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 A B S T R A C T

Pests and diseases are a major cause of crop loss, affecting food security and, in particular, the livelihoods of 
smallholder farmers. While some pest management practices are widely adopted, poorly informed decisions, 
such as over-application of pesticides, can severely impact human and environmental health as well as farm 
profits. Frequent crop monitoring is often recommended for making interventions more effective, but highly 
intensive monitoring is beyond the capacity of many farmers. By combining pest risk prediction and decision 
analysis, we developed a framework to support the decision of whether to apply pesticides preventively, 
monitor crops, or omit any crop protection measures for a given day and geographic location. We used a deep 
Gaussian process classification model for spatiotemporal pest risk prediction, incorporating new observations 
in near real-time. We then applied decision analysis to determine the best intervention for a given pest risk 
prediction. Monitoring is recommended when the Value of Information (VoI) exceeds the cost of monitoring. 
We applied this method to a case study of Tuta absoluta infestations in tomato production in Andhra Pradesh, 
India. Our model-based decision strategy would reduce average pest-related costs by 25.4±4.3% and pesticide 
use by 58.8 ± 2.7% according to Monte Carlo simulations. When monitoring results are used to update the 
pest risk model and thus shared with other farmers, additional value can be generated for the community. We 
found that this community VoI exceeded the expected information value for the individual farmer (individual 
VoI). Our open-source Python model can easily be adapted to other crops and pathogens, and serve as a basis 
for pest risk-aware decision support systems.
1. Introduction

Crop pests are a major threat to food security and rural liveli-
hoods. Most farmers around the world regularly use some form of crop 
protection (Tang et al., 2021), but misapplication can be detrimental 
to profits, a particularly sensitive issue for the livelihoods of small-
holder farmers. In addition, excessive pesticide use can affect human 
health (Boedeker et al., 2020), environmental sustainability (Tudi et al., 
2021) and beneficial arthropods (Desneux et al., 2007), and it can lead 
to pests becoming resistant to the pesticides’ active ingredients (Whalon 
et al., 2008). To reduce both yield losses and excessive pesticide use, 
frequent monitoring for pathogens or their symptoms is considered 
crucial for integrated pest management (Desneux et al., 2022). While 
daily monitoring of all fields would provide almost perfect information 
about pest infestations, such intensive monitoring is usually beyond the 
labor resources of farmers. Pest risk prediction could therefore help 
farmers not only decide when and where to apply plant protection 
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measures (Rossi et al., 2023), but also whether and when to monitor. 
Since monitoring results can be fed back into prediction models used 
to warn nearby farmers about disease outbreaks, the question can be 
asked in two ways: When and where is monitoring worthwhile for the 
individual farmer? When and where is monitoring worthwhile for the 
community?

As a case study, we selected Tuta absoluta infestations in tomato pro-
duction in Andhra Pradesh, India, between 2018 and 2022. T. absoluta
(known as tomato leaf miner or South American tomato pinworm) is a 
devastating invasive pest of Indian tomato, eggplant and potato produc-
tion, which originated in western South America (Biondi et al., 2018). 
The common practice among farmers in Andhra Pradesh is calendar-
based spraying of chemical pesticides (Buragohain et al., 2021) but this 
one-size-fits-all approach often results in unnecessary spraying at times 
and in regions with low actual infestation risk. Therefore, improved 
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Nomenclature

T. absoluta Tuta absoluta
VoI Value of Information
EVPI Expected Value of Perfect Information
GPR Gaussian Process Regression
ETL Economic Threshold Level

targeting of pest control interventions can be expected to deliver both 
financial and environmental benefits. 

The goal of this work is to develop a framework for informing crop 
protection and monitoring decisions based on predicted pest risks. In 
the case study, we quantify the potential economic and environmental 
benefits of our pest risk prediction model. In addition, we quantify the 
value of monitoring to both the individual farmer and their community.

This study builds upon foundational research on decision making 
under uncertainty. A central concept for both our decision model and 
the valuation of monitoring benefits is the Value of Information (VoI), 
which was introduced by Howard (1966). In decision analysis, the 
VoI is the price that a rational decision-maker would be willing to 
pay to reduce uncertainty in order to support a decision. A common 
formulation of this is the Expected Value of Perfect Information (EVPI), 
which is defined as the expected utility at the current state of uncer-
tainty minus the expected utility given perfect information (Howard, 
1966). This concept has been used in a variety of scientific and business 
applications. Notable in the context of this work is the study of de Bruin 
and Hunter (2003) on VoI to evaluate spatial datasets for decision-
making in agriculture. de Bruin and Bregt (2012) used expected VoI 
to analyze the utility of taking measurements at a given point in time 
and space. This is conceptually very similar to the value of disease 
monitoring and thus closely aligned with the subject of this paper. 
However, this concept has only been applied to continuous synthetic 
data without complex relationships with external covariates. Outside 
the field of spatially explicit modeling, decision analytic approaches 
have been applied in a number of similar contexts: Ruett et al. (2022) 
evaluated different monitoring strategies for disease control in orna-
mental heather production. Luu et al. (2022) used decision analysis 
to investigate the potential future benefits of providing agro-climatic 
information to smallholder farmers in Vietnam. While these studies 
take a very broad and holistic view, both consider only a one-time 
decision in an aggregated region (asking only whether rather than
when and where). In addition to these prospective considerations, em-
pirical evidence suggests that personalized digital extension services 
(e.g., providing local information on plant pests) significantly benefit 
smallholder farmers in India (Rajkhowa and Qaim, 2021).

