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ABSTRACT Organohalide-respiring bacteria (OHRB) are keystone microbes in bioreme­
diation of sites contaminated with organohalides and in natural halogen cycling. Known 
OHRB belong to distinct genera within the phyla Chloroflexota, Proteobacteria, and 
Firmicutes, whereas information about novel OHRB mediating natural halogen cycling 
remains scarce. In this study, we applied a genome-resolved transcriptomic approach 
to characterize the identity and activity of OHRB from tetrachloroethene respiring 
cultures previously enriched from sediments of Aarhus Bay. Combining short- and 
long-read sequencing approaches, we assembled 37 medium-quality bins with over 75% 
completeness and less than 5% contamination. Sixteen bins harbored RDase genes and 
were affiliated taxonomically to the class of Bacilli and phyla of Bacteroidota, Synergistota, 
and Spirochaetota, which have not been reported to catalyze reductive dehalogenation. 
Among the 16 bins, bin.26, phylogenetically close to the genus Vulcanibacillus (phylum 
Firmicutes), contained an unprecedented 97 reductive dehalogenase (RDase) genes. Of 
these, 84 RDase genes of bin.26 were transcribed during tetrachloroethene dechlorina­
tion in addition to RDase genes from the members of Synergistales (bin.5 and bin.32) 
and Bacteroidales (bin.18 and bin.24). Moreover, metatranscriptome analysis suggested 
that the RDase genes were likely under the regulation of transcriptional regulators not 
previously associated with organohalide respiration, such as HrcA and SigW, which are 
known to respond to abiotic environmental stresses, such as temperature changes. 
Combined application of genomic methods enabled us to pinpoint novel OHRB from 
pristine environments not previously known to mediate reductive dechlorination and to 
add to the current knowledge of the diversity, activity, and regulation of RDase genes.

IMPORTANCE Pristine marine environment is the major reservoir for naturally produced 
organohalides, in which reductive dehalogenation underneath plays an important role 
in the overall cycling of these compounds. Here, we obtain some novel OHRB genomes 
from Aarhus Bay marine sediments, which are phylogenetically distant to the well-docu­
mented OHRB and widely distributed across the bacterial phyla, such as Bacteroidota, 
Synergistota, and Spirochaetota. Furthermore, transcriptional profiles unravel that these 
RDase genes are induced differently, and their activity is controlled by diverse regula­
tory systems. Accordingly, elucidating the reductive dehalogenation of pristine marine 
environments substantially advances our understanding of the diversity, phylogeny, and 
regulatory variety of dehalogenating bacteria contributing to the global halogen cycle.

KEYWORDS organohalide respiration, metagenomics, metatranscriptomics, RDase 
gene, Vulcanibacillus, transcriptional regulators

O rganohalide respiring bacteria (OHRB) can derive energy for growth from the use 
of reductive dehalogenation of halogenated compounds as a terminal electron 

accepting process. They employ reductive dehalogenases (RDases) that catalyze the 
removal of halide(s) from the carbon backbone via respiratory electron transfer (1, 2). 
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In the process of organohalide respiration (OHR), organohalides serve as the terminal 
electron acceptor for the electrons derived from, for example, hydrogen or lactate, 
through a membrane-associated electron transport chain (ETC) (3–5). In addition to 
RDases known from OHRB, reductive dehalogenation can also be catalyzed by another 
type of reductive dehalogenase, thiolytic, glutathione-dependent tetrachloro-P-hydro­
quinone RDase (TPh-RDase) as previously reported for the biodegradation of chlorina­
ted compounds (6, 7). In many cases, RDase gene-containing gene clusters in OHRB 
are composed of genes encoding a transcriptional regulator, the RDase itself, and a 
potential electron transporter. Thereinto, three regulatory systems of RDase gene clusters 
have been characterized: CRP (cyclic AMP receptor protein)/FNR (fumarate and nitrate 
reduction regulator) superfamily, two-component systems (TCS), and MarR (multiple 
antibiotic resistance regulator) (8, 9). The minimum cassette of RDase gene clusters is 
usually composed of a gene encoding the catalytic subunit, rdhA, and a second gene, 
rdhB, coding for a cognate membrane-anchoring protein B (3, 4, 10). Organohalides are 
present as natural products in marine environments and other high salt environments, 
such as tetrachloroethene (PCE) that can be produced by algae (11–13), which is why it 
is interesting to study their role in the geochemical carbon and halogen cycles and their 
potential eco-physiological importance.

OHR exploration in marine sediments has been a long-term topic for several decades, 
which was mainly based on culture-dependent and molecular detection methods, such 
as dilution-to-extinction isolation, marker-gene amplicon sequencing, and quantification 
(14–16). Recent research into the microbial composition of marine sediments, using 
metagenomic techniques and bioinformatics, has revealed the presence of microorgan­
isms from various phyla containing genes predicted to code for RDases, including, 
next to the commonly known phyla, such as Chloroflexota and Firmicutes, new archaeal 
phyla, Lokiarchaeota, Thorarchaeota, and Heimdallarchaeota belonging to the proposed 
Asgardarchaeota superphylum (17).

Based on single-cell amplified genomes (SAGs) retrieved from the sediment of Aarhus 
Bay, a putative RDase gene was found in the assembled genome DEH-C3, belonging to 
the Dehalococcoidia (18). Metatranscriptomic data from the surroundings of the initial 
sampling site revealed a high abundance of tceA-like gene transcripts implicating the 
potential for reductive dehalogenation of PCE or trichloroethene (TCE) in this marine 
sediment from Aarhus Bay (19). Moreover, five Desulfatiglans-related SAGs were found 
bearing putative RDase genes from the sulfate-rich subsurface of Aarhus Bay marine 
sediments, and it was speculated that OHR might be an alternative energy conservation 
strategy under sulfate-limiting conditions (20, 21). Considering the potential inhibitory 
effect of sulfate reduction on reductive dehalogenation caused by the produced and 
accumulated sulfide (22, 23), the presence or absence of sulfate was taken into account 
for OHR exploration in Aarhus Bay marine sediments. Moreover, we previously showed 
that sulfate reduction significantly shaped the PCE-dechlorinating community compared 
with corresponding incubations without additional sulfate (24). Nevertheless, although 
these analyses of extensive DNA and RNA sequence data indicated the existence of 
potential OHR in marine sediments of Aarhus Bay, unambiguous physiological proof 
remains pending, and the OHRB involved were not isolated nor unequivocally identified.

