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Abstract 

Microorganisms synthesize small bioactive compounds through their secondary or specialized metabolism. Those compounds play an important 
role in microbial interactions and soil health, but are also crucial for the de v elopment of pharmaceuticals or agrochemicals. Over the past decades, 
advancements in genome sequencing have enabled the identification of large numbers of biosynthetic gene clusters directly from microbial 
genomes. Since its inception in 2011, antiSMASH ( https:// antismash.secondarymetabolites.org/ ), has become the leading tool for detecting and 
characterizing these gene clusters in bacteria and fungi. This paper introduces version 8 of antiSMASH, which has increased the number of 
detect able cluster t ypes from 81 to 1 0 1, and has impro v ed analy sis support f or terpenoids and tailoring enzymes, as well as impro v ements 
in the analysis of modular enzymes like polyketide synthases and nonribosomal peptide synthetases. These modifications keep antiSMASH 

up-to-date with de v elopments in the field and extend its overall predictive capabilities for natural product genome mining. 
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Introduction 

Small, bioactive molecules produced by microorganisms are
an important source for drugs [ 1 ] and agrochemicals [ 2 ],
and play important roles in microbial interactions and soil
health. Over the past 20–25 years, the abundance of avail-
able genome data has allowed enhancing the traditional work-
flows of isolating microbial strains, extracting compounds,
and then screening for desired activities by searching for
biosynthetic gene clusters (BGCs) encoding for the biosyn-
thesis of these molecules in microbial genomes [ 3 ]. Software
tools for searching genomes for these secondary / specialized
metabolite-producing BGCs have existed for over a decade
[ 4–7 ]. 

Since its initial release in 2011, antiSMASH [ 8–14 ] has
become the leading tool in the field. Around antiSMASH,
a wide ecosystem of related tools that incorporate or rely
on antiSMASH predictions has evolved. Examples include
the resistance-based mining tool ARTS [ 15 ], the mass-
spectrometry-guided Seq2PKS [ 16 ], the genome-engineering
tool StreptoCAD [ 17 ], the BGC networking and clustering
tool BiG-SCAPE [ 18 ], and the paired omics analysis tool
NPLinker [ 19 ]. In turn, antiSMASH can also incorporate BGC
predictions from other tools [ 13 ]. Originally built for Deep-
BGC [ 20 ], other machine-learning-based tools like GECCO
[ 21 ] also provide their results in the required format. an-
tiSMASH BGC predictions are also used in many genomic
and BGC-related databases, such as the Joint Genome In-
stitute’s Secondary Metabolite Collaboratory [ 22 ], the Mi-
croScope platform for genome annotation and analysis [ 23 ],
the MIBiG database of manually curated BGCs [ 24 ], the
BGC family database BiG-FAM [ 25 ], the chemical diver-
sity metagenome database BGC Atlas [ 26 ], and the anti-
SMASH database [ 27 ]. Furthermore, antiSMASH is part
of several systematic workflows for large-scale analyses of
genomic data, e.g. BGCFlow [ 28 ] or the MicroOrganisms
Pipelines Service [ 29 ] of the European Food Safety Authority
(EFSA). 

Here, we present version 8 of antiSMASH. This release in-
creases the number of detectable biosynthetic pathway types
from 81 to 101, adds an analysis module for terpenoid
BGCs, and provides in-depth analysis of tailoring enzymes.
Additionally, the KnownClusterBlast and ClusterCompare 
datasets were updated to reflect the data from MIBiG re- 
lease 4, we added proper support for BGCs spanning the ori- 
gin of replication in circular genomes, and transcription fac- 
tor binding site predictions were extended with datasets from 

the CollecTF database [ 30 ]. In BGCs containing nonriboso- 
mal peptide synthetases (NRPSs) or type I polyketide syn- 
thases (PKSs), more biosynthetic domains are detected and 

analyzed. 

New features and updates 

BGC detection updates 

antiSMASH uses manually curated rules to define what 
biosynthetic functions need to exist in a genomic region in 

order to define a BGC. To identify these biosynthetic func- 
tions, antiSMASH makes use of both profile hidden Markov 
models (pHMMs) and, to a lesser extent, dynamic profiles 
specified in Python code files. The pHMMs are sourced 

from public datasets such as PF AM [ 31 ], TIGRF AMS [ 32 ],
SMART [ 33 ], BAGEL [ 34 ], Yadav et al. [ 35 ], or created 

specifically for use in antiSMASH. antiSMASH 7 contained 

81 of such BGC rules [ 14 ], this number has increased to 

101 in this release, with a number of existing rules hav- 
ing been refined. Due to the large overlap in biosynthetic 
enzymes, it is hard to differentiate between linear azole- 
containing peptides and the thio-linked circularized thiopep- 
tides. In the current antiSMASH database [ 27 ], ∼16% of 
thiopeptide and ∼29% of linear azole-containing peptide 
BGC calls overlap, and it is unclear how many of the remain- 
ing assignments are correct. To address this uncertainty and 