This work also draws upon the literature related to the model-
ing of plant pests and diseases. In general, pest infestations occur 
when pests meet susceptible host plants under the right environmen-
tal conditions (Agrios, 2008), a relationship commonly known as the 
‘‘disease triangle’’. While susceptible host plants are expected to be 
present whenever personalized advice to farmers is provided, past 
pest occurrences (in nearby locations) and/or environmental conditions 
are usually used as inputs for prediction models. In their literature 
review, Fenu and Malloci (2021) provide an overview of the methods 
used in 46 plant pest and disease forecasting studies. Of these, 29 
used weather data as predictors, since weather is arguably the most 
relevant aspect of environmental conditions. None of the above studies 
used nearby observations directly as input to take advantage of auto-
correlation. Several machine learning methods have been commonly 
used, including artificial neural networks, support vector machines, 
Bayesian networks, and random forests. In tomato production, such 
methods have mostly been used to predict infection with powdery 
mildew (Ghaffari et al., 2010; Bhatia et al., 2020a,b).
2 
In contrast to models based on machine learning, our approach 
aims at exploiting spatio-temporal neighborhood effects in addition to 
weather data in order to be able to warn farmers about local outbreaks 
that cannot be fully explained by environmental suitability. Geosta-
tistical methods allow the analysis of spatial autocorrelation as well 
as spatial interpolation (Matheron, 1963). Some studies have begun 
to explore the application of such methods to pest modeling. Wright 
et al. (2002) analyzed the spatial distribution of the European corn 
borer (Ostrinia nubilalis), but did not use the results for interpolation. de 
Carvalho Alves et al. (2011) used variogram-based ordinary kriging 
to interpolate infestation intensity over a small region. Indicator krig-
ing was successfully used by de Carvalho Alves and Pozza (2010) 
to interpolate the probability of occurrence (which fits well with the 
goal of our prediction model). However, both studies only interpolated 
spatially between sampling locations, without extrapolating temporally 
into the future (forecasting). Fatemi et al. (2023) used geostatistical 
methods to analyze the spatial distribution of T. absoluta, but only 
under greenhouse conditions and again without forecasting. GSTAR 
Kriging was used by Pramoedyo et al. (2020) to combine temporal 
extrapolation with spatial interpolation, but only 9 sites were observed 
and no external covariates were considered.

Since plant pest distribution models can be considered as a special 
case of species distribution models (SDM), this area of the literature 
is also relevant to the present work. In their review of the literature 
on spatiotemporal SDMs, Martínez-Minaya et al. (2018) found that 
most studies relied on presence-only observations and weather/climate 
covariates. Special attention was paid to imperfections in the data, 
such as biased sampling (Diggle et al., 2010), spatial misalignment of 
observations and covariates (Foster et al., 2012), or non-stationarity. 
Inference has typically been done using frequentist or Bayesian statis-
tical models, which make various assumptions about the relationship 
between spatial and temporal variation. However, because the time 
scales were decades rather than days, and temporal dynamics were 
generally considered to be of secondary importance, the applicability 
of the methodology to the present study is limited.

Gaussian Process Regression (GPR) can be seen as a generaliza-
tion of kriging (Rasmussen and Williams, 2005). The kernel function 
(known in geostatistics as variogram model) is usually not fitted to 
an empirical semivariogram, but rather directly to the data using 
maximum likelihood estimation or Bayesian inference. GPR can directly 
incorporate regression via nonstationary (e.g., linear) kernels, similar 
to regression kriging. Using GPR to estimate probabilities with binary 
input data is known as Gaussian process classification and can be seen 
as a generalization of indicator kriging. Many challenges regarding 
the scalability of Gaussian process-based approaches have been ad-
dressed in recent years (Liu et al., 2020), enabling their application to 
large spatio-temporal datasets (Low et al., 2015). Notable among these 
innovations are sparse Gaussian processes (Titsias, 2009), stochastic 
variational Gaussian processes (Hensman et al., 2013), and GPU accel-
eration (Gardner et al., 2021). Furthermore, GPR can be combined with 
deep learning by using stationary kernels on neural network derived 
features (Wilson et al., 2015), which greatly increases the explanatory 
power of this approach. Since all steps are differentiable, all parameters 
and hyperparameters can be efficiently learned end-to-end. You et al. 
(2017) used a combination of deep learning and GPR for crop yield 
prediction. Goldstein et al. (2019) used Gaussian processes to analyze 
the spread of invasive insects. Overall, this approach does not seem 
to be widely used in agricultural modeling, especially not for pest 
prediction.

Here, we contribute to the field of pest risk prediction in three 
ways: First, we present a probabilistic pest risk prediction method that 
combines environmental covariates and spatiotemporal neighborhood 
effects based on deep Gaussian process classification. Second, we assess 
the potential economic value of disease prediction for smallholder 
farmers using such a decision model. Third, we investigate the value of 
monitoring for both the individual farmer and the surrounding farms 
by introducing the concept of community VoI.
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2. Materials and methods

Our approach consists of three coupled models: A pest risk predic-
tion model, a prescriptive decision model that takes the estimated pest 
risk as an input, and an agent-based model to explore the effects of 
farmers following the prescribed decision.

2.1. Data

As a case study, we focus on the important tomato pest T. absoluta
in Andhra Pradesh over a period from 2018 to 2022 (5 years). As our 
primary data source for the distribution of T. absoluta infestations on 
tomato farms in Andhra Pradesh, we used crowdsourced observation 
data from the Plantix smartphone app provided by PEAT GmbH (Berlin, 
Germany). The app allows farmers to classify plant pathogens from 
a photo of symptoms or visible pathogens through ML-based image 
classification. To do that, smallholder farmers usually take a picture 
of the plant using their smartphone directly in the field and upload 
it using cellular data. The cloud-based Plantix backend then predicts 
both the depicted crop and pathogen (if any) using an ensemble of 
image classification models including convolutional neural networks 
and vision transformers. Each time a farmer uses this service, the clas-
sification results including confidence scores are saved into a database, 
together with various metadata. Plantix data have been successfully 
used in several academic publications (Wang et al., 2020; Lee et al., 
2022). Our dataset consists of 224,136 data points (high-quality images 
of tomato plants in Andhra Pradesh) with geolocation, timestamp, 
and classification results. To ensure that only data points of sufficient 
quality were used, only classification results that were also returned to 
the user by the Plantix app were included. This internal quality check 
in Plantix incorporates, among other metadata, the confidence scores of 
the image classification models for crops and pathogens. Results from 
third-party licensees were excluded. After further filtering for only the 
highest confidence image per user per day, and using only locations 
where weather data was available daily over the entire time period, a 
dataset of 68,586 records remained.

Weather data were retrieved from the European Centre for Medium-
Range Weather Forecasts (ECMWF) ‘‘ERA5-Land Daily Aggregated’’ 
dataset (Copernicus Climate Change Service, 2024) via Google Earth 
Engine with a spatial resolution of 11,132 m. A 0.3 degree buffer was 
used around Andhra Pradesh so that points near the state border could 
also benefit from neighboring observations.

