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ABSTRACT Zika virus (ZIKV) caused unprecedented outbreaks in South America and 
the Caribbean in 2015–2016, leading primarily to a series of abnormalities in neonates 
termed congenital Zika syndrome. The threat of ZIKV reemergence has seen the 
development of multiple ZIKV vaccines that are at the preclinical stage or in early-stage 
clinical trials. Herein, we describe a pathway to the development of ZIKV vaccines 
generated using a baculovirus-insect cell expression system, which is widely applied for 
the manufacture of biologics for human use. Virus-like particle (VLP) vaccines comprising 
CprME and subviral particle (SVP) vaccines comprising prME were evaluated for their 
ability to mediate protection against ZIKV challenge in Ifnar1−/− mice. Initial attempts 
resulted in VLP and SVP vaccines that failed to present quaternary epitopes and did 
not provide effective protection. To improve the SVP vaccine, two modifications were 
introduced: firstly, an alanine to cysteine substitution (A264C) in the E domain II region to 
promote the formation of stabilized E homodimers and, secondly, the use of Spodoptera 
frugiperda Sf9 insect cells that had been adapted to grow and produce vaccine at a 
neutral pH of 7. E homodimers largely retain their pre-fusion conformation at pH 7, 
which is a requirement for the induction of effective neutralizing antibody responses. 
The stabilized SVP-A26C vaccine induced high levels of neutralizing antibodies and 
protected male Ifnar1−/− mice against viremia and testicular damage. Our study reiterates 
the need to present the immune system with E dimers arranged in authentic quaternary 
conformations and provides a scalable production method for this novel ZIKV vaccine.

IMPORTANCE We describe the generation of a subviral particle (SVP) vaccine comprising 
prME proteins of ZIKV, with an envelope protein substitution, A264C, that stabilizes E 
dimer formation. The SVP vaccine was produced in a novel Sf9 insect cell line adapted 
to grow in suspension at pH 7. The study highlights the importance of challenge 
experiments to ascertain whether the responses induced by an experimental vaccine 
actually mediate protection against virus infection and disease. The study also reiterates 
the contention that effective flavivirus vaccines need to present the immunogen in an 
authentic tertiary and quaternary structure with a pre-fusion conformation.
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Z ika virus (ZIKV) is a mosquito-borne pathogen that caused an explosive outbreak 
of human disease primarily in the Americas during 2015 and 2016 (1, 2), although 

transmission was also reported in a range of countries worldwide (3). The key disease 
manifestation, congenital Zika syndrome (CZS), represents a spectrum of congenital 
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malformations in newborns, including but not limited to microcephaly (4). Around 4,000 
children in 27 countries have been affected, with the largest number of cases 
occurring in Brazil (5). CZS is often associated with developmental delays and neurologic 
sequelae in infants (6) and can lead to a series of chronic health issues (7, 8) includ­
ing increased vulnerability to infectious and respiratory conditions (9). The burden of 
congenital anomalies, nervous system disorders, and infectious diseases also contribute 
to an increase in mortality in children live-born with CZS (10). ZIKV infection in adults can 
cause Guillain-Barré syndrome (11), with ZIKV also able to infect the male reproductive 
tract (12), where it can persist for extended periods (13, 14).

In 2022, the World Health Organization (WHO) declared the Global Arbovirus Initiative 
against arboviruses, which includes ZIKV (15). The initiative seeks to strengthen global 
preparedness to future arboviral disease outbreaks, which involves inter alia develop­
ment of new vaccines and vaccine technologies. A number of ZIKV vaccines are in 
development and use a range of modalities (16–19), with a paramount consideration 
being safety in pregnant women and women of childbearing age (20). Long-term 
protective immunity is also desirable (21), given that ZIKV outbreaks are likely again 
to occur in resource-poor countries. Although mRNA vaccines have seen spectacular 
advances in recent years and have been applied to ZIKV vaccine design (18), lack of 
long-term protective immunity remains an issue (19, 22).

ZIKV belongs to the species Orthoflavivirus zikaense, genus Orthoflavivirus in the 
family Flaviviridae, and contains a positive-sense, single-stranded 11 kilobase (kb) RNA 
genome. ZIKV has three structural proteins: capsid (C), precursor membrane (prM), 
and envelope (E) that together build a spherical virus particle of ~50 nm in diameter. 
Immature ZIKV particles bud into the endoplasmic reticulum (ER) lumen and travel 
through the Golgi apparatus to the cell surface. During this process, conformational 
changes in the E glycoprotein and cleavage of prM in the precursor peptide (pr) and 
M protein occur. Dissociation of pr upon egress into the extracellular environment 
results in mature, smooth particles displaying 90 E homodimers on their surface (23–
26). The highly ordered, tertiary and quaternary structures adopted by the antiparallel 
E homodimers on the virion particle surface (27) represent the main target of neutraliz­
ing antibodies, with presentation of authentic structures to B cells likely important for 
vaccine-mediated generation of protective neutralizing antibody responses (19, 24, 28, 
29).

Herein, we evaluate the prototype vaccines against ZIKV generated using the 
baculovirus-insect cell expression system that comprise virus-like particle (VLP) or 
subviral particle (SVP) vaccines. The VLP vaccine was produced by expressing the ZIKV 
structural proteins C, prM, and E, which self-assemble into particles that are structurally 
similar to wild-type virus. SVP vaccines were produced by expression and self-assembly 
of only both prM and E proteins. VLP and SVP vaccines lack a viral genome and are 
unable to replicate, with replication-incompetent ZIKV vaccines generally viewed as safer 
for pregnant women (30). The vaccines were evaluated in established Ifnar1−/− mouse 
models of ZIKV infection and disease (24, 31).

MATERIALS AND METHODS

Regulatory compliance

Breeding and use of GM mice were approved under a Notifiable Low Risk Dealing 
(NLRD) Identifier: NLRD_Suhrbier_Oct2020: NLRD 1.1(a). Agistment conditions were as 
follows: light = 12:12 hour dark/light cycle, 7:45 a.m. sunrise and 7:45 p.m. sunset, 
15 minute light dark and dark light ramping time; enclosures, M.I.C.E cage (Animal 
Care Systems, Colorado, USA); ventilation, 100% fresh air, eight complete air exchange/h/
room; in-house enrichment, paper cups (Impact-Australia), tissue paper, cardboard rolls; 
bedding, PuraChips (Able scientific) (aspen fine); food, double bagged norco rat and 
mouse pellet (AIRR, Darra, QLD); water, deionized water acidified with HCl (pH = 3.2); and 
temperature, 22 ± 1°C (32).
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Cell culture

Spodoptera frugiperda Sf21 (Gibco, Carlsbad, CA, USA), Sf9 (Gibco), and Sf9-ET (33) cells 
were grown at 27°C. Monolayers of Sf21 cells were cultured in Grace’s medium (Gibco) 
supplemented with 10% fetal bovine serum (FBS; Gibco). Monolayers of Sf9-ET cells were 
grown in Sf900II medium (Gibco) containing 5% FBS and 100 µg/mL geneticin (Gibco). 
Monolayers and suspension cultures of Sf9 cells were maintained in Sf900II serum-free 
medium supplemented with 50 µg/mL gentamycin (Gibco). The African green monkey 
kidney Vero cell line was grown in RPMI 1640 medium supplemented with 10% FBS at 
37°C and 5% CO2.

