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 a b s t r a c t

We describe a single-locus quantitative genetic model that incorporates effects due to DNA methylation. Ex-
tending Fisher’s decomposition of the genotypic value, we distinguish two quantities to predict an individual’s 
phenotypic or genetic values: the “basic genetic value” and the “expressed genetic value”. We show how these 
quantities relate to the concept of breeding value and derive their corresponding formulas, along with those 
for phenotypic variance and covariance between relatives. The resulting parameters are influenced by several 
factors, including the population distribution of DNA methylation levels, the functional relationship between 
methylation and phenotype, the magnitudes of genetic and methylation effects, and allele frequencies. We show 
that under the conditions modeled, the presence of DNA methylation does not bias estimated breeding values.

1.  Introduction

Epigenetics is concerned with the mechanisms and consequences of 
chromatin modifications that do not involve changes in DNA sequence. 
Because the chromatin state is a principal determinant of gene expres-
sion, epigenetic mechanisms underlie various biological phenomena. 
The most well-known forms of chromatin modification are histone mod-
ifications, nucleosome remodelling, and DNA methylation (Klug et al., 
2019).

DNA methylation is an important cellular regulatory mechanism. It 
refers to the addition of a methyl group to the nitrogenous base of a 
nucleoside residue in deoxyribonucleic acid. In vertebrates, the most 
relevant and well-understood methylation is the reaction that causes cy-
tosine to become 5-methylcytosine (Voet and Voet, 2010; Li and Zhang, 
2014). This reaction usually occurs on CpG sequences, and the cytosines 
on both DNA strands are methylated. The addition of a methyl group to 
the C5 atom of cytosine’s pyrimidine ring changes the local structure of 
the DNA double helix, affecting its binding affinity with other molecules. 
As a result, further nuclear processes may follow (e.g., binding of other 
proteins, histone modifications). More importantly, DNA methylation 
can regulate gene expression. In mammals, the methylation of cytidine 
residues in gene promoter regions is associated with repression of mRNA 
transcription (Li and Zhang, 2014).

Recent advances in the field of genomics have enabled large-scale 
quantification of DNA methylation. DNA methylation levels are 
currently measured through assays such as whole-genome bisulfite 
sequencing (WGBS) (Frommer et al., 1992; Lister and Ecker, 2009), 
reduced representation bisulfite sequencing (RRBS) (Meissner et al., 
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2005), bisulfite microarrays (Bibikova et al., 2011), methylated DNA 
immunoprecipitation (MeDIP) (Weber et al., 2005), and nanopore 
sequencing (Wallace et al., 2010). In WGBS and RRBS, cytosine 
methylation is quantified by the proportion of methylated reads at 
specific loci, thus ranging from zero (when no reads are methylated) 
to one (all reads are methylated). Intermediate values indicate partial 
methylation, resulting from a mixture of methylated and unmethylated 
DNA molecules or strands.

Methods for genomic prediction using multiple loci and large-scale 
omics data, including methylation, have been proposed by employing 
mixed model methodology (Guo et al., 2016; Morgante et al., 2020; 
Christensen et al., 2021), reproducing kernel Hilbert spaces regression 
(Hu et al., 2015), deep learning (Chai et al., 2021), and neural net-
works (Zhao et al., 2022). Single-locus models are valuable for develop-
ing concepts, discerning parameters that describe DNA methylation and 
the phenotype, quantifying sources of observed variation, and inform-
ing improvements to predictive methods. Indeed, some authors have 
explored such models in the context of genomic imprinting (Spencer, 
2002; de Koning et al., 2002; Santure and Spencer, 2006; Spencer, 2009; 
Álvarez-Castro, 2014; O’Brien and Wolf, 2019), whose molecular basis 
is linked to DNA methylation. Unlike in genomic imprinting models, we 
assume maternal and paternal alleles are interchangeable and disregard 
parent-of-origin effects.