2.2. Pest risk prediction model

The goal of this model was to predict the pest risk for a single pest. 
The pest risk is defined as the probability of reaching the Economic 
Threshold Level (ETL), i.e., infestation at a level where treatment is 
profitable (Stern, 1973). In this form, the risk could serve directly as 
an input to the decision model in the next step. However, we had no 
real ground truth data for this risk. The Plantix crowdsourced data was 
inherently presence-only. We assumed that infestations detected in a 
smartphone image corresponded to infestations exceeding the ETL (see 
Section 2.4 for details on the case study).

Since Plantix data were sampled opportunistically, i.e., sampling 
was not done completely at random or systematically, it depended on 
the location of Plantix users and the seasonal distribution of tomato 
fields. We therefore followed the literature on SDMs and sampled from 
other Plantix detections in tomato (other pests, diseases, or healthy 
plants) as pseudo-absence points. This method is known as ‘‘target-
group sampling’’ (Phillips et al., 2009; Zbinden et al., 2024) and was 
described by Martínez-Minaya et al. (2018) as interpreting the data 
as a marked point pattern. However, even within the tomato fields of 
Plantix users, sampling was unbalanced. The app is typically consulted 
when symptoms are already present, leading to a preferential sampling 
of unhealthy plants. In the raw data, 1.67% of observations were T. 
3 
absoluta (=1146). We chose to sample 5 times as many absence points 
as there were presence points to mitigate zero-inflation, while at the 
same time keep enough observations to thoroughly cover the parameter 
space. To scale these results to the actual overall relative frequencies, 
we used external literature data for average infestation risk (over the 
entire study area and time period), assuming additional unobserved
healthy crops were proportional to total observations. This can be 
thought of as predicting the spatio-temporal distribution conditional on 
a known marginal distribution. We represented the presence data as a 
boolean variable with 1 for presence and 0 for absence.

To predict pest risk at a given point in time and space, we used 
two types of correlations: correlation with abiotic environmental condi-
tions and spatio-temporal autocorrelation. Significant correlation with 
weather data was found using logistic regression and random forest 
classification (detailed results of these preliminary analyses are shown 
in Figs.  A.1 and A.2). For each Plantix observation, 7 weather variables 
and 2 leaf area index variables were used in time series, each containing 
the previous 30 days. The spatio-temporal autocorrelation in the Plantix 
observation data can be demonstrated with covariograms (as shown 
in Fig.  1). The autocovariance could only be partially explained by 
autocorrelated environmental variables. The highest covariance (4.8% 
on the residuals) was found for spatial lags less than 2 km and temporal 
lags less than 20 days. With increasing spatial and temporal lags, 
the covariance decreased until it was not significantly different from 
zero at 100 days and 10 km. This information can be used in spatio-
temporal variogram/covariogram kriging, as shown by Snepvangers 
et al. (2003), but their method exhibits limitations in incorporating 
complex correlations with external covariates.

We decided to use Gaussian process classification with stochastic 
variational deep kernel learning (Wilson et al., 2016) as a modeling 
approach. This method has several advantages over both conventional 
machine learning approaches and pure geostatistical methods: Un-
like parametric machine learning approaches such as neural networks, 
GPR models can utilize new data without retraining the entire model 
(i.e., updating the posterior distribution without re-fitting the kernel 
function). Like their special case kriging, they are able to exploit (spatio-
temporal) autocorrelation, while being less prone to overfitting than 
parametric classifiers. Deep kernel learning allows the extraction of 
meaningful features from the high-dimensional covariate space (Wil-
son et al., 2015). Stochastic variational inference helps overcome the 
performance limitations previously associated with GPR and kriging.

For our pest risk prediction model, we designed the architecture 
as follows (see Fig.  2): A 3-dimensional feature vector 𝑥weather was 
extracted from the weather data using a very small multilayer per-
ceptron (artificial neural network) with one hidden layer of 5 neurons 
and a ReLU activation function (Fukushima, 1969). Together with the 
spatial coordinates and timestamps, these features were then used in 
a Gaussian process layer. For the spatio-temporal autocorrelation, we 
used Gaussian kernels for space (𝑘space), time (𝑘time) and a metric 
combination of both (𝑘metric), analogous to the sum-metric variogram 
model presented by Graeler et al. (2016). In addition, a periodic kernel, 
multiplied with another Gaussian kernel was used to capture seasonal 
correlation effects (𝑘season) as shown by HajiGhassemi and Deisenroth 
(2014). Weather features were jointly included using another Gaussian 
kernel (𝑘weather) with Automatic Relevance Determination (ARD). As 
final similarity metric, the sum of all kernels was used.

𝑘space(𝑥, 𝑥′) = 𝜎2space exp

(

−
(𝑥lat − 𝑥′lat)

2 + (𝑥lon − 𝑥′lon)
2

2𝓁space

)

(1)

𝑘time(𝑥, 𝑥′) = 𝜎2time exp

(

−
(𝑥time − 𝑥′time)

2

2𝓁time

)

(2)

𝑘metric(𝑥, 𝑥′) = 𝜎2metric

⋅ exp

(

−
(𝑥lat − 𝑥′lat)

2 + (𝑥lon − 𝑥′lon)
2 + 𝛼(𝑥time − 𝑥′time)

2

2𝓁time

)

(3)
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Fig. 1. Spatio-temporal covariogram showing the autocorrelation in the input data. The left subplot is based on raw observation data (0: absence, 1: presence). The right subplot 
is based on the residuals of a neural network regression, to control for correlation with autocorrelated covariates. Both were computed using 2 × 109 randomly sampled pairs of 
data points respectively.
Fig. 2. Schematic representation of the model architecture. The dimensionality of the weather data input (=270) was reduced for this visualization.
𝑘season(𝑥, 𝑥′) = 𝜎2season exp

⎛

⎜

⎜

⎜

⎝

−2
sin2

(

𝜋
𝑝 (𝑥time − 𝑥′time)

)

𝓁season

⎞

⎟

⎟

⎟

⎠

⋅ exp

(

−
(𝑥time − 𝑥′time)

2

2𝓁season_rbf

)

(4)

