40 ± 0.01
RN18-MoCo3 37.85 ± 0.45 0.79 ± 0.00 0.82 ± 0.00 0.50 ± 0.01 0.40 ± 0.01 0.30 ± 0.01 0.42 ± 0.01
RN18-MoCo2 36.41 ± 0.48 0.76 ± 0.01 0.81 ± 0.00 0.46 ± 0.01 0.37 ± 0.01 0.28 ± 0.01 0.38 ± 0.01
RN18-MoCo1 36.46 ± 0.36 0.76 ± 0.00 0.80 ± 0.00 0.46 ± 0.01 0.36 ± 0.01 0.28 ± 0.01 0.38 ± 0.01

RN50-MoCofc 39.16 ± 0.36 0.74 ± 0.01 0.81 ± 0.00 0.43 ± 0.01 0.31 ± 0.01 0.14 ± 0.03 0.32 ± 0.01
RN50-MoCo5 41.28 ± 0.58 0.64 ± 0.01 0.72 ± 0.02 0.15 ± 0.05 -0.09 ± 0.05 -0.40 ± 0.06 -0.08 ± 0.03
RN50-MoCo4 40.38 ± 0.42 0.80 ± 0.00 0.84 ± 0.00 0.44 ± 0.03 0.29 ± 0.01 0.13 ± 0.02 0.30 ± 0.02
RN50-MoCo3 39.43 ± 0.56 0.83 ± 0.00 0.86 ± 0.00 0.54 ± 0.01 0.41 ± 0.01 0.28 ± 0.02 0.42 ± 0.01
RN50-MoCo2 37.12 ± 0.71 0.82 ± 0.00 0.85 ± 0.00 0.53 ± 0.02 0.41 ± 0.01 0.31 ± 0.01 0.42 ± 0.01
RN50-MoCo1 35.80 ± 0.67 0.75 ± 0.00 0.78 ± 0.01 0.47 ± 0.01 0.36 ± 0.01 0.28 ± 0.01 0.37 ± 0.01

RN50-DINOfc 37.75 ± 1.05 0.80 ± 0.01 0.84 ± 0.00 0.51 ± 0.01 0.36 ± 0.02 0.19 ± 0.03 0.35 ± 0.02
RN50-DINO5 37.78 ± 0.84 0.73 ± 0.01 0.78 ± 0.01 0.29 ± 0.03 0.00 ± 0.02 -0.27 ± 0.02 0.00 ± 0.02
RN50-DINO4 39.94 ± 0.58 0.82 ± 0.00 0.85 ± 0.00 0.51 ± 0.02 0.34 ± 0.02 0.19 ± 0.02 0.35 ± 0.01
RN50-DINO3 41.44 ± 0.51 0.83 ± 0.00 0.86 ± 0.00 0.53 ± 0.01 0.41 ± 0.00 0.28 ± 0.01 0.39 ± 0.01
RN50-DINO2 40.37 ± 0.48 0.83 ± 0.00 0.86 ± 0.00 0.53 ± 0.01 0.43 ± 0.01 0.32 ± 0.01 0.43 ± 0.01
RN50-DINO1 37.57 ± 0.64 0.76 ± 0.00 0.80 ± 0.01 0.48 ± 0.02 0.39 ± 0.01 0.29 ± 0.01 0.41 ± 0.01
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E. Additional maps

(a) SSL4EO-ResNet50-MoCofc: 0.57 (b) Concatenated: 0.85

(c) SatCLIP-ViTL=40: 0.72 (d) Reference PM2.5

Figure 10. Predicting PM2.5 values for LSRS20k with an image encoder (a), a location encoder (c) and with
the concatenated embedding of both (b). Predictions include R2. The reference PM2.5 map is in
(d).
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Figure 11. Example of disease mapping maps from the 2023 article by Orozco-Acosta et al. [20]. Shows
maps of posterior median estimates of relative risks (top) and posterior exceedence probabilities
(bottom) for the 1st-order neighbourhood model considering a BYM2 conditional autoregressive
prior for space, RW1 prior for time and Type IV interaction for the spatio-temporal effect.
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(a) Random (b) Mean reflection (c) SSL4EO-RN18-MoCofc

(d) SSL4EO-RN50-MoCofc (e) SSL4EO-RN50-MoCo3 (f) SSL4EO-RN50-DINOfc

(g) MMEarth (h) SatCLIP-ViTL=10 (i) GeoCLIP

Figure 12. Cosine similarity of the embedding of Madrid and all other embedded municipalities in ELcentroid .
Contains models not used in Figure 6
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