Insect cell adaptation to neutral pH

Sf9 suspension cultures (2 × 106 cells/mL at day 0) were grown in culture medium of 
uncontrolled pH or culture medium set to pH 6.6, 6.8, or 7.0. Culture medium was set to 
the desired pH using 0.5 M NaOH at day 0 and checked each day thereafter with a pH 
monitoring probe to ensure a constant pH (34). Cell concentration and cell viability were 
determined daily using a Countess II Automated Cell Counter (Invitrogen) according to 
supplied protocol. Adaptation of Sf9 cells to higher culture pH by an adaptive laboratory 
evolution approach was performed using a stepwise approach (i.e., adaptation from the 
standard culture pH of 6.2 to, initially, pH of 6.5, then 6.8, and finally 7.0) as described 
(35). Cells were cultured in medium containing a 1:1 mixture of Sf900 II (Gibco) medium 
and a solution composed of 50 mM HEPES, 124 mM sucrose, 5 mM glucose, 50 mM NaCl, 
20 mM KCl, 3 mM CaCl2, 10 mM MgSO4, and 0.1% (w/v) Pluronic F-68; pH was adjusted 
to 6.5, 6.8, or 7.0 by adding 1 M NaOH and sterile filtered using a 0.22 µm Stericup 
(Millipore). Cells were subcultured in each pH step until a constant growth rate and cell 
viability over 95% were observed, and master cell banks were prepared after adaptation 
at each pH.

Generation of recombinant baculoviruses

ZIKV structural cassettes CprME, prME, and EΔTM (secreted E; lacking a transmembrane 
domain) were amplified from the cDNA of the Asian lineage ZIKV Suriname 2016 isolate 
(NL00013, GenBank KU937936.1, isolated from a patient in The Netherlands [36] and 
obtained from the Erasmus Medical Center, Rotterdam, The Netherlands) by PCR using 
Phusion High-Fidelity DNA Polymerase (New England Biolabs, Ipswich, MA, USA) and 
a 2720 Thermal Cycler (Applied Biosystems). Primers (Table 1) contained attB recombina­
tion sites to enable Gateway cloning (Invitrogen). The ZIKV structural cassettes were 
recombined into a pDONR207 plasmid (Invitrogen) and subsequently into a pDEST8 
plasmid (Invitrogen) downstream of the baculovirus polyhedrin promoter. The pDEST8 
plasmid containing the prME cassette was used to create an alternative pDEST8 plasmid 
containing a prME cassette with an alanine to cysteine substitution (A264C) as previously 
described for the production of stable, covalently linked dengue virus (DENV) and ZIKV E 
homodimers (37–41). The A264C substitution was introduced by quick change PCR using 
primers described in Table 1. Next, the four cassettes (CprME, prME, prME-A264C, EΔTM) 
were transposed into the improved Autographa californica multiple capsid nucleopolyhe­
drovirus (AcMNPV) backbone BACe56 with a relocated attTn7 transgene insertion site 
(42). Sf21 cells were transfected with purified recombinant bacmid DNA using ExpreS2 TR 
(ExpreS2ion Biotechnologies). Recombinant baculovirus titers were determined in Sf9-ET 
cells and expressed as 50% tissue culture infectious dose per mL (TCID50/mL).

Production of ZIKV vaccines

For small-scale vaccine production, 8 × 106 Sf21 or Sf9 insect cells were seeded 
as monolayers in 75 cm2 flasks. Cells were infected with recombinant baculovirus 
containing the ZIKV CprME structural cassette (BACe56/ZIKV-CprME), the ZIKV prME 
structural cassette (BACe56/ZIKV-prME), or the ZIKV prME-A264C structural cassette 
(BACe56/ZIKV-prME-A264C) for Zika VLP, Zika SVP, or Zika SVP-A264C vaccine production, 
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respectively. Soluble ZIKV E subunit was produced by infecting cells with recombi­
nant baculovirus harboring the structural cassette ZIKV EΔTM (BACe56/ZIKV-EΔTM). 
Uninfected cells as well as cells infected with recombinant baculovirus expressing a 
green fluorescent protein (BAC/GFP) (43) were used as negative controls. Cells were 
infected at a multiplicity of infection (MOI) of 10 TCID50 units per cell (CprME, prME, 
EΔTM, GFP) or 0.4 TCID50 units per cell (prME-A264C). After infection, cells were 
incubated at 27°C for 4 hours. Afterward, the cell culture medium was replaced by fresh 
medium, and cells were incubated at 27°C for 3–4 days.

For larger scale vaccine production, Sf9 suspension cultures containing 2.0–2.5 × 
106 cells/mL were infected with BACe56/ZIKV-CprME or BACe56/ZIKV-prME or BACe56/
ZIKV-prME-A264C at an MOI of 0.01–5 TCID50 units per cell. Cells were incubated at 
27°C for 3 days. For infections performed with neutral-pH-adapted cells at bioreactor 
scale, pH was monitored and controlled at 7.0 during the entire process using NaOH. 
Cells and medium were harvested and separated by centrifugation at 1,700 rpm for 
5 minutes using a Heraeus Megafuge 40R centrifuge (Thermo Scientific). The cell pellet 
was resuspended in PBS, and the supernatant containing the Zika VLP and SVP vaccines 
was filtered through a 0.45 µm filter.

Purification of ZIKV vaccines

First, 7% (w/v) polyethylene glycol (PEG)-6000 and 0.5 M NaCl were added to the 
filtered medium to precipitate the VLP/SVPs. After 2 hours at room temperature (RT) 
and following centrifugation at 4,700 rpm for 15 minutes using a Heraeus Megafuge 
40R centrifuge (Thermo Scientific), the pellet was dissolved in GTNE buffer (200 mM 
glycine, 50 mM Tris/HCl, 100 mM NaCl, 1 mM EDTA, pH 7.3). The VLP/SVPs in GTNE were 
then loaded onto a 30%–80% (w/v) continuous sucrose gradient (prepared in GTNE) and 
subjected to centrifugation at 45,000 rpm for 2 hours using an SW55 rotor (Beckman). 
Twenty-five fractions were collected from the top of the gradient and analyzed for the 
presence of ZIKV E protein using Western blot. ZIKV E protein containing fractions was 
pooled and centrifuged again at 45,000 rpm for 2 hours. The pellet was then dissolved 
in GTNE buffer, and the pure VLP/SVPs were stored at −80°C. Samples were subsequently 
analyzed by Western blot to detect and quantify ZIKV E protein and by transmission 
electron microscopy to check the integrity of the particles.