𝑘weather(𝑥, 𝑥′) = 𝜎2weather exp

(

−1
2

3
∑

𝑖=1

(𝑥weather,𝑖 − 𝑥′weather,𝑖)
2

𝓁weather,𝑖

)

(5)

𝑘(𝑥, 𝑥′) = 𝑘space(𝑥, 𝑥′) + 𝑘time(𝑥, 𝑥′) + 𝑘metric(𝑥, 𝑥′)

+ 𝑘season(𝑥, 𝑥′) + 𝑘weather(𝑥, 𝑥′) (6)

The parameters of the Gaussian process model consist of the output 
variances 𝜎2, lengthscale parameters 𝓁, period length 𝑝, and anisotropy 
coefficient 𝛼. Together with the neural network weights, they were 
fitted end-to-end using Adam (Kingma and Ba, 2017). The posterior 
distribution of the Gaussian process was estimated using stochastic 
variational inference (SVI) with 24 inducing points. For that we used 
the Natural Gradient Descent optimization algorithm, which has been 
shown to be effective for variational inference in Gaussian process 
models (Salimbeni et al., 2018). We selected common learning rates of 
0.02 for the kernel parameters, 0.001 for the neural network and 0.1 
for SVI. We implemented the model in Python using pyTorch (Paszke 
4 
et al., 2019) and gPytorch (Gardner et al., 2021). All code was executed 
on the Google Colab platform (Google, 2024) using a Nvidia Tesla T4 
GPU for training. The covariograms were created using the STIF Python 
package (Kopton, 2024). All our model and visualization source code, 
as well as synthetic example data, is available at https://github.com/
johanneskopton/pest-risk-decision.

We evaluated the accuracy of the pest risk prediction model by 2-
fold time series cross-validation, i.e., the data were divided into two 
sets each at two different time points. Each time, the earlier set was 
used to train the hyperparameters and the later set was used to test 
the accuracy of the prediction. To fit the posterior distribution for each 
day in the test set, data from the previous days in the test set were also 
included to resemble a real-world prediction scenario.

2.3. Decision model

For the decision model, we followed the expected utility hypothesis, 
i.e., we assumed that decision-makers are von Neumann–Morgenstern 
rational (Neumann et al., 2007) agents who try to maximize the ex-
pected value (probability-weighted average) of a utility function 𝑢. In 
the following section, we first consider the decision whether or not to 
apply a pesticide (treatment). Then we extend this to the decision of 
whether to do nothing (inaction), to monitor the crop (monitoring) for 

https://github.com/johanneskopton/pest-risk-decision
https://github.com/johanneskopton/pest-risk-decision
https://github.com/johanneskopton/pest-risk-decision
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the given pest, or to apply crop protection immediately. We used a 
simple economic utility function, representing the difference in farm 
profits compared to a hypothetical situation without the pest: 

𝑢(𝛼, 𝛽) = 𝛼 ⋅ (𝛽 ⋅ −𝐶loss∣𝛽 + (1 − 𝛽) ⋅ −𝐶loss∣¬𝛽 ) + 𝛽 ⋅ −𝐶treatment (7)

with 𝑢 as utility, 𝛼 as pest presence indicator (0=absence, 1=presence), 
𝛽 as treatment indicator (0=no treatment, 1=treatment), 𝐶treatment as 
treatment cost, 𝐶loss∣𝛽 as yield loss cost given treatment, and 𝐶loss∣¬𝛽
as yield loss cost given no treatment. Without loss of generality, this 
can be shifted to obtain a simpler transformed utility function with 
𝑢̃(𝛽 = 0) = 0. Treatment is then the optimal decision option if 𝑢̃ is 
positive. Its expected value is now given by: 

𝐸[𝑢̃](𝑝𝛼 , 𝛽 = 1) = 𝑝𝛼 ⋅ 𝐸[𝛥𝐶loss] − 𝐸[𝐶treatment] (8)

with 𝑝𝛼 = 𝐸[𝛼] as expected value for the Bernoulli-distributed pest 
presence variable 𝛼, and 𝐸[𝛥𝐶loss] as shorthand for expected avoidable 
yield loss 𝐸[𝐶loss∣¬𝛽 ] − 𝐸[𝐶loss∣𝛽 ]. Treatment is profitable under the 
following condition: 

𝐸[𝑢̃](𝑝𝛼 , 𝛽 = 1) > 0 ⇔ 𝑝𝛼 >
𝐸[𝐶treatment]
𝐸[𝛥𝐶loss]

(9)

From this, the expected value without perfect information (PI) on 𝛼
can be derived. Depending on the prior probability of pest presence 𝑝𝛼 , 
a prior optimal decision on treatment 𝛽 (denoted as 𝛽¬PI(𝛼)) is assumed: 
𝐸[𝑢̃](𝑝𝛼 , 𝛽 = 𝛽¬PI(𝛼)) = min

𝛽
𝐸[𝑢̃](𝑝𝛼 , 𝛽)

=

{

𝐸[𝑢̃](𝑝𝛼 , 𝛽 = 1), 𝑝𝛼 > 𝐸[𝐶treatment]
𝐸[𝛥𝐶loss]

𝐸[𝑢̃](𝑝𝛼 , 𝛽 = 0), otherwise

(10)

The expected value given PI on 𝛼 is then calculated, assuming a pos-
terior optimal decision on treatment 𝛽 (denoted as 𝛽PI(𝛼)), i.e. treatment 
if the pest was found and no treatment otherwise: 
𝐸[𝑢̃](𝑝𝛼 , 𝛽 = 𝛽PI(𝛼)) = 𝑝𝛼 ⋅ 𝐸[𝑢̃](𝑝𝛼 = 1, 𝛽 = 1)

+(1 − 𝑝𝛼) ⋅ 𝐸[𝑢̃](𝑝𝛼 = 0, 𝛽 = 0)
(11)

From this, we obtained the expected value of perfect information 
(EVPI) for 𝛼, i.e. the value of monitoring. This can be thought of as 
the expected (opportunity) cost of making a suboptimal decision due 
to imperfect information and is given by the difference between the 
expected value given PI and the expected value without PI (Howard, 
1966, Eq. 13): 