In a previous study, we found that marine sediments from Aarhus Bay can dehalogen­
ate a range of halogenated compounds, including PCE, 2,6-dibromophenol (2,6-DBP), 
1,4-dibromobenzene (1,4-DBB), 3-bromophenol (3 BP), and 2,4,6-triiodophenol (2,4,6-TIP) 
(24). 16S ribosomal RNA (rRNA) gene amplicon sequencing revealed that members of 
the phyla Desulfobacterota, Firmicutes, and Bacteroidota, such as Desulfovibrio, Desul­
furomusa, and Bacillus, were enriched in sediment-free PCE dechlorinating cultures. 
Desulfovibrio and Desulfuromusa were recently shown to be capable of reductive 
debromination of 2,6-DBP to phenol (25). However, Bacillus spp. or members of the 
Bacteroidota have never been reported before to use organohalides as terminal electron 
acceptors.
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Thus, the aim of this study was to identify the OHRB involved in the dehalogenation 
of PCE aligning with the previously reported study (24). To this end, we combined 
metagenomics and transcriptomics of sediment-free PCE-dechlorinating enrichment 
cultures with physiological observations in order to identify the corresponding OHRB 
and their RDase genes for PCE dechlorination with(out) additional sulfate. This revealed 
the presence of a large number of genomic bins encoding putative reductive dehaloge­
nases, as well as the expression of many of these genes that appeared to be under the 
control of transcriptional regulators not previously associated with OHR.

MATERIALS AND METHODS

Chemicals

PCE, TCE, cis-dichloroethene (cDCE), vinyl chloride (VC), and ethene were purchased 
from Sigma-Aldrich. Stock solutions of lactate (0.5 M) and sulfate (0.5 M) were prepared 
separately by filter sterilization (syringe filter, 0.2 µm, mdimembrane, Ambala Cantt, 
India). All other (in)organic chemicals were obtained in analytical grade or higher.

Cultivation

Cultures were incubated in the marine medium under sulfate-free (NS) or sulfate-
amended (S) conditions as described previously (24). These cultures labeled as 
PCE_NS_Tr2_A/B (PCE.NS.Tr2.A/B) and PCE_S_Tr2_A/B (PCE.S.Tr2.A/B) (24), grown in 
50 mL per bottle, were the same cultures as indicated in step 4 in the experimental 
outline of previous work (24). Briefly, the cultures were obtained after three spikes 
(see below) that were applied when PCE was completely dechlorinated into cDCE. 
Each spike contained 250 µM PCE and 5 mM lactate (NS and S), and 5 mM sul­
fate in S cultures. The actively dechlorinating cultures, PCE_NS_Tr3 and PCE_S_Tr3 
(50 mL per bottle), respectively, were obtained after 5% transfer of PCE_NS_Tr2_A 
and PCE_S_Tr2_A. The remainders of PCE_NS_Tr2_A and PCE_S_Tr2_A were sacri­
ficed for metagenome sequencing by Illumina (Novogene Europe, Cambridge, UK). 
PCE_NS_Tr2_B and PCE_S_Tr2_B cultures were used for metagenome sequencing by 
Nanopore separately (Novogene Europe). When 80% of the last of three spikes of 250 µM 
PCE was consumed, PCE_NS_Tr3 and PCE_S_Tr3 were transferred at 5% in volume to 
PCE_NS_Tr4 and PCE_S_Tr4, respectively, in three replicates (100 mL per bottle). Similar 
to the cultures used for metagenome sequencing, three replicate cultures of PCE_NS_Tr4 
and PCE_S_Tr4 were collected for metatranscriptome sequencing by Illumina (Novogene 
Europe) when 80% of the PCE was dechlorinated into cDCE after the third spike. PCE 
dechlorination was not synchronized under NS and S conditions, causing the harvest of 
the respective cultures at different time points.

Analytical methods

PCE, TCE, and cDCE were measured by gas chromatography and mass spectroscopy 
(GC-MS) installed with an Rt-Q-BOND column (Retek, PA, USA) and a DSQ MS (Thermo 
Fisher Scientific). Hydrogen and methane were detected by compact GC (Global 
Analyzer Solutions, Breda, The Netherlands) with a thermal conductivity detector 
(GC-PDD). Organic acids, including lactate, acetate, and propionate, were measured 
using SHIMADZU LC2030 PLUS coupled with a Shodex SUGAR Series SH1821 column. 
Sulfate was measured using the Dionex ICS-2100 Ion Chromatography System (Thermo 
Scientific), and sulfide was analyzed photometrically as previously described (26).

DNA and RNA extraction

Cultures used for DNA and RNA extraction were centrifuged at 10,000 × g for 5 min and 
then washed three times with 10 mM TE buffer (pH 7.0) to remove residual medium 
components. Washing of cultures for RNA extraction was done at 4°C. DNA extraction 
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was done by using the MasterPure gram-positive DNA purification Kit (Epicentre, WI, 
USA) to gain high-quality and quantity DNA for metagenomic sequencing, including 
Illumina for short reads (PE 150, NovaSeq 6000) and Oxford Nanopore for long reads. The 
RNA extraction was carried out following a bead-beating procedure (27). The isolated 
RNA was purified using RNeasy columns (Qiagen, Venlo, The Netherlands), and residual 
genomic DNA was subsequently digested by DNase I (Roche, Almere, The Netherlands). 
The obtained RNA samples were quality-checked by agarose gel electrophoresis and 
sequenced using Illumina for short reads (PE 150, NovaSeq 6000).

Metagenome data analyses

Metagenome sequence data were generated by Illumina sequencing in paired-end 
short reads (NovaSeq 6000) and Oxford Nanopore (PromethION). The pipelines of 
MetaWRAP (v1.3), OPERA-MS (v0.8.3), and Anvi’o (v7.1) were combined to process the 
raw data as outlined in the following (Fig. S1) (28–30). One of the duplicate cultures, 
PCE_NS_Tr2_A and PCE_S_Tr2_A, was sent for paired-end Illumina sequencing. Cleaning 
of short reads was achieved through quality check and trimming using the “read_qc” 
module of MetaWRAP. Both forward and reverse sequencing of PCE_NS_Tr2_A yielded 
33,352,593 reads, respectively, with 33,340,280 read pairs remaining after filtering for 
human genomic DNA contaminants and quality control. Raw and filtered read pairs of 
PCE_S_Tr2_A amounted to 26,516,123 and 26,506,140, respectively. Co-assembly of the 
clean reads from both cultures was done using the “assembly” module of MetaWRAP 
(metaSPAdes-3.10 and MEGAHIT-1.2.9). PCE_NS_Tr2_B and PCE_S_Tr2_B cultures were 
used for Nanopore sequencing. The number of filtered reads of PCE_NS_Tr2_B and 
PCE_S_Tr2_B was 1,637,484 and 954,603, respectively. The short-read co-assembly was 
then combined with the Nanopore long reads using OPERA-MS (Fig. S1). Subsequently, 
metatranscriptome sequences (see below for processing details) were introduced to 
improve the quality of the hybrid assembly by OPERA-MS (Table S1). As a next step, the 
hybrid assembly was used for binning using the “binning” module of MetaWRAP (v1.2.3) 
separately with three commonly used built-in binners: metabat2, maxbin2, and concoct. 
Further refining of bins was achieved using the “bin_refinement” module and selection 
of bins using a cutoff at 50% completeness and 10% contamination. The abundance of 
the refined bins was determined using the “quant_bins” module in MetaWRAP, which 
uses Salmon to index the entire metagenomic assembly, and then, reads from samples 
were mapped back to the hybrid assembly. The generated coverage estimates were used 
to calculate the abundance of each contig in each sample. Length-weighted average 
of a given bin’s contig abundances was used to calculate the bins’ abundances. Bin 
quality was further improved using the “reassemble_bins” module of MetaWRAP. The 
reassembled bins were then classified using the “classify_wf” module of GTDB-Tk (v2.0.0) 
(31), and phylogenomic analysis of bins was performed on the Anvi’o platform annotated 
with the “annotate_bins” module of MetaWRAP using the built-in PROKKA (v1.14.5). To 
assess the genomic context of target genes, flanking genes were searched by setting 
“grep -A 6 -B 5” to fetch the first five upstream genes and the first six downstream genes 
using the translated “.faa” format files. The obtained gene clusters were visualized by 
“gggenes” (https://github.com/wilkox/gggenes).