Zika VLP/SVP vaccine protein analysis and Western blot

ZIKV proteins from cell fractions, medium fractions, and purified VLP/SVP fractions were 
analyzed using sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) 
followed by Western blotting. Samples were run on a Mini-PROTEAN TGX gel (Bio-Rad), 
with a trans-blot semi-dry transfer cell (Bio-Rad) used to transfer the proteins to an 
Immobilon-P membrane (Merck Millipore). The membrane was blocked at 4°C overnight 

TABLE 1 Primers used in this studya

Target Primer name Primer sequence (5′→3′) Product

(kb)

ZIKV CprME attB1-ZIKV-C-F GGGGACAAGTTTGTACAAAAAAGCAGGCTTAACCATGAAAAACCCAAAAAAGAAATC 2.4

attB2-ZIKV-Estem/

anchor-R

GGGGACCACTTTGTACAAGAAAGCTGGGTATTAAGCAGAGACGGCTGTGGATA

ZIKV prME attB1-ZIKV-pr-F GGGGACAAGTTTGTACAAAAAAGCAGGCTTAACCATGGGCGCAGATACTAGTGTCGG 2.0

attB2-ZIKV-Estem/

anchor-R

GGGGACCACTTTGTACAAGAAAGCTGGGTATTAAGCAGAGACGGCTGTGGATA

ZIKV EΔTM attB1-ZIKV-E-F GGGGACAAGTTTGTACAAAAAAGCAGGCTTAACCATGTCAACGAGCCAAAAAGTCAT 1.3

attB2-6xHis-tag-ZIKV-E-R GGGGACCACTTTGTACAAGAAAGCTGGGTATTAGTGATGGTGATGGTGATGTTTTCCAATGGTGCTGCCAC

pDEST8/ZIKV- prME- 

A264C

ZIKV-E-A264C-F TCAAGAAGGATGCGTTCACACGGCCCTTGCTGG 8.5

ZIKV-E-A264C-R CCGTGTGAACGCATCCTTCTTGACTCCCTAGAA
aThe attB site of each primer is shown in bold. The mutations used to create the A264C substitution are underlined.
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using 1% skim milk powder dissolved in PBS containing 0.05% Tween (PBS-T). The 
membrane was incubated at RT for 1 hour with pan-flavivirus α-E monoclonal antibody 
(mAb) 4G2 (44) diluted 1:1000 in 1% skim milk. After washing the membrane three times 
with PBS-T, alkaline phosphatase, conjugated goat anti-mouse IgG secondary antibody 
(Sigma-Aldrich) diluted 1:2500 in PBS-T was added. After 1 hour, the membrane was 
washed three times with PBS-T and subsequently incubated with alkaline phosphatase 
buffer as described (43) for 10 minutes. The membrane was developed using NBT/BCIP 
(Roche Diagnostics).

Quantification of Zika VLP/SVP vaccines

The purified ZIKV vaccines were quantified using a dilution series of pure DENV serotype 
4 E protein (The Native Antigen Company). Samples with purified Zika VLP/SVP and 
samples containing serial twofold dilutions of 3 µg DENV E were prepared and analyzed 
by SDS-PAGE and Western blot using the pan-flavivirus 4G2 mAb as described above. The 
intensity of protein bands was compared to estimate the concentration of Zika VLP/SVP 
in the purified fractions.

Antibody ELISA, neutralization assays, and virus titration

IgG responses were measured by standard ELISA using whole ZIKVMR766 as antigen 
as described (45, 46). The neutralizing ability of mouse sera from vaccinated animals 
was also determined as described (45). Briefly, serum was heat-inactivated at 56°C 
for 30 minutes. Diluted serum was incubated with 100 TCID50 of ZIKVNatal (GenBank 
KU527068) or ZIKVPRVABC59 (GenBank LC002520.1) for 2 hours, and Vero cells (105 

cells/ml) were added afterward. Cells were fixed at 7 days post infection and stained 
with crystal violet, after which the reciprocal 50% neutralization titers were determined. 
To validate this assay, sera from four mice immunized with UV-inactivated virus were 
tested and provided reciprocal anti-ZIKVPRVABC59 50% neutralization titers of 916, 1556, 
1847, and 1717. Serum viremia was measured by TCID50 assays as previously reported 
(47).

Epitope display analysis

Display of epitopes on Zika VLP/SVP vaccines was analyzed by ELISA using a panel of 
well-defined mouse or human-derived mAbs targeting the flavivirus E protein (Table 
2) (28, 37, 48, 49). ZIKV H/PF/2013 (GenBank KJ776791.2) wild-type virus and recombi­
nant E subunit (37) were included for comparison. All analyses were carried out in 
duplicate. Zika VLP/SVP vaccines, wild-type ZIKV, and ZIKV E subunit were captured 
using 4G2 mAb (44) (for human detection antibodies) or 1M7 mAb (50) (for mouse 
antibodies). The DENV serotype 2 specific mAb 3H5 (51) was used as a negative control. 
Antibody binding was determined using alkaline phosphatase-conjugated antihuman or 
anti-mouse IgG secondary antibodies (Sigma) in combination with alkaline phosphatase 
substrate (Sigma). Absorbance was measured at 405 nm.

Transmission electron microscopy

Purified Zika VLP/SVP vaccines in GTNE buffer were loaded onto 200 mesh carbon-coated 
copper grids (Electron Microscopy Sciences). After 2 minutes at RT, the excess liquid 
was removed, and 2% ammonium molybdate (pH 7) was added to the grids. After 
30 seconds at RT, the excess liquid was again removed. After air-drying, the grids were 
analyzed using a JEOL JEM-1011 transmission electron microscope. VLP/SVP diameters 
were determined using ImageJ in combination with in-house macros.

Zika VLP and SVP vaccination and challenge of female Ifnar1−/− mice

Female interferon-α/β receptor knockout (Ifnar1−/−)  mice (C57BL/6J background; ≈13 
weeks old) were immunized with 1 µg Zika VLPs or SVPs per mouse (56). As a 
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negative control,  a group of female Ifnar1−/−  mice was vaccinated with 1 µg CHIKV 
VLPs, which were produced and purified as described (43, 57).  The vaccines or 
PBS were administered once via the intramuscular route (40 µL into both quadri­
ceps muscles).  The mice were challenged by subcutaneous inoculation with 103 

TCID50  ZIKVMR766  (GenBank LC002520.1) 6 weeks after the first immunization or 
104  TCID50  ZIKVNatal  (GenBank KU527068) 8 weeks after the first immunization (45, 
47).  ZIKVMR766  infection is lethal in Ifnar1−/−  mice, with mice euthanized at ethically 
defined end points (58).

