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Abstract

Microorganisms synthesize small bioactive compounds through their secondary or specialized metabolism. Those compounds play an important
role in microbial interactions and soil health, but are also crucial for the development of pharmaceuticals or agrochemicals. Over the past decades,
advancements in genome sequencing have enabled the identification of large numbers of biosynthetic gene clusters directly from microbial
genomes. Since its inception in 2011, antiSMASH (https://antismash.secondarymetabolites.org/), has become the leading tool for detecting and
characterizing these gene clusters in bacteria and fungi. This paper introduces version 8 of antiSMASH, which has increased the number of
detectable cluster types from 81 to 101, and has improved analysis support for terpenoids and tailoring enzymes, as well as improvements
in the analysis of modular enzymes like polyketide synthases and nonribosomal peptide synthetases. These modifications keep antiSMASH
up-to-date with developments in the field and extend its overall predictive capabilities for natural product genome mining.

Received: February 27, 2025. Revised: April 4, 2025. Editorial Decision: April 8, 2025. Accepted: April 15,2025

© The Author(s) 2025. Published by Oxford University Press on behalf of Nucleic Acids Research.

This is an Open Access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/),
which permits unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited.

Gzoz Aey gz uo sasn Aseiqi] yn uabuiuabepp Aq G861 L8/yeeienb/ieu/ce0L 0L /10p/a]01B-a0uBApE/IEU/WO0D dNO-dlWwapeoe.//:sd)y Wwol) papeojumoq


https://doi.org/10.1093/nar/gkaf334
https://orcid.org/0000-0003-3764-6051
https://orcid.org/0009-0008-5454-3306
https://orcid.org/0009-0006-9871-5187
https://orcid.org/0000-0003-1964-8221
https://orcid.org/0000-0002-1862-6699
https://orcid.org/0000-0001-6496-2071
https://orcid.org/0000-0002-9955-3785
https://orcid.org/0000-0002-6949-426X
https://orcid.org/0000-0002-6751-8897
https://orcid.org/0000-0002-5770-9745
https://orcid.org/0000-0002-2364-3143
https://orcid.org/0000-0002-9152-2562
https://orcid.org/0000-0003-3002-6458
https://orcid.org/0000-0001-6534-6609
https://orcid.org/0000-0001-6406-4394
https://orcid.org/0000-0002-4058-6718
https://orcid.org/0000-0002-9340-5511
https://orcid.org/0000-0002-7264-1857
https://orcid.org/0000-0001-8751-3279
https://orcid.org/0000-0003-4366-3675
https://orcid.org/0000-0002-4292-9315
https://orcid.org/0000-0002-7209-0717
https://orcid.org/0000-0003-0341-1561
https://orcid.org/0000-0002-2191-2821
https://orcid.org/0000-0002-8260-5120
https://antismash.secondarymetabolites.org/

2 Blin et al.

Graphical abstract

Transferases: halogenase

ARP51747.1: flavin-dependent trp 5 halogenase
halogenases
flavin-dependent trp 5 halogenase

101 BGC anti
e | SMASH
Product predictions:
Class Subclass Product name  Chain length

sesquiterpene germacradienol C15

sesquiterpene geosmin c12

Introduction

Small, bioactive molecules produced by microorganisms are
an important source for drugs [1] and agrochemicals [2],
and play important roles in microbial interactions and soil
health. Over the past 20-25 years, the abundance of avail-
able genome data has allowed enhancing the traditional work-
flows of isolating microbial strains, extracting compounds,
and then screening for desired activities by searching for
biosynthetic gene clusters (BGCs) encoding for the biosyn-
thesis of these molecules in microbial genomes [3]. Software
tools for searching genomes for these secondary/specialized
metabolite-producing BGCs have existed for over a decade
[4-7].

