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Abstract

Background and aims Drought stress is a major
driver of crop yield reductions in Brazil and other
tropical regions. This study explores the mechanis-
tic underpinnings of drought stress using a process-
based root water uptake (RWU) model. We aimed to
perform a comprehensive sensitivity analysis of the
SWAP/MFlux model to simulate drought stress in
long-term scenarios of soybean and wheat cultivation
under tropical winter-dry conditions.

Methods The agro-hydrological model SWAP,
incorporating the RWU function MFlux, was used
to simulate 32 years of rainfed soybean and wheat
cultivation across five soils with varying hydraulic
properties in a tropical winter-dry climate. Sensitivity
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analysis of the MFlux function was conducted using
three methods — local, global Morris, and global
Sobol” — by varying seven RWU parameters within
literature-supported ranges.

Results  Wheat, grown in the dry winter, experienced
higher drought stress than soybean, grown in the wet-
ter summer, across the years. Root length density was
the most influential RWU parameter, contributing 35%
to 50% of drought stress variation. Soil hydraulic prop-
erties were also influential, with Ferralsols linked to a
50% reduction in above-ground dry matter productivity
and an Acrisol and a Nitisol to up to 30% in the stand-
ard scenario. The Sobol’ method provided the most
comprehensive parameter sensitivities.

Conclusions Root length density is the most influ-
ential parameter in modeling drought stress, with
soil hydraulic properties modulating crop responses.
This study offers insights for informing management
and breeding strategies to mitigate soil- and climate-
induced limitations on soybean and wheat production
in tropical environments.

Keywords Transpiration - SWAP model - Tropical
cultivation - Morris - Sobol’

Introduction

Drought stress, induced by the deficiency of plant

available water, is one of the main abiotic fac-
tors that limit crop growth, development, and
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productivity, affecting food security worldwide
(Pandey et al. 2022). This factor is especially rel-
evant to much of the humid tropics, where the El
Nifio-Southern Oscillation phenomenon has brought
reduced rainfall amounts during both the wet and
dry seasons (Bunker and Carson 2005; Cai et al.
2020). The scenario has been further aggravated
over the last decades by the increase of global sur-
face temperature due to rising greenhouse gas emis-
sions by human activities, mainly related to the use
of coal, oil and gases, deforestation, livestock, and
farming (Alvares et al. 2022; Marin et al. 2022).
The agriculture sector is particularly affected by
climate changes, and within this global issue, Bra-
zil is among the few countries that can still increase
agricultural productivity (Anwar et al. 2013; USDA
ERS 2022). Over the last two decades, Brazil has
emerged as a leading producer of agricultural com-
modities, including soybeans, grains, cotton, ethanol,
and meats. The soybean crop is particularly significant
in the expansion of Brazilian agriculture, establishing
the country as a top global supplier of commodities
(USDA ERS 2022). Nevertheless, the lack of drought-
tolerant soybean cultivars in Brazil has been high-
lighted as a major reason for yield and grain quality
losses (Tavares et al. 2022), which poses significant
challenges to future expansion in production and trade.
On the other hand, Brazil is one of the largest
importers of wheat grains in the world, importing
approximately 4.5 million tons annually to comple-
ment its internal production (N6ia Janior et al. 2024).
Among the multiple factors compromising wheat
production in Brazil, limited soil water availability
during growing season ranks as a primary obstacle
(Flumignan et al. 2013; Pereira et al. 2019). Hence,
developing suitable irrigation practices based on
recent studies of crop water use and irrigation man-
agement is an urgent demand (Pereira et al. 2023).
The Brazilian agricultural sector faces the chal-
lenge of sustaining production growth while adopting
sustainable practices, particularly in water use and
management (Stevanovié et al. 2016). In this context,
agro-hydrological models have become indispensable
for analyzing soil-water-plant interactions, providing
insights into the relationship between water avail-
ability and crop performance. These models support
the development of strategies to optimize water use
and enhance agricultural resilience through improved
management practices (Pinto et al. 2023).
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A key feature of agro-hydrological models is the
simulation of root water uptake (RWU), which is
essential for predicting transpiration and crop growth
reductions due to drought stress, and provides critical
feedback for soil water balance calculations (Jarvis
et al. 2022). Process-based RWU models incorpo-
rate water potential gradients and hydraulic conduc-
tivities or diffusivities to describe water flow within
the plant and in the soil toward plant roots (Couvreur
et al. 2012; de Jong van Lier et al. 2013, 2008, 2006;
de Willigen et al. 2012; Javaux et al. 2013, 2008;
Vanderborght et al. 2023, 2021). This process is typi-
cally coupled with the dynamic temporal and spatial
variations in soil water content via a sink term in the
soil water flow equation, facilitating the prediction of
soil water potentials with the influence of extracting
water by plant roots (Kroes et al. 2017).

In many modeling applications, it is important to
assess the sensitivity of model outputs to input factors
(variables or parameters). This sensitivity analysis is
often necessary, either to deepen understanding of
the processes simulated by the model or as an initial
step in a model calibration exercise to identify critical
system parameters (Doherty 2016). Sensitivity anal-
ysis is beneficial as it provides insights into model
behavior that are relevant for subsequent model appli-
cations. Additionally, it allows for the exclusion of
insensitive model parameters from a sequential cali-
bration procedure, thereby reducing computational
effort and parameter uncertainty (Stahn et al. 2017).

In a systematic review, Pianosi et al. (2016) distin-
guished different types of sensitivity analysis (SA).
Local SA evaluates how output variability responds
to perturbations around specific values of input fac-
tors. In contrast, global SA assesses changes across
the entire variability space of these factors. Quantita-
tive SA refers to methods where each input factor is
associated with a quantitative measure, such as sen-
sitivity indices. Meanwhile, qualitative SA involves
visual inspections of model response, often comple-
mented by a subsequent quantitative analysis.

Another qualification proposed by Pianosi et al.
(2016) identifies one-at-a-time (OAT) and all-at-a-
time (AAT) methods, referring to the sampling strat-
egy used to estimate the sensitivities. In OAT meth-
ods, output variations are induced by varying one
factor at a time while keeping all others fixed. While
local SA typically relies on OAT sampling, OAT can
also be applied in global SA by generating sets of



Plant Soil

parameter combinations that differ in only one spe-
cific parameter value. In contrast, AAT methods for
global SA involve varying all input factors simulta-
neously, considering both the individual influence of
each factor and the combined influence due to inter-
actions with other factors. AAT methods usually pro-
vide a better assessment of interactions, and some
such as variance-based methods, allow the user to
evaluate interactions between specific combinations
of input factors, such as pairs or triples.

While previous studies have explored param-
eter sensitivities of RWU models under temperate
conditions (Cai et al. 2018; dos Santos et al. 2017),
their performance under tropical conditions remains
largely unexplored, as differences in rainfall patterns,
temperature regimes, and soil water dynamics can
lead to distinct soil-water-plant interactions. In this
study, the SWAP agro-hydrological model (Kroes
et al. 2017), incorporating the recently implemented
MFlux transpiration reduction function based on the
RWU model of de Jong van Lier et al. (2013, 2008),
was used to predict drought stress in soybean and
wheat under the conditions of Southeastern Brazil,
which features a rainy summer and a dry winter sea-
son subject to climate variability.