We aim to build a foundational one-locus model to serve as a frame-
work for incorporating DNA methylation into genomic prediction. This 
approach provides a critical step towards genome-wide models capa-
ble of incorporating both genetic and epigenetic contributions to trait 
variation.
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\begin {align*}V_{A}&=\mathbb {E}\left \{\left [\left (\alpha +\gamma \bar {M}\right )\left (N-2p\right )\right ]^2\right \} -\left \{\mathbb {E}\left [\left (\alpha +\gamma \bar {M}\right )\left (N-2p\right )\right ]\right \}^2\\ &=\mathbb {E}\big (\gamma ^2\bar {M}^2N^2-4\gamma ^2\bar {M}^2Np+4\gamma ^2\bar {M}^2p^2\\ &\,\ \ + 2\alpha \gamma \bar {M}N^2-8\alpha \gamma \bar {M}Np+8\alpha \gamma \bar {M}p^2\\ &\, \ \ +\alpha ^2N^2- 4\alpha ^2Np+4\alpha ^2p^2\big )-0^2\\ &=-8\gamma ^2\bar {M}^2p^2+4\gamma ^2\bar {M}^2p^2\\ &\,\ \ +\left (2\gamma ^2\bar {M}^2p^2+2\gamma ^2\bar {M}^2p\right )-16\alpha \gamma \bar {M}p^2\\ &\,\ \ +\left (4\alpha \gamma \bar {M}p^2+4\alpha \gamma \bar {M}p\right )+8\alpha \gamma \bar {M}p^2\\ &\,\ \ -8\alpha ^2p^2+4\alpha ^2p^2+\left (2\alpha ^2p^2+2\alpha ^2p\right )\\ &=-2\gamma ^2\bar {M}^2p^2+2\gamma ^2\bar {M}^2p-4\alpha \gamma \bar {M}p^2\\ &\,\ \ +4\alpha \gamma \bar {M}p-2\alpha ^2p^2+2\alpha ^2p\\ &=2p\left (1-p\right )\left (\alpha +\gamma \bar {M}\right )^2.\end {align*}


$A_1A_1$


\begin {align*}p\left [\left (\alpha +\gamma \bar {M}\right )\left (1-2p\right )\right ]+\left (1-p\right )\left [-2\left (\alpha +\gamma \bar {M}\right )p\right ]=-\left (\alpha +\gamma \bar {M}\right )p;\end {align*}


$A_1A_2$


\begin {align*}&\frac {1}{2}\bigg \{p\left [\left (\alpha +\gamma \bar {M}\right )\left (1-2p\right )\right ]+\left (1-p\right )\left [-2\left (\alpha +\gamma \bar {M}\right )p\right ]\bigg \}\\ &\qquad +\frac {1}{2}\bigg \{p\left [2\left (\alpha +\gamma \bar {M}\right )\left (1-p\right )\right ]+\left (1-p\right )\left [\left (\alpha +\gamma \bar {M}\right )\left (1-2p\right )\right ]\bigg \}\\ &\ \ =\frac {1}{2}\left (\alpha +\gamma \bar {M}\right )\left (1-2p\right ).\end {align*}


$A_2A_2$


\begin {align*}&p\left [2\left (\alpha +\gamma \bar {M}\right )\left (1-p\right )\right ]+\left (1-p\right )\left [\left (\alpha +\gamma \bar {M}\right )\left (1-2p\right )\right ]\\ &\ \ =\left (\alpha +\gamma \bar {M}\right )\left (1-p\right ).\end {align*}


$X_1$


$X_2$


$X_1$


$X_2$


$A_1A_1$


$A_1A_2$


$A_2A_2$


\begin {align*}Y= \begin {cases} \mu +\beta M+E, & \text {if } A_1A_1,\\ \left (\mu +\alpha _1\right )+\left (\beta +\gamma _1\right )M+E, & \text {if } A_1A_2,\\ \left (\mu +\alpha _2\right )+\left (\beta +\gamma _2\right )M+E, & \text {if } A_2A_2. \end {cases}\end {align*}


$M=0$


\begin {align*}\mathbb {E}\left (Y\mid {X_1}=x_1,X_2=x_2,M=0\right )=\mu +\alpha _1x_1+\alpha _2x_2.\end {align*}


$X_1$


$M$


$X_2$


$M$


\begin {align*}\mathbb {E}Y=\mu +2\alpha _{1} p\left (1-p\right )+\alpha _{2} p^{2}+\bar {M}\left [\beta +2\gamma _{1} p\left (1-p\right )+\gamma _{2} p^{2}\right ].\end {align*}


\begin {align*}&\mathbb {E}\left (Y\mid {X_1}=x_1,X_2=x_2,M=0\right )-\mathbb {E}Y \\ &\ \ =\alpha _1x_1+\alpha _2x_2-\big \{2\alpha _1p\left (1-p\right )+\alpha _2p^2+\bar {M}\left [\beta +2\gamma _1p\left (1-p\right )+\gamma _2p^2\right ]\big \}.\end {align*}