Zika VLP and SVP vaccination and challenge of male Ifnar1−/− mice

Male Ifnar1−/− mice (≈12 weeks old) were immunized at three different times with 1 µg 
Zika VLPs or SVPs mixed in a 1:1 vol ratio with AddaVax adjuvant (InvivoGen) (59). 
Negative control groups were male Ifnar1−/− mice vaccinated with CHIKV VLPs (43) 
formulated with AddaVax or inoculated with PBS. The vaccines or PBS were adminis­
tered via the intramuscular route (40 µL into both quadriceps muscles). A positive 
control group was infected with 104 TCID50 ZIKVNatal s.c. at the base of the tail. Mice 
were challenged by subcutaneous inoculation with 103 TCID50 ZIKVPRVABC59 (GenBank 
MH158237.1) 14 weeks after initial immunization (58).

SVP and SVP-A264C (pH 7) vaccination and challenge of male Ifnar1−/− mice

Male Ifnar1−/− mice (≈12 weeks old) were immunized at three different times with 
1 µg of the SVP-A264C (pH 7) or SVP (pH 7) vaccines mixed in a 1:1 vol ratio with 
AddaVax adjuvant. Negative control groups were male Ifnar1−/− mice inoculated with 
PBS formulated with AddaVax or PBS alone. The positive control was male Ifnar1−/− mice 
infected with ZIKVNatal as above. Mice were challenged by subcutaneous inoculation 
with 103 TCID50 ZIKVPRVABC59 (GenBank MH158237.1) 11 weeks after initial immunization 
(58)

Statistics

The t-test was used if the difference in variances was <4 fold, skewness was >−2, and 
kurtosis was <2. The t-test significance and variance were determined using Microsoft 

TABLE 2 Monoclonal antibodies (mAbs) used for epitope display analysisa

mAb M/H Binding Neutralization
(W/M/S)

E protein-binding region Binding to DENV serotypes and ZIKV Reference

DV1 DV2 DV3 DV4 ZIKV

4G2 M F-CR W DII FL ++ ++ +++ +++ +++ (44)
1M7 H F-CR M DII FL +++ ++ +++ +++ +++ (50)
A11 (EDE2) H F-CR DV:S ZIKV:W DI/DII/DIII Q +++ +++ +++ +++ + (52)
B7 (EDE2) H F-CR DV:S ZIKV:W DI/DII/DIII Q +++ +++ +++ +++ + (52)
C8 (EDE1) H F-CR DV:S ZIKV:S DI/DII/DIII Q +++ +++ +++ +++ ++ (52)
C10 (EDE1) H F-CR DV:S ZIKV:S DI/DII/DIII Q +++ +++ +++ +++ ++ (52)
ZKA-64 H ZIKV ZIKV:S DIII – – – – +++ (53)
Z3L1 H ZIKV ZIKV:S DI/DII – – – – +++ (54)
Z23 H ZIKV ZIKV:S DIII – – – – +++ (54)
A9E H ZIKV ZIKV:S DI Qb – – – – +++ (28)
G9E H ZIKV ZIKV:S DII Qb – – – – +++ (28)
Z20 H ZIKV ZIKV:S DII Q – – – – +++ (54)
ZIKV-117 H ZIKV ZIKV:S DII Q – – – – +++ (55)
3H5 M DV2 DV2:S DIII LR – +++ – – – (51)
aA panel of characterized mouse (M) or human (H) derived mAbs was used to interrogate binding to Zika VLP/SVP vaccines. Abbreviations: EDE, E dimer epitope dependent; 
F-CR, flavivirus cross-reactive; W/M/S,weakly, moderately or strongly neutralizing; DI, DII, DIII, binding to E-domain I, II, or III; FL, fusion loop; LR, lateral ridge; Q, quaternary; 
–/+/++/+++, no/weak/moderate/strong binding.
bNot completely mapped.
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Excel. Skewness and kurtosis were determined using IBM SPSS Statistics for Windows 
v19.0. Otherwise, the nonparametric Kolmogorov-Smirnov exact test was performed 
using GraphPad Prism 10.

RESULTS

Production and purification of Zika VLPs and SVPs from insect cells

To produce Zika VLP or SVP vaccines in insect cells, recombinant baculoviruses express­
ing the structural cassette ZIKV CprME or prME (Fig. 1A), respectively, were constructed. 
A secreted ZIKV E subunit was produced for comparison by expressing the ZIKV E coding 
region without the C-terminal transmembrane domain (Fig. 1A and E ΔTM). The prM and 
E sequences contained their native signal peptides for translocation to the ER. Recombi­
nant baculoviruses BACe56/ZIKV-CprME, BACe56/ZIKV-prME, and BACe56/ZIKV-EΔTM 
were used to infect Sf21 cells at an MOI of 10 (TCID50 per cell). Uninfected cells and 
cells infected with a recombinant baculovirus expressing GFP (BAC/GFP) (43) were 
included as negative controls. After 4 days, signs of baculovirus infection were observed 
for infections with BACe56/ZIKV-CprME, BACe56/ZIKV-prME, BACe56/ZIKV-EΔTM, and 
BAC/GFP (Fig. 1B). The infected cells showed an increased cell diameter, enlarged nuclei, 
detachment, growth arrest, and lysis. Uninfected cells did not show these effects (Fig. 1B). 
BACe56/ZIKV-prME-infected cells also showed formation of large syncytia (Fig. 1B, top 
center). The syncytia were most likely caused by fusogenic activity of the ZIKV E protein, 
which is also responsible for fusion of the viral envelope with the endosomal membrane 
during virus infection (60).

The baculovirus-infected cells and the culture fluid were analyzed by Western blot 
using the anti-E mAb 4G2. Expression of ZIKV CprME and ZIKV prME structural cassettes 
resulted in the detection of a protein at ∼55 kDa, similar to the predicted molecular mass 
of processed E protein (56 kDa, in both cell and medium fractions [Fig. 1C]). Expression 
of ZIKV-EΔTM showed a protein at ∼50 kDa (Fig. 1C), which corresponds to the predicted 
molecular mass of processed EΔTM (47 kDa). VLP/SVP vaccines were isolated from the 
culture fluid using PEG precipitation followed by 30%–80% continuous sucrose gradient 
purification. Purification was confirmed by Western blot analysis (Fig. 1C).

