Journal of
Virology

1 AMERICAN
P4l SOCIETY FOR

MICROBIOLOGY

3 | Editor’s Pick | Virology | Full-Length Text

i)

Check for
updates

Virus-like particle vaccine with authentic quaternary
epitopes protects against Zika virus-induced viremia and

testicular damage

Sandra R. Abbo," Kexin Yan,? Corinne Geertsema,' Tessy A. H. Hick,'? Jort J. Altenburg,> Gwen Nowee,' Chris van Toor," Jan W. van
Lent," Eri Nakayama,”* Bing Tang,” Stefan W. Metz, Ryan Bhowmik,® Aravinda M. de Silva,” Natalie A. Prow,? Ricardo Correia,®’

Paula M. Alves,®” Anténio Roldao,®” Dirk E. Martens,® Monique M. van Oers," Andreas Suhrbier,>® Gorben P. Pijiman’

AUTHOR AFFILIATIONS See affiliation list on p. 19.

ABSTRACT Zika virus (ZIKV) caused unprecedented outbreaks in South America and
the Caribbean in 2015-2016, leading primarily to a series of abnormalities in neonates
termed congenital Zika syndrome. The threat of ZIKV reemergence has seen the
development of multiple ZIKV vaccines that are at the preclinical stage or in early-stage
clinical trials. Herein, we describe a pathway to the development of ZIKV vaccines
generated using a baculovirus-insect cell expression system, which is widely applied for
the manufacture of biologics for human use. Virus-like particle (VLP) vaccines comprising
CprME and subviral particle (SVP) vaccines comprising prME were evaluated for their
ability to mediate protection against ZIKV challenge in Ifnar1™~ mice. Initial attempts
resulted in VLP and SVP vaccines that failed to present quaternary epitopes and did
not provide effective protection. To improve the SVP vaccine, two modifications were
introduced: firstly, an alanine to cysteine substitution (A264C) in the E domain Il region to
promote the formation of stabilized E homodimers and, secondly, the use of Spodoptera
frugiperda Sf9 insect cells that had been adapted to grow and produce vaccine at a
neutral pH of 7. E homodimers largely retain their pre-fusion conformation at pH 7,
which is a requirement for the induction of effective neutralizing antibody responses.
The stabilized SVP-A26C vaccine induced high levels of neutralizing antibodies and
protected male Ifnar1™~ mice against viremia and testicular damage. Our study reiterates
the need to present the immune system with E dimers arranged in authentic quaternary
conformations and provides a scalable production method for this novel ZIKV vaccine.

IMPORTANCE We describe the generation of a subviral particle (SVP) vaccine comprising
prME proteins of ZIKV, with an envelope protein substitution, A264C, that stabilizes E
dimer formation. The SVP vaccine was produced in a novel Sf9 insect cell line adapted
to grow in suspension at pH 7. The study highlights the importance of challenge
experiments to ascertain whether the responses induced by an experimental vaccine
actually mediate protection against virus infection and disease. The study also reiterates
the contention that effective flavivirus vaccines need to present the immunogen in an
authentic tertiary and quaternary structure with a pre-fusion conformation.

KEYWORDS Zika virus, vaccines, virus-like particles, insect cells, quaternary epitopes
Z ika virus (ZIKV) is a mosquito-borne pathogen that caused an explosive outbreak
of human disease primarily in the Americas during 2015 and 2016 (1, 2), although

transmission was also reported in a range of countries worldwide (3). The key disease
manifestation, congenital Zika syndrome (CZS), represents a spectrum of congenital
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malformations in newborns, including but not limited to microcephaly (4). Around 4,000
children in 27 countries have been affected, with the largest number of cases
occurring in Brazil (5). CZS is often associated with developmental delays and neurologic
sequelae in infants (6) and can lead to a series of chronic health issues (7, 8) includ-
ing increased vulnerability to infectious and respiratory conditions (9). The burden of
congenital anomalies, nervous system disorders, and infectious diseases also contribute
to an increase in mortality in children live-born with CZS (10). ZIKV infection in adults can
cause Guillain-Barré syndrome (11), with ZIKV also able to infect the male reproductive
tract (12), where it can persist for extended periods (13, 14).

In 2022, the World Health Organization (WHO) declared the Global Arbovirus Initiative
against arboviruses, which includes ZIKV (15). The initiative seeks to strengthen global
preparedness to future arboviral disease outbreaks, which involves inter alia develop-
ment of new vaccines and vaccine technologies. A number of ZIKV vaccines are in
development and use a range of modalities (16-19), with a paramount consideration
being safety in pregnant women and women of childbearing age (20). Long-term
protective immunity is also desirable (21), given that ZIKV outbreaks are likely again
to occur in resource-poor countries. Although mRNA vaccines have seen spectacular
advances in recent years and have been applied to ZIKV vaccine design (18), lack of
long-term protective immunity remains an issue (19, 22).

ZIKV belongs to the species Orthoflavivirus zikaense, genus Orthoflavivirus in the
family Flaviviridae, and contains a positive-sense, single-stranded 11 kilobase (kb) RNA
genome. ZIKV has three structural proteins: capsid (C), precursor membrane (prM),
and envelope (E) that together build a spherical virus particle of ~50 nm in diameter.
Immature ZIKV particles bud into the endoplasmic reticulum (ER) lumen and travel
through the Golgi apparatus to the cell surface. During this process, conformational
changes in the E glycoprotein and cleavage of prM in the precursor peptide (pr) and
M protein occur. Dissociation of pr upon egress into the extracellular environment
results in mature, smooth particles displaying 90 E homodimers on their surface (23-
26). The highly ordered, tertiary and quaternary structures adopted by the antiparallel
E homodimers on the virion particle surface (27) represent the main target of neutraliz-
ing antibodies, with presentation of authentic structures to B cells likely important for
vaccine-mediated generation of protective neutralizing antibody responses (19, 24, 28,
29).

Herein, we evaluate the prototype vaccines against ZIKV generated using the
baculovirus-insect cell expression system that comprise virus-like particle (VLP) or
subviral particle (SVP) vaccines. The VLP vaccine was produced by expressing the ZIKV
structural proteins C, prM, and E, which self-assemble into particles that are structurally
similar to wild-type virus. SVP vaccines were produced by expression and self-assembly
of only both prM and E proteins. VLP and SVP vaccines lack a viral genome and are
unable to replicate, with replication-incompetent ZIKV vaccines generally viewed as safer
for pregnant women (30). The vaccines were evaluated in established Ifnar1™”~ mouse
models of ZIKV infection and disease (24, 31).