We present a comprehensive SA of a process-
based RWU model using different methods (local
and global) and sampling strategies (OAT and AAT),
aiming to provide a mechanistic understanding of
interactions between tropical climatic conditions, soil
hydraulic properties, and plant water uptake.

Material and methods

Climate and soil conditions

Weather data recorded by the weather station of the
University of Sdo Paulo in Piracicaba, Sdo Paulo

state, Brazil (22° 42" 30°S, 47° 38" 00”°’W, 546 m
a.s.l.) from 1990 to 2021 were used. Historically,
the regional climate was classified as subtropical
winter-dry with a hot summer (Koppen Cwa). How-
ever, in recent decades, climate change has driven a
shift toward higher temperatures, and the region is
now classified as tropical winter-dry savanna (Kop-
pen Aw) (Alvares et al. 2022). The Aw climate covers
approximately 20-30% of Brazilian territory, making
it the most common climate in the country, especially
in agricultural lands.

The observed annual average rainfall for the period
was 1315 mm, and the average minimum (7,,;,) and
maximum (7,,,,) temperatures were 16 °C and 29 °C,
respectively. The total rainfall amounts during the
meteorological winter and summer seasons (NCEI
2016) are spresented in Table 1.

Five soils under agricultural (arable) use were
sampled in Sdo Paulo state. At each location, undis-
turbed and disturbed soil samples were collected at
various depths, following the distribution of the pedo-
logical horizons, reaching depths of 60 cm or more.
Undisturbed samples were taken using either large
rings (approximately 7.4 cm in diameter and 7 cm in
height, 10 replicates) or medium rings (approximately
8 cm in diameter and 5 cm in height, 3 replicates).
The specific sampling depths for each soil profile
corresponded to the center of the layers detailed in
Table 6 of Appendix 1. The sampled soils represent
three texture classes and three WRB soil orders (Niti-
sols, Acrisols, and Ferralsols), which are common in
the region (Table 2).

The hydraulic properties of the five soils were
assessed using undisturbed soil samples in a series of
laboratory and field experiments. These included the
one-step outflow method using porous plate pressure
chambers (applied to all soils), the Hyprop-assisted evap-
oration method (Peters and Durner 2008) and the falling
head saturated permeability laboratory test for the Nitisol

Table 1 Rainfall amounts (mm) observed during the meteorological winter (Jun, Jul, and Aug) and the meteorological summer
(Dec, Jan, and Feb) in Piracicaba, Sdo Paulo, Brazil, between 1990 and 2021

Driest winter

Wettest winter

Driest summer Wettest summer

Season (year) 2014 2016
Rainfall (mm) 38.0 210.6
Average winter

Rainfall (mm) 103.6 +50.6

2013/2014 1995/1996
266.7 873.7
Average summer

586.1 +151.6
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Table 2 Geographical position, classification, and textural class of the soils sampled in the region of Piracicaba, Sdo Paulo state,

Brazil

Soil ID Coordinates Classification (WRB/FAO)' Textural class
Nitisol 22°42’S, 47°39°W Eutric Rhodic Ferralic Nitisol clay

Acrisol 22°42°S, 47°38°'W Eutric Rhodic Acrisol clay

C. (clayey) Ferralsol 21°15’S, 48°11'W Eutric Ferralsol clay

S. L. (sandy loam) Ferralsol 22°21’S, 49°50°'W Dystric Ferralsol sandy loam
S. (sandy) Ferralsol 22°42°S, 47°37T'W Xanthic Ferralsol sand

"World Reference Base (WRB). International soil classification system of the Food and Agriculture Organization of the United

Nations (FAO)

and Acrisol, and field internal drainage experiments to
determine saturated hydraulic conductivity in the three
Ferralsols. Based on measurements of soil water con-
tent, pressure head, and soil hydraulic conductivity under
saturated and unsaturated conditions, the soil hydrau-
lic properties were expressed as parameters of the van
Genuchten (1980) equations with the Mualem (1976)
parametric restriction, referred to as VGM hydraulic
functions. The obtained VGM parameters for the five
sampled soils are presented in Table 6 of Appendix 1.

Modeling seasonal crop growth

The agro-hydrological model SWAP v. 4.2.0, an
updated version of the fully documented v. 4.0.1
(Kroes et al. 2017), was used to simulate soybean
(Glycine max) and wheat (Triticum spp.) growing
seasons. SWAP was preferred over other models
due to its robust handling of soil-water-plant inter-
actions and its proven adaptability to tropical cli-
mates (Pinheiro et al. 2019; Pinto et al. 2023). The
model inputs included daily meteorological data of
solar radiation (kJ m™2), minimum and maximum
air temperature (°C), water vapor pressure (kPa),
wind speed (m s~!), and rainfall (mm) observed in
Piracicaba from 1990 to 2021 (32 years), and the
soil hydraulic parameters obtained for several layers
of the five sampled soils in the region (Appendix 1).
The SWAP model numerically solves a discre-
tized 1D version of the Richards equation with a
sink term of root water uptake (Kroes et al. 2017),
describing a vertical water flow in the soil as

oh _ 90 oh _
s =+ [K(h)(az + 1)] S(h) )

@ Springer

where C(h) is the differential water capacity (cm™'), ¢
is time (d), z is the vertical coordinate taken positive
upwards (cm), & is the pressure head (cm), K(h) is the
soil hydraulic conductivity (cm d™"), and S(h) is the
water uptake by plant roots (d~1).

The bottom boundary condition in the simula-
tions was set to free drainage, meaning the down-
ward water flux was driven solely by gravity, with a
unit gradient and numerically equal to the hydrau-
lic conductivity of the lowest soil compartment at a
depth of 200 cm. The upward upper boundary con-
dition was defined by the simulated evapotranspira-
tion (ET), while the downward upper boundary con-
dition was determined by rainfall minus crop water
interception minus runoff.

SWAP firstly calculated potential ET rates (ET))
using the Penman—Monteith equation (Monteith
1965). ET, is partitioned between potential plant
transpiration (T,) and potential soil evaporation (Ep)
based on the leaf area index or soil cover fraction,
which vary according to crop development stage. It
also accounts for reductions in T, and E, due to soil
water fluxes, root water uptake, and crop growth,
with reductions occurring from water and/or salt
stress. In this study, only drought stress was con-
sidered, so the reductions in crop productivity were
mainly associated with the rainfall distribution and
the soil hydraulic properties.

The detailed crop growth module of SWAP,
adapted from the World Food Studies (WOFOST)
model (de Wit et al. 2019) was used to simulate crop
growth processes. This module enables the simula-
tion of absolute crop productivity (kg ha™') from
conversion factors of assimilates into plant biomass.
The potential productivity is calculated as a function
of solar radiation, temperature, leaf area, atmospheric
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CO, assimilation, and partitioning factors of pro-
duced carbohydrates.

Soybean and wheat cropping cycles were simulated
separately and continuously over the years. For soy-
bean, growing seasons were simulated from Decem-
ber 26, 1990, to April 5, 2021, corresponding to 31
seasons (each season starting on Dec 26 and ending
on Apr 5 in the subsequent year). Alternatively, wheat
growing seasons were simulated from May 30, 1990,
to September 22, 2021, corresponding to 32 seasons
(starting on May 30 and ending on Sep 22 in the same
year). The programmed crop emergence and harvest-
ing dates comprised the rainy season for soybean (the
summer) and the dry season for wheat (the winter)
(Fig. 1). No irrigation was assumed. During periods
without crop growth, the boundary conditions were
defined by observed meteorological data, evaporation
from bare soil, and free drainage at the bottom of the
soil profile.

