
Mechanistic	modeling	of	root	water	uptake	in	tropical	agriculture	:
a	sensitivity	analysis	of	drought	stress	dynamics
Plant	and	Soil
de	Melo,	Marina	Luciana	Abreu;	de	Jong	van	Lier,	Quirijn;	Heinen,	Marius;	van	Dam,	Jos
C.;	Marin,	Fábio	Ricardo
https://doi.org/10.1007/s11104-025-07452-0

This	publication	is	made	publicly	available	in	the	institutional	repository	of	Wageningen	University
and	Research,	under	the	terms	of	article	25fa	of	the	Dutch	Copyright	Act,	also	known	as	the
Amendment	Taverne.

Article	25fa	states	that	the	author	of	a	short	scientific	work	funded	either	wholly	or	partially	by
Dutch	public	funds	is	entitled	to	make	that	work	publicly	available	for	no	consideration	following	a
reasonable	period	of	time	after	the	work	was	first	published,	provided	that	clear	reference	is	made	to
the	source	of	the	first	publication	of	the	work.

This	publication	is	distributed	using	the	principles	as	determined	in	the	Association	of	Universities	in
the	Netherlands	(VSNU)	'Article	25fa	implementation'	project.	According	to	these	principles	research
outputs	of	researchers	employed	by	Dutch	Universities	that	comply	with	the	legal	requirements	of
Article	25fa	of	the	Dutch	Copyright	Act	are	distributed	online	and	free	of	cost	or	other	barriers	in
institutional	repositories.	Research	outputs	are	distributed	six	months	after	their	first	online
publication	in	the	original	published	version	and	with	proper	attribution	to	the	source	of	the	original
publication.

You	are	permitted	to	download	and	use	the	publication	for	personal	purposes.	All	rights	remain	with
the	author(s)	and	/	or	copyright	owner(s)	of	this	work.	Any	use	of	the	publication	or	parts	of	it	other
than	authorised	under	article	25fa	of	the	Dutch	Copyright	act	is	prohibited.	Wageningen	University	&
Research	and	the	author(s)	of	this	publication	shall	not	be	held	responsible	or	liable	for	any	damages
resulting	from	your	(re)use	of	this	publication.

For	questions	regarding	the	public	availability	of	this	publication	please	contact
openaccess.library@wur.nl

https://doi.org/10.1007/s11104-025-07452-0
mailto:openaccess.library@wur.nl


Vol.: (0123456789)

Plant Soil 
https://doi.org/10.1007/s11104-025-07452-0

RESEARCH ARTICLE

Mechanistic modeling of root water uptake in tropical 
agriculture: a sensitivity analysis of drought stress dynamics

Marina Luciana Abreu de Melo   · 
Quirijn de Jong van Lier · Marius Heinen · 
Jos C. van Dam · Fábio Ricardo Marin

Received: 2 January 2025 / Accepted: 6 April 2025 
© The Author(s), under exclusive licence to Springer Nature Switzerland AG 2025

Abstract 
Background and aims  Drought stress is a major 
driver of crop yield reductions in Brazil and other 
tropical regions. This study explores the mechanis-
tic underpinnings of drought stress using a process-
based root water uptake (RWU) model. We aimed to 
perform a comprehensive sensitivity analysis of the 
SWAP/MFlux model to simulate drought stress in 
long-term scenarios of soybean and wheat cultivation 
under tropical winter-dry conditions.
Methods  The agro-hydrological model SWAP, 
incorporating the RWU function MFlux, was used 
to simulate 32 years of rainfed soybean and wheat 
cultivation across five soils with varying hydraulic 
properties in a tropical winter-dry climate. Sensitivity 

analysis of the MFlux function was conducted using 
three methods — local, global Morris, and global 
Sobol’ — by varying seven RWU parameters within 
literature-supported ranges.
Results  Wheat, grown in the dry winter, experienced 
higher drought stress than soybean, grown in the wet-
ter summer, across the years. Root length density was 
the most influential RWU parameter, contributing 35% 
to 50% of drought stress variation. Soil hydraulic prop-
erties were also influential, with Ferralsols linked to a 
50% reduction in above-ground dry matter productivity 
and an Acrisol and a Nitisol to up to 30% in the stand-
ard scenario. The Sobol’  method provided the most 
comprehensive parameter sensitivities.
Conclusions  Root length density is the most influ-
ential parameter in modeling drought stress, with 
soil hydraulic properties modulating crop responses. 
This study offers insights for informing management 
and breeding strategies to mitigate soil- and climate-
induced limitations on soybean and wheat production 
in tropical environments.

Keywords  Transpiration · SWAP model · Tropical 
cultivation · Morris · Sobol’

Introduction

Drought stress, induced by the deficiency of plant 
available water, is one of the main abiotic fac-
tors that limit crop growth, development, and 
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productivity, affecting food security worldwide 
(Pandey et  al. 2022). This factor is especially rel-
evant to much of the humid tropics, where the El 
Niño-Southern Oscillation phenomenon has brought 
reduced rainfall amounts during both the wet and 
dry seasons (Bunker and Carson 2005; Cai et  al. 
2020). The scenario has been further aggravated 
over the last decades by the increase of global sur-
face temperature due to rising greenhouse gas emis-
sions by human activities, mainly related to the use 
of coal, oil and gases, deforestation, livestock, and 
farming (Alvares et al. 2022; Marin et al. 2022).

The agriculture sector is particularly affected by 
climate changes, and within this global issue, Bra-
zil is among the few countries that can still increase 
agricultural productivity (Anwar et  al. 2013; USDA 
ERS 2022). Over the last two decades, Brazil has 
emerged as a leading producer of agricultural com-
modities, including soybeans, grains, cotton, ethanol, 
and meats. The soybean crop is particularly significant 
in the expansion of Brazilian agriculture, establishing 
the country as a top global supplier of commodities 
(USDA ERS 2022). Nevertheless, the lack of drought-
tolerant soybean cultivars in Brazil has been high-
lighted as a major reason for yield and grain quality 
losses (Tavares et  al. 2022), which poses significant 
challenges to future expansion in production and trade.

On the other hand, Brazil is one of the largest 
importers of wheat grains in the world, importing 
approximately 4.5 million tons annually to comple-
ment its internal production (Nóia Júnior et al. 2024). 
Among the multiple factors compromising wheat 
production in Brazil, limited soil water availability 
during growing season ranks as a primary obstacle 
(Flumignan et  al. 2013; Pereira et  al. 2019). Hence, 
developing suitable irrigation practices based on 
recent studies of crop water use and irrigation man-
agement is an urgent demand (Pereira et al. 2023).

The Brazilian agricultural sector faces the chal-
lenge of sustaining production growth while adopting 
sustainable practices, particularly in water use and 
management (Stevanović et al. 2016). In this context, 
agro-hydrological models have become indispensable 
for analyzing soil–water-plant interactions, providing 
insights into the relationship between water avail-
ability and crop performance. These models support 
the development of strategies to optimize water use 
and enhance agricultural resilience through improved 
management practices (Pinto et al. 2023).

A key feature of agro-hydrological models is the 
simulation of root water uptake (RWU), which is 
essential for predicting transpiration and crop growth 
reductions due to drought stress, and provides critical 
feedback for soil water balance calculations (Jarvis 
et  al. 2022). Process-based RWU models incorpo-
rate water potential gradients and hydraulic conduc-
tivities or diffusivities to describe water flow within 
the plant and in the soil toward plant roots (Couvreur 
et al. 2012; de Jong van Lier et al. 2013, 2008, 2006; 
de Willigen et  al. 2012; Javaux et  al. 2013, 2008; 
Vanderborght et al. 2023, 2021). This process is typi-
cally coupled with the dynamic temporal and spatial 
variations in soil water content via a sink term in the 
soil water flow equation, facilitating the prediction of 
soil water potentials with the influence of extracting 
water by plant roots (Kroes et al. 2017).