Since its initial release in 2011, antiSMASH [8-14] has
become the leading tool in the field. Around antiSMASH,
a wide ecosystem of related tools that incorporate or rely
on antiSMASH predictions has evolved. Examples include
the resistance-based mining tool ARTS [15], the mass-
spectrometry-guided Seq2PKS [16], the genome-engineering
tool StreptoCAD [17], the BGC networking and clustering
tool BiG-SCAPE [18], and the paired omics analysis tool
NPLinker [19]. In turn, antiSMASH can also incorporate BGC
predictions from other tools [13]. Originally built for Deep-
BGC [20], other machine-learning-based tools like GECCO
[21] also provide their results in the required format. an-
tiSMASH BGC predictions are also used in many genomic
and BGC-related databases, such as the Joint Genome In-
stitute’s Secondary Metabolite Collaboratory [22], the Mi-
croScope platform for genome annotation and analysis [23],
the MIBiG database of manually curated BGCs [24], the
BGC family database BiG-FAM [25], the chemical diver-
sity metagenome database BGC Atlas [26], and the anti-
SMASH database [27]. Furthermore, antiSMASH is part
of several systematic workflows for large-scale analyses of
genomic data, e.g. BGCFlow [28] or the MicroOrganisms
Pipelines Service [29] of the European Food Safety Authority
(EFSA).

Here, we present version 8 of antiSMASH. This release in-
creases the number of detectable biosynthetic pathway types
from 81 to 101, adds an analysis module for terpenoid
BGCs, and provides in-depth analysis of tailoring enzymes.
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Additionally, the KnownClusterBlast and ClusterCompare
datasets were updated to reflect the data from MIBIG re-
lease 4, we added proper support for BGCs spanning the ori-
gin of replication in circular genomes, and transcription fac-
tor binding site predictions were extended with datasets from
the CollecTF database [30]. In BGCs containing nonriboso-
mal peptide synthetases (NRPSs) or type I polyketide syn-
thases (PKSs), more biosynthetic domains are detected and
analyzed.

New features and updates

BGC detection updates

antiSMASH uses manually curated rules to define what
biosynthetic functions need to exist in a genomic region in
order to define a BGC. To identify these biosynthetic func-
tions, antiSMASH makes use of both profile hidden Markov
models (P HMMs) and, to a lesser extent, dynamic profiles
specified in Python code files. The pHMMs are sourced
from public datasets such as PFAM [31], TIGRFAMS [32],
SMART [33], BAGEL [34], Yadav et al. [35], or created
specifically for use in antiSMASH. antiSMASH 7 contained
81 of such BGC rules [14], this number has increased to
101 in this release, with a number of existing rules hav-
ing been refined. Due to the large overlap in biosynthetic
enzymes, it is hard to differentiate between linear azole-
containing peptides and the thio-linked circularized thiopep-
tides. In the current antiSMASH database [27], ~16% of
thiopeptide and ~29% of linear azole-containing peptide
BGC calls overlap, and it is unclear how many of the remain-
ing assignments are correct. To address this uncertainty and
avoid potential confusion, the detection rules for both types
of BGCs were merged into a new “azole-containing RiPPs
rule”. The detection rules for terpenes, mycosporines, NRPS-
independent siderophores, #rans-AT PKSs, NRPSs, NRPS-
like clusters, and fatty acids were also updated. Addition-
ally, new rules for archaeal ribosomally synthesized and post-
translationally modified peptides (RiPPs), atropopeptides, ni-
tropropanoic acid, azoxy-containing compounds, polyynes,
deazapurines, polyhalogenated pyrroles, hydroxytropolones,
hydrogen-cyanides, darobactins, isocyanides, bacterial and
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fungal cyclic dipeptides, triceptides, highly reducing type
II PKSs, and fungal NRPS-like lysine biosynthesis were
added.

To cover cases where contiguous sections of some core
genes were too far away from other core genes, a new “EX-
TENDS?” condition was added to the rule definition to ensure
that all core genes are properly marked. The trans-AT PKS
rules use this to ensure that all genes containing modules are
detected correctly, even when the single trans-acting acyltrans-
ferase (AT) domain is far away.

Terpene analysis

While antiSMASH has been detecting terpene gene clusters
since version 1 [8], a more detailed analysis of the terpene
synthases/cyclases was missing. antiSMASH version 4 [11]
added an initial analysis module, but due to limitations in per-
formance of the phylogenetic placement algorithm and main-
tainability challenges, this was dropped again in antiSMASH
5 [12]. For version 8, we see a return of the terpene analysis
based on carefully curated pHMMs (see Fig. 1A). For every
region containing a terpene BGC, a list of potential product
types is shown. Every prediction includes the terpenoid class
(e.g. diterpene, sesquiterpene, etc.) and chain length of the pre-
dicted product. For more well-understood terpene synthase
subfamilies, the prediction can also contain the terpenoid sub-
class (e.g. indole diterpenoid), initial cyclizations (e.g. C1-
C15), and product name.