avoid potential confusion, the detection rules for both types 
of BGCs were merged into a new “azole-containing RiPPs 
rule”. The detection rules for terpenes, mycosporines, NRPS- 
independent siderophores, trans -AT PKSs, NRPSs, NRPS- 
like clusters, and fatty acids were also updated. Addition- 
ally, new rules for archaeal ribosomally synthesized and post- 
translationally modified peptides (RiPPs), atropopeptides, ni- 
tropropanoic acid, azoxy-containing compounds, polyynes,
deazapurines, polyhalogenated pyrroles, hydroxytropolones, 
hydrogen-cyanides, darobactins, isocyanides, bacterial and 
Gr aphical abstr act 
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fungal cyclic dipeptides, triceptides, highly reducing type 
II PKSs, and fungal NRPS-like lysine biosynthesis were 
added. 

To cover cases where contiguous sections of some core 
genes were too far away from other core genes, a new “EX- 
TENDS” condition was added to the rule definition to ensure 
that all core genes are properly marked. The trans -AT PKS 
rules use this to ensure that all genes containing modules are 
detected correctly, even when the single trans -acting acyltrans- 
ferase (AT) domain is far away. 

Terpene analysis 

While antiSMASH has been detecting terpene gene clusters 
since version 1 [ 8 ], a more detailed analysis of the terpene 
synthases / cyclases was missing. antiSMASH version 4 [ 11 ] 
added an initial analysis module, but due to limitations in per- 
formance of the phylogenetic placement algorithm and main- 
tainability challenges, this was dropped again in antiSMASH 

5 [ 12 ]. For version 8, we see a return of the terpene analysis 
based on carefully curated pHMMs (see Fig. 1 A). For every 
region containing a terpene BGC, a list of potential product 
types is shown. Every prediction includes the terpenoid class 
(e.g. diterpene, sesquiterpene, etc.) and chain length of the pre- 
dicted product. For more well-understood terpene synthase 
subfamilies, the prediction can also contain the terpenoid sub- 
class (e.g. indole diterpenoid), initial cyclizations (e.g. C1–
C15), and product name. 

Gene function analysis 

During the big community push to better annotate tailoring 
enzymes in MIBiG entries during last year’s MIBiG anno- 
tathons (see [ 24 ] for a description), we noticed that a more 
user-friendly interface to access tailoring enzyme reactions 
was needed in antiSMASH. Using the collection of tailoring 
enzymes in the MITE database ( https://mite.bioinformatics. 
nl/) [ 36 ] annotated during those annotathons, as well as our 
existing smCOG annotations, we now present tailoring en- 
zyme information in a dedicated “tailoring” tab (see Fig. 1 B). 
This also gave us an opportunity to report the substrate speci- 
ficities of many flavin-dependent halogenases, also added in 

this release. Using custom pHMMs and conserved motif signa- 
tures, predictions range in detail from “halogenated pyrrole”
to regioselectivity of e.g. tryptophan halogenases, depending 
on data availability. 

In the tailoring tab, tailoring enzymes are organized by En- 
zyme Commission category, i.e. oxidoreductases, transferases, 
hydrolases, lyases, isomerases, and ligases. Only categories 
with hits in the region are shown. Clicking the plus icons ex- 
pands the category to show the genes with relevant hits and a 
short summary of the most detailed prediction of the tailoring 
function possible. Clicking on the plus icon of a gene of inter- 
est expands all information antiSMASH provides about a tai- 
loring enzyme. If a tailoring enzyme shows at least 60% amino 

acid sequence identity to any entry in the MITE database, a 
cross-link to that MITE entry is provided. 

NRPS and PKS improvements 

antiSMASH provides a detailed analysis of protein domains 
encoded in NRPS / PKS BGCs. To provide a more comprehen- 
sive overview of the domains present, we added profiles for 
siderophore-associated β-hydroxylases and interface domains 
(see [ 37 ] for a detailed discussion) and a more generic α/ β- 

hydrolase profile, as some enzymes with presumed proofread- 
ing functions were missed by the existing specific thioesterase 
profile. 

CoA-ligase (CAL) domains are often involved in load- 
ing fatty acid-derived starter units in lipopeptide BGCs, but 
were not previously considered starting modules in the anti- 
SMASH module detection. Together with the aforementioned 

β-hydroxylases and interface domains they can now be de- 
tected as part of modules. 

Following the information collected in [ 38 ], the active sites 
of NRPS condensation (C) and epimerization (E) domains are 
now checked for the presence of catalytic residues and flagged 

as inactive when those residues are missing. To complement 
the NRPS adenylation (A) domain substrate specificity pre- 
dictions already performed in antiSMASH, we now also pro- 
vide a link to the external PARAS substrate specificity pre- 
dictor [ 39 ] to provide researchers with even more analysis 
options. 