MATERIALS AND METHODS
Regulatory compliance

Breeding and use of GM mice were approved under a Notifiable Low Risk Dealing
(NLRD) Identifier: NLRD_Suhrbier_Oct2020: NLRD 1.1(a). Agistment conditions were as
follows: light = 12:12 hour dark/light cycle, 7:45 a.m. sunrise and 7:45 p.m. sunset,
15 minute light dark and dark light ramping time; enclosures, M..C.E cage (Animal
Care Systems, Colorado, USA); ventilation, 100% fresh air, eight complete air exchange/h/
room; in-house enrichment, paper cups (Impact-Australia), tissue paper, cardboard rolls;
bedding, PuraChips (Able scientific) (aspen fine); food, double bagged norco rat and
mouse pellet (AIRR, Darra, QLD); water, deionized water acidified with HCI (pH = 3.2); and
temperature, 22 + 1°C (32).
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Cell culture

Spodoptera frugiperda Sf21 (Gibco, Carlsbad, CA, USA), Sf9 (Gibco), and Sf9-ET (33) cells
were grown at 27°C. Monolayers of Sf21 cells were cultured in Grace’s medium (Gibco)
supplemented with 10% fetal bovine serum (FBS; Gibco). Monolayers of Sf9-ET cells were
grown in Sf900Il medium (Gibco) containing 5% FBS and 100 pug/mL geneticin (Gibco).
Monolayers and suspension cultures of Sf9 cells were maintained in Sf900Il serum-free
medium supplemented with 50 pg/mL gentamycin (Gibco). The African green monkey
kidney Vero cell line was grown in RPMI 1640 medium supplemented with 10% FBS at
37°Cand 5% CO,.

Insect cell adaptation to neutral pH

Sf9 suspension cultures (2 x 10° cells/mL at day 0) were grown in culture medium of
uncontrolled pH or culture medium set to pH 6.6, 6.8, or 7.0. Culture medium was set to
the desired pH using 0.5 M NaOH at day 0 and checked each day thereafter with a pH
monitoring probe to ensure a constant pH (34). Cell concentration and cell viability were
determined daily using a Countess Il Automated Cell Counter (Invitrogen) according to
supplied protocol. Adaptation of Sf9 cells to higher culture pH by an adaptive laboratory
evolution approach was performed using a stepwise approach (i.e., adaptation from the
standard culture pH of 6.2 to, initially, pH of 6.5, then 6.8, and finally 7.0) as described
(35). Cells were cultured in medium containing a 1:1 mixture of Sf900 Il (Gibco) medium
and a solution composed of 50 mM HEPES, 124 mM sucrose, 5 mM glucose, 50 mM Nacl,
20 mM KCl, 3 mM CaCly, 10 mM MgS04, and 0.1% (w/v) Pluronic F-68; pH was adjusted
to 6.5, 6.8, or 7.0 by adding 1 M NaOH and sterile filtered using a 0.22 um Stericup
(Millipore). Cells were subcultured in each pH step until a constant growth rate and cell
viability over 95% were observed, and master cell banks were prepared after adaptation
at each pH.

Generation of recombinant baculoviruses

ZIKV structural cassettes CprME, prME, and EATM (secreted E; lacking a transmembrane
domain) were amplified from the cDNA of the Asian lineage ZIKV Suriname 2016 isolate
(NLO0013, GenBank KU937936.1, isolated from a patient in The Netherlands [36] and
obtained from the Erasmus Medical Center, Rotterdam, The Netherlands) by PCR using
Phusion High-Fidelity DNA Polymerase (New England Biolabs, Ipswich, MA, USA) and
a 2720 Thermal Cycler (Applied Biosystems). Primers (Table 1) contained attB recombina-
tion sites to enable Gateway cloning (Invitrogen). The ZIKV structural cassettes were
recombined into a pDONR207 plasmid (Invitrogen) and subsequently into a pDEST8
plasmid (Invitrogen) downstream of the baculovirus polyhedrin promoter. The pDEST8
plasmid containing the prME cassette was used to create an alternative pDEST8 plasmid
containing a prME cassette with an alanine to cysteine substitution (A264C) as previously
described for the production of stable, covalently linked dengue virus (DENV) and ZIKV E
homodimers (37-41). The A264C substitution was introduced by quick change PCR using
primers described in Table 1. Next, the four cassettes (CprME, prME, prME-A264C, EATM)
were transposed into the improved Autographa californica multiple capsid nucleopolyhe-
drovirus (AcMNPV) backbone BACe56 with a relocated attTn7 transgene insertion site
(42). Sf21 cells were transfected with purified recombinant bacmid DNA using ExpreS* TR
(ExpreSZion Biotechnologies). Recombinant baculovirus titers were determined in Sfo-ET
cells and expressed as 50% tissue culture infectious dose per mL (TCID5q/mL).

Production of ZIKV vaccines

For small-scale vaccine production, 8 x 10° Sf21 or Sf9 insect cells were seeded
as monolayers in 75 cm? flasks. Cells were infected with recombinant baculovirus
containing the ZIKV CprME structural cassette (BACe56/ZIKV-CprME), the ZIKV prME
structural cassette (BACe56/ZIKV-prME), or the ZIKV prME-A264C structural cassette
(BACe56/ZIKV-prME-A264C) for Zika VLP, Zika SVP, or Zika SVP-A264C vaccine production,

April 2025 Volume 99 Issue 4

Journal of Virology

10.1128/jvi.02322-24 3

Downloaded from https://journals.asm.org/journal/jvi on 27 May 2025 by 137.224.252.12.


https://doi.org/10.1128/jvi.02322-24

Full-Length Text

TABLE 1 Primers used in this study’

Journal of Virology

Target Primer name Primer sequence (5-3’) Product
(kb)
ZIKV CprME attB1-ZIKV-C-F GGGGACAAGTTTGTACAAAAAAGCAGGCTTAACCATGAAAAACCCAAAAAAGAAATC 24
attB2-ZIKV-Estem/ GGGGACCACTTTGTACAAGAAAGCTGGGTATTAAGCAGAGACGGCTGTGGATA
anchor-R
ZIKV prME attB1-ZIKV-pr-F GGGGACAAGTTTGTACAAAAAAGCAGGCTTAACCATGGGCGCAGATACTAGTGTCGG 2.0
attB2-ZIKV-Estem/ GGGGACCACTTTGTACAAGAAAGCTGGGTATTAAGCAGAGACGGCTGTGGATA
anchor-R
ZIKV EATM attB1-ZIKV-E-F GGGGACAAGTTTGTACAAAAAAGCAGGCTTAACCATGTCAACGAGCCAAAAAGTCAT 13
attB2-6xHis-tag-ZIKV-E-R  GGGGACCACTTTGTACAAGAAAGCTGGGTATTAGTGATGGTGATGGTGATGTTTTCCAATGGTGCTGCCAC
pDEST8/ZIKV- prME-  ZIKV-E-A264C-F TCAAGAAGGATGCGTTCACACGGCCCTTGCTGG 85
A264C ZIKV-E-A264C-R CCGTGTGAACGCATCCTTCTTGACTCCCTAGAA