Gene function analysis

During the big community push to better annotate tailoring
enzymes in MIBIG entries during last year’s MIBiG anno-
tathons (see [24] for a description), we noticed that a more
user-friendly interface to access tailoring enzyme reactions
was needed in antiSMASH. Using the collection of tailoring
enzymes in the MITE database (https:/mite.bioinformatics.
nl/) [36] annotated during those annotathons, as well as our
existing smCOG annotations, we now present tailoring en-
zyme information in a dedicated “tailoring” tab (see Fig. 1B).
This also gave us an opportunity to report the substrate speci-
ficities of many flavin-dependent halogenases, also added in
this release. Using custom pHMMs and conserved motif signa-
tures, predictions range in detail from “halogenated pyrrole”
to regioselectivity of e.g. tryptophan halogenases, depending
on data availability.

In the tailoring tab, tailoring enzymes are organized by En-
zyme Commission category, i.e. oxidoreductases, transferases,
hydrolases, lyases, isomerases, and ligases. Only categories
with hits in the region are shown. Clicking the plus icons ex-
pands the category to show the genes with relevant hits and a
short summary of the most detailed prediction of the tailoring
function possible. Clicking on the plus icon of a gene of inter-
est expands all information antiSMASH provides about a tai-
loring enzyme. If a tailoring enzyme shows at least 60% amino
acid sequence identity to any entry in the MITE database, a
cross-link to that MITE entry is provided.

NRPS and PKS improvements

antiSMASH provides a detailed analysis of protein domains
encoded in NRPS/PKS BGCs. To provide a more comprehen-
sive overview of the domains present, we added profiles for
siderophore-associated B-hydroxylases and interface domains
(see [37] for a detailed discussion) and a more generic o/f-
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hydrolase profile, as some enzymes with presumed proofread-
ing functions were missed by the existing specific thioesterase
profile.

CoA-ligase (CAL) domains are often involved in load-
ing fatty acid-derived starter units in lipopeptide BGCs, but
were not previously considered starting modules in the anti-
SMASH module detection. Together with the aforementioned
B-hydroxylases and interface domains they can now be de-
tected as part of modules.

Following the information collected in [38], the active sites
of NRPS condensation (C) and epimerization (E) domains are
now checked for the presence of catalytic residues and flagged
as inactive when those residues are missing. To complement
the NRPS adenylation (A) domain substrate specificity pre-
dictions already performed in antiSMASH, we now also pro-
vide a link to the external PARAS substrate specificity pre-
dictor [39] to provide researchers with even more analysis
options.

Miscellaneous changes

Many other smaller changes have been included in version 8.
The overview page view showing the most similar known clus-
ters has been simplified to address some sources of user confu-
sion. Instead of directly showing the cluster similarity in “per-
cent of the genes having a sequence similarity of at least 30%”,
we now show the similarity in three confidence levels: “high”
for a cluster similarity of larger or equal to 75%, “medium”
for a cluster similarity between 75% and 50%, and “low” for
a cluster similarity between 50% and 15%. Cluster similari-
ties of <15% are no longer considered to be similar enough
and are no longer shown in the overview. KnownClusterBlast,
ClusterCompare, and CompaRiPPson have been updated to
the data provided in the MIBiG 4.0 release [24]. ClusterBlast
SVG generation was moved into JavaScript to reduce file sizes
and improve the user experience of viewing antiSMASH re-
sults opened locally. Historically, antiSMASH has struggled
with BGCs spanning the origin in circular genomes. At best,
those BGCs were split in two, at worst one or both of the
parts on the opposite sides of the origin could be missed en-
tirely. In antiSMASH 8.0, we have completely overhauled our
coordinate handling for circular genomes to be detected and
reported properly.