In many modeling applications, it is important to 
assess the sensitivity of model outputs to input factors 
(variables or parameters). This sensitivity analysis is 
often necessary, either to deepen understanding of 
the processes simulated by the model or as an initial 
step in a model calibration exercise to identify critical 
system parameters (Doherty 2016). Sensitivity anal-
ysis is beneficial as it provides insights into model 
behavior that are relevant for subsequent model appli-
cations. Additionally, it allows for the exclusion of 
insensitive model parameters from a sequential cali-
bration procedure, thereby reducing computational 
effort and parameter uncertainty (Stahn et al. 2017).

In a systematic review, Pianosi et al. (2016) distin-
guished different types of sensitivity analysis (SA). 
Local SA evaluates how output variability responds 
to perturbations around specific values of input fac-
tors. In contrast, global SA assesses changes across 
the entire variability space of these factors. Quantita-
tive SA refers to methods where each input factor is 
associated with a quantitative measure, such as sen-
sitivity indices. Meanwhile, qualitative SA involves 
visual inspections of model response, often comple-
mented by a subsequent quantitative analysis.

Another qualification proposed by Pianosi et  al. 
(2016) identifies one-at-a-time (OAT) and all-at-a-
time (AAT) methods, referring to the sampling strat-
egy used to estimate the sensitivities. In OAT meth-
ods, output variations are induced by varying one 
factor at a time while keeping all others fixed. While 
local SA typically relies on OAT sampling, OAT can 
also be applied in global SA by generating sets of 
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parameter combinations that differ in only one spe-
cific parameter value. In contrast, AAT methods for 
global SA involve varying all input factors simulta-
neously, considering both the individual influence of 
each factor and the combined influence due to inter-
actions with other factors. AAT methods usually pro-
vide a better assessment of interactions, and some 
such as variance-based methods, allow the user to 
evaluate interactions between specific combinations 
of input factors, such as pairs or triples.

While previous studies have explored param-
eter sensitivities of RWU models under temperate 
conditions (Cai et  al. 2018; dos Santos et  al. 2017), 
their performance under tropical conditions remains 
largely unexplored, as differences in rainfall patterns, 
temperature regimes, and soil water dynamics can 
lead to distinct soil–water-plant interactions. In this 
study, the SWAP agro-hydrological model (Kroes 
et  al. 2017), incorporating the recently implemented 
MFlux transpiration reduction function based on the 
RWU model of de Jong van Lier et al. (2013, 2008), 
was used to predict drought stress in soybean and 
wheat under the conditions of Southeastern Brazil, 
which features a rainy summer and a dry winter sea-
son subject to climate variability.

We present a comprehensive SA of a process-
based RWU model using different methods (local 
and global) and sampling strategies (OAT and AAT), 
aiming to provide a mechanistic understanding of 
interactions between tropical climatic conditions, soil 
hydraulic properties, and plant water uptake.

Material and methods

Climate and soil conditions

Weather data recorded by the weather station of the 
University of São Paulo in Piracicaba, São Paulo 

state, Brazil (22° 42′ 30’’S, 47° 38′ 00’’W, 546 m 
a.s.l.) from 1990 to 2021 were used. Historically, 
the regional climate was classified as subtropical 
winter-dry with a hot summer (Köppen Cwa). How-
ever, in recent decades, climate change has driven a 
shift toward higher temperatures, and the region is 
now classified as tropical winter-dry savanna (Köp-
pen Aw) (Alvares et al. 2022). The Aw climate covers 
approximately 20–30% of Brazilian territory, making 
it the most common climate in the country, especially 
in agricultural lands.

The observed annual average rainfall for the period 
was 1315 mm, and the average minimum (Tmin) and 
maximum (Tmax) temperatures were 16 °C and 29 °C, 
respectively. The total rainfall amounts during the 
meteorological winter and summer seasons (NCEI 
2016) are spresented in Table 1.

Five soils under agricultural (arable) use were 
sampled in São Paulo state. At each location, undis-
turbed and disturbed soil samples were collected at 
various depths, following the distribution of the pedo-
logical horizons, reaching depths of 60 cm or more. 
Undisturbed samples were taken using either large 
rings (approximately 7.4 cm in diameter and 7 cm in 
height, 10 replicates) or medium rings (approximately 
8  cm in diameter and 5  cm in height, 3 replicates). 
The specific sampling depths for each soil profile 
corresponded to the center of the layers detailed in 
Table 6 of Appendix 1. The sampled soils represent 
three texture classes and three WRB soil orders (Niti-
sols, Acrisols, and Ferralsols), which are common in 
the region (Table 2).

The hydraulic properties of the five soils were 
assessed using undisturbed soil samples in a series of 
laboratory and field experiments. These included the 
one-step outflow method using porous plate pressure 
chambers (applied to all soils), the Hyprop-assisted evap-
oration method (Peters and Durner 2008) and the falling 
head saturated permeability laboratory test for the Nitisol 

Table 1   Rainfall amounts (mm) observed during the meteorological winter (Jun, Jul, and Aug) and the meteorological summer 
(Dec, Jan, and Feb) in Piracicaba, São Paulo, Brazil, between 1990 and 2021

Driest winter Wettest winter Driest summer Wettest summer

Season (year) 2014 2016 2013/2014 1995/1996
Rainfall (mm) 38.0 210.6 266.7 873.7

Average winter Average summer
Rainfall (mm) 103.6 ± 50.6 586.1 ± 151.6
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and Acrisol, and field internal drainage experiments to 
determine saturated hydraulic conductivity in the three 
Ferralsols. Based on measurements of soil water con-
tent, pressure head, and soil hydraulic conductivity under 
saturated and unsaturated conditions, the soil hydrau-
lic properties were expressed as parameters of the van 
Genuchten (1980) equations with the Mualem (1976) 
parametric restriction, referred to as VGM hydraulic 
functions. The obtained VGM parameters for the five 
sampled soils are presented in Table 6 of Appendix 1.

Modeling seasonal crop growth

The agro-hydrological model SWAP v. 4.2.0, an 
updated version of the fully documented v. 4.0.1 
(Kroes et  al. 2017), was used to simulate soybean 
(Glycine max) and wheat (Triticum spp.) growing 
seasons. SWAP was preferred over other models 
due to its robust handling of soil–water-plant inter-
actions and its proven adaptability to tropical cli-
mates (Pinheiro et al. 2019; Pinto et al. 2023). The 
model inputs included daily meteorological data of 
solar radiation (kJ m−2), minimum and maximum 
air temperature (°C), water vapor pressure (kPa), 
wind speed (m s−1), and rainfall (mm) observed in 
Piracicaba from 1990 to 2021 (32 years), and the 
soil hydraulic parameters obtained for several layers 
of the five sampled soils in the region (Appendix 1).

The SWAP model numerically solves a discre-
tized 1D version of the Richards equation with a 
sink term of root water uptake (Kroes et al. 2017), 
describing a vertical water flow in the soil as

(1)C(h)
�h

�t
=

�

�z

[
K(h)

(
�h

�z
+ 1

)]
− S(h)

where C(h) is the differential water capacity (cm−1), t 
is time (d), z is the vertical coordinate taken positive 
upwards (cm), h is the pressure head (cm), K(h) is the 
soil hydraulic conductivity (cm d−1), and S(h) is the 
water uptake by plant roots (d−1).

The bottom boundary condition in the simula-
tions was set to free drainage, meaning the down-
ward water flux was driven solely by gravity, with a 
unit gradient and numerically equal to the hydrau-
lic conductivity of the lowest soil compartment at a 
depth of 200 cm. The upward upper boundary con-
dition was defined by the simulated evapotranspira-
tion (ET), while the downward upper boundary con-
dition was determined by rainfall minus crop water 
interception minus runoff.