EVPI𝛼(𝑝𝛼) = 𝐸[𝑢̃](𝑝𝛼 , 𝛽 = 𝛽PI(𝛼)) − 𝐸[𝑢̃](𝑝𝛼 , 𝛽 = 𝛽¬PI(𝛼)) (12)

The EVPI reaches its maximum where the prior optimal decision 
𝛽¬PI(𝛼) is indifferent (i.e. at the decision boundary): 

max
𝑝𝛼

EVPI𝛼(𝑝𝛼) = EVPI𝛼
(

𝑝𝛼 =
𝐸[𝐶treatment]
𝐸[𝛥𝐶loss]

)

= 𝐸[𝐶treatment] −
𝐸[𝐶treatment]2

𝐸[𝛥𝐶loss]

(13)

The third decision option monitoring is thus optimal, if the EVPI ex-
ceeds the monitoring costs (see Fig.  6 in Section 3.2 for the application 
on the case study). Finally, the following overall utility for the three 
decision options was obtained:

𝐸[𝑢̃](𝑝𝛼)inaction = 0 (14)
𝐸[𝑢̃](𝑝𝛼)monitoring = 𝑝𝛼 ⋅ (𝐸[𝛥𝐶loss] − 𝐸[𝐶treatment]) − 𝐸[𝐶monitoring]

(15)

𝐸[𝑢̃](𝑝𝛼)spraying = 𝑝𝛼 ⋅ 𝐸[𝛥𝐶loss] − 𝐸[𝐶treatment] (16)

An optimal crop protection strategy (for the individual farmer) is 
achieved by maximizing the expected utility given a predicted pest risk 
from the prediction model (max𝐸[𝑢̃](𝑝 )).
𝛼

5 
2.4. Assumptions for the case study farm

The decision model was applied to the case study of T. absoluta
control in tomato production. Even within the state of Andhra Pradesh, 
production conditions and practices vary widely between farms. These 
variable characteristics include tomato variety (Prashanthi et al., 2022), 
farm size (Depenbusch et al., 2023), pest pressure (Lakshmi et al., 
2019), crop protection practices (Ribka et al., 2020) and market-
ing (Yesdhanulla and Aparna, 2018). To assess the potential benefits 
of our pest prediction model and demonstrate the value of monitoring, 
we modeled an archetypical smallholder tomato farm using estimates 
from the literature and from experts.

Since we relied on Plantix data, visible symptoms were consid-
ered pest presence (rather than e.g. observations from a pheromone 
trap). Visible symptoms also correspond to the economic threshold 
level (Shiberu and Getu, 2018), so yield is assumed to be impaired, 
whenever pest presence is observable. Most farmers in Andhra Pradesh 
are able to identify T. absoluta without help (Depenbusch et al., 2023), 
so we do not have to assume a digital pest recognition tool like Plantix 
for successful monitoring. Total yield loss caused by T. absoluta is 
modeled as a function of days with pest presence. Due to the year-
round tomato production in the study area, it is unknown, in which 
crop growth stage the pest observations took place. We therefore 
assume a uniform prior. Since the damage associated with each day 
of pest presence needs to sum to the total observed damage, we 
assume that (on average) one day of pest presence causes the total 
observed damage divided by the number of cultivation days with pest 
presence. Without treatment, T. absoluta symptoms are present in about 
11% of tomato plants in Andhra Pradesh (Buragohain et al., 2021). 
Using an average production period of 116 days (Depenbusch et al., 
2023), on average T. absoluta was present on 10.5 days per produc-
tion cycle. Without treatment, avoidable yield loss from T. absoluta is 
assumed to be 9100 INR/ha (Buragohain et al., 2021). This results in 
868 INR/ha of yield loss per day with pest presence. Treatment is mod-
eled following conventional farmers’ practices. While in the academic 
literature, integrated pest management (IPM) is considered a favorable 
approach for mitigating damage from T. absoluta in India (Sridhar 
et al., 2019; Buragohain et al., 2021), this framework has not yet been 
widely adopted in Andhra Pradesh, e.g. less than 1% of the quantity 
of pesticides applied are biopesticides (Depenbusch et al., 2023). Thus, 
application of the insecticide Chlorantraniliprole was assumed as the 
only treatment, as is common practice in AP (Buragohain et al., 2021). 
According to Buragohain et al. (2021), 7 applications of pesticides 
in calendar-based spraying (every 10 days, after 4 weeks) cost on 
average 4167 INR/ha per season, so 595 INR/ha per application. This 
practice was taken as reference for zero avoidable yield loss caused 
by T. absoluta. Therefore, we modeled pesticide application aimed at 
full protection of the plants during the following 10 days. We assumed 
600 INR/day (INR Labour Bureau, 2024) as value of working time. 
Applying pesticides using a knapsack sprayer was assumed to take one 
third of a working day per hectare for a single worker. Assuming an 
agricultural worker could monitor 20 fields per day, with an average 
field size of 0.42 ha (calculated from Depenbusch et al. (2023)), this 
results in 72 INR/ha monitoring costs. Since treatment was effective for 
10 days while decisions are made daily, the cost of treatment per day 
per hectare in the decision model was the cost per treatment divided by 
10. To correct for the possibility of omitting monitoring during these 
10 days, in the decision model, monitoring and treatment costs are 
reduced by one third of the monitoring costs, i.e. by 24 INR/ha.

2.5. Population model

To investigate the average benefit of using the pest prediction model 
to inform crop protection decisions, we modeled a population of farms 
in Andhra Pradesh over the course of the year 2022 using a simple 
agent-based model. All farms are assumed to have the archetypical 
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characteristics described in Section 2.4. We used a set of 8925 farm 
locations with high-quality Plantix tomato observations in the area 
during that year. We randomly sampled transplanting dates from a 
uniform distribution, constrained so that the corresponding Plantix 
observation fell within the growing period. ‘‘True’’ pest occurrences 
were sampled from random realizations of the multivariate normal 
distribution defined by the Gaussian process fine-tuned to 2022. Thus, 
although the true distribution of pests could not be known for all 
locations, this generated ground truth has the same properties in terms 
of average infestation, as well as autocorrelation and correlation with 
weather data. We evaluated 5 scenarios in which all agents follow one 
of 5 crop protection strategies respectively. In the inaction scenario, 
all agents simply accept any damage caused by T. absoluta without 
intervention or monitoring. In the calendar spraying scenario, all agents 
follow the conventional farmers’ practice of applying the insecticide 
chlorantraniliprole every 10 days. In the daily monitoring scenario, all 
agents follow the common Integrated Pest Management advice to check 
for infestations every day and apply pesticides only if they find positive 
results. During the 10-day protected period, no monitoring is done 
by the agents. In the model scenario, all agents followed the model’s 
advice to choose the decision option that maximizes expected utility. 
Whenever monitoring was performed by an agent, the results were 
used to update the pest risk model to inform future predictions. In the
model (no updating) scenario, the model trained only on data through 
December 2021 was used. The entire simulation was repeated 10 times 
as a Monte Carlo simulation to average out sampling effects.