“The attB site of each primer is shown in bold. The mutations used to create the A264C substitution are underlined.

respectively. Soluble ZIKV E subunit was produced by infecting cells with recombi-
nant baculovirus harboring the structural cassette ZIKV EATM (BACe56/ZIKV-EATM).
Uninfected cells as well as cells infected with recombinant baculovirus expressing a
green fluorescent protein (BAC/GFP) (43) were used as negative controls. Cells were
infected at a multiplicity of infection (MOI) of 10 TCIDsq units per cell (CorME, prME,
EATM, GFP) or 0.4 TCIDsp units per cell (prME-A264C). After infection, cells were
incubated at 27°C for 4 hours. Afterward, the cell culture medium was replaced by fresh
medium, and cells were incubated at 27°C for 3-4 days.

For larger scale vaccine production, Sf9 suspension cultures containing 2.0-2.5 x
10° cells/mL were infected with BACe56/ZIKV-CprME or BACe56/ZIKV-prME or BACe56/
ZIKV-prME-A264C at an MOI of 0.01-5 TCIDsq units per cell. Cells were incubated at
27°C for 3 days. For infections performed with neutral-pH-adapted cells at bioreactor
scale, pH was monitored and controlled at 7.0 during the entire process using NaOH.
Cells and medium were harvested and separated by centrifugation at 1,700 rpm for
5 minutes using a Heraeus Megafuge 40R centrifuge (Thermo Scientific). The cell pellet
was resuspended in PBS, and the supernatant containing the Zika VLP and SVP vaccines
was filtered through a 0.45 um filter.

Purification of ZIKV vaccines

First, 7% (w/v) polyethylene glycol (PEG)-6000 and 0.5 M NaCl were added to the
filtered medium to precipitate the VLP/SVPs. After 2 hours at room temperature (RT)
and following centrifugation at 4,700 rpm for 15 minutes using a Heraeus Megafuge
40R centrifuge (Thermo Scientific), the pellet was dissolved in GTNE buffer (200 mM
glycine, 50 mM Tris/HCl, 100 mM NacCl, 1 mM EDTA, pH 7.3). The VLP/SVPs in GTNE were
then loaded onto a 30%-80% (w/v) continuous sucrose gradient (prepared in GTNE) and
subjected to centrifugation at 45,000 rpm for 2 hours using an SW55 rotor (Beckman).
Twenty-five fractions were collected from the top of the gradient and analyzed for the
presence of ZIKV E protein using Western blot. ZIKV E protein containing fractions was
pooled and centrifuged again at 45,000 rpm for 2 hours. The pellet was then dissolved
in GTNE buffer, and the pure VLP/SVPs were stored at —80°C. Samples were subsequently
analyzed by Western blot to detect and quantify ZIKV E protein and by transmission
electron microscopy to check the integrity of the particles.

Zika VLP/SVP vaccine protein analysis and Western blot

ZIKV proteins from cell fractions, medium fractions, and purified VLP/SVP fractions were
analyzed using sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE)
followed by Western blotting. Samples were run on a Mini-PROTEAN TGX gel (Bio-Rad),
with a trans-blot semi-dry transfer cell (Bio-Rad) used to transfer the proteins to an
Immobilon-P membrane (Merck Millipore). The membrane was blocked at 4°C overnight
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using 1% skim milk powder dissolved in PBS containing 0.05% Tween (PBS-T). The
membrane was incubated at RT for 1 hour with pan-flavivirus a-E monoclonal antibody
(mADb) 4G2 (44) diluted 1:1000 in 1% skim milk. After washing the membrane three times
with PBS-T, alkaline phosphatase, conjugated goat anti-mouse IgG secondary antibody
(Sigma-Aldrich) diluted 1:2500 in PBS-T was added. After 1 hour, the membrane was
washed three times with PBS-T and subsequently incubated with alkaline phosphatase
buffer as described (43) for 10 minutes. The membrane was developed using NBT/BCIP
(Roche Diagnostics).

Quantification of Zika VLP/SVP vaccines

The purified ZIKV vaccines were quantified using a dilution series of pure DENV serotype
4 E protein (The Native Antigen Company). Samples with purified Zika VLP/SVP and
samples containing serial twofold dilutions of 3 ug DENV E were prepared and analyzed
by SDS-PAGE and Western blot using the pan-flavivirus 4G2 mAb as described above. The
intensity of protein bands was compared to estimate the concentration of Zika VLP/SVP
in the purified fractions.

Antibody ELISA, neutralization assays, and virus titration

IgG responses were measured by standard ELISA using whole ZIKVpr7g66 as antigen
as described (45, 46). The neutralizing ability of mouse sera from vaccinated animals
was also determined as described (45). Briefly, serum was heat-inactivated at 56°C
for 30 minutes. Diluted serum was incubated with 100 TCIDs5q of ZIKVyatal (GenBank
KU527068) or ZIKVpryapcso (GenBank LC002520.1) for 2 hours, and Vero cells (10°
cells/ml) were added afterward. Cells were fixed at 7 days post infection and stained
with crystal violet, after which the reciprocal 50% neutralization titers were determined.
To validate this assay, sera from four mice immunized with UV-inactivated virus were
tested and provided reciprocal anti-ZIKVpryagcsg 50% neutralization titers of 916, 1556,
1847, and 1717. Serum viremia was measured by TCIDgq assays as previously reported
(47).

Epitope display analysis

Display of epitopes on Zika VLP/SVP vaccines was analyzed by ELISA using a panel of
well-defined mouse or human-derived mAbs targeting the flavivirus E protein (Table
2) (28, 37, 48, 49). ZIKV H/PF/2013 (GenBank KJ776791.2) wild-type virus and recombi-
nant E subunit (37) were included for comparison. All analyses were carried out in
duplicate. Zika VLP/SVP vaccines, wild-type ZIKV, and ZIKV E subunit were captured
using 4G2 mAb (44) (for human detection antibodies) or TM7 mAb (50) (for mouse
antibodies). The DENV serotype 2 specific mAb 3H5 (51) was used as a negative control.
Antibody binding was determined using alkaline phosphatase-conjugated antihuman or
anti-mouse IgG secondary antibodies (Sigma) in combination with alkaline phosphatase
substrate (Sigma). Absorbance was measured at 405 nm.