Characterization of Zika VLP and SVP vaccines

The purified VLP/SVP vaccines were analyzed by transmission electron microscopy. 
Spherical particles with a diameter of ∼20–60 nm were observed in the VLP (CprME) 
preparation, with particle diameter distribution showing segregation into two groups 
(Fig. 2A). The larger VLPs had a diameter of 52–55 nm (Fig. 2B), which corresponds 
with the reported size of complete, infectious ZIKV virions. The smaller particles had a 
diameter of 24–27 nm (Fig. 2B), which correspond to the size of Zika SVPs. Non-infectious 
SVPs of about ∼20–30 nm in diameter have previously been observed during natural 
flavivirus infection (61) and after expression of recombinant flavivirus prME (62, 63). The 
purified SVP (prME) preparation comprised mostly of ∼20–30 nm diameter SVPs, with a 
smaller fraction of larger particles (Fig. 2C and D).

Poor protection against challenge after Zika VLP and SVP vaccination

The Zika VLP (CprME) and SVP (prME) experimental vaccines were produced at larger 
scale using suspension Sf9 insect cells. Female Ifnar1−/− mice received one dose of 1 µg 
of the purified VLPs (10 mice) or SVPs (five mice), and antibody responses and protection 
against ZIKVNatal and ZIKVMR766 challenge were assessed (Fig. 3A). As a negative control, 
five mice were vaccinated with purified chikungunya virus (CHIKV) VLPs (43). Four weeks 
post VLP/SVP vaccination, significant ZIKV-specific ELISA titers were generated, whereas 
no ZIKV-specific antibodies were detected after immunization with CHIKV VLPs (Fig. 3B). 
Most VLP/SVP-vaccinated mice developed significant neutralizing antibody titers against 
ZIKV, whereas CHIKV VLPs did not induce detectable neutralizing antibody responses 
(Fig. 3C).
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FIG 1 Production of Zika VLP and SVP vaccines using insect cells. (A) Schematic representation of the structural cassettes used for the production of Zika VLP 

(CprME), ZIKV SVP (prME) vaccines, and secreted ZIKV E subunit (EΔTM) in insect cells. The molecular mass of each viral protein is shown in kDa. Cleavage sites of 

viral protease, host signalase, and host furin are indicated, as well as predicted signal peptide (sp) sequences and transmembrane helices. ZIKV EΔTM contains a 

C-terminal histidine tag (6xHis). (B) Sf21 insect cells infected with the indicated baculoviruses at 4 days post infection or uninfected cells. (C) Western blot analysis 

of ZIKV E protein expression in Sf21 insect cells infected with recombinant baculoviruses containing the indicated cassettes at 4 days post infection, in culture 

fluids from those infected Sf21 cells, and in VLP/SVP vaccines purified by sucrose gradient. Western blotting used the pan-flavivirus anti-E mAb 4G2.
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Mice were challenged with the African ZIKVMR766 isolate, which is lethal in this model 
(58), or with the Brazilian ZIKVNatal isolate, which is generally nonlethal in this model (47). 
Viremias were not significantly suppressed in VLP/SVP vaccinated mice, except on day 4 
post challenge (Fig. 3D). Zika SVP-vaccinated mice were nevertheless significantly 
protected against weight loss that reached ethically defined end points (>20%) that 
required euthanasia (Fig. 3E). In addition, 60% of mice vaccinated with VLPs survived, 
although this did not reach statistical significance (Fig. 3E, P = 0.16). VLP/SVP vaccination 
thus provided limited protection against challenge.

Next, we vaccinated mice at three different times (Fig. 3F) with the VLP/SVP vac­
cines and included an adjuvant, AddaVax, a squalene-based, oil-in-water, nano-emul­
sion adjuvant formulation similar to the MF59 adjuvant licensed for use in humans 
(64). Although higher ELISA titers were achieved after three vaccinations (Fig. 3G), no 
neutralization titers were detected (Fig. 3H). After challenge with ZIKVPRVABC59, VLP/
SVP-vaccinated mice again showed only a significant reduction late in the viremic period 
(Fig. 3I, 6/7 dpi). The results suggested that although three doses and adjuvant increased 
the ELISA titers, they did not improve protection.

The surprisingly low neutralizing antibody responses (Fig. 3H) suggested poor 
presentation to the immune system of authentic tertiary and/or quaternary structures, 
which are deemed important for generation of effective neutralizing antibody responses 
(19). This may have arisen due to pH issues during production (see below) affecting the 
vaccine batch used for Fig. 3F to I more than the vaccine batch used for Fig. 3A to E. 
Alternatively, AddaVax, which contains the surfactants Span 85 (sorbitan trioleate) and 

FIG 2 Electron microscopy analysis of Zika VLP and SVP vaccines. (A) Transmission electron microscopy photo of purified Zika VLP (CprME) vaccine. (B) Size 

distribution of particles in CprME fraction based on diameter measurements of 227 particles. (C) Transmission electron microscopy photo of purified Zika SVP 

(prME) vaccine. (D) Size distribution of particles in prME fraction based on diameter measurements of 258 particles.
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Tween 80 (polyoxyethylene 80/sorbitan monooleate) (65), may have destabilized the 
VLP/SVPs (66–68). These results suggested that these VLP/SVP vaccines adopted and/or 
maintained authentic conformations poorly.

Epitope display analysis

To explore the tertiary and/or quaternary structures presented by VLP/SVP vaccines, a 
panel of 14 well-characterized monoclonal antibodies (mAbs) that recognize E protein 
epitopes on ZIKV (Table 2) were used in a series of ELISAs. The pan-flavivirus mAbs 4G2 
and 1M7 (Fig. 4A), which recognize low complexity fusion loop epitopes in domain II 
of the E, bound with similar efficiency (similar absorbance) to wild-type virus (positive 
control) and the VLP/SVP vaccines (Fig. 4A). In contrast, the pan-specific flavivirus E 
dimer epitope (EDE)-dependent mAbs, A11, B7, C8, and C10, bound with relatively 
lower efficiencies to the VLP/SVP vaccines than they did to wild-type ZIKV and showed 
absorbance values similar to mAb binding to the largely unstructured E subunit protein 
(Fig. 4A). The results argue that VLP/SVPs display significantly lower levels of E dimer 
quaternary epitopes than wild-type virus.

Of the ZIKV-specific mAbs that bind lower complexity protein conformations, Z3L1, 
ZKA-64, and Z23, the latter two actually bound VLP/SVPs better than wild-type ZIKV 
(Fig. 4B). Of the remaining mAbs that bound quaternary epitopes (A9E, G9E, Z20, and 
ZIKV-117), Z20 failed to bind either SVPs or VLPs, and A9E failed to bind VLPs (Fig. 4B).