Historically, antiSMASH has relied on GlimmerHMM [40]
for fungal gene calling, as it was able to run without manu-
ally selecting the right gene model. Unfortunately, with more
and more fungal genomes becoming available, it became evi-
dent that this gene model selection is crucial for high-quality
gene calling. As we cannot easily select the right gene model
for uploaded genomes of unknown taxa, we have decided to
remove fungal gene calling functionality from antiSMASH.
We recommend users to run a dedicated gene-calling tool
like AUGUSTUS [41] and then provide antiSMASH with the
gene annotations. Due to software incompatibilities in mod-
ern systems, we have also deprecated our support for the
MEME suite of tools, specifically MEME [42] and FIMO [43].
Users of the standalone version of antiSMASH can still pro-
vide those binaries themselves, but they are no longer part
of the containers we provide or the web service. This effec-
tively disables the CASSIS [44] fungal BGC border detec-
tion and might affect the RODEOQ [45] score for lanthipep-
tide, sactipeptide, lasso peptide, and azole-containing RiPP
precursors.
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Detailed terpene predictions e

Product predictions:

Class Subclass Product name  Chain length Initial cyclisations  Functional groups
sesquiterpene germacradienol C15 C1-C10 OH
sesquiterpene geosmin Ci12 C1-C10 OH

Genes with terpene domains:
SC06073: TITS + TITS @

Domain 1 (0 - 326): Type 1 terpene synthase &
Subtype: Geosmin synthase, N terminal domain
Reactions:

FPP — germacradienol

Domain 2 (326 - 695): Type 1 terpene synthase =
Subtype: Geosmin synthase, C terminal domain
Reactions:

germacradienol — geosmin

B

Tailoring functions [ ?)

Oxidoreductases: oxygenase @
oxyA: Cyclization ©

oxyB: Cyclization ©
oxyC: Cyclization ©
oxyD: cytochrome P450 ©
Transferases: aminotransferase glycosyltransferase halogenase methyltransferase ©
bgtfA: Glycosylation ©
bgt £B: Glycosylation ©
bgtfC: Glycosylation ©

bhaa: flavin-dependent tyrosine-like hpg halogenase @
halogenases
flavin-dependent tyrosine-like hpg halogenase
MITE
MITE0000028 = Halogenation (identity: 100.00%)
smcogs
SMCOG1119: halogenase

bmt: Methylation ©
dvaB: DegT/DnrJ/EryC1/StrS aminotransferase ©
pgat: aminotransferase ©

Hydrolases: hydrolase ©
bhp: alpha/beta hydrolase fold protein ©

Lyases: hydratase @
dpgC: enoyl-CoA hydratase ©

dpgD: enoyl-CoA hydratase ©

Ligases: ligase synthase ©

Figure 1. (A) The “terpene” tab of the geosmin BGC of Streptomyces coelicolor A3(2) (NCBI ID NC_003888.3:6656219-6678399) with all details
expanded. The product predictions cover both the geosmin precursor germacradienol and geosmin itself. (B) Tailoring functions identified in the
balhimycin BGC of Amycolatopsis balhimycina (NCBI ID Y16952.3). The oxidoreductase category has been expanded to show that all four P450
monooxygenases were identified. OxyA-C are correctly annotated as having a cyclization function due to their similarity to the MITE entries of the
corresponding cyclization enzymes from the vancomycin biosynthesis. In the transferases category, the bhaA halogenase entry has been expanded
further to show the predictions based on the built-in halogenase prediction, MITE similarity, and smCoG-based gene function annotations.
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Conclusion and future perspective

Genome mining technologies like antiSMASH constitute an
important piece of the natural product discovery puzzle. Over
the past 14 years, antiSMASH has seen continuous updates
and improvements, making sure it stays at the forefront of
natural product genome mining tools. As evident by the nu-
merous contributions from outside of the core development
team, the antiSMASH project’s Open Source and Open Sci-
ence model remains successful. It is an important tool that
many other, more specialized, tools, workflows, and databases
rely on. It serves as the technology platform for a number of
other genome mining tools currently in development. In fu-
ture updates, we will continue our work on new algorithms
and analysis modules to decipher the full biosynthesis path-
ways of detected clusters. We will build on the foundation of
the tailoring enzyme prediction improvements in this version
and cover even more enzyme families. Similarly, our work on
regulator and regulator binding site detection will continue.
As always, we will also integrate, or integrate with, new tools
developing in the ecosystem.
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