Transmission electron microscopy

Purified Zika VLP/SVP vaccines in GTNE buffer were loaded onto 200 mesh carbon-coated
copper grids (Electron Microscopy Sciences). After 2 minutes at RT, the excess liquid
was removed, and 2% ammonium molybdate (pH 7) was added to the grids. After
30 seconds at RT, the excess liquid was again removed. After air-drying, the grids were
analyzed using a JEOL JEM-1011 transmission electron microscope. VLP/SVP diameters
were determined using ImageJ in combination with in-house macros.

Zika VLP and SVP vaccination and challenge of female Ifnar1~~ mice

Female interferon-a/B receptor knockout (/fnar1™") mice (C57BL/6J background; =13
weeks old) were immunized with 1 pg Zika VLPs or SVPs per mouse (56). As a
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negative control, a group of female Ifnar1™~ mice was vaccinated with 1 ug CHIKV

VLPs, which were produced and purified as described (43, 57). The vaccines or
PBS were administered once via the intramuscular route (40 pL into both quadri-
ceps muscles). The mice were challenged by subcutaneous inoculation with 10°
TCIDs5g ZIKVpRr7e6 (GenBank LC002520.1) 6 weeks after the first immunization or
10* TCIDsg ZIKVNatal (GenBank KU527068) 8 weeks after the first immunization (45,
47). ZIKVpmRr7es infection is lethal in Ifnar1™ mice, with mice euthanized at ethically
defined end points (58).

Zika VLP and SVP vaccination and challenge of male Ifnar1~"- mice

Male Ifnar1™~ mice (=12 weeks old) were immunized at three different times with 1 ug
Zika VLPs or SVPs mixed in a 1:1 vol ratio with AddaVax adjuvant (InvivoGen) (59).
Negative control groups were male Ifnar1™~ mice vaccinated with CHIKV VLPs (43)
formulated with AddaVax or inoculated with PBS. The vaccines or PBS were adminis-
tered via the intramuscular route (40 pL into both quadriceps muscles). A positive
control group was infected with 10* TCID5g ZIKVpatal S.C. at the base of the tail. Mice
were challenged by subcutaneous inoculation with 10° TCID5q ZIKVpryagcse (GenBank
MH158237.1) 14 weeks after initial immunization (58).

SVP and SVP-A264C (pH 7) vaccination and challenge of male Ifnar1~- mice

Male Ifnar1™ mice (=12 weeks old) were immunized at three different times with
1 ug of the SVP-A264C (pH 7) or SVP (pH 7) vaccines mixed in a 1:1 vol ratio with
AddaVax adjuvant. Negative control groups were male Ifnar1™~ mice inoculated with
PBS formulated with AddaVax or PBS alone. The positive control was male Ifnar1™~ mice
infected with ZIKVnatal @s above. Mice were challenged by subcutaneous inoculation
with 10% TCIDsq ZIKVpryaBcso (GenBank MH158237.1) 11 weeks after initial immunization
(58)

Statistics

The t-test was used if the difference in variances was <4 fold, skewness was >-2, and
kurtosis was <2. The t-test significance and variance were determined using Microsoft

TABLE 2 Monoclonal antibodies (mAbs) used for epitope display analysis”

mAb M/H Binding  Neutralization E protein-binding region Binding to DENV serotypes and ZIKV Reference
(W/M/S)
DV1 DV2 DV3 DV4 ZIKV
4G2 M F-CR w DIl FL ++ ++ +++ +++ +++ (44)
™7 H F-CR M DIl FL +++ ++ +++ +++ +++ (50)
A11(EDE2) H F-CR DV:S ZIKV:W DI/DII/DIIQ +++ +++ +++ +++ + (52)
B7 (EDE2) H F-CR DV:S ZIKV:W DI/DII/DIIQ +++ +++ +++ +++ + (52)
C8 (EDE1) H F-CR DV:S ZIKV:S DI/DII/DIIQ +++ +++ +++ +++ ++ (52)
C10 (EDET) H F-CR DV:S ZIKV:S DI/DII/DIIQ +++ +++ +++ +++ ++ (52)
ZKA-64 H ZIKV ZIKV:S DIl - - - - +++ (53)
Z3L1 H ZIKV ZIKV:S DI/DII - - - - +++ (54)
723 H ZIKV ZIKV:S DIl - - - - +++ (54)
A9E H ZIKV ZIKV:S DIQ° - - - - +++ (28)
GOE H ZIKV ZIKV:S DIl Q° - - - - +++ (28)
720 H ZIKV ZIKV:S DIlQ - - - - +++ (54)
ZIKV-117 H ZIKV ZIKV:S DIlQ - - - - +++ (55)
3H5 M DV2 DV2:S DIIILR - +++ - - - (51)

A panel of characterized mouse (M) or human (H) derived mAbs was used to interrogate binding to Zika VLP/SVP vaccines. Abbreviations: EDE, E dimer epitope dependent;
F-CR, flavivirus cross-reactive; W/M/S,weakly, moderately or strongly neutralizing; DI, DII, DIlI, binding to E-domain |, II, or III; FL, fusion loop; LR, lateral ridge; Q, quaternary;
—/+/++/+++, no/weak/moderate/strong binding.

®Not completely mapped.
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Excel. Skewness and kurtosis were determined using IBM SPSS Statistics for Windows
v19.0. Otherwise, the nonparametric Kolmogorov-Smirnov exact test was performed
using GraphPad Prism 10.

RESULTS
Production and purification of Zika VLPs and SVPs from insect cells

To produce Zika VLP or SVP vaccines in insect cells, recombinant baculoviruses express-
ing the structural cassette ZIKV CprME or prME (Fig. 1A), respectively, were constructed.
A secreted ZIKV E subunit was produced for comparison by expressing the ZIKV E coding
region without the C-terminal transmembrane domain (Fig. 1A and E ATM). The prM and
E sequences contained their native signal peptides for translocation to the ER. Recombi-
nant baculoviruses BACe56/ZIKV-CprME, BACe56/ZIKV-prME, and BACe56/ZIKV-EATM
were used to infect Sf21 cells at an MOI of 10 (TCIDgq per cell). Uninfected cells and
cells infected with a recombinant baculovirus expressing GFP (BAC/GFP) (43) were
included as negative controls. After 4 days, signs of baculovirus infection were observed
for infections with BACe56/ZIKV-CprME, BACe56/ZIKV-prME, BACe56/ZIKV-EATM, and
BAC/GFP (Fig. 1B). The infected cells showed an increased cell diameter, enlarged nuclei,
detachment, growth arrest, and lysis. Uninfected cells did not show these effects (Fig. 1B).
BACe56/ZIKV-prME-infected cells also showed formation of large syncytia (Fig. 1B, top
center). The syncytia were most likely caused by fusogenic activity of the ZIKV E protein,
which is also responsible for fusion of the viral envelope with the endosomal membrane
during virus infection (60).