Phylogenetic analysis of OHR bins and RDases

Thirty-seven bins, also termed Metagenome-Assembled Genomes (MAGs), were retained 
after filtering using the “Bin_refinement” and “reassemble_bins” modules of MetaWRAP, 
with settings of >75% completeness and <5% contamination. These 37 MAGs were 
then phylogenomically analyzed following the Anvi’o workflow using the “--hmm-source 
Bacteria_71,” and the output tree file was visualized by ggtree (32), which combined 
the bins’ abundance, transcripts, and their genome size. Bins of potentially reductively 
dehalogenating bacteria were identified using the curated HMM (Hidden Markov Model) 
files of RDase genes, which includes respiratory reductive dehalogenases of OHRB 
containing three conserved motifs, twin-arginine translocation signal peptide (TAT), and 
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two motifs of binding iron-sulfur clusters in general, and tetrachloro-p-hydroquinone 
(TPh) reductive dehalogenase using “reductive_dehalogenase.hmm” with “bitscore_cut­
off” value set at 132 (https://github.com/Arkadiy-Garber/MagicLamp) as described in 
“hmm-meta.txt” in the “hmms” directory, which had the same output by using PF13486 
(6, 7, 33). To establish their evolutionary position, bins were taxonomically classified 
by “classify_wf” of GTDB (34), and bins from the same phylum or class were collected 
together with selected representative genomes from the respective phylum from the 
GTDB database (Using GTDB v202) to construct phylogenetic trees using “GToTree 
(v1.6.35)” (35) using 74 bacterial single-copy protein-coding genes (SCGs) for concaten­
ated alignment. In addition, RDase entries from the Pfam database (PF13486, http://
pfam.xfam.org/) were employed to retrieve all potential OHRB genomes related to bins 
at the phylum- or class-level and listed together in Table S3 (10th, Apr 2022). Similarly, 
114 RDase protein sequences were collected from 16 bins, and 35 RDase representa­
tives from ortholog groups (OGs), established upon 90% full-length protein pairwise 
identity (PID) and the functionally identified reductive dehalogenases (36–41), were 
added together for multiple sequence alignments using the online Clustal Omega tool to 
construct a phylogenetic tree (42). SIAS was employed to calculate the Sequence Identity 
And Similarity (http://imed.med.ucm.es/Tools/sias.html). RDase protein sequences are 
listed in Table S4.

Metatranscriptome data analyses

Similar to the processing of metagenome data, raw Illumina metatranscriptome 
sequence data were first cleaned through the removal of human genomic contaminants 
that may be introduced during sample preparation and extraction. Similarly, Salmon as 
built in the quant_bin module of MetaWRAP (v1.1.6) was also employed to quantify the 
activity of bins based on transcript mapping to the respective contigs. Tuxedo pack­
ages (https://github.com/trinityrnaseq) were used for genome-guided RNA-seq analysis, 
including Tophat, Cufflinks, Cuffmerge, and Cuffdiff (Fig. S1). The hybrid assembly used 
for the binning (see above) was set as the template for aligning the RNA-seq data by 
Tophat. Cufflinks were used for assembling transcript structures from read alignments, 
and transcripts were counted based on Cuffdiff output, which was used for performing 
differential expression analysis. The abundance of standardized transcripts was taken 
into account to construct expression profiles of functional genes under NS and S 
conditions.

Functional analyses of metabolic pathways encoded in the different bins

To evaluate the potential metabolism encoded in the 37 assembled bins, MagicLamp 
was also employed to search metabolic marker genes according to the established HMM 
files as described in “hmm-meta.txt” in the “hmms” directory (33). In our physiological 
experiments, we observed, alongside reductive dehalogenation, sulfate reduction as well 
as hydrogen and methane production, and relevant marker genes were selected. For 
sulfur metabolism, genes related to sulfide/sulfur/thiosulfate oxidation, sulfite/sulfate 
reduction, and thiosulfate disproportionation were retrieved. The initial step of sulfate 
reduction is the reduction of sulfate to sulfite with the formation of adenosine 5’-phos­
phosulfate (APS) as the intermediate, catalyzed by sulfate adenylyl-transferase (Sat),
and adenylyl-sulfate reductase (Apr) reducing APS to sulfite (43–45). Sulfite reductase is 
the critical enzyme to catalyze the reduction of sulfite to sulfide, which is the limiting 
step for sulfate reduction (46, 47). Two types of sulfite reductase genes were taken 
into consideration, including those encoding dissimilatory sulfite reductase (dsr genes) 
and anaerobic sulfite reductase (asr genes) (48, 49). Marker genes encoding enzymes 
involved in the halogen cycle were selected in addition to RDase and TPh-RDase genes, 
including genes encoding haloacid dehalogenase type II for organohalide breakdown, 
DMSO reductase type II PcrA/B for perchlorate reduction, and chlorite dismutase for 
chlorite reduction (50–54). Marker genes coding for hydrogenases were divided into 
three groups according to the metal content at active sites, that is, [Ni-Fe]-hydrogenase, 
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[Fe-Fe]-hydrogenase, and [Fe]-hydrogenase (55, 56). For the well-studied [Ni-Fe]-hydro­
genases, eight subgroups, group 1, group 2a, group 2b, group 3a, group 3b, group 3c, 
group 3d, and group 4, and two subgroups of [Fe-Fe]-hydrogenases, group A and group 
B, were included (55–57). Metabolic genes responsible for methane production and 
oxidation were also searched against the assembled bins, which included pmoA, pmoB, 
pmoC, mmoB, and mmoD for methane oxidation, and mcrA, mcrB, and mcrG for methane 
production (58, 59).