SWAP firstly calculated potential ET rates (ETp) 
using the Penman–Monteith equation (Monteith 
1965). ETp is partitioned between potential plant 
transpiration (Tp) and potential soil evaporation (Ep) 
based on the leaf area index or soil cover fraction, 
which vary according to crop development stage. It 
also accounts for reductions in Tp and Ep due to soil 
water fluxes, root water uptake, and crop growth, 
with reductions occurring from water and/or salt 
stress. In this study, only drought stress was con-
sidered, so the reductions in crop productivity were 
mainly associated with the rainfall distribution and 
the soil hydraulic properties.

The detailed crop growth module of SWAP, 
adapted from the World Food Studies (WOFOST) 
model (de Wit et al. 2019) was used to simulate crop 
growth processes. This module enables the simula-
tion of absolute crop productivity (kg ha−1) from 
conversion factors of assimilates into plant biomass. 
The potential productivity is calculated as a function 
of solar radiation, temperature, leaf area, atmospheric 

Table 2   Geographical position, classification, and textural class of the soils sampled in the region of Piracicaba, São Paulo state, 
Brazil

1 World Reference Base (WRB). International soil classification system of the Food and Agriculture Organization of the United 
Nations (FAO)

Soil ID Coordinates Classification (WRB/FAO)1 Textural class

Nitisol 22°42’S, 47°39’W Eutric Rhodic Ferralic Nitisol clay
Acrisol 22°42’S, 47°38’W Eutric Rhodic Acrisol clay
C. (clayey) Ferralsol 21°15’S, 48°11’W Eutric Ferralsol clay
S. L. (sandy loam) Ferralsol 22°21’S, 49°50’W Dystric Ferralsol sandy loam
S. (sandy) Ferralsol 22°42’S, 47°37’W Xanthic Ferralsol sand
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CO2 assimilation, and partitioning factors of pro-
duced carbohydrates.

Soybean and wheat cropping cycles were simulated 
separately and continuously over the years. For soy-
bean, growing seasons were simulated from Decem-
ber 26, 1990, to April 5, 2021, corresponding to 31 
seasons (each season starting on Dec 26 and ending 
on Apr 5 in the subsequent year). Alternatively, wheat 
growing seasons were simulated from May 30, 1990, 
to September 22, 2021, corresponding to 32 seasons 
(starting on May 30 and ending on Sep 22 in the same 
year). The programmed crop emergence and harvest-
ing dates comprised the rainy season for soybean (the 
summer) and the dry season for wheat (the winter) 
(Fig. 1). No irrigation was assumed. During periods 
without crop growth, the boundary conditions were 
defined by observed meteorological data, evaporation 
from bare soil, and free drainage at the bottom of the 
soil profile.

Crop growth and development parameters were 
derived from calibrated and validated parameteriza-
tions for soybean and wheat from previous studies 
conducted in Brazil, using the SWAP model with 
local soil and weather data (de Jong van Lier et  al. 
2013, 2008; Pinto et al. 2019; Schwantes 2017). Input 
crop files for this study provide rooting depth as a 
function of the development stage, with a maximum 
depth of 60 cm and a uniform distribution over the 
soil profile. This simplification was adopted to stand-
ardize the effect of the root length density parameter 
in relation to other parameters in the MFlux function, 

which do not exhibit depth-related variation. Other 
key crop parameters used in the simulations are listed 
in Table 3.

Modeling root water uptake

The simulation of drought stress was conducted using 
the RWU function MFlux, derived from the process-
based RWU model developed by de Jong van Lier 
et al. (2008, 2013), which describes axisymmetric soil 
water flow toward individual roots. MFlux applies the 
matric flux potential (M), a soil hydraulic property 
defined as the integral of the soil hydraulic conduc-
tivity K(h) between a reference pressure head and the 
target pressure head. The analytical solution for soil 
water flow, as a function of M, includes parameters 
such as root radius (r0) and the radius of the soil cyl-
inder exploited per root, i.e., the rhizosphere radius 
(rm), which may vary with depth according to root 
length density (LRV) distribution.

Additional parameters describing radial and axial 
hydraulic resistances within the plant system were 
introduced by de Jong van Lier et al. (2013), includ-
ing root tissue hydraulic conductivity (Kroot), xylem 
radius (rx), and hydraulic conductance between leaf 
and root xylem (Kstem). Recently, Heinen et al. (2024) 
reported the addition of the leaf water potential at 
which relative transpiration (the ratio of the actual to 
the potential transpiration) reaches 0.5 (h½), prevent-
ing numerical issues when solving the Richards equa-
tion. This parameter, along with the shape parameter 

Fig. 1   Average monthly 
rainfall (mm) and tem-
perature (°C) in Piracicaba 
between 1990 and 2021 
and the simulated growing 
periods for soybean (26/
Dec—5/Apr) and wheat 
(30/May—22/Sep). Error 
bars indicate ± the standard 
deviation
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ACamp, composes the sigmoidal transpiration reduc-
tion function of Campbell (1991). The MFlux con-
cept is illustrated in Fig. 2, and the main equations are 
provided in Appendix 2.

Sensitivity analysis

The effect of the MFlux root water uptake parameters 
on the simulated drought stress was assessed using 
the scenarios described in Modeling seasonal crop 
growth. Drought stress was calculated as the reduc-
tion (%) in the simulated above-ground dry matter 
productivity (kg ha−1) per growing season. An adap-
tation in the SWAP code was made by setting LRV as 
an input parameter rather than a variable calculated 
as a function of the root mass, which is dependent on 
the crop development stage. Three sensitivity analy-
sis methods were used, which vary in complexity and 
will be introduced in the following.

•	 The local method

In the local sensitivity analysis (local SA), the 
MFlux parameters were varied one-at-the-time, i.e., 

one of the parameters varied while the other param-
eters remained at baseline values. For each param-
eter, 40 values were assessed within their respec-
tive parameter ranges, defined from a compilation 
of measured or calibrated values in the literature 
(Table 4). Exceptions were the parameters r0 and rx, 
which were varied together to avoid physical incon-
sistency according to rx = 0.4·r0 (de Jong van Lier 
et al. 2013), hereafter referred to as r0-rx. The SEN-
SAN program of the PEST suite (Doherty 2016) was 
linked to the SWAP/MFlux model to automatically 
perform the model runs and record the simulated 
drought stress per growing season in each model run.

The local sensitivity (S) was calculated through 
partial derivatives of the model output function 
y = f(x), according to

where xi,j is an element of the vector of 40 values for 
a particular parameter xi and xi,0 is the reference value 
of xi.

(2)S =
�y

�x
=

f
(
xi,j

)
− f

(
xi,0

)
xi,j − xi,0

Table 3   Parameters used in the simulations of the soybean and wheat crops in Piracicaba, São Paulo, Brazil

Parameter Description Value

Soybean Wheat

TSUMEA Temperature sum from emergence to anthesis [°C] 830 1246
TSUMAM Temperature sum from anthesis to maturity [°C] 730 1161
DTSMTAV Increase in temperature sum as function of daily average temperature, 

TAV [°C]
0TAV=0–10 0TAV=0

10TAV=20 30TAV=30

25TAV=35–60 30TAV=45

SLADVS Specific leaf area as function of development stage, DVS [ha kg−1] 1.4 · 10−3
DVS=0.00 2.2 · 10−3

DVS=0.00

2.5 · 10−3
DVS=0.45 2.2 · 10−3

DVS=2.00

2.5· 10−3
DVS=0.90

7.0 · 10−4
DVS=2.00

KDIF Extinction coefficient for diffuse visible light 0.50 0.60
KDIR Extinction coefficient for direct visible light 0.75 0.75
EFF Light use efficiency of the leaf [kg ha−1 h−1 (J m−2 s−1)−1] 0.40 0.50
AMAXDVS0 Initial maximum CO2 assimilation rate [kg ha−1 h−1] 40.0 45.0
AMAXDVS2 Final maximum CO2 assimilation rate [kg ha−1 h−1] 0.0 45.0
CVL Efficiency of conversion into leaves [kg kg−1] 0.680 0.685
CVO Efficiency of conversion into storage organs [kg kg−1] 0.760 0.779
CVR Efficiency of conversion into roots [kg kg−1] 0.720 0.694
CVS Efficiency of conversion into stems [kg kg−1] 0.690 0.662
Q10 Relative increase in respiration rate with temperature [(10 °C)−1] 2.00 2.00
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To compare the parameter sensitivities with different 
dimensions, the average of S over the years was nor-
malized for each parameter as follows:

(3)SNorm =
Sxi,j − SMin

SMax − SMin

where Sxi,j is the average of S over the years for the 
element xi,j of the vector of values for parameter xi, 
and  SMin and SMax are the minimum and maximum 
average S over the years for parameter xi, 
respectively.