Crop growth and development parameters were
derived from calibrated and validated parameteriza-
tions for soybean and wheat from previous studies
conducted in Brazil, using the SWAP model with
local soil and weather data (de Jong van Lier et al.
2013, 2008; Pinto et al. 2019; Schwantes 2017). Input
crop files for this study provide rooting depth as a
function of the development stage, with a maximum
depth of 60 cm and a uniform distribution over the
soil profile. This simplification was adopted to stand-
ardize the effect of the root length density parameter
in relation to other parameters in the MFlux function,

Fig.1 Average monthly

rainfall (mm) and tem-
perature (°C) in Piracicaba
between 1990 and 2021
and the simulated growing
periods for soybean (26/ 300
Dec—5/Apr) and wheat l
(30/May—22/Sep). Error
bars indicate =+ the standard 225 A
deviation 1S
S
J:E 150 A
=
‘©
= 75 A
0 A

which do not exhibit depth-related variation. Other
key crop parameters used in the simulations are listed
in Table 3.

Modeling root water uptake

The simulation of drought stress was conducted using
the RWU function MFlux, derived from the process-
based RWU model developed by de Jong van Lier
et al. (2008, 2013), which describes axisymmetric soil
water flow toward individual roots. MFlux applies the
matric flux potential (M), a soil hydraulic property
defined as the integral of the soil hydraulic conduc-
tivity K(h) between a reference pressure head and the
target pressure head. The analytical solution for soil
water flow, as a function of M, includes parameters
such as root radius (r;) and the radius of the soil cyl-
inder exploited per root, i.e., the rhizosphere radius
(r,), which may vary with depth according to root
length density (Ly,) distribution.

Additional parameters describing radial and axial
hydraulic resistances within the plant system were
introduced by de Jong van Lier et al. (2013), includ-
ing root tissue hydraulic conductivity (X,,,,), Xylem
radius (r,), and hydraulic conductance between leaf
and root xylem (K,,,,). Recently, Heinen et al. (2024)
reported the addition of the leaf water potential at
which relative transpiration (the ratio of the actual to
the potential transpiration) reaches 0.5 (h,,), prevent-
ing numerical issues when solving the Richards equa-
tion. This parameter, along with the shape parameter

Soybean Wheat i;
L 25 5

o

- 20 §

5

- 15 ©

Nov Dec Jan Feb Mar Apr May Jun Jul Aug Sep Oct
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Table 3 Parameters used in the simulations of the soybean and wheat crops in Piracicaba, Sdo Paulo, Brazil

Parameter Description Value

Soybean Wheat
TSUMEA Temperature sum from emergence to anthesis [°C] 830 1246
TSUMAM Temperature sum from anthesis to maturity [°C] 730 1161
DTSM Increase in temperature sum as function of daily average temperature,  Opay—g_10 Orav=o

TAVIC] 107av=20 30rav=30

251Av=35-60 307Av=4s
SLApys Specific leaf area as function of development stage, DVS [ha kg™'] 1.4 - 10~ 5vs—0.00 2.2 - 10 pvs—0.00

2.5 107 pys—04s 22107 pys 200

2.5- 10 pys—0.90

7.0 10 pys 200
KDIF Extinction coefficient for diffuse visible light 0.50 0.60
KDIR Extinction coefficient for direct visible light 0.75 0.75
EFF Light use efficiency of the leaf [kg ha™ h™! d m™2s7))™!] 0.40 0.50
AMAX by Initial maximum CO, assimilation rate [kg ha™' h™'] 40.0 45.0
AMAXpys, Final maximum CO, assimilation rate [kg ha™' h™'] 0.0 45.0
CVL Efficiency of conversion into leaves [kg kg™!] 0.680 0.685
CcVo Efficiency of conversion into storage organs [kg kg~'] 0.760 0.779
CVR Efficiency of conversion into roots [kg kg™'] 0.720 0.694
[aA Efficiency of conversion into stems [kg kg™'] 0.690 0.662
Q10 Relative increase in respiration rate with temperature [(10 °C)™ 2.00 2.00

Acgmp» composes the sigmoidal transpiration reduc-
tion function of Campbell (1991). The MFlux con-
cept is illustrated in Fig. 2, and the main equations are
provided in Appendix 2.

Sensitivity analysis

The effect of the MFlux root water uptake parameters
on the simulated drought stress was assessed using
the scenarios described in Modeling seasonal crop
growth. Drought stress was calculated as the reduc-
tion (%) in the simulated above-ground dry matter
productivity (kg ha™') per growing season. An adap-
tation in the SWAP code was made by setting Ly, as
an input parameter rather than a variable calculated
as a function of the root mass, which is dependent on
the crop development stage. Three sensitivity analy-
sis methods were used, which vary in complexity and
will be introduced in the following.

e The local method

In the local sensitivity analysis (local SA), the
MFlux parameters were varied one-at-the-time, i.e.,

@ Springer

one of the parameters varied while the other param-
eters remained at baseline values. For each param-
eter, 40 values were assessed within their respec-
tive parameter ranges, defined from a compilation
of measured or calibrated values in the literature
(Table 4). Exceptions were the parameters r, and r,,
which were varied together to avoid physical incon-
sistency according to r,= 0.4-r, (de Jong van Lier
et al. 2013), hereafter referred to as ry-r,. The SEN-
SAN program of the PEST suite (Doherty 2016) was
linked to the SWAP/MFlux model to automatically
perform the model runs and record the simulated
drought stress per growing season in each model run.

The local sensitivity (S) was calculated through
partial derivatives of the model output function
y=f(x), according to

d flx;) —f(x i,0

S = 9 _ ( lJ) ( i ) @)
ox Xij = X

where x;; is an element of the vector of 40 values for

a particular parameter x; and x; , is the reference value

of x;.
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Fig. 2 MFlux concept: a Plant aerial part with the following
hydraulic parameters: leaf water potential at which relative
transpiration is 0.5 (h,,), exponent in Campbell sigmoidal tran-
spiration reduction function (Ac,,,), and hydraulic conduct-
ance between leaf and root xylem (K,,,,,). b Reduction function
of Campbell describing the relationship between leaf water
potential (k) and relative transpiration (7,). ¢ Root system as

equally spaced cylinders based on root length density (Lgy). d
Rhizosphere radius (r,,,), where water moves radially towards
the root center at a rate determined by the radial hydraulic
conductivity of root tissue (K,,,,). € Radial flow in the rhizo-
sphere, with mean soil pressure head (h,) corresponding to
water potential at 0.53r,,. Schemes based on Vanderborght
et al. (2023)

Table 4 Parameterization of the local sensitivity analysis performed with the SWAP/MFlux model

Parameter Unit Parameter range’ Reference value!
Root length density, Ly, cm cm™ 0.01-10.0 2.0

Root radius, r, cm 0.005-0.1 0.05

Xylem radius, r, cm 0.002-0.04 0.02

Radial hydraulic conductivity of root tissue, K,,,, emd™! 40+10%-1.0.10° 35.10°
Hydraulic conductance between leaf and root xylem, K, d! 7.0+ 10°-2.1+ 10" 1.0- 107

Leaf water potential at which relative transpiration is 0.5, A, -cm 8000-20000 16600

Exponent in Campbell sigmoidal transpiration reduction function, Ac,,,, 5.0-10.0 7.0

'Sources of parameter ranges and reference values: Campbell (1991), de Jong van Lier et al. (2013, 2008), de Willigen et al. (2012),
de Willigen and van Noordwijk (1987), Kremer et al. (2008), Thomas et al. (2024), and Zhuang et al. (2001)

To compare the parameter sensitivities with different
dimensions, the average of S over the years was nor-
malized for each parameter as follows:

wa- - EMin
SNorm == —— €)]

SMax - EMin

where Exu is the average of S over the years for the
element x;; of the vector of values for parameter x;,
and S,, and S}, are the minimum and maximum
average S over the years for parameter ux;

i
respectively.