RESULTS

PCE dechlorination to cDCE

Stable, sediment-free PCE-dechlorinating cultures enriched from Aarhus Bay marine 
sediments (24) were spiked three times with PCE at 250 µM (black arrows in Fig. 1B). 
The cultures were grown under sulfate-amended (S) and sulfate-free (NS) conditions, 
respectively. The NS_Tr2 and S_Tr2 cultures reductively dechlorinated PCE to cDCE, 
reaching a final concentration of 734.7 µM and 675.1 µM, respectively, after three spikes 
of 250 µM of PCE, with TCE as intermediate (Fig. 1B). The resulting biomass was collected 
for DNA isolation for metagenome sequencing after dehalogenation of the third spike of 
PCE (gray arrows in Fig. 1B). Similarly, the PCE_NS_Tr4 and PCE_S_Tr4 cultures reductively 
dechlorinated PCE to final concentrations of 636.8 µM and 528.8 µM cDCE, respectively, 
after three spikes of 250 µM of PCE. Biomass was collected when 80% of the third spike 
was dehalogenated to cDCE and was used for RNA extraction for metatranscriptome 
sequencing, thus increasing the chances of harvesting the OHR-associated genes that 
were active, especially the corresponding RDase genes. The cultures from the fourth 
transfer without sulfate fully dechlorinated the first spike of PCE within 14 days, whereas 
the full dechlorination of the first spike of PCE required 30–34 days in all other sulfate-
amended cultures. This is probably due to competition between sulfate and PCE as the 
final electron acceptor, as was also observed in our previous study (24). The electron 
donor and carbon source, lactate, was consumed with the formation of propionate and 
acetate at a ratio of around 2.5:1 in cultures not amended with sulfate, whereas only 
acetate was produced in cultures where sulfate was added.

Abundance and expression of bins in PCE dechlorinating cultures

Combining the DNA and RNA sequence data of both NS and S cultures, 37 assem­
bled bins were retained based on completeness (>75%) and contamination (<5%) 
thresholds (Table S2). Four of these bins, bin.15 (classified into genus Desulforhopalus), 
bin.22 (classified into Desulfobacter), bin.34 (classified into Pseudodesulfovibrio), and 
bin.5 (classified into order Synergistales) had 100% completeness and no contamination 
according to the CheckM output (29, 60). The 37 assembled bins were classified into six 
bacterial phyla, Bacteroidota, Delongbacteria, Desulfobacterota, Firmicutes, Spirochaetota, 
and Synergistota, and one archaeal phylum, Halobacteriota, according to the taxonomic 
classification following the workflow of GTDB-Tk (classify_wf) (Fig. 2). The bins belong­
ing to Delongbacteria and Halobacteriota did not encode any putative RDase genes, 
indicating that these organisms were probably not involved in the dechlorination of PCE.

In the NS cultures, bin.17, classified into Clostridiaceae, and bin.9, classified as a 
member of Desulfobacterota, were dominant on average with 12299.6 and 3401.2 
genome copies per million reads (reflecting how often a given bin is represented in 
the sequence data), respectively (Table S2), followed by bin.26 classified as a member 
of Vulcanibacillus with 1831.6 genome copies. Bin.21, classified into Desulfuromusa, was 
the most highly expressed genome and accounted for 9101.4 genomic transcripts per 
million reads on average, followed by bin.15 classified as a member of Desulforhopalus 
with 673.9 genomic transcripts per million reads. The genomes of bin.14 (classified into 
Desulfomicrobium) and bin.26 were also highly represented in expression data with over 
300 genomic transcripts per million reads.

When sulfate was present, bin.19, belonging to Desulfoplanes, was the most abundant 
and highly expressed bin, accounting for 6076.2 genome copies and 1145.1 genomic 
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transcripts per million reads, followed by bin.22 with 3103.4 copies and 106.5 tran­
scripts per million reads. Bin.34, belonging to Pseudodesulfovibrio, was the third most 
abundant with 3095.2 genome copies and 19.3 transcripts per million reads. Bin.25, 
belonging to the same genus, had 333.7 transcripts as the second most highly expressed 
bin with 666.8 genome copies per million reads (details shown in Table S2). Bin.26 
belonging to the genus Vulcanibacillus was annotated with 97 putative RDase genes. 
Interestingly, under sulfate-free (NS) conditions, no transcript reads were detected that 
could be mapped to the genomes of bin.6 (Bacteroidota), bin.8 (Desulfobacterota), 
bin.23 (Bacteroidota), bin.27 (Desulfobacterota), and bin.30 (Spirochaetota), whereas reads 
mapped to bin.11 (Firmicutes), bin.29 (Bacteroidota), and bin.33 (Halobacteriota) were 
not detected under sulfate-amended (S) conditions. Other genomic bins containing 
RDase genes, bin.5, bin.10, and bin.32, belonging to Synergistales, bin.15 from Desulfo­
bacterota, bin.28 belonging to Melioribacteraceae, and bin.12, bin.18, bin.24, and bin.31 
from Bacteroidales were present and expressed in all cultures during PCE dechlorination 
irrespective of the presence of sulfate, whereas all their correspondent RDase genes 
were also expressed (Fig. 2; Table S5). In the sulfate-amended cultures, bin.23 and 
bin.6, belonging to the order Bacteroidales, and bin.30, belonging to the Oceanispiro­
chaeta, became active alongside the sulfate reduction, as evidenced by the detection 
of transcripts that could be mapped to these genomes (Fig. 2; Tables S2 and S5). In 
addition, the potential OHRB, bin.15 belonging to Desulforhopalus and bin.32 belong­
ing to Synergistales, were also found to be expressed under sulfate-added conditions, 
and their correspondent RDase gene transcripts were observed with an average of
65.3 (bin.15-RDase gene) and 145.5 (bin.32-RDase gene) transcripts per million reads, 
respectively (Table S5).

FIG 1 Schematic flowchart (A) of PCE dechlorinating cultures (B) sampled for meta-genome and -transcriptome sequencing; 5% denotes the transfer volumes 

of 5% (vol/vol) to the subsequent cultures; PCE_NS_Tr2_A/B: duplicate PCE dechlorinating sulfate-free cultures; PCE_S_Tr2_A/B: duplicate PCE dechlorinating 

sulfate-amended cultures; PCE_NS_Tr4_1/2/3 and PCE_S_Tr4_1/2/3: triplicate PCE dechlorinating cultures; black arrows in B indicate PCE spikes; and gray arrows 

represent timepoints at which cultures were harvested.
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Phylogenomic position of bins representing potential OHRB