These results (Fig. 4) illustrated that the quaternary arrangements and/or conforma­
tions of E proteins were markedly different between wild-type ZIKV and the VLP/SVP 
vaccines. This in turn likely explains their limited abilities to protect mice against 
challenge (Fig. 3D, I). We chose to pursue further SVPs as the vaccine modality of choice 
in this setting, as 1M7 and A9E effectively recognized SVPs and wild-type ZIKV, but not 
VLPs (Fig. 4A and B). Similar prME particles have also been shown to be efficacious in 
dengue virus vaccine design (69), and prME has emerged as the immunogen of choice 
for many flaviviral vaccines (19).

Production of stabilized SVP-A264C vaccine in insect cells

Previous studies on DENV and ZIKV showed that displaying stable E homodimers in 
vaccine formulations can be challenging to achieve, but that covalent linkage of the E 
proteins within a dimer can improve vaccine efficacy (37, 38, 40, 41, 70). An alanine to 
cysteine codon substitution (A264C) was thus introduced in the E domain II region of 
ZIKV prME (Fig. 5A). This mutation allows for a stable antiparallel dimer of E (36). The 
ZIKV prME-A264C structural cassette (Fig. 5A) was then used to generate the recombi­
nant baculovirus BACe56/ZIKV prME-A264C vaccine construct. Cells expressing ZIKV 
prME-A264C formed large syncytia (Fig. 5B), similar to cells expressing ZIKV prME (Fig. 
1B), arguing that the mutated ZIKV E protein was capable of fusogenic activity and that 
transition from the prefusion conformation to the fusogenic structure had occurred for at 
least some of the E proteins (see below).

Infected insect cells were subjected to nonreducing Western blot analysis using the 
E protein-specific mAb, 4G2. Cells expressing ZIKV prME-A264C showed the expected E 
monomer band at ∼55 kDa, similar to cells expressing ZIKV prME (Fig. 5C). However, ZIKV 
prME-A264C expression also led to an additional band of higher molecular weight, likely 
representing the covalently linked E dimers (Fig. 5C).

Production and characterization of SVP-A264C vaccine at neutral-pH-adap­
ted insect cells

The VLP/SVP productions described above occurred using culture medium at pH 6.2–6.4, 
which is the pH range commonly used in baculovirus-insect cell expression systems. 
However, it is also the pH range at which flavivirus E protein-mediated fusion occurs (71–
73). The latter results in an irreversible conformational transition of the prefusion ZIKV 
E protein dimers into a trimeric state to expose the fusion loop and initiate membrane 
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FIG 3 Vaccination of Ifnar1−/− mice with Zika VLP or SVP and ZIKV challenge. (A) Timeline of vaccination of female Ifnar1−/− mice with a single, non-adjuvanted 

dose of 1 µg Zika VLP or Zika SVP or CHIK VLP (negative control), followed by antibody measurements, and challenge with ZIKVNatal followed by viremia 

determinations, or challenge with ZIKVMR766 followed by viremia and survival determinations. (B) ZIKVMR766 end point IgG ELISA titers in serum from female 

Ifnar−/− mice after immunization with one dose of the indicated vaccine. Limit of detection was one in 10 serum dilution. (C) ZIKVNatal 50% neutralization titers 

in serum from female Ifnar1−/− mice vaccinated as in B. Limit of detection is one in 10 serum dilution. Statistics by Kolmogorov-Smirnov exact tests. (D) Mean 

viremias post ZIKV challenge (n = 5 per group). The limit of detection per mouse was 2 log10TCID50/mL. Statistics relative to CHIK VLP on day 4. (E) Survival of 

immunized mice after ZIKVMR766 challenge. Animals were euthanized when ethically defined end points had been reached. Statistics by log-rank tests relative to 

CHIK VLP. (F) Timeline of vaccination of male Ifnar1−/− mice with three 1 µg doses of Zika VLP or SVP, or CHIK VLP (negative control) adjuvanted with AddaVax,

(Continued on next page)
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fusion. The syncytia formation seen during SVP/VLP production (Fig. 1B and 5B) argues 
that fusogenic activity of the ZIKV E protein had been triggered by the low pH of the 
insect cell culture medium. We reasoned that presenting the immune system with SVPs 
whose E proteins had largely undergone the transition to a fusogenic structure would 
result in reduced induction of protective antibody responses, as the latter generally 
requires presentation of envelope proteins in their prefusion conformation (19, 74, 75). 
We thus sought to produce SVP vaccines at pH 7.0, which is above the threshold for 
flavivirus E protein-mediated fusion (71, 72).

To investigate whether suspension Sf9 insect cells would tolerate being cultured at 
higher pH, uninfected cells were grown for 3 days with no pH control (i.e., standard 
culture conditions at pH ≈ 6.2) and at pH 6.6, pH 6.8, or pH 7.0, and cell concentration 
and cell viability were measured daily. The cells cultured in medium without pH control 
(for which the pH gradually dropped from 6.2 to 6.0 during the experiment) as well 
as the cells cultured in medium of pH 6.6 grew to cell densities of 107 cells/mL (Fig. 

Fig 3 (Continued)

or PBS (negative control), followed by serum antibody and viremia determinations after challenge with ZIKVPRVABC59. (G) Serum ZIKVMR766 end point IgG ELISA 

titers after three vaccinations or after infection with ZIKVNatal (positive control). Limit of detection was one in 10 serum dilution. (H) Reciprocal anti-ZIKVPRVABC59 

50% neutralization titers. Limit of detection was one in 10 serum dilution. (I) Mean ZIKVPRVABC59 viremias post challenge (n = 4–5 per group). Statistics relative to 

CHIK VLP on day 6 (for Zika VLP) and day 7 (for Zika SVP). Statistics Smirnov exact tests was used for data in panels B, C, D, G, and I.

FIG 4 Zika VLP and SVP epitope display analysis. Binding of (A) flavivirus cross-reactive anti-E mAbs 4G2, 1M7, A11, B7, C8, and C10 and (B) ZIKV-specific anti-E 

mAbs ZKA-64, Z3L1, Z23, A9E, G9E, Z20, and ZIKV-117 to wild-type ZIKV, ZIKV E subunit, Zika VLP, and Zika SVP vaccines. The mAbs that bind quaternary structure 

epitopes are marked with “Q”. The DENV2-specific anti-E mAb 3H5 was included as a negative control. The mean of two technical replicates is shown, with error 

bars indicating the standard deviation.
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6A) and showed high cell viability (Fig. 6B). In contrast, growth of cells at pH 6.8 and 
pH 7.0 was significantly slower (Fig. 6A), with low cell viability (Fig. 6B). Sf9 insect cells 
were thus adapted to neutral pH via adaptive laboratory evolution using a step-wise 
approach as described previously for another insect cell line (35). Briefly, Sf9 cells which 
are typically cultured at a standard pH of ≈6.2 were subcultured at pH 6.5, 6.8, and 7.0 
until a growth rate between 0.02 and 0.03 divisions/hour was achieved for ≥5 passages 
(Fig. 6C). At this point, cells were considered adapted, and a cell bank was established. 
Growth kinetics of cells adapted to higher pH by adaptive laboratory evolution showed 
population doubling times within the expected range for standard, non-adapted Sf9 
cells (≈ 24–28 hours) (Fig. 6D).