@ Springer
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Normalization allows for direct comparison of
S by adjusting for variations in scale caused by
differences in parameter magnitudes and units.
Without this procedure, larger sensitivities might
appear more influential due to scale differences
rather than true importance. Rescaling values
between 0 and 1 enables fair comparison of the
relative contribution of each parameter to system
variability.

Equation 3 was applied for each combination
of crop (soybean or wheat), soil (Nitisol, Acrisol,
C. Ferralsol, S. L. Ferralsol, and S. Ferralsol), and
RWU parameter (Lgy, 797 Kipop Kgem» iy and
Acgmp)- The average of normalized S and its standard
deviation were considered the quantitative outcomes
of the local SA.

e The Morris method

The Morris method (Morris 1991), also known as
the Elementary Effect Test (EET), belongs to the class
of one-at-a-time sensitivity analysis designs while
allowing the measurement of global sensitivity by
aggregating individual sensitivities. In this study, the
notation used by Morris (1991) and Saltelli et al. (2008)
will be adopted to describe the EET.

A set of input parameters is represented by a vec-
tor x= (xy, X, ..., X; ..., X,,), where each x; corre-
sponds to a distinct parameter. Each parameter is
normalized to a uniform probability distribution
over the interval [0, 1] and is statistically independ-
ent of the others. Thus, the domain of x forms a
hypercube in parameter space with a side length of
1.0. A p-level grid is then constructed within this
hypercube, where each parameter x; can take discrete
values from the set {0, 1/(p— 1), 2/(p— 1), ..., 1}.
Any parameter x; assumes values from this discrete
set, though not necessarily in adjacent steps. The dif-
ference between two discrete values of x; is denoted
as A, and this step size is applied to all parameters.
For each combination of values of distinct param-
eters, the model is run to compute an output y. The
elementary effect of parameter x; on the output (EE))
is calculated from two model runs:

EE = y(x,-,l,xi‘z,...,x,-_j_l,xiJ«+A,...xiyn) —y(x,-yl,xiyz,...,x,-,,,)

i A
“
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where A is a value in {1/(p— 1), ..., 1-1/(p— 1)}, in
which p is the number of levels of the grid.

Using a random sampling strategy, the model is
run multiple times to calculate r values of EE,. Then,
a mean p and a standard deviation ¢ are estimated for
the probability distribution of EE,. The statistic p char-
acterizes the effect of the parameter on the model out-
put, whereas o characterizes the variability of this influ-
ence, a function of model nonlinearity and parameter
interactions.

Campolongo et al. (2007) introduced p*, the mean
of the absolute values of EE;, providing a more robust
representation of nonlinearity and parameter interac-
tions compared to p, which can diminish due to can-
cellation in non-monotonic cases (Saltelli et al. 2008).
Additionally, for accurate interpretation of parameter
ranking, p* can be scaled using the standardized EE,
following Sin and Gernaey (2009):

&)

where SEE; is the standardized elementary effect of
parameter x; on the model output y, 6(y) is the stand-
ard deviation of y and o(x;) is the standard deviation
of parameter x;. In this study, we used the statistics o,
p*, and scaled p*.

e The Sobol’ method

The Sobol’ method belongs to the class of variance-
based methods for global sensitivity analysis (GSA). It
employs the theory proposed by Sobol’ (2001), which
states that any function of an arbitrary number of
parameters can be decomposed into summed functions
of parameters taken individually, two by two, three by
three, and so on. By discovering and separating these
variances, the importance of each parameter to the
model output can be revealed, along with the influence
of any specific parameter on the model output resulting
from its interaction with other parameters (Saltelli et al.
2008, 2004).

Following the theory of Sobol’, the total variance V
of an output y of a model with k input parameters can
be decomposed as follows:

Vy = V() = Z Vid DD Vit Vi ©)

i i

where:
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LX) = V=V, @)

The term V(E(ylx;)) can be interpreted as the vari-
ance with respect to parameter x; of the expected
value of y, calculated at multiple values at which
x; is fixed while every other parameter is varied. V;
expresses the so-called first order dependence of y on
x; while V; expresses the dependence of y on x; and
x; together; note that the dependence of y on x; and x;
individually is subtracted from the first term to obtain
the collective variance. Similar interpretations apply
to higher order terms (White et al. 2020).

The Sobol’ method produces two sensitivity indi-
ces for each parameter: the first-order sensitivity
index (S;) and the total sensitivity index (S;). The
first-order sensitivity index (S;) is defined as
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l

S; = v, (®

where V; is the first order variance of parameter x;,
and V- is the total variance of the model output y.

The total sensitivity index (Sy;) includes the sensi-
tivity of y due to first order parameter effects as well
as the sensitivity due to interactions between each
value assumed by the evaluated parameter and all
other parameters. It is defined as

5 - E[V{ylx)] _ - VIE(ylx)] ©)
§ V) V()

where x_; means all parameters but x; are allowed to

vary, and V() is the variance of y.

The Sobol’” method requires the number of samples
(N) to compute variances. For k parameters, the num-
ber of parameter realizations is N-(k+ 2). To balance
the execution of a well-designed variance-based GSA
within a reasonable computing time, N typically ranges
from a few hundred to a few thousand for k< 20 (Sal-
telli et al. 2008). In this study, N was set to 400 and
k = 6, resulting in 3200 model runs per simulation
scenario.

e Applying global methods
To apply the Morris and Sobol” methods to the study

scenarios, the program PESTPP-SEN of the Param-
eter Estimation (PEST) + + suite v. 5.1.23 (White et al.

2020) was linked to the SWAP/MFlux model. Like other
programs of PEST + +, PESTPP-SEN obtains case-
defining information from a PEST control file. In this
file, the upper and lower bounds for parameter variation
are specified, along with the observation data. PESTPP-
SEN computes parameter sensitivities for each observa-
tion/model output pair and for the objective function,
defined as

¢=D rw (10)

where r; is the i residual (the difference between the
observation and the respective model output) and w;
is the weight associated with the i observation.

The upper and lower parameter bounds correspond
to those used in the local SA (Table 4). The “obser-
vation” data consisted of simulated drought stress per
growing season for the standard scenario, defined by
the reference parameter values (Table 4), with all val-
ues assigned an equal weight of 1. The key PEST + +
control variables used to manage the operation of the
Morris and Sobol’methods are detailed in Table 5.

Results
Standard scenario

Figure 3 shows simulated drought stress over 32 years of
soybean and wheat cultivation in Piracicaba, Sao Paulo,
Brazil, across five soils using the RWU function MFlux
with reference parameters. Drought stress patterns were
similar for both crops, lowest in the Acrisol and highest
in the S. Ferralsol. Year-to-year variability was greater
in Ferralsols than in Nitisol and Acrisol (Fig. 3).