To further assess the phylogeny of bins containing RDase genes and thus assumed to 
bear OHR potential and assess whether genomes of close relatives of the bins also 
code for this potential, representative genomes of the different taxa were retrieved from 
the GTDB database to construct phylogenomic trees. Nine OHR-potential bins, bin.1, 
bin.12, bin.18, bin.23, bin.24, bin.28, bin.6, bin.31, and bin.35, belonging to Bacteroidota, 
were phylogenetically analyzed with representative genomes (Fig. 3A). Bin.1 and bin.12 
belong to genus UBA12077, in which three out of six representative genomes were 
annotated as potential OHRB. Bin.18 belongs to the genus SR-FBR-E99, and no RDase 
was found encoded in the genomes of any of the representatives. Bin.23 was classi­
fied into family VadinHA17, which included four potential OHRB representatives from 
genera UBA9300, JAADHC01, SLNP01, and LD21, of which UBA9300 was most closely 
related to bin.23. Bin.31 was phylogenetically close to Marinifilaceae, which contains 
genera Ancylomarina, Marinifilum, Ancylomarina_A, and Labilibaculum. Interestingly, we 
found RDase genes in Ancylomarina, Marinifilum, and Ancylomarina_A. Bin.28 and bin.35 
from the family Melioribacteraceae were close to the potential OHRB family member, 
JAADIR01. Bin.24 was classified to genus UBA12170, which has in total two OHRB 
candidates across the included representatives. Bin.6 was in a close relationship with 
genus BM520, in which one of three representatives was noted as an OHRB candidate. 
Bin.13 was classified into genus Izemoplasma_B in the phylum Firmicutes, in which all 
five representative genomes were predicted to encode the potential for OHR (Fig. 3B). 
Bin.26 was affiliated with Vulcanibacillus, which has one isolate, V. modesticaldus, bearing 

FIG 2 Phylogenomic tree of assembled bins constructed on the basis of 71 bacterial marker genes as implemented in Anvi’o. Tips of the tree labeled with the 

star symbol indicate bins containing RDase genes (“Potential OHRB”), with symbol size representing the number of RDase genes. Colors of tree tips indicate 

their classification at the phylum level. Areas shaded in gray indicate bins belonging to the same taxon at the level of order (_O), class (_C), or family (_F). 

The combined heatmap in the outer circles in different colors indicates the presence of bins sourced from metagenomic (PCE_DNA) and meta-transcriptomic 

(PCE_RNA) data from cultures grown in the absence or presence of sulfate (NS or S). Transparency of the colors in the heatmap represents the abundance of 

a given bin (Unit: genome copies per million reads) in log10. The two outer circles bearing the same color pattern as the metagenomic samples indicate the 

presence, and the bar height represents the bin’s genome size as measured by the scaler (0–12 Mbp).
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one putative RDase gene. Bin.32, belonging to the Synergistota, was close to Aminiphilus. 
In addition, bin.5 and bin.10 were phylogenetically close to Aminobacterium (Fig. 3C). 
Within the Desulfobacterota, bin.15 was the closest to Desulforhopalus genomes that 
included two that were predicted to encode OHR potential among the ten representative 
genomes included in the analysis (Fig. 3D). Bin.30 from Spirochaeota was classified into 
Oceanispirochaeta (Fig. 3E).

Genomic survey for PCE dechlorination concurrent with sulfate reduction 
and methanogenesis, respectively

Twenty-two bins were found encoding genes coding for proteins involved in sulfate 
reduction, of which bin.1, bin.12, bin.24, bin.28, bin.31, and bin.35 contained genes 
encoding sulfate adenylyl-transferase (S_A_transferase) that initiates the reduction of 
sulfate to sulfite with adenosine 5’-phosphosulfate (APS) as the intermediate. Bin.14, 
bin.15, bin.16, bin.19, bin.22, bin.25, bin.27, bin.34, bin.8, and bin.9 were annotated 
with sulfite reductases catalyzing the further reduction of sulfite to sulfide (Fig. 4D). 
Interestingly, there was no assembled bin bearing the complete gene set for sulfate 
reduction to sulfide.

We identified 15 bins containing genes predicted to code for respiratory RDases 
and one TPh-RDase from bin.15 belonging to Desulforhopalus. Hydrogen was produced 
during lactate utilization and PCE dechlorination up to around 70 µM and consumed 
again after 26 days. Meanwhile, methane was also detected and accumulated to around 
240 µM in the absence of added sulfate (Fig. 4C). Probably, the produced hydrogen 

FIG 3 Phylogenomic trees of phyla including bins containing RDase genes. Representative genomes at phylum level: Bacteroidota (A), Synergistota 

(C), Desulfobacterota (D), and Spirochaetota (E) and class level Bacilli (B). Red circles filled with stars indicate potential OHRB, whereas black-solid dots represent 

non-OHRB. Colored shades indicate branches and nodes containing bins that encode RDase genes, in line with the color patterns used in Fig. 2 corresponding 

to the classification at phylum level Bacteroidota (orange), Firmicutes (gray), Synergistota (pink), Desulfobacterota (blue), and Spirochaetota (green). Gray arrows 

indicate the reference genomes, and bins are listed in an anti-clockwise order in Table S3.
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provided the electrons for reductive dehalogenation and methanogenesis under these 
conditions. Further genomic analysis revealed that marker genes encoding group A 
[Fe-Fe]-hydrogenases were abundant across the bins, for example, bin.30 and bin.13 
carried five and four genes, respectively, and several bins were also found to encode 
subgroup 1 and 4 types [Ni-Fe]-hydrogenases (Fig. 4D). The higher numbers found 
of genes coding for [Fe-Fe]-hydrogenase suggested that they were likely the main 
contributors to hydrogen oxidation in accordance with previous results that [Fe-Fe]-
hydrogenases were more active and had higher turnover frequency than [Ni-Fe]-hydro­
genases (61). In addition, bin.23, bin.31, and bin.6 only contained genes encoding 
[Fe-Fe]-hydrogenases, whereas bin.10, bin.14, bin.15, bin.21, and bin.26 only contained 
genes encoding [Ni-Fe]-hydrogenases. Genes coding for methyl-coenzyme M reductases 
(mcr) contributing to methane production were only found in bin.33, classified into 
Methanogenium, which contained two genes of each mcrA, mcrB, and mcrG.

Phylogeny of bin-associated RDases

Most RDase genes in bin.26 (Vulcanibacillus) were found clustered in one assembled 
contig, with less than five gene intervals between every two RDase genes (see gene 
locus numbers in Tables S4 and S5). Most RDases from bin.26 were phylogenetically 
closely related to each other with respect to their amino acid sequences (Fig. 5; Table 
S4). RDases from other bins, except bin.35, bin.15, bin.31, and bin.24, were in a close 
phylogenetic relationship to each other but distant to the RDases from bin.26 (Fig. 5), 
suggesting a different origin. Furthermore, RDases from the assembled bins were distinct 

FIG 4 Metabolite detection and annotation of related marker genes. Utilization of lactate under sulfate-free, NS (A), and sulfate-amended, S (B), conditions. 