ZIKV SVP and SVP-A264C vaccines were produced using Sf9 cells adapted to neutral 
pH (7.0) at 2 L bioreactor scale with constant maintenance of culture conditions at pH 
7.0. Infection kinetics of adapted cells producing SVP and SVP-A264C were typical of a 
process using the MOI herein employed (2 TCID50 units per cell), i.e., minimal cell growth 
after infection and onset of cell viability drop after 24 hours (Fig. 6E) as well as increase 
in cell diameter (Fig. 6F) in line with the prior infection experiments. As controls, both 
vaccines were also produced using non-adapted Sf9 cells at pH 6.

Western bot analysis of purified SVP and SVP-A264C vaccines produced at pH 6 and 
7 illustrated the putative covalently linked dimer for the SVP-A264C vaccine and the E 
monomers for both vaccines produced at either pH (Fig. 7A). Spherical particles of ∼20–
60 nm in diameter were observed in the purified samples by electron microscopy (Fig. 
7B), indicating that prME-A264C expression resulted in SVP production and that particles 
could also be formed at pH 7.

To investigate epitope presentation, the binding of a select panel of mAbs (Table 2) 
to E protein epitopes was measured by ELISA (as in Fig. 4). The highest level of binding 
across all four mAbs, with C10 and G9E recognizing quaternary epitopes, was seen for 
the SVP-A254C vaccine produced at pH 7 (Fig. 7C).

FIG 5 Production of the SVP-A264C vaccine in Sf9 cells. (A) Schematic overview of the ZIKV prME structural cassette with the alanine to cysteine (A264C) 

substitution that promotes covalent linkage of E proteins to produce SVPs with stabilized E homodimers. The molecular mass of each viral protein is shown in 

kDa. Cleavage sites of host signalase and host furin are indicated, as well as predicted signal peptide (sp) sequences and transmembrane helices. (B) Sf9 insect 

cells infected with indicated baculovirus at 3 days post infection or uninfected cells. Syncytia formations are clearly evident (arrows). (C) Sf9 insect cells infected 

with recombinant baculoviruses expressing the indicated cassettes analyzed by Western blot using pan-flavivirus anti-E mAb 4G2.
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Evaluation of the SVP-A264C vaccine in a murine ZIKV challenge model

Male Ifnar1−/− mice were vaccinated at three different times (Fig. 8A) with 1 µg of 
AddaVax-adjuvanted SVP-A264C vaccine or SVP vaccine, both produced at pH 7 (Fig. 8A). 
Mice receiving PBS or PBS + adjuvant served as negative controls, and mice recovered 
from a ZIKVNatal infection served as a positive control group. Mice vaccinated with 1 µg 
of the SVP-A264C (pH 7) vaccine developed statistically significant higher neutralization 
titers than mice vaccinated with 1 µg of the SVP (pH 7) vaccine (P = 0.009), although 
neutralization titers for SVP-A264C (pH 7) vaccination were ≈ 6 fold lower than those 
generated by ZIKVNatal infection (Fig. 8B). No detectable neutralization titers were seen 
after PBS inoculation (Fig. 8B).

After challenge with ZIKVPRVABC59, the negative control PBS groups showed the 
expected viremias, whereas SVP-A264C (pH 7) vaccinated mice showed no detectable 
viremia on any day (limit of detection was 2 log10CCID50/mL) (Fig. 8C). SVP (pH 7)-
vaccinated mice showed viremia levels that were reduced by ≈ 2.5–3 logs on 2–6 
dpi when compared to PBS controls (Fig. 8C). Thus, both the A264C substitution and 
production at pH 7 substantially improved the ability of these SVP vaccines to mediate 
protection against viremia.

Immunization with SVP-A264C (pH 7) vaccine protected mice from testicular 
damage

ZIKVPRVABC59 infection of male Ifnar1−/− mice results in overt reduction in testis size 
and marked histopathological changes characterized by destruction of seminiferous 
tubules (24, 45). Thus, as expected, the PBS control groups showed clear reductions 
in testes size (Fig. 9A and B). Testis size reductions were also observed in mice with 
past ZIKVNatal infections, with these size reductions probably due to ZIKVNatal infection, 
rather than ZIKVPRVABC59 challenge. Importantly, mice that had been immunized with 
adjuvanted SVP-A264C (pH 7) vaccine or SVP (pH 7) vaccines showed normal testis size 
after challenge (Fig. 9A and B).

H&E staining of testes from the PBS + AddaVax control group illustrated the reduced 
size and the previously described (24, 45) loss and disruption of seminiferous tubule 
architecture (Fig. 10A and C). No such testicular damage was seen in mice vaccinated 
with the SVP-A264C (pH 7) vaccine (Fig. 10B and C).

DISCUSSION

Herein, we describe the generation of a baculovirus vaccine comprising prME proteins 
of ZIKV, with both an envelope protein substitution, A264C, that stabilizes E dimer 
formation (37, 38, 40, 41, 70) and SVP production at pH 7 to maintain the vaccine 
structure in the prefusion conformation (74, 75). The SVP A264C (pH 7) vaccine protec­
ted mice from viremia against ZIKV challenge, whereas VLP/SVP vaccines, without the 
A264C substitution and produced at the conventional lower pH, provided only limited 
protection. The SVP A264C displayed a higher portion of E dimers, although dimerization 
was not complete. Further efforts to enhance immunogenicity may involve additional 
engineering of the ZIKV E glycoprotein.

The study highlights the importance of challenge experiments to ascertain whether 
the responses induced by an experimental vaccine actually mediate protection against 
virus challenge (76). The study also reiterates the contention that effective flavivirus 
vaccines need to present the immunogen in an authentic tertiary and quaternary 
structure with a prefusion conformation (19).