Wheat experienced significantly higher drought
stress than soybean across all soil types. The 2013/2014
soybean season and the 2014 wheat season recorded the
highest stress levels, exceeding 30% and 60%, respec-
tively, due to the driest summer and winter on record
(Table 1). In contrast, the 1990 and 2009 wheat sea-
sons showed the lowest stress levels, attributed to more
evenly distributed rainfall during these years.

Local parameter sensitivities

From a visual inspection of Fig. 4, the simu-
lated drought stress in soybean appeared relatively

@ Springer
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Table 5 PEST + + control variables of the Morris and Sobol’ methods for global sensitivity analysis as recommended by Saltelli

et al. (2004, 2008)

Variable Description

Value

Morris method

+ +gsa_morris_r()

Sample size or the number of times that an elementary effect is computed for each parameter x; 40

(@)
+ +gsa_morris_p() Number of levels employed to grid the interval [0, 1] associated with each transformed parameter 4
x; (p)
+ + gsa_morris_delta() ~ Parameter variation between two model runs. The default value is A =p/2[(p— 1)] 0.667
Sobol’ method
+ + gsa_Sobol_samples() Number of samples to use in computing variances, N 400

+ + gsa_Sobol_par_dis() Specifies whether parameter samples are drawn from a uniform or normal distribution. Values are unif

“unif” or “norm”

Soybean
80
3
2 60 -
o
% 404
e . s
¥
s & i
a _I_
0 T T 1 T T
Wheat
80
;<$ * *
E 60 -
(O] \:‘,
% 40
£ i
1
3 20 4 — |
[ . 'Y
O —T T T T T
Nitisol Acrisol C. Ferralsol S. L. Ferralsol S. Ferralsol

Fig. 3 Drought stress for 32 simulated years of soybean and
wheat cultivation in Piracicaba, Sdo Paulo state, Brazil, on five
soils (Nitisol, Acrisol, C. Ferralsol, S. L. Ferralsol, and S. Fer-
ralsol). The length of the whiskers is 1.5 times the interquartile
range of 25-75%. The parameters of the MFlux function were
set at their rseference values: root length density, Lg,= 2.0 cm

insensitive to K, and Ac,,, moderately sensitive
to ry-r, and hy,, and highly sensitive to Lgy, and K,,,,
within the ranges of 0.01—0.10 cm ¢cm™ and 4.0
¢ 108—3.0 « 10 cm d! respectively, across most
soil types. For K, hy, and A, the sensitivities
often fluctuated between positive and negative values
near zero, indicating a non-monotonic relationship.

@ Springer

cm™; root radius, rp= 0.05 cm; xylem radius, r,= 0.02 cm;

radial hydraulic conductivity of root tissue, K,,,,= 3.5-10° cm
d7!; hydraulic conductance between leaf and root xylem,
K= 1.0-107* d~!; leaf water potential at which relative tran-
spiration is 0.5, h,,= 16600 cm; exponent in Campbell sigmoi-
dal transpiration reduction function, A,,,,= 7.0

The soil type affected the simulated drought
stress across the parameter ranges, with Ferral-
sols exhibiting higher drought stress levels (up
to 50%) compared to Nitisol and Acrisol. Fur-
thermore, Nitisol and Acrisol showed relatively
lower sensitivity to ry-r, than the Ferralsols
(Fig. 4).
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In the wheat scenarios, higher drought stress val-
ues, predominantly exceeding 20%, were simulated
across the parameter ranges. Similar to soybean, the
highest sensitivities for wheat were observed for
Ly followed by K,,,. particularly at their lowest
parameter values. The simulated drought stress for
Nitisol and Acrisol showed relatively low sensitiv-
ity to ry-ry, Ky, and Ag,,,, whereas it exhibited
slight sensitivity to r,-r, for Ferralsols (Fig. 4).

The local SA method did not account for model
nonlinearity or interactions among the RWU param-
eters. For instance, when assessing the sensitivity of
drought stress to K,,,, at three Ly, values (0.02, 0.2,
and 2.0 cm?® cm'3), the local sensitivities increased
as Lyy decreased, as shown in Fig. 5 for both simu-

lated crops on the sandy loam (S.L.) Ferralsol.

Global parameter sensitivities
Global Morris

The absolute mean (p*) and standard deviation (o) of
the elementary effects (EE) of each MFlux parameter
on simulated drought stress are shown in Fig. 6. Since
the model response was consistent across the three Fer-
ralsols, results are presented only for the Nitisol, the
Acrisol, and the S. L. Ferralsol. Parameters with higher
p* values on the x-axis indicate a greater individual
effect, while higher ¢ values on the y-axis represent a
greater degree of interaction with other parameters.

Across all soil and crop scenarios, Ly, exhibited
the highest p* and o, followed by K,,, and r,r,,
though at a significant distance. In contrast, the other
parameters (K, My, Acamp) sShowed p* and o values
close to zero. While r,-r, had a lower individual effect
than K,,, across all scenarios, its degree of interac-
tion was slightly higher in most cases.

Comparing the crops, the p* and o values were
lower in the wheat scenarios than in the soybean sce-
narios, particularly for Ly, K,,,,» and ry-r,. Soil type
also influences the degree of parameter sensitivities,
with the Nitisol and the Acrisol showing stronger
responses compared to the S. L. Ferralsol (Fig. 6).

Global Sobol’

The first-order sensitivity (S;) and the total sensitiv-
ity (Sy;) of each MFlux parameter are shown in Fig. 7

for the Nitisol, the Acrisol, and the S. Ferralsol. The
S; and S;; values are expressed on the left and the
right y-axis, respectively. Across all scenarios, the
parameter Lg, consistently exhibited the highest S;
and Sy; values, while the sensitivity indices for Ac,,,,
remained low.

The second and third highest S; values were
observed for K,,, and hy, respectively, in four soils
cultivated with soybean (Nitisol, Acrisol, C. Ferral-
sol, and S. L. Ferralsol) and two soils cultivated with
wheat (Nitisol and Acrisol). For other scenarios, the
second and third highest S; values were obtained for
ry-r, and K, ,, respectively. In contrast, the second-
highest Sy, value was observed for X,,,, across all sce-
narios, with the other parameters exhibiting relatively
low S;; values.

Comparing the crops, S; values were higher for
wheat than for soybean. In the soybean scenarios, Sy;
values for each parameter were similar across soils,
while in the wheat scenarios, the S;; value for K,
was lower in Ferralsols, as illustrated for the S. Fer-
ralsol (Fig. 7). Despite these crop- and soil-specific
differences, the overall model response was consistent
across all scenarios regarding Sobol’ sensitivities.

Parameter ranking

Figure 8 shows the ranking of MFlux parameters from
each SA method. The local, Morris, and Sobol’ sensi-
tivities were calculated using normalized S, scaled p*,
and average S, respectively. For both crops, the local
method identified Ly, as the most influential param-
eter, followed by K,,,,. However, the ranking diverged
beyond the third position. The composite parameter
ry-r, ranked third for wheat but fifth for soybean. The
least influential parameter was Ac,,,, for soybean and
hy, for wheat, reflecting their non-monotonic behav-
ior, which resulted in decreased values.

In the Morris method, Ly, exhibited the largest
contribution to simulated drought stress, while A,
resulted in the smallest contribution for both crops.
The parameter ranking for both crops was similar,
with K, ranked second, closely followed by r,-r,,
and hy, and K, occupying the fourth and fifth posi-
tions, respectively.