Hydrogen and methane were only detected in NS cultures (C); marker genes encoding proteins involved in the cycling of sulfur, halogens, hydrogen, and 

methane were searched against the bins and counted (D); thereupon, specific marker genes were selected corresponding to physiological observations 

(D). Bars in panels A, B, and C represent the standard errors of the duplicate cultures as described in Fig. 1. S_A_transferase, sulfate adenylyl-transferase; 

Sulfite_reductase, sulfite reductase; DsrA, dissimilatory sulfite reductase alpha subunit; DsrB, dissimilatory sulfite reductase beta subunit; RDase, reductive 

dehalogenase; TPh_RDase, tetrachloro-P-hydroquinone RDase; H2ase, hydrogenase; FeFe-GroupA and FeFe-GroupB1B3, [Fe-Fe]-hydrogenases in Group A and 

Group B1B3, respectively; McrA, McrB, McrG, alpha, beta, and gamma subunits of Methyl-coenzyme M reductases, respectively.
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from the established OGs shown in Fig. 5 (36, 37). Despite their low full-length PID to 
members of OGs (< 60%), some RDases shared >35% PID with OGs. Among these were 
seven RDases from bin.26 that were phylogenetically more closely related and shared 
over 50% PID with known RDases, including RDase50 and RDase51 bearing, respectively, 
52.9% and 55.5% PID to DcrA from Dehalobacter sp. strain DCA (62), and RDase1, 2, 
7, 19, and 20 sharing, respectively, 52.4%, 50.8%, 52.6%, 52.5%, and 53.1% PID with 
PdrA from Desulfitobacterium sp. strain KBC1 (39). In addition, three other RDases from 
bin.26 exhibited a phylogenetic relationship with well-characterized proteins, including 
RDase32 (48.4%) to PdrA from Desulfitobacterium sp. strain KBC1 (39), RDase4 (47.6%) 
to CprA from Desulfitobacterium chlororespirans strain Co23 (41), and RDase97 (40%) to 
CprA from Desulfitobacterium sp. strain KBC1 (39). Three RDases from other bins also 
clustered with known RDases, including RDase2 from bin.24 and the RDase from bin.31 
bearing both 38.7% identity to PceA from Shewanella sediminis strain HAW-EB3 (38), 
and RDase1 from bin.35 having 35.7% PID to CbrA from Dehalococcoides mccartyi strain 
CBDB1 (63).

Expression of RDase genes during PCE dechlorination

RDase gene expression profiles were analyzed to specify their possible contributions to 
PCE dechlorination. No RDase gene transcripts were observed for bin.1, bin.6, bin.10, 
bin.12, bin.13, bin.23, bin.24, bin.28, bin.30, bin.31, or bin.35 (Fig. 6). Moreover, no 
transcripts of bin.6, bin.23, or bin.30 were detected under sulfate-free conditions (Table 
S2). A total of 24 RDase genes were not expressed under any of the conditions tested 
in this study, half of which were from bin.26 (Table S5). Hence, it is unlikely that those 

FIG 5 Phylogenetic analysis of bins’ RDases including well-identified RDase representatives. RDases in bin.26 distinct to the well-identified RDase representatives 

were divided into 10 groups in turquoise. The number of genes from group 1 to group 10 is 3, 7, 13, 7, 10, 12, 20, 4, 5, and 3, respectively. In contrast, branches 

containing RDases from bins as well as well-identified RDase representatives at the same node were numbered and shaded in light purple from left to right. For 

each shade, full-length protein pairwise identity (PID) matrices are given in the right panel. In the matrices, the gray color intensity is proportional to the PID. 

Columns from left to right are in the same order as rows from top to bottom. The scale bar of 0.07 represents the evolutionary distance, meaning 7 substitutions 

per 100 amino acid sites on average.
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genes were involved in the dechlorination of PCE. In contrast, transcripts of several RDase 
genes of bin.26 were observed regardless of the presence of sulfate, including RDase3, 
RDase9, RDase21, RDase23, RDase43, RDase54, RDase58, RDase60, RDase61, RDase64, 
RDase75, RDase79, and RDase96. Thirty-one RDase genes were only expressed in NS 
cultures, of which 29 RDase genes were from bin.26. Furthermore, 23 RDase genes 
from bin.26 were only found expressed in PCE_NS3. Only one RDase gene of bin.18 
was transcribed in PCE_S3 culture with 508.2 transcripts (Table S5). All the other RDase 
genes were expressed to different extents with and without sulfate. The RDase genes 
from bin.15 and RDase36, RDase41, RDase42, RDase45, and RDase46 from bin.26 were 
expressed in all duplicate cultures (Fig. 6). Notably, 84 of the 97 RDase genes from bin.26 
were found to be expressed during PCE dechlorination, which suggests the important 
role of bin.26 to dehalogenate PCE in the cultures described here. A total of 39 RDase 
genes were expressed over 20 transcripts under either NS or S conditions. These included 
34 RDase genes in bin.26, one in bin.5, bin.15, and bin.18, respectively, and RDase1 
gene in bin.24. Furthermore, three pairs of RDase genes in high expression, including 
RDase6 and RDase7, RDase41 and RDase42, and RDase45 and RDase46, were not only 
physically connected in tandem on the genome but also shared the same number 
of transcripts (Fig. 6). Combining the conserved motifs and expression files of these 
respiratory RDases, we found that all the putative RDases retain two conserved binding 
motifs for Fe-S clusters, except for RDase72 from bin.26, which lacks the second Fe-S 
binding motif, Fe-S2, as well as the TAT motif. Nine of 88 expressed RDase genes from 

FIG 6 Phylogenetic tree of RDases and their gene transcripts attached with corresponding gene clusters. The protein sequences of RDases were collected and 

aligned via online Clustal Omega. Stars at the nodes indicated that RDases were encoded on Bin.26. RDases encoded on other bins were depicted by differently 

color-filled circles, and RDases in the same bin were in the same color. The extended heatmap corresponding to the RDase nodes indicated gene transcript 

abundance (log10-transformed) for two pairs of duplicate cultures including PCE_NS2, PCE_NS3, PCE_S2, and PCE_S3. Gray color intensity in the heat map 

is proportional to the transcript abundance. The depicted gene clusters represent RDase genes that are transcribed in both duplicates of NS and S, only in 

duplicates of NS, or only in S. RDase41/42, RDase45/46, and RDase6/7 are in the same cluster, respectively (Table S5). The neighborhood genes encoding diverse 

proteins related to RDase genes on the clusters were distinguished by distinct colors. Operons were drawn using gggenes and adjusted individually to fit the 

figure size. Therefore, a uniform scale bar for gene length was not applied.
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bin.5, bin.18, bin.24 (RDase1), bin.32, and bin.26 (RDase33, RDase82, RDase83, RDase84, 
and RDase97) under NS and S conditions have incomplete or missing TAT motifs (Fig. S2; 
Table S5), suggesting that the RDase activity could be executed intracellularly. The genes 
neighboring the RDase gene were diverse (Fig. 6), with transcriptional regulator-encod­
ing genes being frequently detected, followed by genes coding for metabolic enzymes 
and associated cofactors, such as cyclases, hydrolases, and chaperone proteins.