Fig. 2   MFlux concept: a Plant aerial part with the following 
hydraulic parameters: leaf water potential at which relative 
transpiration is 0.5 (h½), exponent in Campbell sigmoidal tran-
spiration reduction function (ACamp), and hydraulic conduct-
ance between leaf and root xylem (Kstem). b Reduction function 
of Campbell describing the relationship between leaf water 
potential (hl) and relative transpiration (Tr). c Root system as 

equally spaced cylinders based on root length density (LRV). d 
Rhizosphere radius (rm), where water moves radially towards 
the root center at a rate determined by the radial hydraulic 
conductivity of root tissue (Kroot). e Radial flow in the rhizo-
sphere, with mean soil pressure head (hs) corresponding to 
water potential at 0.53rm. Schemes based on Vanderborght 
et al. (2023)

Table 4   Parameterization of the local sensitivity analysis performed with the SWAP/MFlux model

1 Sources of parameter ranges and reference values: Campbell (1991), de Jong van Lier et al. (2013, 2008), de Willigen et al. (2012), 
de Willigen and van Noordwijk (1987), Kremer et al. (2008), Thomas et al. (2024), and Zhuang et al. (2001)

Parameter Unit Parameter range1 Reference value1

Root length density, LRV cm cm−3 0.01–10.0 2.0
Root radius, r0 cm 0.005–0.1 0.05
Xylem radius, rx cm 0.002–0.04 0.02
Radial hydraulic conductivity of root tissue, Kroot cm d−1 4.0 ∙ 10–8− 1.0 ∙ 10–5 3.5 · 10–6

Hydraulic conductance between leaf and root xylem, Kstem d−1 7.0 ∙ 10–5− 2.1 ∙ 10–4 1.0 · 10–4

Leaf water potential at which relative transpiration is 0.5, h½ -cm 8000–20000 16600
Exponent in Campbell sigmoidal transpiration reduction function, ACamp - 5.0–10.0 7.0
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Normalization allows for direct comparison of 
S by adjusting for variations in scale caused by 
differences in parameter magnitudes and units. 
Without this procedure, larger sensitivities might 
appear more influential due to scale differences 
rather than true importance. Rescaling values 
between 0 and 1 enables fair comparison of the 
relative contribution of each parameter to system 
variability.

Equation  3 was applied for each combination 
of crop (soybean or wheat), soil (Nitisol, Acrisol, 
C. Ferralsol, S. L. Ferralsol, and S. Ferralsol), and 
RWU parameter (LRV, r0-rx, Kroot, Kstem, h½, and 
ACamp). The average of normalized S and its standard 
deviation were considered the quantitative outcomes 
of the local SA.

•	 The Morris method

The Morris method (Morris 1991), also known as 
the Elementary Effect Test (EET), belongs to the class 
of one-at-a-time sensitivity analysis designs while 
allowing the measurement of global sensitivity by 
aggregating individual sensitivities. In this study, the 
notation used by Morris (1991) and Saltelli et al. (2008) 
will be adopted to describe the EET.

A set of input parameters is represented by a vec-
tor x = (x₁, x₂, …, xi, …, xn), where each xi corre-
sponds to a distinct parameter. Each parameter is 
normalized to a uniform probability distribution 
over the interval [0, 1] and is statistically independ-
ent of the others. Thus, the domain of x forms a 
hypercube in parameter space with a side length of 
1.0. A p-level grid is then constructed within this 
hypercube, where each parameter xi can take discrete 
values from the set {0, 1/(p− 1), 2/(p− 1), …, 1}. 
Any parameter xi assumes values from this discrete 
set, though not necessarily in adjacent steps. The dif-
ference between two discrete values of xi is denoted 
as Δ, and this step size is applied to all parameters. 
For each combination of values of distinct param-
eters, the model is run to compute an output y. The 
elementary effect of parameter xi on the output (EEi) 
is calculated from two model runs:

(4)
EEi =

y
(
xi,1, xi,2,… , xi,j−1, xi,j + Δ,… xi,n

)
− y

(
xi,1, xi,2,… , xi,n

)
Δ

where Δ is a value in {1/(p− 1), …, 1–1/(p− 1)}, in 
which p is the number of levels of the grid.

Using a random sampling strategy, the model is 
run multiple times to calculate r values of EEi. Then, 
a mean μ and a standard deviation σ are estimated for 
the probability distribution of EEi. The statistic μ char-
acterizes the effect of the parameter on the model out-
put, whereas σ characterizes the variability of this influ-
ence, a function of model nonlinearity and parameter 
interactions.

Campolongo et al. (2007) introduced μ*, the mean 
of the absolute values of EEi, providing a more robust 
representation of nonlinearity and parameter interac-
tions compared to μ, which can diminish due to can-
cellation in non-monotonic cases (Saltelli et al. 2008). 
Additionally, for accurate interpretation of parameter 
ranking, μ* can be scaled using the standardized EEi, 
following Sin and Gernaey (2009):

where SEEi is the standardized elementary effect of 
parameter xi on the model output y, σ(y) is the stand-
ard deviation of y and σ(xi) is the standard deviation 
of parameter xi. In this study, we used the statistics σ, 
μ*, and scaled μ*.

•	 The Sobol’ method

The Sobol’ method belongs to the class of variance-
based methods for global sensitivity analysis (GSA). It 
employs the theory proposed by Sobol’ (2001), which 
states that any function of an arbitrary number of 
parameters can be decomposed into summed functions 
of parameters taken individually, two by two, three by 
three, and so on. By discovering and separating these 
variances, the importance of each parameter to the 
model output can be revealed, along with the influence 
of any specific parameter on the model output resulting 
from its interaction with other parameters (Saltelli et al. 
2008, 2004).

Following the theory of Sobol’, the total variance VT 
of an output y of a model with k input parameters can 
be decomposed as follows:

where:

(5)SEEi =
EEi�(y)

�
(
xi
)

(6)VT = VT (y) =
∑
i

Vi +
∑
i

∑
j>i

Vij +⋯ + V12…k
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The term V(E(y|xi)) can be interpreted as the vari-
ance with respect to parameter xi of the expected 
value of y, calculated at multiple values at which 
xi is fixed while every other parameter is varied. Vi 
expresses the so-called first order dependence of y on 
xi while Vij expresses the dependence of y on xi and 
xj together; note that the dependence of y on xi and xj 
individually is subtracted from the first term to obtain 
the collective variance. Similar interpretations apply 
to higher order terms (White et al. 2020).

The Sobol’ method produces two sensitivity indi-
ces for each parameter: the first-order sensitivity 
index (Si) and the total sensitivity index (STi). The 
first-order sensitivity index (Si) is defined as

where Vi is the first order variance of parameter xi, 
and VT is the total variance of the model output y.

The total sensitivity index (STi) includes the sensi-
tivity of y due to first order parameter effects as well 
as the sensitivity due to interactions between each 
value assumed by the evaluated parameter and all 
other parameters. It is defined as

where x~i means all parameters but xi are allowed to 
vary, and V(y) is the variance of y.

The Sobol’ method requires the number of samples 
(N) to compute variances. For k parameters, the num-
ber of parameter realizations is N∙(k + 2). To balance 
the execution of a well-designed variance-based GSA 
within a reasonable computing time, N typically ranges 
from a few hundred to a few thousand for k < 20 (Sal-
telli et  al. 2008). In this study, N was set to 400  and 
k = 6, resulting in 3200 model runs per simulation 
scenario.