\begin {align*}&\mathbb {E}\left (Y\mid {X_1}=x_1,X_2=x_2,M=m\right )-\mathbb {E}Y\\ &\ \ =\alpha _1x_1+\alpha _2x_2+\left (\beta +\gamma _1x_1+\gamma _2x_2\right )m\\ &\quad - \Big \{2\alpha _1p\left (1-p\right )+\alpha _2p^2+\bar {M}\left [\beta +2\gamma _1p\left (1-p\right )+\gamma _2p^2\right ]\Big \},\end {align*}


\begin {align*}&\mathbb {E}\left (Y\mid {X_1}=x_1,X_2=x_2,M=\bar {M}\right )-\mathbb {E}Y\\ &\ \ =\alpha _1x_1+\alpha _2x_2\\ &\quad \ -\big \{2\alpha _1p\left (1-p\right )+\alpha _2p^2+\bar {M}\left [\gamma _1x_1+\gamma _2x_2+2\gamma _1p\left (1-p\right )+\gamma _2p^2\right ]\big \}.\end {align*}


\begin {align*}V_P &= p \left (1-p\right )\big \{\bar {M}^2\big \{\gamma _1^2\left [2-4p\left (1-p\right )\right ]+\gamma _2^2p\left (1+p\right )-4\gamma _1\gamma _2 p^2\big \} \\ &\ \ -4\alpha _1\big \{\bar {M}\left [\gamma _2p^2+\gamma _1\left (2p\left (1-p\right )-1\right )\right ]+\alpha _2p^2\big \}\\ &\ \ +2\alpha _2 p\bar {M} \left [\gamma _2\left (1+p\right )-2\gamma _1p\right ] +\alpha _1^2\left [2-4p\left (1-p\right )\right ]+\alpha _2^2p\left (1+p\right )\big \}\\ &\ \ +V_M \big \{\beta ^2+2\beta \gamma _2p^2+\gamma _2p^2 +2\gamma _1\left (2\beta +\gamma _1\right )p\left (1-p\right )\big \} +V_E.\end {align*}


\begin {align*}V_{exp} &= p \left (1-p\right )\big \{\bar {M}^2\big \{\gamma _1^2\left [2-4p\left (1-p\right )\right ]+\gamma _2^2p\left (1+p\right )-4\gamma _1\gamma _2 p^2\big \} \\ &\ \ -4\alpha _1\big \{\bar {M}\left [\gamma _2p^2+\gamma _1\left (2p\left (1-p\right )-1\right )\right ]+\alpha _2p^2\big \}\\ &\ \ +2\alpha _2 p\bar {M} \left [\gamma _2\left (1+p\right )-2\gamma _1p\right ]+\alpha _1^2\left [2-4p\left (1-p\right )\right ]+\alpha _2^2p\left (1+p\right )\big \}\\ &\ \ +V_M\big \{\beta ^2+2\beta \gamma _2p^2+\gamma _2p^2+2\gamma _1\left (2\beta +\gamma _1\right )p\left (1-p\right )\big \}.\end {align*}


\begin {align*}V_{bgv}=&\alpha _1^22p\left (1-p\right )\left [1-2p\left (1-p\right )\right ]+\alpha _2^2\left (1-p\right )^2p\left (2-p\right )-4\alpha _1\alpha _2p\left (1-p\right )^3.\end {align*}


\begin {align*}V_A&=\left (\alpha _1+\gamma _1\bar {M}\right )^22p\left (1-p\right )\left [1-2p\left (1-p\right )\right ]\\ &\ \ +\left (\alpha _2+\gamma _2\bar {M}\right )^2\left (1-p\right )^2p\left (2-p\right )\\ &\ \ -4\left (\alpha _1+\gamma _1\bar {M}\right )\left (\alpha _2+\gamma _2\bar {M}\right )p\left (1-p\right )^3.\end {align*}


\begin {align}Y=\mu +\alpha _1X_1+\alpha _2X_2+\beta M+\gamma _1X_1M+\gamma _2X_2M+E\end {align}
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2.  The model

2.1.  Setting

In a population of diploid, sexually reproducing organisms that mate 
at random, we consider a quantitative trait and one autosomal locus 
with two alleles. Each individual has its phenotype measured and its 
genotype ascertained. In addition, each individual has its methylation 
level measured at a given age, at a specified site or region of the genome.