3. Results and discussion

3.1. Pest risk prediction model

For the purpose of informing decisions under uncertainty, the model 
must not only accurately discriminate between presence and absence 
(discriminative power), but also quantify its own uncertainty in terms 
of Bayesian probabilities. Therefore, we evaluated the model in two 
ways: The discriminatory power was assessed using the receiver op-
erating characteristic (ROC), as shown in Fig.  3. With a mean area 
under the curve (AUC) of 0.73 in the updating case, the model shows 
significant class separation. The difference to the AUC of 0.70 in the
no updating case clearly shows that the near-realtime utilization of 
new observation data crucially improved the model. These findings 
indicate that monitoring can not only benefit the individual farmer, 
but also other users of the prediction model. This community VoI is 
quantified in Section 3.3. As expected for complex systems such as 
pest propagation, the predictive accuracy is far from 100%, so we have 
placed particular emphasis on quantifying the model uncertainty in the 
further analysis.

The accuracy of the uncertainty quantification was evaluated by 
comparing the percentage of observed presence samples to the pre-
dicted presence probabilities (see left part of Fig.  4). For the majority 
of predictions, the uncertainty quantification was accurate (e.g., ≈
10% of samples with a predicted risk of about ≈ 10% were presence
samples). The expected calibration error (ECE) was 5.0%. Compared 
to other classification models, especially deep learning methods (Guo 
et al., 2017), the uncertainty quantification was highly accurate. The 
model produced risk predictions ranging from 0% to about 50%, and 
the distribution of predictions was significantly skewed so that the 
most likely predictions were lower than the defined mean of 11% (see 
histogram in Fig.  4).

The model predictions demonstrate that the model was able to 
capture the spatial distribution of the pest risk, with local hotspots due 
to recent outbreaks and weather patterns (as shown for three exemplary 
dates in Fig.  5). The model also captured the temporal dynamics, with 
lower risks in the monsoon season (June to October).

Since our model shows not only good class separation but also 
accurate uncertainty quantification, it is well suited to serve as a basis 
6 
Fig. 3. Receiver operating characteristic (ROC) for the time series cross-validation. In 
the updating case, new observations were incorporated in near-realtime, while in the no 
updating case, only observations from the training set in the past were used. The black 
line represents a theoretical random classifier for reference. As a summary statistic, the 
area under the curve (AUC) is given (0.5: random classifier, 1: perfect classifier).

for probabilistic decision modeling. However, some limitations must be 
considered: We assumed that Plantix observations of T. absoluta were 
representative of the distribution of all T. absoluta occurrences, but the 
data was preferentially sampled: The Plantix Health Check is likely 
to be used more often for symptoms that are not widely known, so 
not only healthy crops but also common pathogens such as T. absoluta
may be underrepresented. While we scaled pest risk using the average 
probability of occurrence from an external source to mitigate this, the 
bias could vary in space and time (e.g., the disease has become better 
known over time, farmers in certain regions are more sensitized to this 
pest, etc.). In addition, we did not have data on the autocorrelation 
of infestations within the same field, so we simply modeled the same 
field (on another day) as a field with zero spatial distance. While the 
available training data was not perfectly unbiased or complete, it is, to 
our knowledge, the most complete and representative database of pest 
observations that exists.

3.2. Decision model

The results of the decision model show that both the value of 
monitoring (i.e., the EVPI for pest risk) and the recommended decision 
option were highly dependent on pest risk. At 52 INR ha−1, the max-
imum EVPI (at 𝑝𝛼 = 6.4%) was not much higher than the monitoring 
cost of 48.0 INR ha−1 (see Fig.  6). However, monitoring was the optimal 
decision option in a range from 5.9% to 13.5% pest risk, which included 
15.8% of predictions (see Fig.  4). As can be seen, these results were very 
sensitive to the assumptions we made for the archetypical tomato farm 
(as detailed in Section 2.4), so they need to be interpreted with caution.

In terms of expected profits (as given by Eqs. (14)–(16)), the mon-
itoring and treatment options were very similar (see Fig.  7), although 
their implications for agricultural practice (in terms of pesticide use, 
labor demand, etc.) were drastically different. Since the inaction option 
yielded significantly higher expected utility for low (i.e., < 5.9%) pest 
risks, the decision to do either monitoring or direct treatment, or 
to do nothing, had a substantial impact on farm profitability. This 
indicates that prior information on pest risk even before monitoring 
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Fig. 4. Calibration curve (left) and distribution of predictions (right). The blue dots show the percentage of observed presence samples as a function of the predicted probability 
of presence (both scaled by the same factor to fit the defined global mean of 11%). The black line shows the theoretically optimal uncertainty quantification for reference. The 
histogram shows the number of samples per bin of predicted probability.
Fig. 5. Predicted pest risk (probability of pest presence) on three sample days in Andhra Pradesh. The hyperparameters were trained once on data for the years 2018–2021, and 
the probability distribution was fitted using additional data from the respective previous days of 2022. Results in the buffer around the state are shown with lower opacity.
Fig. 6. Expected Value of Perfect Information (EVPI) and monitoring costs as a function 
of pest risk. The decision recommendation is indicated by the background color.

(as can be provided by the predictive model) can be very valuable to 
decision-makers.

In regions with very low pest risk, a low individual EVPI can be 
observed (see Fig.  8). As expected, EVPI was highest at the borders 
of high-risk regions. While the preventive application of pesticides is 
common practice among tomato growers in Andhra Pradesh (Burago-
hain et al., 2021), on these exemplary days this option was considered 
optimal only in parts of the state (see Fig.  9). Where the disease risk was 
predicted to be low, monitoring or even inaction minimized operation 
costs by saving pesticides and working time. These results could be 
7 
Fig. 7. Expected utility for the 3 decision options over pest risk. The expected utility 
of the optimal decision option is shown with a black dotted line.

valuable recommendations to be used in digital extension services, as 
suggested by Taylor et al. (2023).