The baculovirus-infected cells and the culture fluid were analyzed by Western blot
using the anti-E mAb 4G2. Expression of ZIKV CprME and ZIKV prME structural cassettes
resulted in the detection of a protein at ~55 kDa, similar to the predicted molecular mass
of processed E protein (56 kDa, in both cell and medium fractions [Fig. 1C]). Expression
of ZIKV-EATM showed a protein at ~50 kDa (Fig. 1C), which corresponds to the predicted
molecular mass of processed EATM (47 kDa). VLP/SVP vaccines were isolated from the
culture fluid using PEG precipitation followed by 30%-80% continuous sucrose gradient
purification. Purification was confirmed by Western blot analysis (Fig. 1C).

Characterization of Zika VLP and SVP vaccines

The purified VLP/SVP vaccines were analyzed by transmission electron microscopy.
Spherical particles with a diameter of ~20-60 nm were observed in the VLP (CprME)
preparation, with particle diameter distribution showing segregation into two groups
(Fig. 2A). The larger VLPs had a diameter of 52-55 nm (Fig. 2B), which corresponds
with the reported size of complete, infectious ZIKV virions. The smaller particles had a
diameter of 24-27 nm (Fig. 2B), which correspond to the size of Zika SVPs. Non-infectious
SVPs of about ~20-30 nm in diameter have previously been observed during natural
flavivirus infection (61) and after expression of recombinant flavivirus prME (62, 63). The
purified SVP (prME) preparation comprised mostly of ~20-30 nm diameter SVPs, with a
smaller fraction of larger particles (Fig. 2C and D).

Poor protection against challenge after Zika VLP and SVP vaccination

The Zika VLP (CprME) and SVP (prME) experimental vaccines were produced at larger
scale using suspension Sf9 insect cells. Female Ifnar1~~ mice received one dose of 1 ug
of the purified VLPs (10 mice) or SVPs (five mice), and antibody responses and protection
against ZIKVatal and ZIKVpyr7e6 challenge were assessed (Fig. 3A). As a negative control,
five mice were vaccinated with purified chikungunya virus (CHIKV) VLPs (43). Four weeks
post VLP/SVP vaccination, significant ZIKV-specific ELISA titers were generated, whereas
no ZIKV-specific antibodies were detected after immunization with CHIKV VLPs (Fig. 3B).
Most VLP/SVP-vaccinated mice developed significant neutralizing antibody titers against
ZIKV, whereas CHIKV VLPs did not induce detectable neutralizing antibody responses
(Fig. 3C).
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FIG 1 Production of Zika VLP and SVP vaccines using insect cells. (A) Schematic representation of the structural cassettes used for the production of Zika VLP
(CprME), ZIKV SVP (prME) vaccines, and secreted ZIKV E subunit (EATM) in insect cells. The molecular mass of each viral protein is shown in kDa. Cleavage sites of
viral protease, host signalase, and host furin are indicated, as well as predicted signal peptide (sp) sequences and transmembrane helices. ZIKV EATM contains a
C-terminal histidine tag (6xHis). (B) Sf21 insect cells infected with the indicated baculoviruses at 4 days post infection or uninfected cells. (C) Western blot analysis
of ZIKV E protein expression in Sf21 insect cells infected with recombinant baculoviruses containing the indicated cassettes at 4 days post infection, in culture
fluids from those infected Sf21 cells, and in VLP/SVP vaccines purified by sucrose gradient. Western blotting used the pan-flavivirus anti-E mAb 4G2.
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Mice were challenged with the African ZIKVpr7eg isolate, which is lethal in this model
(58), or with the Brazilian ZIKVj,tq) isolate, which is generally nonlethal in this model (47).
Viremias were not significantly suppressed in VLP/SVP vaccinated mice, except on day 4
post challenge (Fig. 3D). Zika SVP-vaccinated mice were nevertheless significantly
protected against weight loss that reached ethically defined end points (>20%) that
required euthanasia (Fig. 3E). In addition, 60% of mice vaccinated with VLPs survived,
although this did not reach statistical significance (Fig. 3E, P = 0.16). VLP/SVP vaccination
thus provided limited protection against challenge.

Next, we vaccinated mice at three different times (Fig. 3F) with the VLP/SVP vac-
cines and included an adjuvant, AddaVax, a squalene-based, oil-in-water, nano-emul-
sion adjuvant formulation similar to the MF59 adjuvant licensed for use in humans
(64). Although higher ELISA titers were achieved after three vaccinations (Fig. 3G), no
neutralization titers were detected (Fig. 3H). After challenge with ZIKVpryapcsg, VLP/
SVP-vaccinated mice again showed only a significant reduction late in the viremic period
(Fig. 31, 6/7 dpi). The results suggested that although three doses and adjuvant increased
the ELISA titers, they did not improve protection.

The surprisingly low neutralizing antibody responses (Fig. 3H) suggested poor
presentation to the immune system of authentic tertiary and/or quaternary structures,
which are deemed important for generation of effective neutralizing antibody responses
(19). This may have arisen due to pH issues during production (see below) affecting the
vaccine batch used for Fig. 3F to | more than the vaccine batch used for Fig. 3A to E.
Alternatively, AddaVax, which contains the surfactants Span 85 (sorbitan trioleate) and

o)
N
(=)

D

ZIKA VLPs (CprME)

Percentage (%)
= o

[3,]
1

o P QA A
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)
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FIG 2 Electron microscopy analysis of Zika VLP and SVP vaccines. (A) Transmission electron microscopy photo of purified Zika VLP (CprME) vaccine. (B) Size
distribution of particles in CprME fraction based on diameter measurements of 227 particles. (C) Transmission electron microscopy photo of purified Zika SVP
(prME) vaccine. (D) Size distribution of particles in prME fraction based on diameter measurements of 258 particles.
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Tween 80 (polyoxyethylene 80/sorbitan monooleate) (65), may have destabilized the
VLP/SVPs (66-68). These results suggested that these VLP/SVP vaccines adopted and/or
maintained authentic conformations poorly.