In the Sobol’ method, Ly, remained the most influ-
ential parameter, while Kj,,,, and Ac,,,, showed neg-

ligible importance for both crops. For soybean, K, ,,
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«Fig. 4 Drought stress as a function of the MFlux parameters.
The results refer to averages of 32 simulated years of soybean
and wheat cultivation in Piracicaba, Sdo Paulo, Brazil, on five
soils (Nitisol, Acrisol, C. Ferralsol, S. L. Ferralsol, and S. Fer-
ralsol). The dotted vertical line indicates the reference param-
eter values. Ly, is the root length density, r,-r, is the root
radius-xylem radius, K, is the radial hydraulic conductivity

of root tissue, K, is the hydraulic conductance between leaf

and root xylem, Ay, is the leaf water potential at which relative
transpiration is 0.5, and Ac,,,, is the exponent in Campbell sig-
moidal transpiration reduction function

and h,, ranked as the second and third most impor-
tant parameters, respectively, while for wheat, K,
and ry-r, held these positions. The Sobol’ method
revealed the largest differences between crops, with
wheat exhibiting higher sensitivity values. Similarly,
the standard deviations of sensitivity indices across
soil types were generally larger for wheat than for

soybean (Fig. 8).

Discussion
Parameter sensitivities across scenarios

The sensitivity analysis revealed that root length
density (Lgy) was consistently the most influential
parameter in determining simulated drought stress
across all simulated scenarios, reaffirming its criti-
cal role in modeling root water uptake and its signif-
icance for accurately representing soil-plant water
interactions (de Jong van Lier et al. 2008, 2013).
Lower Lg, values correlated with higher drought
stress, aligning with experimental and modeling
studies showing that denser root systems favor more
water extraction (e.g., Couvreur et al. 2012; de Melo
et al. 2023; Vanderborght et al. 2021). However, a
higher Ly, also implies an increased carbon cost for
root development, which can influence overall crop
yield. While the current model framework does not
explicitly account for carbon allocation trade-offs,
future model enhancements could integrate this
aspect to evaluate how increased root biomass affect
aboveground biomass production under varying
environmental conditions.

Among the other RWU parameters, radial root
conductivity (K,,,) emerged as the second most

influential parameter, with a notably higher con-
tribution in soils with more favorable hydrau-
lic properties such as the Nitisol and the Acrisol
(Fig. 9). This interaction suggests that soil proper-
ties modulate the extent to which plant hydraulics
influence water uptake. For soils with lower unsatu-
rated hydraulic conductivity, such as the S. Ferral-
sol (Fig. 9), the sensitivity to parameters like root
geometry (r,-r,) became more pronounced (Fig. 7),
highlighting the compensatory role of root mor-
phology in mitigating soil limitations to water flow.

Seasonal variability in drought stress simulations
reveals the importance of crop-specific dynamics.
Wheat, grown in the dry winter season, exhibited
higher sensitivity to MFlux parameters than soy-
bean, cultivated during the wetter summer. This
result reflects the differential impact of climatic
conditions on water stress, with wheat experiencing
more challenging water availability conditions com-
pared to soybean. Such findings corroborate pre-
vious studies (e.g., Flumignan et al. 2013; Pereira
et al. 2023), which emphasize the importance of
irrigation management in wheat production, par-
ticularly in regions of Brazil where water availabil-
ity is a limiting factor. This seasonal effect was bet-
ter captured by Sobol’ sensitivities, which offered
direct measurements without the need for normali-
zation or scaling when ranking parameters.

Global  sensitivity  analyses  using  the
Sobol” method provided additional insights into
parameter interactions, revealing how soil hydraulic
properties and RWU parameters interact dynami-
cally to influence drought stress. While the Nitisol
and Acrisol showed a stronger influence of plant
hydraulics (e.g., K,,,; and hy,), the Ferralsols exhib-
ited greater dependency on root geometry parameters
(ry-r,), highlighting the need for tailored model cali-
bration for different soil types. These insights suggest
that soil properties can significantly amplify or miti-
gate the effects of RWU parameters on drought stress
predictions, reinforcing the importance of integrating
soil and plant hydraulics in agro-hydrological mod-
eling (Vanderborght et al. 2023).

SA methods: merits and shortcomings

The local sensitivity analysis is the simplest method to
assess model sensitivities and is often considered poorly
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Fig. 5 Drought stress as a function of radial hydraulic con-
ductivity of root tissue (K,,,,) for three values of root length
density (Lgy= 0.02, 0.2 or 2.0 cm cm™) applied to simulate
soybean and wheat cultivation on the S. L. Ferralsol in Piraci-

efficient. Still, in some cases, it can be informative, e.g.,
to solve inverse problems or to approximate a model
output in the neighborhood of a set of pre-established
boundary conditions (Saltelli and Annoni 2010). In our
case, we dealt with a nonlinear model incorporating
numerous subroutines, including differential equation
solvers, demanding a global SA approach to address
more complex parameter interactions. Nonetheless, the
local partial derivatives proved useful for visualizing
and comparing the results from the three SA methods
addressed in this study, revealing certain similarities.
The Morris method overcomes the limitation
of local sensitivity analysis by calculating partial
derivatives at different locations of parameter space.
Hence, it can capture parameter interactions, though
it is unable to express them apart from model non-
linearities (Morris 1991; Saltelli and Annoni 2010).
Consequently, a type-I error may occur, i.e., when a
parameter is identified as having a significant impact
on the model output when, in fact, it does not (Sin
and Gernaey 2009). Although the scaled p* improves
the sensitivity index by standardizing it and reducing
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line indicates the reference value (K,,,,= 3.5-10° cm d™!)

some biases, it cannot eliminate the risk of type-I
errors due to inherent limitations of the method, such
as sampling constraints and the difficulty of capturing
all interactions and nonlinearities.

Among the global sensitivity analysis methods,
the Morris method usually requires the fewest sam-
ple points. In this study, the computation of the
EET statistics (u* and o) required 280 model evalu-
ations, which took approximately 24 h to complete
on a conventional laptop computer equipped with an
Intel Core i7 -1165G7 processor. Given the high-
resolution simulations across multiple scenarios, this
runtime is considered relatively small in the context
of our research setting. Although practical, the main
purpose of this method is to get preliminary and qual-
itative insights into model sensitivities (Wang and
Ierapetritou 2018). Thus, a sequential quantitative
method is recommended to avoid potential misinter-
pretations (Nguyen and de Kok 2007).

The Sobol’ method calculates partial variances,
quantifying model sensitivities to multiple parameters
through multi-dimensional integrals (Sobol 2001).
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Fig. 6 Absolute mean (p*) and standard deviation (o) of the
elementary effects (EE) of the MFlux parameters on simulated
drought stress. The results refer to 32 simulated years of soy-
bean and wheat cultivation in Piracicaba, Sdo Paulo, Brazil, on
three soils (Nitisol, Acrisol, and S. L. Ferralsol). Lgy, is the root

length density, r,-r, is the root radius-xylem radius, K,,,, is the

The resulting sensitivity indices (S; and Sy;) are con-
sidered powerful and versatile measures, potentially
the best practices for performing a sensitivity analysis
(Saltelli and Annoni 2010). The Sobol’ method effec-
tively handles parameter nonlinearities that cannot be
addressed by the other methods used in this study. It
can also reveal complex parameter interactions and,
by inference, the interaction with the processes to
which these parameters pertain (Saltelli et al. 2004;
White et al. 2020). Thus, its parameter ranking serves
as the most comprehensive guidance for model cali-
bration efforts.