•	 Applying global methods

To apply the Morris and Sobol’ methods to the study 
scenarios, the program PESTPP-SEN of the Param-
eter Estimation (PEST) +  + suite v. 5.1.23 (White et al. 

(7)
Vi = V

(
E
(
y|xi

))
Vij = V

(
E
(
y|xi, xj

))
− Vi − Vj

… .

(8)Si =
Vi

VT

(9)STi =
E
[
V
(
y|x∼i

)]
V(y)

= 1 −
V
[
E
(
y|x∼i

)]
V(y)

2020) was linked to the SWAP/MFlux model. Like other 
programs of PEST +  +, PESTPP-SEN obtains case-
defining information from a PEST control file. In this 
file, the upper and lower bounds for parameter variation 
are specified, along with the observation data. PESTPP-
SEN computes parameter sensitivities for each observa-
tion/model output pair and for the objective function, 
defined as

where ri is the ith residual (the difference between the 
observation and the respective model output) and wi 
is the weight associated with the ith observation.

The upper and lower parameter bounds correspond 
to those used in the local SA (Table 4). The “obser-
vation” data consisted of simulated drought stress per 
growing season for the standard scenario, defined by 
the reference parameter values (Table 4), with all val-
ues assigned an equal weight of 1. The key PEST +  + 
control variables used to manage the operation of the 
Morris and Sobol’methods are detailed in Table 5.

Results

Standard scenario

Figure 3 shows simulated drought stress over 32 years of 
soybean and wheat cultivation in Piracicaba, São Paulo, 
Brazil, across five soils using the RWU function MFlux 
with reference parameters. Drought stress patterns were 
similar for both crops, lowest in the Acrisol and highest 
in the S. Ferralsol. Year-to-year variability was greater 
in Ferralsols than in Nitisol and Acrisol (Fig. 3).

Wheat experienced significantly higher drought 
stress than soybean across all soil types. The 2013/2014 
soybean season and the 2014 wheat season recorded the 
highest stress levels, exceeding 30% and 60%, respec-
tively, due to the driest summer and winter on record 
(Table  1). In contrast, the 1990 and 2009 wheat sea-
sons showed the lowest stress levels, attributed to more 
evenly distributed rainfall during these years.

Local parameter sensitivities

From a visual inspection of Fig.  4, the simu-
lated drought stress in soybean appeared relatively 

(10)� =
∑

riwi
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insensitive to Kstem and ACamp, moderately sensitive 
to r0-rx and h½, and highly sensitive to LRV and Kroot 
within the ranges of 0.01—0.10 cm cm−3 and 4.0 
∙  10–8—3.0 ∙  10–8  cm d−1 respectively, across most 
soil types. For Kstem, h½, and ACamp, the sensitivities 
often fluctuated between positive and negative values 
near zero, indicating a non-monotonic relationship.

The soil type affected the simulated drought 
stress across the parameter ranges, with Ferral-
sols exhibiting higher drought stress levels (up 
to 50%) compared to Nitisol and Acrisol. Fur-
thermore, Nitisol and Acrisol showed relatively 
lower sensitivity to r0-rx than the Ferralsols 
(Fig. 4).

Table 5   PEST +  + control variables of the Morris and Sobol’ methods for global sensitivity analysis as recommended by Saltelli 
et al. (2004, 2008)

Variable Description Value

Morris method
 + + gsa_morris_r() Sample size or the number of times that an elementary effect is computed for each parameter xi 

(r)
40

 + + gsa_morris_p() Number of levels employed to grid the interval [0, 1] associated with each transformed parameter 
xi (p)

4

 + + gsa_morris_delta() Parameter variation between two model runs. The default value is Δ = p/2[(p− 1)] 0.667
Sobol’ method
 + + gsa_Sobol_samples() Number of samples to use in computing variances, N 400
 + + gsa_Sobol_par_dis() Specifies whether parameter samples are drawn from a uniform or normal distribution. Values are 

“unif” or “norm”
unif

Fig. 3   Drought stress for 32 simulated years of soybean and 
wheat cultivation in Piracicaba, São Paulo state, Brazil, on five 
soils (Nitisol, Acrisol, C. Ferralsol, S. L. Ferralsol, and S. Fer-
ralsol). The length of the whiskers is 1.5 times the interquartile 
range of 25–75%. The parameters of the MFlux function were 
set at their rseference values: root length density, LRV = 2.0 cm 

cm−3; root radius, r0 = 0.05 cm; xylem radius, rx = 0.02 cm; 
radial hydraulic conductivity of root tissue, Kroot = 3.5·10–6 cm 
d−1; hydraulic conductance between leaf and root xylem, 
Kstem = 1.0·10–4 d−1; leaf water potential at which relative tran-
spiration is 0.5, h½ = 16600 cm; exponent in Campbell sigmoi-
dal transpiration reduction function, ACamp = 7.0
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In the wheat scenarios, higher drought stress val-
ues, predominantly exceeding 20%, were simulated 
across the parameter ranges. Similar to soybean, the 
highest sensitivities for wheat were observed for 
LRV followed by Kroot, particularly at their lowest 
parameter values. The simulated drought stress for 
Nitisol and Acrisol showed relatively low sensitiv-
ity to r0-rx, Kstem, and ACamp, whereas it exhibited 
slight sensitivity to r0-rx for Ferralsols (Fig. 4).

The local SA method did not account for model 
nonlinearity or interactions among the RWU param-
eters. For instance, when assessing the sensitivity of 
drought stress to Kroot at three LRV values (0.02, 0.2, 
and 2.0 cm3 cm⁻3), the local sensitivities increased 
as LRV decreased, as shown in Fig. 5 for both simu-
lated crops on the sandy loam (S.L.) Ferralsol.

Global parameter sensitivities

Global Morris

The absolute mean (μ*) and standard deviation (σ) of 
the elementary effects (EE) of each MFlux parameter 
on simulated drought stress are shown in Fig. 6. Since 
the model response was consistent across the three Fer-
ralsols, results are presented only for the Nitisol, the 
Acrisol, and the S. L. Ferralsol. Parameters with higher 
μ* values on the x-axis indicate a greater individual 
effect, while higher σ values on the y-axis represent a 
greater degree of interaction with other parameters.

Across all soil and crop scenarios, LRV exhibited 
the highest μ* and σ, followed by Kroot and r0-rx, 
though at a significant distance. In contrast, the other 
parameters (Kstem, h½, ACamp) showed μ* and σ values 
close to zero. While r0-rx had a lower individual effect 
than Kroot across all scenarios, its degree of interac-
tion was slightly higher in most cases.

Comparing the crops, the μ* and σ values were 
lower in the wheat scenarios than in the soybean sce-
narios, particularly for LRV, Kroot, and r0-rx. Soil type 
also influences the degree of parameter sensitivities, 
with the Nitisol and the Acrisol showing stronger 
responses compared to the S. L. Ferralsol (Fig. 6).

Global Sobol’

The first-order sensitivity (Si) and the total sensitiv-
ity (STi) of each MFlux parameter are shown in Fig. 7 

for the Nitisol, the Acrisol, and the S. Ferralsol. The 
Si and STi values are expressed on the left and the 
right y-axis, respectively. Across all scenarios, the 
parameter LRV consistently exhibited the highest Si 
and STi values, while the sensitivity indices for ACamp 
remained low.

The second and third highest Si values were 
observed for Kroot and h½, respectively, in four soils 
cultivated with soybean (Nitisol, Acrisol, C. Ferral-
sol, and S. L. Ferralsol) and two soils cultivated with 
wheat (Nitisol and Acrisol). For other scenarios, the 
second and third highest Si values were obtained for 
r0-rx and Kroot, respectively. In contrast, the second-
highest STi value was observed for Kroot across all sce-
narios, with the other parameters exhibiting relatively 
low STi values.