Epitope display analysis

To explore the tertiary and/or quaternary structures presented by VLP/SVP vaccines, a
panel of 14 well-characterized monoclonal antibodies (mAbs) that recognize E protein
epitopes on ZIKV (Table 2) were used in a series of ELISAs. The pan-flavivirus mAbs 4G2
and 1M7 (Fig. 4A), which recognize low complexity fusion loop epitopes in domain I
of the E, bound with similar efficiency (similar absorbance) to wild-type virus (positive
control) and the VLP/SVP vaccines (Fig. 4A). In contrast, the pan-specific flavivirus E
dimer epitope (EDE)-dependent mAbs, A11, B7, C8, and C10, bound with relatively
lower efficiencies to the VLP/SVP vaccines than they did to wild-type ZIKV and showed
absorbance values similar to mAb binding to the largely unstructured E subunit protein
(Fig. 4A). The results argue that VLP/SVPs display significantly lower levels of E dimer
quaternary epitopes than wild-type virus.

Of the ZIKV-specific mAbs that bind lower complexity protein conformations, Z3L1,
ZKA-64, and Z23, the latter two actually bound VLP/SVPs better than wild-type ZIKV
(Fig. 4B). Of the remaining mAbs that bound quaternary epitopes (A9E, G9E, 720, and
ZIKV-117), Z20 failed to bind either SVPs or VLPs, and A9E failed to bind VLPs (Fig. 4B).

These results (Fig. 4) illustrated that the quaternary arrangements and/or conforma-
tions of E proteins were markedly different between wild-type ZIKV and the VLP/SVP
vaccines. This in turn likely explains their limited abilities to protect mice against
challenge (Fig. 3D, I). We chose to pursue further SVPs as the vaccine modality of choice
in this setting, as TM7 and A9E effectively recognized SVPs and wild-type ZIKV, but not
VLPs (Fig. 4A and B). Similar prME particles have also been shown to be efficacious in
dengue virus vaccine design (69), and prME has emerged as the immunogen of choice
for many flaviviral vaccines (19).

Production of stabilized SVP-A264C vaccine in insect cells

Previous studies on DENV and ZIKV showed that displaying stable E homodimers in
vaccine formulations can be challenging to achieve, but that covalent linkage of the E
proteins within a dimer can improve vaccine efficacy (37, 38, 40, 41, 70). An alanine to
cysteine codon substitution (A264C) was thus introduced in the E domain Il region of
ZIKV prME (Fig. 5A). This mutation allows for a stable antiparallel dimer of E (36). The
ZIKV prME-A264C structural cassette (Fig. 5A) was then used to generate the recombi-
nant baculovirus BACe56/ZIKV prME-A264C vaccine construct. Cells expressing ZIKV
prME-A264C formed large syncytia (Fig. 5B), similar to cells expressing ZIKV prME (Fig.
1B), arguing that the mutated ZIKV E protein was capable of fusogenic activity and that
transition from the prefusion conformation to the fusogenic structure had occurred for at
least some of the E proteins (see below).

Infected insect cells were subjected to nonreducing Western blot analysis using the
E protein-specific mAb, 4G2. Cells expressing ZIKV prME-A264C showed the expected E
monomer band at ~55 kDa, similar to cells expressing ZIKV prME (Fig. 5C). However, ZIKV
prME-A264C expression also led to an additional band of higher molecular weight, likely
representing the covalently linked E dimers (Fig. 5C).

Production and characterization of SVP-A264C vaccine at neutral-pH-adap-
ted insect cells

The VLP/SVP productions described above occurred using culture medium at pH 6.2-6.4,
which is the pH range commonly used in baculovirus-insect cell expression systems.
However, it is also the pH range at which flavivirus E protein-mediated fusion occurs (71-
73). The latter results in an irreversible conformational transition of the prefusion ZIKV
E protein dimers into a trimeric state to expose the fusion loop and initiate membrane
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FIG 3 Vaccination of Ifnar1™~ mice with Zika VLP or SVP and ZIKV challenge. (A) Timeline of vaccination of female Ifnar1™™ mice with a single, non-adjuvanted
dose of 1 pg Zika VLP or Zika SVP or CHIK VLP (negative control), followed by antibody measurements, and challenge with ZIKVpj,¢q followed by viremia
determinations, or challenge with ZIKVyr7¢6 followed by viremia and survival determinations. (B) ZIKVr7se €nd point IgG ELISA titers in serum from female
Ifnar”~ mice after immunization with one dose of the indicated vaccine. Limit of detection was one in 10 serum dilution. (C) ZIKVatal 50% neutralization titers
in serum from female Ifnar1™~ mice vaccinated as in B. Limit of detection is one in 10 serum dilution. Statistics by Kolmogorov-Smirnov exact tests. (D) Mean
viremias post ZIKV challenge (n = 5 per group). The limit of detection per mouse was 2 log1oTCID50/mL. Statistics relative to CHIK VLP on day 4. (E) Survival of
immunized mice after ZIKVyr7g6 challenge. Animals were euthanized when ethically defined end points had been reached. Statistics by log-rank tests relative to

CHIK VLP. (F) Timeline of vaccination of male Ifnar1™~ mice with three 1 Hg doses of Zika VLP or SVP, or CHIK VLP (negative control) adjuvanted with AddaVax,
(Continued on next page)
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Fig 3 (Continued)

or PBS (negative control), followed by serum antibody and viremia determinations after challenge with ZIKVpryagcso. (G) Serum ZIKVpr7g6 €nd point IgG ELISA
titers after three vaccinations or after infection with ZIKVatal (positive control). Limit of detection was one in 10 serum dilution. (H) Reciprocal anti-ZIKVpryagcso
50% neutralization titers. Limit of detection was one in 10 serum dilution. (I) Mean ZIKVpgryagcso Viremias post challenge (n = 4-5 per group). Statistics relative to
CHIK VLP on day 6 (for Zika VLP) and day 7 (for Zika SVP). Statistics Smirnov exact tests was used for data in panels B, C, D, G, and I.

fusion. The syncytia formation seen during SVP/VLP production (Fig. 1B and 5B) argues
that fusogenic activity of the ZIKV E protein had been triggered by the low pH of the
insect cell culture medium. We reasoned that presenting the immune system with SVPs
whose E proteins had largely undergone the transition to a fusogenic structure would
result in reduced induction of protective antibody responses, as the latter generally
requires presentation of envelope proteins in their prefusion conformation (19, 74, 75).
We thus sought to produce SVP vaccines at pH 7.0, which is above the threshold for
flavivirus E protein-mediated fusion (71, 72).