Diverse regulatory systems flanking RDase genes

Genes coding for transcriptional regulators adjacent to RDases were subjected to further 
analysis. Genes encoding CRP/FNR and TCS were the main expressed transcriptional 
regulator genes, including 22 (5 subtypes) and 9 (4 subtypes) genes, respectively (Fig. 
7A). CRP, the cAMP-activated global transcriptional regulator, was represented by 12 
members, divided further into three groups based on sequence similarities (64). CRP-2 
and CRP-3 were represented by a higher number of transcripts compared with CRP-1 
(Fig. 7B). Five members of GlxR (65), a CRP-like regulator, were found expressed, with 
GlxR1-3 exhibiting higher transcription levels compared with the rest.

Nine two-component systems (TCS) were tentatively identified based on their identity 
to known systems; among them, NatR2 was previously found to be involved in regulating 
sodium ion extrusion (66), whereas WalR2, shown to be involved in cell wall metabolism 
and virulence, and RpfG, involved in signaling response, were highly expressed (Fig. 7B). 
Interestingly, four transcriptional regulators previously found to function as repressors 
were also highly expressed, including DtxR shown to inhibit Diphtheria toxin production, 
HrcA involved in preventing heat-shock induction, SarZ for attenuating virulence, and 

FIG 7 Classification and transcript abundance of expressed transcriptional regulators (A, B) and their predicted binding motifs (C). (A) Groups of transcriptional 

regulators, TCS, two-component systems; CRP-FNR, CRP (cyclic AMP receptor protein)/FNR (fumarate and nitrate reduction regulator); ECF-Sigma (ECF-σ): 

Extra-cytoplasmic function sigma factor; PCE_NS2 and PCE_NS3: duplicate PCE dechlorinating cultures without additional sulfate; PCE_S2 and PCE_S3: duplicate 

PCE dechlorinating cultures with additional sulfate; the potential binding sites were identified on the basis of binding motif in the potential promoter regions 

and displayed in Weblogo (https://weblogo.berkeley.edu/logo.cgi). The y-axis depicts the degree of conservation (in bits) for each position in a sequence 

alignment.
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AcrR shown to be involved in global stress response (67–70). In addition, CysL, belonging 
to LysR-type regulators related to L-Cysteine biosynthesis (71), and SigW, an extra-cyto­
plasmic function (ECF) sigma factor responding to alkaline shock stress (72), were also 
induced during PCE dechlorination (Fig. 7B). To better understand the regulons of these 
expressed transcriptional regulators, we obtained promoter sequences of RDase genes 
by defining intergenic regions shorter than 300 bp between the RDase gene and the 
upstream gene (Table S6). There were 12 promoter sequences collected, and each was 
found to contain binding sites following the consensus for CRP regulons of E. coli (5′-T
GTGACAAAATTCA*T-3′, MX000093: CRP, PRODORIC) (73) (Fig. 7C). In a similar way, the 
predicted binding sites of FNR followed the consensus 5′-TT*T*CA**AA**AA-3′ according 
to the two promoters of RDase genes following the consensus for known FNR regulons 
(MX000004: Fnr, PRODORIC). The binding sites of GlxR, YpdB, and NatR were predicted 
based on their RDase genes’ promoter alignment. Two promoter candidate sequences, 
associated with RDase4 and RDase70 of Bin.26, were assumed to be under the regulation 
of NtcA (MX000209: NtcA), of which only the promoter sequence of RDase70 was found 
to contain the binding site, 5′-GTATAAATATAAAC-3′.

DISCUSSION

Our previous work demonstrated that marine sediments from Aarhus Bay can deha­
logenate a broad range of organohalides, including PCE, under sulfate-amended and 
sulfate-free conditions (24), which for the first time provided physiological evidence of 
OHR for marine sediments of Aarhus Bay (18–20, 74, 75). Therefore, further pinpointing 
OHRB populations residing in Aarhus Bay marine sediments was the logical next step. 
To this end, we applied metagenomics and metatranscriptomics, yielding 37 assembled 
bins with high quality, of which 15 bins were predicted to represent OHRB due to their 
genomic annotation with respiratory RDase genes. The taxonomic classification of these 
OHR bins unveiled a wide distribution of RDase genes among members of Bacteroidota, 
Snergistota, and Spirochaetota in addition to phyla well-known to include OHRB, such 
as Firmicutes and Desulfobacterota (76). Moreover, agreeing to the previous study (24), 
the presence of sulfate shaped the PCE-dechlorinating microbial community significantly 
with respect to MAG diversity and their relative abundance (Table S2). Evidently, the 
inclusion of sulfate in the medium inhibited methanogenesis (bin.33, belonging to genus 
Methanogenium), which was in line with the physiological observation (Fig. 4C) and 
previous studies due to the competitive advantage of sulfate reducers for substrates, 
that is, hydrogen (24, 77). Similarly, competition for hydrogen by sulfate reducers could 
prevent the growth of obligate OHRB. Noticeably, putative OHRB bins, including bin.6, 
bin.23, and bin.30, were not detected under sulfate-free conditions, and for none of 
these bins, RDase gene transcripts were detected under any of the conditions tested 
(Table S5), implying their RDase genes were less likely responsible for PCE dechlorina­
tion. Therefore, experimental settings with various organohalides could provide a wider 
scenario of dehalogenators expanding to the new phyla in addition to the well-docu­
mented counterparts in Aarhus Bay marine sediments under S and NS conditions. Gene 
expression analyses indicated it is likely that one or more of the RDases encoded on 
bin.26, bin.15, bin.24, bin.18, and bin.5 played the main role in PCE dechlorination, 
in which bin.26 was phylogenetically close to Vulcanibacillus modesticaldus, and bore 
an unprecedentedly high number of 97 different RDase genes, which is significantly 
more than the copy numbers in typical OHRB (e.g., Dehalococcoides mccartyi CG1 with 
36 RDase genes [36]). In addition, most of the induced RDase genes were clustered 
with genes encoding diverse regulatory systems, suggesting their strong flexibility in 
adapting to environmental changes or the availability of different organohalides.