Comparing the crops, Si values were higher for 
wheat than for soybean. In the soybean scenarios, STi 
values for each parameter were similar across soils, 
while in the wheat scenarios, the STi value for Kroot 
was lower in Ferralsols, as illustrated for the S. Fer-
ralsol (Fig.  7). Despite these crop- and soil-specific 
differences, the overall model response was consistent 
across all scenarios regarding Sobol’ sensitivities.

Parameter ranking

Figure 8 shows the ranking of MFlux parameters from 
each SA method. The local, Morris, and Sobol’ sensi-
tivities were calculated using normalized S, scaled μ*, 
and average Si, respectively. For both crops, the local 
method identified LRV as the most influential param-
eter, followed by Kroot. However, the ranking diverged 
beyond the third position. The composite parameter 
r0-rx ranked third for wheat but fifth for soybean. The 
least influential parameter was ACamp for soybean and 
h½ for wheat, reflecting their non-monotonic behav-
ior, which resulted in decreased values.

In the Morris method, LRV exhibited the largest 
contribution to simulated drought stress, while ACamp 
resulted in the smallest contribution for both crops. 
The parameter ranking for both crops was similar, 
with Kroot ranked second, closely followed by r0-rx, 
and h½ and Kstem occupying the fourth and fifth posi-
tions, respectively.

In the Sobol’ method, LRV remained the most influ-
ential parameter, while Kstem and ACamp​ showed neg-
ligible importance for both crops. For soybean, Kroot 
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and h½ ranked as the second and third most impor-
tant parameters, respectively, while for wheat, Kroot 
and r0-rx held these positions. The Sobol’  method 
revealed the largest differences between crops, with 
wheat exhibiting higher sensitivity values. Similarly, 
the standard deviations of sensitivity indices across 
soil types were generally larger for wheat than for 
soybean (Fig. 8).

Discussion

Parameter sensitivities across scenarios

The sensitivity analysis revealed that root length 
density (LRV) was consistently the most influential 
parameter in determining simulated drought stress 
across all simulated scenarios, reaffirming its criti-
cal role in modeling root water uptake and its signif-
icance for accurately representing soil–plant water 
interactions (de Jong van Lier et  al. 2008, 2013). 
Lower LRV values correlated with higher drought 
stress, aligning with experimental and modeling 
studies showing that denser root systems favor more 
water extraction (e.g., Couvreur et al. 2012; de Melo 
et  al. 2023; Vanderborght et  al. 2021). However, a 
higher LRV also implies an increased carbon cost for 
root development, which can influence overall crop 
yield. While the current model framework does not 
explicitly account for carbon allocation trade-offs, 
future model enhancements could integrate this 
aspect to evaluate how increased root biomass affect 
aboveground biomass production under varying 
environmental conditions.

Among the other RWU parameters, radial root 
conductivity (Kroot) emerged as the second most 

influential parameter, with a notably higher con-
tribution in soils with more favorable hydrau-
lic properties such as the Nitisol and the Acrisol 
(Fig.  9). This interaction suggests that soil proper-
ties modulate the extent to which plant hydraulics 
influence water uptake. For soils with lower unsatu-
rated hydraulic conductivity, such as the S. Ferral-
sol (Fig.  9), the sensitivity to parameters like root 
geometry (r0-rx) became more pronounced (Fig. 7), 
highlighting the compensatory role of root mor-
phology in mitigating soil limitations to water flow.

Seasonal variability in drought stress simulations 
reveals the importance of crop-specific dynamics. 
Wheat, grown in the dry winter season, exhibited 
higher sensitivity to MFlux parameters than soy-
bean, cultivated during the wetter summer. This 
result reflects the differential impact of climatic 
conditions on water stress, with wheat experiencing 
more challenging water availability conditions com-
pared to soybean. Such findings corroborate pre-
vious studies (e.g., Flumignan et  al. 2013; Pereira 
et  al. 2023), which emphasize the importance of 
irrigation management in wheat production, par-
ticularly in regions of Brazil where water availabil-
ity is a limiting factor. This seasonal effect was bet-
ter captured by Sobol’  sensitivities, which offered 
direct measurements without the need for normali-
zation or scaling when ranking parameters.

Global sensitivity analyses using the 
Sobol’  method provided additional insights into 
parameter interactions, revealing how soil hydraulic 
properties and RWU parameters interact dynami-
cally to influence drought stress. While the Nitisol 
and Acrisol showed a stronger influence of plant 
hydraulics (e.g., Kroot and h½), the Ferralsols exhib-
ited greater dependency on root geometry parameters 
(r0-rx), highlighting the need for tailored model cali-
bration for different soil types. These insights suggest 
that soil properties can significantly amplify or miti-
gate the effects of RWU parameters on drought stress 
predictions, reinforcing the importance of integrating 
soil and plant hydraulics in agro-hydrological mod-
eling (Vanderborght et al. 2023).

SA methods: merits and shortcomings

The local sensitivity analysis is the simplest method to 
assess model sensitivities and is often considered poorly 

Fig. 4   Drought stress as a function of the MFlux parameters. 
The results refer to averages of 32 simulated years of soybean 
and wheat cultivation in Piracicaba, São Paulo, Brazil, on five 
soils (Nitisol, Acrisol, C. Ferralsol, S. L. Ferralsol, and S. Fer-
ralsol). The dotted vertical line indicates the reference param-
eter values. LRV is the root length density, r0-rx is the root 
radius-xylem radius, Kroot is the radial hydraulic conductivity 
of root tissue, Kstem is the hydraulic conductance between leaf 
and root xylem, h½ is the leaf water potential at which relative 
transpiration is 0.5, and ACamp is the exponent in Campbell sig-
moidal transpiration reduction function

◂
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efficient. Still, in some cases, it can be informative, e.g., 
to solve inverse problems or to approximate a model 
output in the neighborhood of a set of pre-established 
boundary conditions (Saltelli and Annoni 2010). In our 
case, we dealt with a nonlinear model incorporating 
numerous subroutines, including differential equation 
solvers, demanding a global SA approach to address 
more complex parameter interactions. Nonetheless, the 
local partial derivatives proved useful for visualizing 
and comparing the results from the three SA methods 
addressed in this study, revealing certain similarities.

The Morris method overcomes the limitation 
of local sensitivity analysis by calculating partial 
derivatives at different locations of parameter space. 
Hence, it can capture parameter interactions, though 
it is unable to express them apart from model non-
linearities (Morris 1991; Saltelli and Annoni 2010). 
Consequently, a type-I error may occur, i.e., when a 
parameter is identified as having a significant impact 
on the model output when, in fact, it does not (Sin 
and Gernaey 2009). Although the scaled μ* improves 
the sensitivity index by standardizing it and reducing 

some biases, it cannot eliminate the risk of type-I 
errors due to inherent limitations of the method, such 
as sampling constraints and the difficulty of capturing 
all interactions and nonlinearities.

Among the global sensitivity analysis methods, 
the Morris method usually requires the fewest sam-
ple points. In this study, the computation of the 
EET statistics (µ* and σ) required 280 model evalu-
ations, which took approximately 24 h to complete 
on a conventional laptop computer equipped with an 
Intel Core i7 - 1165G7 processor. Given the high-
resolution simulations across multiple scenarios, this 
runtime is considered relatively small in the context 
of our research setting. Although practical, the main 
purpose of this method is to get preliminary and qual-
itative insights into model sensitivities (Wang and 
Ierapetritou 2018). Thus, a sequential quantitative 
method is recommended to avoid potential misinter-
pretations (Nguyen and de Kok 2007).

The Sobol’  method calculates partial variances, 
quantifying model sensitivities to multiple parameters 
through multi-dimensional integrals (Sobol  2001). 