To investigate whether suspension Sf9 insect cells would tolerate being cultured at
higher pH, uninfected cells were grown for 3 days with no pH control (i.e., standard
culture conditions at pH = 6.2) and at pH 6.6, pH 6.8, or pH 7.0, and cell concentration
and cell viability were measured daily. The cells cultured in medium without pH control
(for which the pH gradually dropped from 6.2 to 6.0 during the experiment) as well
as the cells cultured in medium of pH 6.6 grew to cell densities of 107 cells/mL (Fig.
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FIG 4 Zika VLP and SVP epitope display analysis. Binding of (A) flavivirus cross-reactive anti-E mAbs 4G2, 1TM7, A11, B7, C8, and C10 and (B) ZIKV-specific anti-E
mAbs ZKA-64, Z3L1, Z23, A9E, GOE, Z20, and ZIKV-117 to wild-type ZIKV, ZIKV E subunit, Zika VLP, and Zika SVP vaccines. The mAbs that bind quaternary structure
epitopes are marked with “Q". The DENV2-specific anti-E mAb 3H5 was included as a negative control. The mean of two technical replicates is shown, with error
bars indicating the standard deviation.
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6A) and showed high cell viability (Fig. 6B). In contrast, growth of cells at pH 6.8 and
pH 7.0 was significantly slower (Fig. 6A), with low cell viability (Fig. 6B). Sf9 insect cells
were thus adapted to neutral pH via adaptive laboratory evolution using a step-wise
approach as described previously for another insect cell line (35). Briefly, Sf9 cells which
are typically cultured at a standard pH of =6.2 were subcultured at pH 6.5, 6.8, and 7.0
until a growth rate between 0.02 and 0.03 divisions/hour was achieved for >5 passages
(Fig. 6C). At this point, cells were considered adapted, and a cell bank was established.
Growth kinetics of cells adapted to higher pH by adaptive laboratory evolution showed
population doubling times within the expected range for standard, non-adapted Sf9
cells (= 24-28 hours) (Fig. 6D).

ZIKV SVP and SVP-A264C vaccines were produced using Sf9 cells adapted to neutral
pH (7.0) at 2 L bioreactor scale with constant maintenance of culture conditions at pH
7.0. Infection kinetics of adapted cells producing SVP and SVP-A264C were typical of a
process using the MOI herein employed (2 TCID5q units per cell), i.e., minimal cell growth
after infection and onset of cell viability drop after 24 hours (Fig. 6E) as well as increase
in cell diameter (Fig. 6F) in line with the prior infection experiments. As controls, both
vaccines were also produced using non-adapted Sf9 cells at pH 6.

Western bot analysis of purified SVP and SVP-A264C vaccines produced at pH 6 and
7 illustrated the putative covalently linked dimer for the SVP-A264C vaccine and the E
monomers for both vaccines produced at either pH (Fig. 7A). Spherical particles of ~20-
60 nm in diameter were observed in the purified samples by electron microscopy (Fig.
7B), indicating that prME-A264C expression resulted in SVP production and that particles
could also be formed at pH 7.

To investigate epitope presentation, the binding of a select panel of mAbs (Table 2)
to E protein epitopes was measured by ELISA (as in Fig. 4). The highest level of binding
across all four mAbs, with C10 and G9E recognizing quaternary epitopes, was seen for
the SVP-A254C vaccine produced at pH 7 (Fig. 7C).
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FIG 5 Production of the SVP-A264C vaccine in Sf9 cells. (A) Schematic overview of the ZIKV prME structural cassette with the alanine to cysteine (A264C)

substitution that promotes covalent linkage of E proteins to produce SVPs with stabilized E homodimers. The molecular mass of each viral protein is shown in

kDa. Cleavage sites of host signalase and host furin are indicated, as well as predicted signal peptide (sp) sequences and transmembrane helices. (B) Sf9 insect

cells infected with indicated baculovirus at 3 days post infection or uninfected cells. Syncytia formations are clearly evident (arrows). (C) Sf9 insect cells infected

with recombinant baculoviruses expressing the indicated cassettes analyzed by Western blot using pan-flavivirus anti-E mAb 4G2.
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Evaluation of the SVP-A264C vaccine in a murine ZIKV challenge model

Male Ifnar1™ mice were vaccinated at three different times (Fig. 8A) with 1 pg of
AddaVax-adjuvanted SVP-A264C vaccine or SVP vaccine, both produced at pH 7 (Fig. 8A).
Mice receiving PBS or PBS + adjuvant served as negative controls, and mice recovered
from a ZIKVatal infection served as a positive control group. Mice vaccinated with 1 pg
of the SVP-A264C (pH 7) vaccine developed statistically significant higher neutralization
titers than mice vaccinated with 1 pg of the SVP (pH 7) vaccine (P = 0.009), although
neutralization titers for SVP-A264C (pH 7) vaccination were = 6 fold lower than those
generated by ZIKVp,ta infection (Fig. 8B). No detectable neutralization titers were seen
after PBS inoculation (Fig. 8B).

After challenge with ZIKVpryagcso, the negative control PBS groups showed the
expected viremias, whereas SVP-A264C (pH 7) vaccinated mice showed no detectable
viremia on any day (limit of detection was 2 log;oCCIDs5o/mL) (Fig. 8C). SVP (pH 7)-
vaccinated mice showed viremia levels that were reduced by = 2.5-3 logs on 2-6
dpi when compared to PBS controls (Fig. 8C). Thus, both the A264C substitution and
production at pH 7 substantially improved the ability of these SVP vaccines to mediate
protection against viremia.

Immunization with SVP-A264C (pH 7) vaccine protected mice from testicular
damage

ZIKVpryaBCs9 infection of male Ifnar1™ mice results in overt reduction in testis size
and marked histopathological changes characterized by destruction of seminiferous
tubules (24, 45). Thus, as expected, the PBS control groups showed clear reductions
in testes size (Fig. 9A and B). Testis size reductions were also observed in mice with
past ZIKVatal infections, with these size reductions probably due to ZIKVj,ta) infection,
rather than ZIKVpryagcsg challenge. Importantly, mice that had been immunized with
adjuvanted SVP-A264C (pH 7) vaccine or SVP (pH 7) vaccines showed normal testis size
after challenge (Fig. 9A and B).

H&E staining of testes from the PBS + AddaVax control group illustrated the reduced
size and the previously described (24, 45) loss and disruption of seminiferous tubule
architecture (Fig. 10A and Q). No such testicular damage was seen in mice vaccinated
with the SVP-A264C (pH 7) vaccine (Fig. 10B and C).

DISCUSSION

Herein, we describe the generation of a baculovirus vaccine comprising prME proteins
of ZIKV, with both an envelope protein substitution, A264C, that stabilizes E dimer
formation (37, 38, 40, 41, 70) and SVP production at pH 7 to maintain the vaccine
structure in the prefusion conformation (74, 75). The SVP A264C (pH 7) vaccine protec-
ted mice from viremia against ZIKV challenge, whereas VLP/SVP vaccines, without the
A264C substitution and produced at the conventional lower pH, provided only limited
protection. The SVP A264C displayed a higher portion of E dimers, although dimerization
was not complete. Further efforts to enhance immunogenicity may involve additional
engineering of the ZIKV E glycoprotein.