While our findings provide valuable insights into the economics of 
monitoring, and the decision model could already be useful for farm-
level decision support, some further steps need to be taken to realize 
its full potential in practice. Perhaps the most relevant simplification 
was our restriction of the scope of the analysis to only a single pest. 
In reality, a single field inspection could reveal infestations of other 
pathogens at little or no additional cost. Furthermore, insecticides such 
as the one considered in our case study (chlorantraniliprole) can be 
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Fig. 8. Expected monetary benefit of pest monitoring for the individual farm, i.e. individual Expected Value of Perfect Information (EVPI) for pest risk. The calculations are based 
on the model predictions shown in Fig.  5.
Fig. 9. Decision recommendation based on our decision model using the predicted pest risks (as shown in Fig.  5) as input. Monitoring is the recommended action, whenever the 
individual EVPI (as shown in Fig.  8) is greater than the cost of monitoring.
effective against multiple pests simultaneously. By extending our risk 
model to jointly predict the risk of multiple pathogens (as was done, for 
example, by Patil and Thorat (2016) for grapes), and by modifying our 
decision model to find the optimal strategy given this joint distribution 
of risk, farmers can be advised more holistically.

Another simplification is the lack of spatiotemporal dynamics in 
our pest damage model. Instead of assuming a linear dependence on 
pest presence, plant growth models can capture complex nonlinear 
relationships with pathogens (Bregaglio et al., 2021). However, it is 
unclear whether such complex model extensions would significantly 
improve the overall results.

In addition, we considered only one exemplary set of farm charac-
teristics, modeling an archetypical farm. To provide more meaningful 
decision support for individual farmers, we recommend including farm-
specific information on tomato variety, management practices, labor 
availability, production paradigm (e.g., organic, IPM, conventional, 
etc.), transplanting time, farmer knowledge, product availability, and 
local input and output prices. Such targeted utilization of our prediction 
and decision model could be achieved through integration with exist-
ing Farm Management Information Systems (FMIS) (Balkrishna et al., 
2023) where such data are already available. Since our flexible, open-
source model can be easily applied to other crops and pathogens, it can 
serve as the basis for farm-level decision support systems, especially 
given user-specific information on farming conditions and practices.

3.3. Potential benefits of pest risk prediction and value of monitoring

To assess the potential economic benefits of following our deci-
sion recommendations throughout the year, we used our agent-based 
population model.

The strategy using our predictive decision model had the lowest to-
tal cost (see Table  1). The cost was lower by 1713.8±237.3 INR ha−1 a−1
(or 25.4 ± 4.3 %) than the farmers’ common practice calendar spraying. 
This difference represents the possible expected annual monetary bene-
fit of using our model. In addition to these monetary benefits, we found 
even more significant environmental and health benefits because the 
composition of the costs was drastically different (see Fig.  10). While 
in calendar spraying all the costs were caused by the purchase and 
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Table 1
Average decision-relevant costs (i.e.,  negative utility) per hectare for the prediction 
period (Jan 1, 2022 to Dec 31, 2022). All results are presented as mean ± standard 
deviation of the Monte Carlo samples. Each row represents a scenario in which all 
agents follow the respective decision strategy.
 Strategy Average costs per ha and year in INR 
 inaction 9568.7 ± 374.2  
 daily monitoring 8388.9 ± 8.9  
 calendar spraying 8490.2 ± 0.0  
 model 6776.3 ± 237.3  
 model (no updating) 7580.3 ± 163.8  

application of pesticides, in the model strategy the costs also included 
working hours for monitoring as well as minor avoidable yield losses. 
This way, we obtained a possible reduction in pesticide use of 58.8 ±
2.7 %, demonstrating a significant potential for improving production 
sustainability. At 8388.9±8.9 INR ha−1 a−1, the daily monitoring strategy 
was almost as favorable as the calendar spraying strategy, while still 
saving 53.4 ± 0.4 % in pesticide use. At 9568.7 ± 374.2 INR ha−1 a−1
of total cost (all due to yield loss), inaction performed the worst. With 
zero standard deviation, the costs of the calendar spraying strategy 
were insensitive to the distribution of pests, which could explain the 
attractiveness of this strategy to (risk-averse) farmers.

The mean individual EVPI for pest risk (i.e. the expected mone-
tary benefits of pest monitoring for the individual farm) was 26.6 ±
4.5 INR ha−1 for monitoring in the model scenario and 18.8±2.9 INR ha−1
in the model (no updating) scenario. This difference can be explained 
by model updating leading to better predictions and thus fewer pes-
ticide applications, therefore monitoring becomes more useful. Since 
T. absoluta infestations were most often observed during the rabi 
season (November to May), inaction was less often considered optimal 
during this period (see Fig.  11). However, even during the times of 
peak pest pressure, only half of the agents were advised to apply 
pesticides preventively. Thus, the use of pesticides was considerably 
lower throughout the year than in the calendar spraying scenario.

The mean community EVPI for pest risk (i.e. the expected monetary 
benefits of pest monitoring for all the other farms) was calculated as 
follows: The model (no updating) scenario, in which all farms follow 
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Fig. 10. Average decision-relevant costs per agent (farm) for 2022, when all agents follow the respective decision strategy. Cost contributions are indicated by color. Curative 
spraying refers to pesticide application as a result of positive findings in monitoring.
Fig. 11. Percentage of agents for whom the respective decision options were considered 
optimal in the model scenario over time. The simulation was run from January to 
December of 2022.

the decision recommendation, but the prediction model is not updated 
with new observations, led to 7580.3 ± 163.8 INR ha−1 a−1 of total 
costs. This is 804.0 ± 134.6 INR ha−1 a−1 more than the model strategy 
(with updating). Divided by the number of monitoring events (10.1 ±
2.6 ⋅ a−1), this results in a mean community EVPI for monitoring of 
88.2 ± 34.2 INR ha−1. Thus, on average each monitoring provided even 
more value to the surrounding farms than it did for the monitoring 
farm itself (the individual EVPI can never exceed 51.95 INR ha−1, see 
Fig.  6). As shown in Fig.  1, risks were significantly correlated for 
farms in close spatial proximity, so farms benefited most from nearby 
observations. However, due to the nature of the Gaussian process 
model, also more distant locations that shared similar environmental 
conditions were informed. Therefore, the community includes all farms 
using and contributing to the same pest risk prediction model. Mon-
itoring has diminishing marginal returns, since the first observations 
are significantly more informative than later ones. Therefore, additional 
monitoring runs would likely provide less value than this mean com-
munity EVPI. In addition, the community EVPI is likely highly variable, 
depending on how many observations from the same region and time 
period are already available to the model, and how many other tomato 
growing farms are in the spatiotemporal neighborhood to benefit from 
them. Further analyzing the dynamics of community EVPI would be a 
valuable topic for future research.