Fig. 5   Drought stress as a function of radial hydraulic con-
ductivity of root tissue (Kroot) for three values of root length 
density (LRV = 0.02, 0.2 or 2.0 cm cm−3) applied to simulate 
soybean and wheat cultivation on the S. L. Ferralsol in Piraci-

caba, São Paulo, Brazil. The shaded area refers to the average 
± the standard deviation for 32 simulated years (1990–2021). 
The bold line is the average over all years. The dotted vertical 
line indicates the reference value (Kroot = 3.5·10–6 cm d−1)
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The resulting sensitivity indices (Si and STi) are con-
sidered powerful and versatile measures, potentially 
the best practices for performing a sensitivity analysis 
(Saltelli and Annoni 2010). The Sobol’ method effec-
tively handles parameter nonlinearities that cannot be 
addressed by the other methods used in this study. It 
can also reveal complex parameter interactions and, 
by inference, the interaction with the processes to 
which these parameters pertain (Saltelli et  al. 2004; 
White et al. 2020). Thus, its parameter ranking serves 
as the most comprehensive guidance for model cali-
bration efforts.

Despite providing a more comprehensive 
assessment of model sensitivities, the use of the 

Sobol’ method requires a high number of model eval-
uations (White et  al. 2020), which makes it hardly 
applicable to computationally demanding models. 
In this study, the computation of Si and STi required 
3200 model runs and took in the order of two weeks 
on a workstation HP Z230 with Intel® Xenon® E3 
v3 processor, which is an unfeasible computer time 
for many applications of 1D hydrological studies. 
Hence, this method is computationally unaffordable 
unless the sensitivity analysis is restricted to only a 
few model parameters and performed using a rela-
tively fast-running hydrological model on a high-per-
formance computer.

Fig. 6   Absolute mean (μ*) and standard deviation (σ) of the 
elementary effects (EE) of the MFlux parameters on simulated 
drought stress. The results refer to 32 simulated years of soy-
bean and wheat cultivation in Piracicaba, São Paulo, Brazil, on 
three soils (Nitisol, Acrisol, and S. L. Ferralsol). LRV is the root 
length density, r0-rx is the root radius-xylem radius, Kroot is the 

radial hydraulic conductivity of root tissue, Kstem is the hydrau-
lic conductance between leaf and root xylem, h½ is the leaf 
water potential at which relative transpiration is 0.5, and ACamp 
is the exponent in Campbell sigmoidal transpiration reduction 
function
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Implications for tropical agriculture

Our findings carry relevant implications for improv-
ing agricultural resilience and productivity in tropi-
cal regions, particularly under the constraints of cli-
mate seasonality and water shortage. By identifying 
root length density as the most influential parameter 
in drought stress modeling, this study emphasizes 
the importance of breeding and management strate-
gies aimed at optimizing root system architecture. 
An enhanced root system can improve water uptake 
efficiency (Zhang et al. 2024), mitigating yield losses 
during periods of low water availability, as observed 
for both soybean and wheat.

The interactions between soil properties and root 
water uptake parameters highlight the significance 
of adapting management practices to specific soil 
conditions. For instance, the higher drought stress 
levels simulated for Ferralsols indicates the need for 
targeted irrigation strategies or soil amendments to 
enhance water retention. Conversely, in soils with 
favorable hydraulic properties, such as Nitisols and 
Acrisols, water management strategies may benefit 
from a stronger focus on enhancing plant hydrau-
lic parameters, including root conductivity and root 
xylem conductance.

Seasonal variability in parameter sensitivities fur-
ther highlights the importance of adapting crop and 

Fig. 7   First order sensitivity (Si) and total sensitivity (STi) of 
the simulated drought stress to the MFlux parameters. The 
results refer to the 32 simulated years of soybean and wheat 
cultivation in Piracicaba, São Paulo, Brazil, on three soils 
(Nitisol, Acrisol, and S. Ferralsol). LRV is the root length den-
sity, r0-rx is the root radius-xylem radius, Kroot is the radial 

hydraulic conductivity of root tissue, Kstem is the hydraulic 
conductance between leaf and root xylem, h½ is the leaf water 
potential at which relative transpiration is 0.5, and ACamp is the 
exponent in Campbell sigmoidal transpiration reduction func-
tion
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water management strategies to local climatic condi-
tions. Wheat cultivation, particularly in the dry winter 
season, showed higher sensitivity to drought stress, 
indicating that supplemental irrigation systems are 
critical for stabilizing yields (Nóia Júnior et al. 2024). 
In contrast, soybean cultivation in the wetter summer 
season showed resilience under rainfed conditions, if 
root system traits are adequately optimized (Zhang 
et al. 2024). These findings align with the increasing 
emphasis on integrating climate-smart agricultural 
practices (Bhatnagar et al. 2024) to cope with shifting 
rainfall patterns and prolonged dry spells in tropical 
regions.

The SWAP/MFlux model simulates root growth 
throughout the crop cycle but lacks mechanisms to 
reduce root growth rates under low soil water avail-
ability or adjust maximum rooting depth dynamically. 
In reality, root depth variations significantly influence 
water uptake, as plants adapt to soil water content 
fluctuations. A deeper root system enhances access to 
subsurface water, mitigating drought stress, especially 
in low-rainfall seasons (Comas et  al. 2013). Root 

depth also determines initial soil water storage availa-
ble for uptake at the start of the cropping cycle. Incor-
porating dynamic root depth responses to drought 
stress in future model versions could improve root 
water uptake predictions in tropical environments.

Direct validation of drought stress predictions 
could not be performed in this study due to the lack of 
measurements of above-ground dry matter productiv-
ity for the 32 simulated years and under rainfed con-
ditions. Therefore, our findings should be interpreted 
within the specific context of the simulated condi-
tions. Observations of soil water content, actual crop 
evapotranspiration, above-ground dry matter produc-
tivity, and grain yield from the same location over 
a three-year period (2016–2018) were analyzed in a 
separate study, which extends this research, to cali-
brate the SWAP/MFlux model for soybean and wheat 
under tropical conditions (de Melo et al. 2025).

Agro-hydrological models like SWAP, enhanced 
by robust sensitivity analyses, have been valu-
able tools for guiding agricultural practices (Li and 
Ren 2019; Lei et  al. 2021). The ability to simulate 

Fig. 8   Parameter ranks of the MFlux parameters according to 
the local method and two global methods (Morris and Sobol’) 
for sensitivity analysis. The results refer to the average of 32 
simulated years of soybean and wheat cultivation in Piraci-
caba, São Paulo, Brazil, on five soils. Error bars indicate ± the 
standard deviation among the evaluated soils. LRV is the root 

length density, r0-rx is the root radius-xylem radius, Kroot is the 
radial hydraulic conductivity of root tissue, Kstem is the hydrau-
lic conductance between leaf and root xylem, h½ is the leaf 
water potential at which relative transpiration is 0.5, and ACamp 
is the exponent in Campbell sigmoidal transpiration reduction 
function



	 Plant Soil

Vol:. (1234567890)

soil–water-plant interactions under varying climatic, 
soil, and crop scenarios enables the identification of 
key factors for improvement, from model parametri-
zation to field-level management strategies (Stahn 
et  al. 2017; Pinheiro et  al. 2019). This study also 
demonstrated the value of advanced techniques, such 
as Sobol’ sensitivity analysis, in uncovering complex 
parameter interactions and guiding model calibra-
tion. These methodological refinements provide a 
solid foundation for developing strategies to optimize 
agricultural water use and enhance drought resilience 
in field crops, ensuring they are oriented by robust, 
context-specific insights.

Conclusion

Regarding the drought stress predictions of the 
SWAP/MFlux model, root length density consistently 
emerged as the most influential parameter across all 
sensitivity analysis methods, underscoring its critical 
role in the simulation of transpiration reduction. This 
finding supports breeding programs and management 
practices focused on optimizing root system architec-
ture to improve water uptake efficiency.

The interaction between soil hydraulic properties 
and root water uptake parameters revealed soil-spe-
cific dynamics. Drought stress variability across soil 
types points to the necessity of tailored irrigation and 
soil amendments to mitigate water limitations and 
enhance productivity in tropical regions with high-
weathering soils.