Miscellaneous changes 

Many other smaller changes have been included in version 8. 
The overview page view showing the most similar known clus- 
ters has been simplified to address some sources of user confu- 
sion. Instead of directly showing the cluster similarity in “per- 
cent of the genes having a sequence similarity of at least 30%”, 
we now show the similarity in three confidence levels: “high”
for a cluster similarity of larger or equal to 75%, “medium”
for a cluster similarity between 75% and 50%, and “low” for 
a cluster similarity between 50% and 15%. Cluster similari- 
ties of < 15% are no longer considered to be similar enough 

and are no longer shown in the overview. KnownClusterBlast, 
ClusterCompare, and CompaRiPPson have been updated to 

the data provided in the MIBiG 4.0 release [ 24 ]. ClusterBlast 
SVG generation was moved into JavaScript to reduce file sizes 
and improve the user experience of viewing antiSMASH re- 
sults opened locally . Historically , antiSMASH has struggled 

with BGCs spanning the origin in circular genomes. At best, 
those BGCs were split in two, at worst one or both of the 
parts on the opposite sides of the origin could be missed en- 
tirely. In antiSMASH 8.0, we have completely overhauled our 
coordinate handling for circular genomes to be detected and 

reported properly. 
Historically, antiSMASH has relied on GlimmerHMM [ 40 ] 

for fungal gene calling, as it was able to run without manu- 
ally selecting the right gene model. Unfortunately, with more 
and more fungal genomes becoming available, it became evi- 
dent that this gene model selection is crucial for high-quality 
gene calling. As we cannot easily select the right gene model 
for uploaded genomes of unknown taxa, we have decided to 

remove fungal gene calling functionality from antiSMASH. 
We recommend users to run a dedicated gene-calling tool 
like AUGUSTUS [ 41 ] and then provide antiSMASH with the 
gene annotations. Due to software incompatibilities in mod- 
ern systems, we have also deprecated our support for the 
MEME suite of tools, specifically MEME [ 42 ] and FIMO [ 43 ]. 
Users of the standalone version of antiSMASH can still pro- 
vide those binaries themselves, but they are no longer part 
of the containers we provide or the web service. This effec- 
tively disables the CASSIS [ 44 ] fungal BGC border detec- 
tion and might affect the RODEO [ 45 ] score for lanthipep- 
tide, sactipeptide, lasso peptide, and azole-containing RiPP 

precursors. 
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A

B

Figure 1. ( A ) The “terpene” tab of the geosmin BGC of Streptomyces coelicolor A3(2) (NCBI ID NC_003888.3:6656219–6678399) with all details 
e xpanded. T he product predictions co v er both the geosmin precursor germacradienol and geosmin itself. ( B ) Tailoring functions identified in the 
balhim y cin BGC of Am y colatopsis balhim y cina (NCBI ID Y16952.3). T he o xidoreductase category has been e xpanded to sho w that all f our P450 
monoo xy genases w ere identified. OxyA–C are correctly annotated as ha ving a cy clization function due to their similarity to the MI TE entries of the 
corresponding cyclization enzymes from the vancomycin biosynthesis. In the transferases category, the bhaA halogenase entry has been expanded 
further to show the predictions based on the built-in halogenase prediction, MITE similarity, and smCoG-based gene function annotations. 
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Conclusion and future perspective 

Genome mining technologies like antiSMASH constitute an 

important piece of the natural product discovery puzzle. Over 
the past 14 years, antiSMASH has seen continuous updates 
and improvements, making sure it stays at the forefront of 
natural product genome mining tools. As evident by the nu- 
merous contributions from outside of the core development 
team, the antiSMASH project’s Open Source and Open Sci- 
ence model remains successful. It is an important tool that 
many other, more specialized, tools, workflows, and databases 
rely on. It serves as the technology platform for a number of 
other genome mining tools currently in development. In fu- 
ture updates, we will continue our work on new algorithms 
and analysis modules to decipher the full biosynthesis path- 
ways of detected clusters. We will build on the foundation of 
the tailoring enzyme prediction improvements in this version 

and cover even more enzyme families. Similarly, our work on 

regulator and regulator binding site detection will continue. 
As always, we will also integrate, or integrate with, new tools 
developing in the ecosystem. 
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Data availability 

The bacterial and fungal versions of antiSMASH 8.0 can 

be freely accessed at https://antismash.secondarymetabolites. 
org and https://fungismash.secondarymetabolites.org , respec- 
tively. 

The antiSMASH documentation is available at https://docs. 
antismash.secondarymetabolites.org/. 

The antiSMASH source code is licensed under the GNU Af- 
fero General Public License (AGPL) version 3.0. antiSMASH 

is also available via Docker. See the documentation website 
for details on how to download and install antiSMASH. 
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