Despite providing a more comprehensive
assessment of model sensitivities, the use of the

radial hydraulic conductivity of root tissue, K, is the hydrau-
lic conductance between leaf and root xylem, h,, is the leaf
water potential at which relative transpiration is 0.5, and Ac,,,,
is the exponent in Campbell sigmoidal transpiration reduction
function

Sobol’ method requires a high number of model eval-
vations (White et al. 2020), which makes it hardly
applicable to computationally demanding models.
In this study, the computation of S; and Sy required
3200 model runs and took in the order of two weeks
on a workstation HP Z230 with Intel® Xenon® E3
v3 processor, which is an unfeasible computer time
for many applications of 1D hydrological studies.
Hence, this method is computationally unaffordable
unless the sensitivity analysis is restricted to only a
few model parameters and performed using a rela-
tively fast-running hydrological model on a high-per-
formance computer.
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Fig. 7 First order sensitivity (S;) and total sensitivity (S;;) of
the simulated drought stress to the MFlux parameters. The
results refer to the 32 simulated years of soybean and wheat
cultivation in Piracicaba, Sao Paulo, Brazil, on three soils
(Nitisol, Acrisol, and S. Ferralsol). Ly, is the root length den-

sity, ry-r, is the root radius-xylem radius, K,,,, is the radial

Implications for tropical agriculture

Our findings carry relevant implications for improv-
ing agricultural resilience and productivity in tropi-
cal regions, particularly under the constraints of cli-
mate seasonality and water shortage. By identifying
root length density as the most influential parameter
in drought stress modeling, this study emphasizes
the importance of breeding and management strate-
gies aimed at optimizing root system architecture.
An enhanced root system can improve water uptake
efficiency (Zhang et al. 2024), mitigating yield losses
during periods of low water availability, as observed
for both soybean and wheat.
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hydraulic conductivity of root tissue, K, is the hydraulic

conductance between leaf and root xylem, £, is the leaf water
potential at which relative transpiration is 0.5, and Ac,,,, is the
exponent in Campbell sigmoidal transpiration reduction func-
tion

The interactions between soil properties and root
water uptake parameters highlight the significance
of adapting management practices to specific soil
conditions. For instance, the higher drought stress
levels simulated for Ferralsols indicates the need for
targeted irrigation strategies or soil amendments to
enhance water retention. Conversely, in soils with
favorable hydraulic properties, such as Nitisols and
Acrisols, water management strategies may benefit
from a stronger focus on enhancing plant hydrau-
lic parameters, including root conductivity and root
xylem conductance.

Seasonal variability in parameter sensitivities fur-
ther highlights the importance of adapting crop and
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Fig. 8 Parameter ranks of the MFlux parameters according to
the local method and two global methods (Morris and Sobol’)
for sensitivity analysis. The results refer to the average of 32
simulated years of soybean and wheat cultivation in Piraci-
caba, Sado Paulo, Brazil, on five soils. Error bars indicate =+ the
standard deviation among the evaluated soils. Ly, is the root

water management strategies to local climatic condi-
tions. Wheat cultivation, particularly in the dry winter
season, showed higher sensitivity to drought stress,
indicating that supplemental irrigation systems are
critical for stabilizing yields (Né6ia Junior et al. 2024).
In contrast, soybean cultivation in the wetter summer
season showed resilience under rainfed conditions, if
root system traits are adequately optimized (Zhang
et al. 2024). These findings align with the increasing
emphasis on integrating climate-smart agricultural
practices (Bhatnagar et al. 2024) to cope with shifting
rainfall patterns and prolonged dry spells in tropical
regions.

The SWAP/MFlux model simulates root growth
throughout the crop cycle but lacks mechanisms to
reduce root growth rates under low soil water avail-
ability or adjust maximum rooting depth dynamically.
In reality, root depth variations significantly influence
water uptake, as plants adapt to soil water content
fluctuations. A deeper root system enhances access to
subsurface water, mitigating drought stress, especially
in low-rainfall seasons (Comas et al. 2013). Root

Morris sensitivity

Sobol’ sensitivity

length density, r,-r, is the root radius-xylem radius, K,

oot 18 the
radial hydraulic conductivity of root tissue, K, is the hydrau-

lic conductance between leaf and root xylem, #,, is the leaf
water potential at which relative transpiration is 0.5, and A,
is the exponent in Campbell sigmoidal transpiration reduction
function

depth also determines initial soil water storage availa-
ble for uptake at the start of the cropping cycle. Incor-
porating dynamic root depth responses to drought
stress in future model versions could improve root
water uptake predictions in tropical environments.
Direct validation of drought stress predictions
could not be performed in this study due to the lack of
measurements of above-ground dry matter productiv-
ity for the 32 simulated years and under rainfed con-
ditions. Therefore, our findings should be interpreted
within the specific context of the simulated condi-
tions. Observations of soil water content, actual crop
evapotranspiration, above-ground dry matter produc-
tivity, and grain yield from the same location over
a three-year period (2016-2018) were analyzed in a
separate study, which extends this research, to cali-
brate the SWAP/MFlux model for soybean and wheat
under tropical conditions (de Melo et al. 2025).
Agro-hydrological models like SWAP, enhanced
by robust sensitivity analyses, have been valu-
able tools for guiding agricultural practices (Li and
Ren 2019; Lei et al. 2021). The ability to simulate
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soil-water-plant interactions under varying climatic,
soil, and crop scenarios enables the identification of
key factors for improvement, from model parametri-
zation to field-level management strategies (Stahn
et al. 2017; Pinheiro et al. 2019). This study also
demonstrated the value of advanced techniques, such
as Sobol’ sensitivity analysis, in uncovering complex
parameter interactions and guiding model calibra-
tion. These methodological refinements provide a
solid foundation for developing strategies to optimize
agricultural water use and enhance drought resilience
in field crops, ensuring they are oriented by robust,
context-specific insights.

Conclusion

Regarding the drought stress predictions of the
SWAP/MFlux model, root length density consistently
emerged as the most influential parameter across all
sensitivity analysis methods, underscoring its critical
role in the simulation of transpiration reduction. This
finding supports breeding programs and management
practices focused on optimizing root system architec-
ture to improve water uptake efficiency.

The interaction between soil hydraulic properties
and root water uptake parameters revealed soil-spe-
cific dynamics. Drought stress variability across soil
types points to the necessity of tailored irrigation and
soil amendments to mitigate water limitations and
enhance productivity in tropical regions with high-
weathering soils.

This study offers a comprehensive framework for
sensitivity analysis in complex agro-hydrological mod-
els, with a focus on root water uptake. By integrating
soil, plant, and climate interactions, these models pro-
vide valuable tools for sustainable water management in
field crops. Our findings support future research aimed
at addressing challenges posed by climate variability
and soil-water interactions in tropical agriculture.
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Appendix 1

The numerical solution of the Richards equation
requires parametrization of the unsaturated soil
hydraulic properties (K-6-h). In the SWAP/MFlux
model, they are described by the following analyti-
cal functions according to Mualem (1976) and van
Genuchten (1980):

0—0 -
Gzﬁﬂlﬂwhl”]““1 an
2
K =Ko [1 ~(1- ®n/(n—l))1—(1/")] (12)

where @ is the effective saturation, O is the soil water
content (cm® cm™), 0, and 0, are the residual and sat-
urated soil water content (cm3 cm_3), respectively, K
(cm d7') is the saturated hydraulic conductivity, and
o (cm_l), n, and [ are shape parameters.