This study offers a comprehensive framework for 
sensitivity analysis in complex agro-hydrological mod-
els, with a focus on root water uptake. By integrating 
soil, plant, and climate interactions, these models pro-
vide valuable tools for sustainable water management in 
field crops. Our findings support future research aimed 
at addressing challenges posed by climate variability 
and soil–water interactions in tropical agriculture.
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Appendix 1

The numerical solution of the Richards equation 
requires parametrization of the unsaturated soil 
hydraulic properties  (K-θ-h). In the SWAP/MFlux 
model, they are described by the following analyti-
cal functions according to Mualem (1976) and van 
Genuchten (1980):

where Θ is the effective saturation, θ is the soil water 
content (cm3 cm−3), θr and θs are the residual and sat-
urated soil water content (cm3 cm−3), respectively, Ks 
(cm d−1) is the saturated hydraulic conductivity, and 
α (cm−1), n, and l are shape parameters.

Eqs.  11 and 12 are the referred VGM hydraulic 
functions. The soil hydraulic parameters used in the 
simulations are presented in Table 6. The soil water 
retention and hydraulic conductivity curves are 
shown in Fig. 9.

(11)Θ =

(
� − �r

)
(
�s − �r

) =
[
1 + |�h|n](1∕n)−1

(12)K = KsΘ
∕
[
1 −

(
1 − Θn∕(n−1)

)1−(1∕n)]2
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Table 6   Soil hydraulic 
parameters used in the 
sensitivity analysis of the 
SWAP/MFlux model in 
tropical scenarios

Soil ID Soil layer (cm) θr
(cm3 cm−3)

θs
(cm3 cm−3)

α
(cm−1)

n l Ks
(cm d−1)

0–10 0.237 0.417 0.0290 1.462 0.82 24.6
Nitisol 10–40 0.254 0.402 0.0726 1.157 - 3.45 26.3

40–200 0.227 0.498 0.1741 1.175 - 4.19 328.2
0–10 0.142 0.417 0.3431 1.166 1.90 344.4

Acrisol 10–50 0.00 0.481 0.0916 1.087 - 3.97 173.5
50–200 0.00 0.478 0.1103 1.057 - 5.79 396.7

C. Ferralsol 0–20 0.275 0.463 0.0232 1.389 3.93 76.4
20–40 0.290 0.447 0.0181 1.356 4.71 113.9
40–60 0.287 0.444 0.0136 1.443 4.98 120.5
60–80 0.270 0.506 0.0254 1.591 4.96 1352
80–200 0.257 0.513 0.0265 1.584 4.97 2014

S. L. Ferralsol 0–15 0.086 0.428 0.0790 1.360 - 0.47 23.3
15–40 0.123 0.371 0.0394 1.452 8.62 85.9
40–65 0.152 0.340 0.0171 1.805 6.13 131.5
65–90 0.133 0.360 0.0168 1.596 - 3.02 152.6
90–200 0.117 0.340 0.0131 1.482 0.00 102.7

S. Feralsol 0–30 0.293 0.505 0.0172 1.525 8.21 10.4
30–45 0.272 0.506 0.0169 1.415 8.83 11.1
45–60 0.289 0.469 0.0219 1.397 5.12 24.0
60–75 0.289 0.418 0.0095 1.902 3.83 27.3
75–90 0.255 0.484 0.0201 1.535 0.00 75.1
90–200 0.271 0.409 0.0092 2.377 0.00 97.4

Fig. 9   Soil water retention and hydraulic conductivity curves 
of the five Brazilian soils used to perform the sensitivity anal-
ysis of the SWAP/MFlux model in tropical scenarios. The 

X-axes of the water retention curves, and the Y-axes of the 
hydraulic conductivity curves are on a logarithmic scale
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Appendix 2

In the MFlux function, the root system is considered 
a set of identical cylindrical tubes equally spaced 
as a function of the root length density, LRV. Under 
this geometry, a radial flow pattern towards the roots 
exists and the mass-conservation equation is:

where θ is the volumetric soil  water content (cm3 
cm−3), t is the time (d), q (cm d−1) is the water flux 
density, and r (cm) is the radial distance from the root 
center.

Eq. 13 can be solved defining matric flux poten-
tial, M (cm2 d−1), a composite soil hydraulic prop-
erty, as

where hw (cm) is the pressure head at permanent wilt-
ing (de Jong van Lier et al. 2013).

The use of M allows to write the Darcy equation 
for soil water flow as

For the soil-to-root pathway, de Jong van Lier et al. 
(2008) developed the following relation between the soil 
matric flux potential, Ms (cm2  d−1) and the RWU rate 
per unit of volume of a soil layer i, Si (cm3 cm−3 d−1):

where M0,i (cm2 d−1) is the soil matric flux potential 
at the root surface, r0 (cm) is the root radius, a is the 
relative distance between roots at which mean (bulk) 
soil water content occurs, and rm,i is the rhizosphere 
radius (cm), which is a function of LRV (cm cm−3):

(13)��

�t
= −

q

r
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�q

�r

(14)M =

h

∫
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K(h)dh

(15)q = −K
�h
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4
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+ 2

(
r2
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+ r2
0

)
ln

arm,i

r0

= �i
(
Ms,i −M0,i

)

(17)rm,i =

√
1

�LRV ,i

Parameter a was set at the value of 0.53, obtained 
by de Jong van Lier et al. (2006) for soils described 
by the VGM hydraulic functions.

The SWAP model also allows to adjust the activity 
of roots by an empirical factor ranging from 0 to 1 
and representing the root system efficiency (Reff):

Parameter Reff was set at the value of 1 by standard 
assumption.

To upscale the water uptake from the soil layer to 
the root system scale, values of Si for Z soil layers 
are summed up yielding the total RWU rate, which is 
equal to the actual transpiration rate, Ta (cm d−1):

where zi is the thickness (cm) of a soil layer i.
The concept of the model was extended by de Jong 

van Lier et  al. (2013) to consider radial and axial 
plant hydraulic resistances. Within the root, the water 
content is considered constant, so the hydraulic con-
ductivity does not vary with h:

where Kroot (cm d−1) is the radial hydraulic conduc-
tivity of the root tissue.

For the root-to-leaf pathway, the water potential 
gradient is parameterized by the xylem water poten-
tial, hx (cm) and the leaf water potential, hl (cm), 
which are related according to

where Kstem (d−1) is the hydraulic conductance 
between leaf and root xylem.

By assuming that the hydraulic properties are con-
stant over the soil-to-root and root xylem-to-leaf path-
ways, and ignoring any irregularities caused by an 
imperfect soil-root contact and xylem embolism, the 
system parameters across the entire pathway (soil-to-
root-to-leaf) are expressed by:

(18)Si = �i
(
Ms,i −M0,i

)
Reff

(19)Ta =

Z∑
i=1

Sizi

(20)M =

h

∫
hw

K(h)dh = Kroot

h

∫
hw

dh = Kroot

(
h − hw

)

(21)hx = hl +
Ta

Kstem
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where h0 (cm) is the pressure head at the root surface, 
and φi (d cm−1) is defined by:

where rx (cm) is the xylem radius.
Eq.  22 contains the unknowns h0, hl, and Ta, 

whereas M0 is a function of h0. For soils described 
by the VGM hydraulic functions, no straightfor-
ward expression for M(h) exists, but a converging 
series approximation is available (de Jong Van Lier 
et al. 2009). Substitution of M0,i in Eq. 18 gives the 
RWU rate per soil layer, whereas Ta follows from 
the integration of RWU rates for all soil layers 
(Eq. 19).

In the updated versions of SWAP (v. 4.2.x), a sig-
moidal transpiration reduction function (Campbell 
1991; Kremer et al. 2008), referred to as the Camp-
bell function, is incorporated into the MFlux function 
as

where Tr is the relative transpiration, Tp (cm d−1) is 
the potential transpiration, h½ (cm) is the leaf water 
potential where Tr = 0.5, and ACamp is a shape parame-
ter. This equation, in combination with Eq. 22, allows 
to solve for the values of hl yielding Ta (Heinen et al. 
2024).
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