In practice, farmers tend to be risk-averse, and this has been shown 
to be the case in India (Sawosri and Mußhoff, 2020; Senapati, 2020). 
This implies that the occurrence of avoidable losses, along with visible 
symptoms and the associated risk of pest spread, may lead farmers to 
rely on heuristic calendar-based spraying. That is, they may be unwill-
ing to follow the monitoring and intervention scheme recommended 
by the model, even though the expected total costs could be lower. In 
addition, in many rural areas of India, temporal fluctuations in labor 
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supply, coupled with imperfect labor markets and labor market trans-
action costs (Foster and Rosenzweig, 2017), may limit the monitoring 
capacity of medium-size farms. In such cases, calendar-based spraying 
offers the added benefit of planning certainty.

In the context of a free mobile application, the quality of pest 
risk prediction can be seen as a public good (non-excludable, non-
rival) whose supply depends on monitoring. Monitoring thus provides 
a positive externality with diminishing marginal returns, in the sense 
that each successive observation provides less uncertainty reduction 
than the previous one. Since individuals can benefit from pest risk 
prediction without contributing costly monitoring observations, this 
is a classic free-riding situation. Rational individuals will engage in 
monitoring only if the private benefits outweigh the costs. Neglecting 
the public benefits leads to a socially suboptimal undersupply of moni-
toring activities. We therefore discuss some approaches to remedy this 
undersupply. First, public extension agents can contribute monitoring 
activities in regions and at times where it is beneficial. Second, the posi-
tive externality can be internalized, so that a farmer receives additional 
compensation or some kind of subsidy for monitoring based on the 
value it provides to the surrounding community. Apart from monetary 
compensation, which may be unrealistic in practice due to transaction 
costs and unclear payment levels, non-monetary compensation can also 
be used, such as social prestige rewards. Such rewards have previously 
been shown to induce the sharing of pest management information 
in Ethiopia (Balew et al., 2023). In practice, such rewards could be 
implemented as badges for mobile app users that contributors can earn 
and display publicly if they wish.

While our model clearly demonstrates the potential benefits of using 
a probabilistic pest risk prediction model and the importance of com-
munity VoI in evaluating monitoring efforts, the specific model results 
depend on a number of assumptions and simplifications. The limitations 
of the underlying risk prediction and decision models are discussed in 
Sections 3.1 and 3.2, respectively. In the population model, we assumed 
that the Plantix tomato observation sites are a representative sample 
of tomato farmer sites in Andhra Pradesh, but they are likely to be 
biased due to socioeconomic drivers of technology adoption (Schulz 
and Börner, 2023). In addition, the homogeneity of agents (all modeled 
as archetypical farms) is also a limitation of our population model. For 
more reliable policy advice, we suggest drawing populations from a dis-
tribution of representative farms. This would be similar to the approach 
of Luu et al. (2022), who used a fully probabilistic model derived 
from extensive expert consultation. In our case, further improvements 
could be achieved by regionalizing agronomic and economic variables 
such as farm sizes, wages, and commodity prices. In addition to the 
aforementioned model improvements, another promising avenue for 
advancing research in this area could be the development of long-term 
pest forecasts based on weather forecasts. This approach could enable 
the implementation of environmentally friendly preventive measures, 
thereby further reducing the need for pesticides.
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4. Conclusion

Crop pests continue to be a major problem for farmers around the 
world. At the same time, overuse of pesticides poses a threat to human 
and environmental health. This study presents a framework to support 
decisions on whether to apply pesticides, monitor crops, or omit crop 
protection measures on a given day and at a given geographic location. 
To achieve this, a spatio-temporal pest risk prediction model was 
developed using deep Gaussian process classification. In a case study 
of tomato production in Andhra Pradesh, the prediction model showed 
considerable discriminative power and accurate uncertainty quantifi-
cation. For an archetypical tomato farm, our model-based decision 
strategy proved highly valuable in a Monte Carlo simulation, reducing 
average pest-related costs by 25.4±4.3% and pesticide use by 58.8±2.7%. 
The information value of monitoring one hectare of tomato crop was 
found to be 26.6 ± 4.5 INR on average for the individual farmer. We 
found 88.2±34.2 INR ha−1 of additional information value in monitoring 
for the community, as other farmers are warned of disease outbreaks. 
For this purpose, we introduced the novel decision analytic concept 
of community VoI. To apply our framework in a decision support 
context, we suggest utilizing current, farm-specific data instead of the 
literature-based data used in this case study. Furthermore, integrating 
multiple crop pests and diseases is anticipated to enhance our approach 
for practical decision-making. Overall, our adaptable, open-source risk 
prediction and decision models provide a robust foundation for pest 
risk-based decision support systems.
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Fig. A.1. Coefficients of a logistic regression model. Positive coefficients correspond 
to positive correlation with pest risk. Negative coefficients correspond to negative 
correlation with pest risk. Values close to zero indicate little linear correlation with pest 
risk but these variables could still be valuable predictors in more complex nonlinear 
models (such as a random forest classifier, see Fig.  A.2) or the deep GPR model, we 
presented in the paper. Daily weather variables of the previous 30 days were aggregated 
to averages.

Fig. A.2. Feature importance in a random forest classification model with 100 trees. 
Daily weather variables of the previous 30 days were aggregated to averages. Apart 
from leaf area index high vegetation, all variables showed similar importance.
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