Effective ZIKV prME (SVP) vaccines with comparable results to those presented 
herein have been developed using mammalian cell production systems (70, 77, 78). 
For example, three vaccinations of Ifnar1−/− mice with 10 µg of a A264C prME ZIKV 
vaccine adjuvanted with alum and monophosphoryl lipid A prevented viremia in most 
mice (70), and two vaccinations of Ifnar1−/− mice with 10 ug of a A264C prME ZIKV 
vaccine adjuvanted with alum reduced the RNAemia to undetectable levels in 3/10 mice. 
The pH range of mammalian cell culture fluid is usually 7.0–7.2, which would likely 
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result in retention of the prefusion conformation in these vaccines. Mammalian systems 
would thus not require pH adaptation; however, mammalian production systems remain 
expensive, yields can be low, and scale-up can be difficult (79, 80). A recent alternative 
method for generating VLP-like ZIKV vaccines is the use of a chimeric virus, comprising 
an insect-specific virus (Binjari virus) backbone and prME from ZIKV (21, 24, 56). A single 
2 µg dose of unadjuvanted chimeric vaccine completely protected Ifnar1−/− mice from 

FIG 6 Production of ZIKV SVP and SVP-A264C vaccines at neutral pH. For panels A–B, Sf9 cells (cell density at day 0: 2 × 106 cells/mL) were grown at standard 

medium pH (no pH control) or at pH 6.6, pH 6.8, and pH 7.0 for 3 days. (A) Viable cell concentration. (B) Cell viability. For panels C–F, production of ZIKV SVP 

and SVP-A264C using Sf9 cells adapted to neutral pH. (C) Cell growth rate during adaptation of insect Sf9 cells to neutral pH via adaptive laboratory evolution. 

At passage #1, culture pH was changed from standard (≈6.2) to 6.5. After establishment of each cell bank, cell culture pH was changed to the next pH iteration. 

(D) Cell growth kinetics of new high pH-adapted cell lines. PDT, population doubling time. (E) Cell growth and viability kinetics and (F) cell diameter during 

production of SVP and SVP-A264C vaccines using pH 7-adapted insect Sf9 cells.
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viremia and testes damage (24). This potentially highlights an advantage of CprME over 
prME particle vaccines, with the Binjari/Zika-prME chimera folding into authentic ~50 nm 
virion particles (24). Cleavage of C from CprME is achieved by the NS2B/NS3 protease 
in infected cells, with Binjari virus NS2B/NS3 able to correctly cleave Binjari virus capsid 
from ZIKV prME (24). Whether the baculovirus system can provide C-prME cleavage at 
the correct site remains unclear and may warrant further investigations. However, other 
factors may be in play to explain the efficacy of the Binjari chimera, such as immuno­
potentiating impurities in the vaccine preparations, glycosylation patterns (79), and/or 
some kind of limited abortive RNA replication (81). Perhaps useful to note is that effective 

FIG 7 Characterization of ZIKV SVP and SVP-A264C vaccines produced at pH 7 or pH 6. (A) SVP-A264C and SVP vaccines were produced at pH 7 or pH 6, sucrose 

gradient purified, and analyzed by Western blotting using the anti-E mAb 4G2. (B) Transmission electron microscopy photos of the vaccines in A. (C) Epitope 

display analysis of SVP-A264C and SVP vaccines produced at pH 6 or pH 7. Binding of flavivirus cross-reactive anti-E mAbs 4G2, 1M7, and C10 and ZIKV-specific 

anti-E mAb G9E. C10 and G9E bind quaternary structure epitopes.
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ZIKV mRNA vaccines also encode just prME (18, 19), with mammalian cells generally 
unable to mediate cleavage of capsid from CprME. Perhaps an overriding consideration 
is that baculovirus systems have been approved for manufacture of human vaccines (82), 
whereas mosquito cell lines (currently used for chimeric Binjari vaccines [83]) have yet 
to pass this hurdle. Additional advantages of baculovirus expression of glycoproteins in 
insect cells are the established history of safety and industrial applications (>40 years) 
(84), the predictable and homogeneous glycosylation patterns, and the compatibility 
with expression of arboviral proteins and VLPs (85).

Our study has a number of limitations; firstly, we have not explored the full range of 
adjuvants that are currently available and that may be suitable for Zika VLP/SVP vaccines. 
This includes alum (86, 87) and ASO series adjuvants (88, 89), as well as promising 
adjuvants yet to be approved for use in humans (90, 91). Secondly, although, for instance, 
dengue virus VLP studies in nonhuman primates have also used up to three vaccinations 
(92), strategies to reduce the requirement for multiple vaccinations are desirable for such 
vaccines, especially in resource-poor settings where they are usually most needed. A 
single vaccination with ensuing lifelong immunity (93) remains a laudable goal. Lastly, 
side-by-side comparisons of any new vaccine with the latest in mRNA vaccine develop­
ment (18) are likely to be warranted (94). Such studies might include evaluation of the 
longevity of responses and analysis of IgG isotype profiles, areas where mRNA vaccine 
performance may be suboptimal (22, 95).

In conclusion, we have illustrated a development path for the generation of a 
baculovirus-derived Zika SVP vaccine, which has required both a mutation to stabilize 
the E dimers and generation of Sf9 insect cells capable of producing vaccine at pH 7.

FIG 8 Vaccination and challenge study with the SVP-A264C vaccine produced at pH 7. (A) Timeline of three 1 µg intramuscular vaccinations of male Ifnar1−/− 

mice with SVP-A264C or SVP vaccines produced at pH 7.0. The vaccines were adjuvanted with AddaVax. Negative control mice received PBS with AddaVax or PBS. 

Mice recovered from ZIKVNatal infection (104 TCID50 s.c. week 0) represented positive controls; ZIKVNatal infection is nonlethal in this setting. Sera was collected 

prior to challenge to determine neutralizing antibody titers, with serum viremias determined days 1–7 post challenge with ZIKVPRVABC59 (103 TCID50 s.c.). Mice 

were euthanized on day 31 and testes harvested (see Fig. 9 and 10). (B) Mean and individual serum ZIKVPRVABC59 50% neutralization titers from mice that had 

received the indicated vaccines, PBS controls, or after infection with ZIKVNatal. Limit of detection was 1 in 30 dilution of serum (dotted line; data points plotted on 

this line represent not detected, ND). Statistics by Kolmogorov-Smirnov exact test. (C) Mean ZIKVPRVABC59 viremias post challenge for the same groups as in B (n 

= 5–6 mice per group).
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FIG 9 Testes images and sizes after ZIKVPRVABC59 challenge. (A) For the groups of male Ifnar1−/− mice described in Fig. 8, series of five representative 

photographs of testes harvested at 31 days post challenge with ZIKVPRVABC59. Ruler on the left showing 1 mm increments. (B) Dimensions of the testes shown in 

A. Bars represent means. Statistics by t-tests or Kolmogorov-Smirnov exact test (KS).
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FIG 10 Histopathology of testes after ZIKVPRVABC59 challenge. (A) H&E-stained sections of testes from mice that received PBS + adjuvant (negative control). 

Testes were harvested 31 days after challenge with ZIKVPRVABC59. (B) As for A, but for mice that were vaccinated with SVP-A264C (pH 7) + AddaVax (same mice 

as described in Fig. 8 and 9). (C) Enlargements of A and B showing overt loss of seminiferous tubules or disruption of seminiferous tubule architecture. The 

SVP-A264C (pH 7) + AddaVax vaccine group shows normal seminiferous tubule morphology. S, lumen of the seminiferous tubules.
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