The study highlights the importance of challenge experiments to ascertain whether
the responses induced by an experimental vaccine actually mediate protection against
virus challenge (76). The study also reiterates the contention that effective flavivirus
vaccines need to present the immunogen in an authentic tertiary and quaternary
structure with a prefusion conformation (19).

Effective ZIKV prME (SVP) vaccines with comparable results to those presented
herein have been developed using mammalian cell production systems (70, 77, 78).
For example, three vaccinations of Ifnar1™~ mice with 10 pg of a A264C prME ZIKV
vaccine adjuvanted with alum and monophosphoryl lipid A prevented viremia in most
mice (70), and two vaccinations of Ifnar1™~ mice with 10 ug of a A264C prME ZIKV
vaccine adjuvanted with alum reduced the RNAemia to undetectable levels in 3/10 mice.
The pH range of mammalian cell culture fluid is usually 7.0-7.2, which would likely
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FIG 6 Production of ZIKV SVP and SVP-A264C vaccines at neutral pH. For panels A-B, Sf9 cells (cell density at day 0: 2 x 10° cells/mL) were grown at standard

medium pH (no pH control) or at pH 6.6, pH 6.8, and pH 7.0 for 3 days. (A) Viable cell concentration. (B) Cell viability. For panels C-F, production of ZIKV SVP

and SVP-A264C using Sf9 cells adapted to neutral pH. (C) Cell growth rate during adaptation of insect Sf9 cells to neutral pH via adaptive laboratory evolution.

At passage #1, culture pH was changed from standard (=6.2) to 6.5. After establishment of each cell bank, cell culture pH was changed to the next pH iteration.

(D) Cell growth kinetics of new high pH-adapted cell lines. PDT, population doubling time. (E) Cell growth and viability kinetics and (F) cell diameter during
production of SVP and SVP-A264C vaccines using pH 7-adapted insect Sf9 cells.

result in retention of the prefusion conformation in these vaccines. Mammalian systems
would thus not require pH adaptation; however, mammalian production systems remain
expensive, yields can be low, and scale-up can be difficult (79, 80). A recent alternative
method for generating VLP-like ZIKV vaccines is the use of a chimeric virus, comprising
an insect-specific virus (Binjari virus) backbone and prME from ZIKV (21, 24, 56). A single

2 ug dose of unadjuvanted chimeric vaccine completely protected Ifnar1
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FIG 7 Characterization of ZIKV SVP and SVP-A264C vaccines produced at pH 7 or pH 6. (A) SVP-A264C and SVP vaccines were produced at pH 7 or pH 6, sucrose
gradient purified, and analyzed by Western blotting using the anti-E mAb 4G2. (B) Transmission electron microscopy photos of the vaccines in A. (C) Epitope

display analysis of SVP-A264C and SVP vaccines produced at pH 6 or pH 7. Binding of flavivirus cross-reactive anti-E mAbs 4G2, TM7, and C10 and ZIKV-specific

anti-E mAb GOE. C10 and G9E bind quaternary structure epitopes.

viremia and testes damage (24). This potentially highlights an advantage of CprME over
prME particle vaccines, with the Binjari/Zika-prME chimera folding into authentic ~50 nm
virion particles (24). Cleavage of C from CprME is achieved by the NS2B/NS3 protease
in infected cells, with Binjari virus NS2B/NS3 able to correctly cleave Binjari virus capsid
from ZIKV prME (24). Whether the baculovirus system can provide C-prME cleavage at
the correct site remains unclear and may warrant further investigations. However, other
factors may be in play to explain the efficacy of the Binjari chimera, such as immuno-
potentiating impurities in the vaccine preparations, glycosylation patterns (79), and/or
some kind of limited abortive RNA replication (81). Perhaps useful to note is that effective
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mice with SVP-A264C or SVP vaccines produced at pH 7.0. The vaccines were adjuvanted with AddaVax. Negative control mice received PBS with AddaVax or PBS.

Mice recovered from ZIKVnatal infection (10* TCIDsq s.c. week 0) represented positive controls; ZIKVyatal infection is nonlethal in this setting. Sera was collected

prior to challenge to determine neutralizing antibody titers, with serum viremias determined days 1-7 post challenge with ZIKVpryagcso (10° TCIDsg s.c.). Mice

were euthanized on day 31 and testes harvested (see Fig. 9 and 10). (B) Mean and individual serum ZIKVpryagcsg 50% neutralization titers from mice that had

received the indicated vaccines, PBS controls, or after infection with ZIKVjatal. Limit of detection was 1 in 30 dilution of serum (dotted line; data points plotted on

this line represent not detected, ND). Statistics by Kolmogorov-Smirnov exact test. (C) Mean ZIKVpryagcso Viremias post challenge for the same groups as in B (n

=5-6 mice per group).

ZIKV mRNA vaccines also encode just prME (18, 19), with mammalian cells generally
unable to mediate cleavage of capsid from CprME. Perhaps an overriding consideration
is that baculovirus systems have been approved for manufacture of human vaccines (82),
whereas mosquito cell lines (currently used for chimeric Binjari vaccines [83]) have yet
to pass this hurdle. Additional advantages of baculovirus expression of glycoproteins in
insect cells are the established history of safety and industrial applications (>40 years)
(84), the predictable and homogeneous glycosylation patterns, and the compatibility
with expression of arboviral proteins and VLPs (85).

Our study has a number of limitations; firstly, we have not explored the full range of
adjuvants that are currently available and that may be suitable for Zika VLP/SVP vaccines.
This includes alum (86, 87) and ASO series adjuvants (88, 89), as well as promising
adjuvants yet to be approved for use in humans (90, 91). Secondly, although, for instance,
dengue virus VLP studies in nonhuman primates have also used up to three vaccinations
(92), strategies to reduce the requirement for multiple vaccinations are desirable for such
vaccines, especially in resource-poor settings where they are usually most needed. A
single vaccination with ensuing lifelong immunity (93) remains a laudable goal. Lastly,
side-by-side comparisons of any new vaccine with the latest in mRNA vaccine develop-
ment (18) are likely to be warranted (94). Such studies might include evaluation of the
longevity of responses and analysis of 1gG isotype profiles, areas where mRNA vaccine
performance may be suboptimal (22, 95).

In conclusion, we have illustrated a development path for the generation of a
baculovirus-derived Zika SVP vaccine, which has required both a mutation to stabilize
the E dimers and generation of Sf9 insect cells capable of producing vaccine at pH 7.
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