Egs. 11 and 12 are the referred VGM hydraulic
functions. The soil hydraulic parameters used in the
simulations are presented in Table 6. The soil water
retention and hydraulic conductivity curves are
shown in Fig. 9.
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Table 6 Soil hydraulic

. Soil ID Soil layer (cm) 0O, 0, o n [ K
parameters used in the (em3em™)  (emPem™)  (em™) (em d™)
sensitivity analysis of the
SWAP/IMFIUX model in 0-10 0.237 0.417 00290 1462 0.82 246
fropical scenarios Nitisol 10-40 0.254 0.402 0.0726 1.157 -3.45 263

40-200 0.227 0.498 0.1741 1.175 -4.19 3282
0-10 0.142 0417 0.3431 1.166 1.90 344.4
Acrisol 10-50 0.00 0.481 0.0916 1.087 -3.97 1735
50-200 0.00 0.478 0.1103 1.057 -5.79 396.7
C. Ferralsol 0-20 0.275 0.463 0.0232  1.389 393 764
2040 0.290 0.447 0.0181 1.356 4.71 113.9
40-60 0.287 0.444 0.0136 1.443 498 120.5
60-80 0.270 0.506 0.0254 1.591 496 1352
80-200 0.257 0.513 0.0265 1.584 497 2014
S. L. Ferralsol  0-15 0.086 0.428 0.0790 1.360 -0.47 233
15-40 0.123 0.371 0.0394 1452  8.62 859
40-65 0.152 0.340 0.0171 1.805 6.13 131.5
65-90 0.133 0.360 0.0168 1.596 -3.02 152.6
90-200 0.117 0.340 0.0131 1482  0.00 102.7
S. Feralsol 0-30 0.293 0.505 0.0172 1.525 8.21 104
3045 0.272 0.506 0.0169 1415 8.83 11.1
45-60 0.289 0.469 0.0219 1.397  5.12 240
60-75 0.289 0418 0.0095 1.902 3.83 273
75-90 0.255 0.484 0.0201 1.535 0.00 75.1
90-200 0.271 0.409 0.0092 2.377  0.00 974
o 06 — :
£ Nitisol Acrisol C. Ferralsol S. L. Ferralsol S. Ferralsol
g 0.4 = I~ N I~ A\'\ 175 4
g - —~— N ~ .\} . : N\,
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Fig. 9 Soil water retention and hydraulic conductivity curves X-axes of the water retention curves, and the Y-axes of the
of the five Brazilian soils used to perform the sensitivity anal- hydraulic conductivity curves are on a logarithmic scale

ysis of the SWAP/MFlux model in tropical scenarios. The
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Appendix 2

In the MFlux function, the root system is considered
a set of identical cylindrical tubes equally spaced
as a function of the root length density, Lg,. Under
this geometry, a radial flow pattern towards the roots
exists and the mass-conservation equation is:

% __9_9%

or r or (13)

where 0 is the volumetric soil water content (cm’
cm™), ¢ is the time (d), ¢ (cm d™') is the water flux
density, and r (cm) is the radial distance from the root
center.

Eq. 13 can be solved defining matric flux poten-
tial, M (cm? d='), a composite soil hydraulic prop-
erty, as

h
M= / K(h)dh (14)
h,

w

where £, (cm) is the pressure head at permanent wilt-
ing (de Jong van Lier et al. 2013).
The use of M allows to write the Darcy equation
for soil water flow as
oh oM
= — K _— = ——
a4 ar or as)
For the soil-to-root pathway, de Jong van Lier et al.
(2008) developed the following relation between the soil
matric flux potential, M (cm® d7!) and the RWU rate
per unit of volume of a soil layer i, S; (ecm*cm™ d7Y):

4(Mv,i - M(),i)

S. =

1

= Ppi (Ms,i - MO,i)
ré —a’?  + 2<r2 + rz)ln%

m,i m,i 0 Ty
(16)

where M,; (cm? d71) is the soil matric flux potential
at the root surface, r, (cm) is the root radius, a is the
relative distance between roots at which mean (bulk)
soil water content occurs, and r,, ; is the rhizosphere
radius (cm), which is a function of Ly, (cm cm™):

1
i =\ 7 a7
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Parameter a was set at the value of 0.53, obtained
by de Jong van Lier et al. (2006) for soils described
by the VGM hydraulic functions.

The SWAP model also allows to adjust the activity
of roots by an empirical factor ranging from 0 to 1
and representing the root system efficiency (R,):

S;=pi(M,; — My;)Ryp (18)

Parameter R, was set at the value of 1 by standard
assumption.

To upscale the water uptake from the soil layer to
the root system scale, values of S; for Z soil layers
are summed up yielding the total RWU rate, which is
equal to the actual transpiration rate, T, (cm d™):

V4
Ta = Z SiZi (19)
i=1

where z; is the thickness (cm) of a soil layer i.

The concept of the model was extended by de Jong
van Lier et al. (2013) to consider radial and axial
plant hydraulic resistances. Within the root, the water
content is considered constant, so the hydraulic con-
ductivity does not vary with A:

h h
M= /K(h)dh = Krnoz/dh = Kmm (h - hw) (20)
h,

h

w w

where K,,,, (cm d™') is the radial hydraulic conduc-
tivity of the root tissue.

For the root-to-leaf pathway, the water potential
gradient is parameterized by the xylem water poten-
tial, 2, (cm) and the leaf water potential, s; (cm),
which are related according to

Ta
he =M+ @1

Stem

em (d71 is the hydraulic conductance
between leaf and root xylem.

By assuming that the hydraulic properties are con-
stant over the soil-to-root and root xylem-to-leaf path-
ways, and ignoring any irregularities caused by an
imperfect soil-root contact and xylem embolism, the
system parameters across the entire pathway (soil-to-
root-to-leaf) are expressed by:

where K
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a

ho; + oMy ; = h; + + oM, (22)

stem

where &, (cm) is the pressure head at the root surface,
and @; (d cm™) is defined by:

pirﬁq iln:—[’
T S @

root

where r, (cm) is the xylem radius.

Eq. 22 contains the unknowns #hy, h;, and T,
whereas M, is a function of A. For soils described
by the VGM hydraulic functions, no straightfor-
ward expression for M(h) exists, but a converging
series approximation is available (de Jong Van Lier
et al. 2009). Substitution of M ; in Eq. 18 gives the
RWU rate per soil layer, whereas T, follows from
the integration of RWU rates for all soil layers
(Eq. 19).

In the updated versions of SWAP (v. 4.2.x), a sig-
moidal transpiration reduction function (Campbell
1991; Kremer et al. 2008), referred to as the Camp-
bell function, is incorporated into the MFlux function
as

T, 1
I, = T T A
Camp
p 1+ < n > (24)
e

where 7, is the relative transpiration, Tp (cm d'l) is
the potential transpiration, &, (cm) is the leaf water
potential where 7,= 0.5, and A, is a shape parame-
ter. This equation, in combination with Eq. 22, allows
to solve for the values of h; yielding T, (Heinen et al.
2024).
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