Wide distribution of RDases beyond well-characterized OHRB

Most of the OHRB have so far been isolated from organohalide-contaminated areas, 
such as soils, rivers, and lakes (78–80). They belong to the phyla Chloroflexota, Firmicutes, 
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Desulfobacterota, and Proteobacteria (76, 81). Although pristine marine sediments have 
been shown to contain OHRB such as Dehalococcoides (82), fewer OHRB were isolated 
from pristine marine environments, which might be due to the limited knowledge of 
their metabolic potential and limited methods for isolation. The integration of metage­
nomics and metatranscriptomics employed in this study allowed for the assembly of 
15 putative OHR bins with high quality, some of which belong to Bacteroidota, Spiro­
chaetota, and Synergistota phyla that have never been reported to catalyze reductive 
dehalogenation. The average nucleotide identity (ANI) of these OHR bins was below 95% 
in all cases after running the “classify_wf” of GTDB, indicating that they likely represent 
different species. Our further exploration together with representative genomes of these 
phyla revealed that 112 genomes of Bacteroidota, 15 genomes of Spirochaetota, and 
seven genomes of Synergistota are bearing RDase genes, with none of the corresponding 
isolates being physiologically characterized to perform OHR. To this end, it is noteworthy 
that our study using genome-resolved strategies discovered that the RDase genes from 
bin.18, classified into Bacteroidota, and from bin.5 and bin.32, classified into Synergistota, 
were expressed in PCE dechlorinating cultures (Table S2), and their genome abundances 
and genomic transcripts were in high numbers, suggesting that OHR potential exists in 
these phyla. The RDase genes in the other bins from the above phyla were not expressed 
in our data, indicating that they were probably not involved in the dehalogenation of 
PCE in our experiments. We found 32 representative genomes from the class Bacilli that 
are annotated with RDase genes, and bin.26 is closely related to Vulcanibacillus, which 
has one isolate from a moderately hydrothermal vent containing one RDase gene (83). 
In contrast, bin.26 was predicted to contain 97 RDase genes, a number that is higher 
than the maximum number of 36 currently reported for members of Dehalococcoides 
(36, 84, 85). Interestingly, these RDases were divergent in protein sequences and showed 
low pairwise identity (PID) with the classified ortholog groups (36, 37), suggesting that 
they were novel groups to the well-identified RDases, especially for PCE dechlorination. 
In addition, most of the RDases in the other OHR bins also showed relatively low PID with 
known RDases, indicating their distinct origination and the fact that they could target 
different organohalides (Fig. 5). Furthermore, more detailed inspection of bin.26 using 
tools geared at the detection of virus-associated sequences (VIBRANT and VirSorter2 
[86–88]) revealed the presence of prophage fragments (data not shown). Accordingly, 
it is tempting to speculate that the RDase genes from bin.26 could be the result 
of horizontal gene transfer. Desulfobacterota is a phylum reclassified from Deltaproteo­
bacteria and well known for catalyzing sulfate reduction (81). Eighty-nine of the 939 
representative genomes in the Desulfobacterota were found to carry RDase genes, similar 
to previously described strains of Desulfoluna, Desulfuromusa, and Desulfovibrio (25, 89). 
In contrast, bin.21, classified into Desulfuromusa, had no annotated genes involved in 
OHR or sulfate reduction and had a high abundance when sulfate was absent, as was also 
found in the preceding study (24). Interestingly, bin.21 was predicted to encode three 
group 4 [Ni-Fe]-hydrogenase genes and could thus act as a potential hydrogen producer 
in our cultures. Noticeably, the higher numbers found of genes coding for [Fe-Fe]-hydro­
genase suggested that they were likely the main contributors to hydrogen production 
in accordance with previous results that [Fe-Fe]-hydrogenases were more active and 
had higher turnover frequency than [Ni-Fe]-hydrogenases (61). One bin, bin.15, was 
most closely affiliated with the genus Desulforhopalus, of which one putative OHRB is D. 
singaporensis (90). Noticeably, the deduced RDase from bin.15 does not belong to the 
canonical RDases associated with OHR, such as PceA from Dehalococcoides (91, 92), and 
was more similar in sequence and size to TPh-RDase from Sphingobium chlorophenolicum 
(previously named as Flavobacterium sp.) that can dehalogenate tetrachlorohydroqui­
none thiolytically (6, 7). Of interest, the TPh-RDase from bin.15 was not reported for 
respiratory dehalogenation to conserve energy; however, the transcript data revealed 
that TPh-RDase bears potential biodegrading activity of PCE in the cultures studied here. 
Moreover, the genomic abundance and transcript of bin.15 indicated its participation in 
PCE dechlorination. Thus, further metabolic analysis of bin.15 is essential. Altogether, the 
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marine sediments of Aarhus Bay are home to several new OHRB candidates with diverse 
RDase genes.

RDase gene clusters

Recently, an extensive genomic survey found that some RDase gene clusters lack genes 
encoding anchor protein B or the N-terminus of RDase bears transmembrane domains, 
which could leave the RDase functioning in the cytoplasm or the C-terminus spanning 
toward the outer face of the membrane (93, 94). In our study, we also observed some 
OHR bins without putative RdhB encoding genes, including bin.12, bin.1, bin.28, bin.32, 
and bin.6. Of these, transcripts of the RDase gene in bin.32 indicated possible cytoplas­
mic dehalogenation that awaits further experimental confirmation. In most cases, RDase 
genes were accompanied by diverse functional gene sets, such as cobamide cofactor 
biosynthesis pathway genes in Sulfurospirillum strains and molecular chaperones in 
Desulfitobacterium (95–97). Similarly, some RDase gene clusters found in the present 
study contained chaperone genes vicinal to genes encoding RDase3, RDase4, RDase35, 
and RDase93 of bin.26 that could protect the RDase activity in a manner of maintaining 
structural integrity when exposed to harsh environments. Besides, there were several 
genes encoding electron transport complexes accompanying RDase genes, including 
RDase in bin.13 and bin.31, RDase2 in bin.24 and bin.35, and RDase4, RDase67, RDase69, 
RDase73, RDase82, and RDase84 in bin.26, which could form new electron transport 
chains to promote OHR in addition to the previously identified ones (3, 98).

Furthermore, RDase genes were frequently flanked by genes coding for transcrip­
tional regulators, which might timely and accurately regulate the expression of vicinal 
RDase genes in response to the added organohalides. Three regulatory systems were 
previously characterized in association with RDases, including those of the CRP-FNR 
family, MarR and TCS (8, 9, 96, 97, 99). Expressed transcriptional regulators classified 
into CRP/FNR systems accounted for the largest numbers in our study, whereas, GlxR, 
as a new regulator, showed different regulons inferred from the promoter alignment 
as well as YpdB and NatR from the class of TCS. In addition, four negative regulators 
were found that could follow the modulation reported for MarR-type regulators (9), 
but their binding sites were unclear and needed further demonstration. Noticeably, ECF 
sigma factor, SigW, was also found transcribed during PCE dechlorination, which was 
rarely reported to regulate dehalogenation, and its DNA binding motif seems different 
from that in Bacillus subtilis (MX000079: SigW). Taken together, the newly discovered 
regulatory systems diversified the known modes of regulation of dehalogenation that 
could be the result of adaptation to challenging environments, and further molecular 
identification would substantially improve our understanding of reductive dehalogena­
tion and its regulation in natural systems.
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