We refer to the two alleles as 𝐴1 and 𝐴2. Because the locus is bial-
lelic, there are only three possible genotypes: homozygous for one of the 
alleles (𝐴1𝐴1), heterozygous (𝐴1𝐴2) or homozygous for the other allele 
(𝐴2𝐴2). If 𝑁 denotes the number of copies of 𝐴2, the coding 𝑁 ∈ {0, 1, 2}
captures all genotypes. Let 𝑝 be the frequency of allele 𝐴2 in the popu-
lation, so that 𝔼𝑁 = 2𝑝. We shall refer to the methylation level as the 
“methylotype” of the individual, in analogy with the term genotype. The 
methylotype, denoted by 𝑀 , can be defined as the proportion of methy-
lated reads to facilitate comparisons between individuals, although not 
a strict requirement of the model we present. We shall assume that the 
distribution of methylation levels in the population does not depend 
on the genotype, meaning Cov(𝑁,𝑀) = 0. Further, we assume that the 
methylation levels of individuals are mutually independent.

2.2.  Fisher’s decomposition

In Fisher’s classic decomposition, the phenotypic measurements 𝑌
are treated as a continuous random variable and are regressed on the 
genotypes 𝑁 . A simple linear regression model is fitted to the data:
𝑌 = 𝜇 + 𝛼𝑁 + 𝐸, (1)

where 𝐸 is a residual effect and 𝜇, 𝛼 are regression coefficients. The 
least-squares solution for 𝛼 is

𝛼 =
Cov(𝑁, 𝑌 )
Var(𝑁)

. (2)

In quantitative genetic theory, 𝛼 is called the average effect of allelic sub-
stitution (Fisher, 1941).

Under model (1), the conditional expectation minus the mean of the 
phenotype

𝔼(𝑌 |𝑁 = 𝑛) − 𝔼𝑌 = 𝛼(𝑛 − 2𝑝) (3)

is called the additive genetic value of the genotype that has 𝑛 copies of the 
𝐴2 allele. It can be shown that the additive genetic value of a genotype 
is twice the expected deviation of its offspring’s phenotype from the 
population mean. For this reason, it is also called the breeding value of a 
genotype (Lynch and Walsh, 1998).

2.3.  Incorporating methylation

In Fisher’s decomposition, phenotypic values are regressed on the 
gene content 𝑁 , that is, the number of copies of an allele (Álvarez-
Castro, 2023). We now extend the model to include methylation level—
the proportion of DNA methylation affecting the expression of the 
locus—and an interaction term to account for heterogeneous methyla-
tion effects:
𝑌 = 𝜇 + 𝛼𝑁 + 𝛽𝑀 + 𝛾𝑁𝑀 + 𝐸, (4)

where 𝑌  is the phenotype, 𝑁 is the number of 𝐴2 alleles in the genotype, 
𝑀 is the methylotype, 𝐸 is a residual effect, and 𝜇, 𝛼, 𝛽, 𝛾 are regression 
coefficients.

Similar to expression (3) for the additive genetic value, we may con-
sider a corresponding conditional expectation for the model. For this, 
we also condition the phenotype 𝑌  on the observed methylation level 
𝑚:

𝔼(𝑌 ∣ 𝑁 = 𝑛,𝑀 = 𝑚) − 𝔼𝑌 . (5)

2.4.  Expressed genetic value

This quantity, given by expression (5), represents the predicted phe-
notype of the individual with genotype 𝑛 and at the observed level of 
methylation 𝑚, conveyed as a deviation from the average phenotype. 
We will call it the expressed genetic value of the genotype-methylotype 
combination because it reflects the gene expression at a particular time 
in a certain tissue of the individual. In terms of model (4), we obtain
𝔼(𝑌 ∣ 𝑁 = 𝑛,𝑀 = 𝑚) − 𝔼𝑌 = 𝛼(𝑛 − 2𝑝) + 𝛽

(

𝑚 − 𝑀̄
)

+ 𝛾
(

𝑛𝑚 − 2𝑀̄𝑝
)

, (6)

where 𝑀̄ = 𝔼𝑀 . When mating is random, it can be shown that, unlike 
the additive genetic value, the expressed genetic value of a genotype is 
not equal to twice the expected deviation of its offspring’s mean pheno-
type from the population mean (see Table B.1 in Appendix B); thus we 
call it a genetic value rather than a breeding value. The expectation of 
the expressed genetic values is equal to zero.

2.5.  Basic genetic value

Instead of conditioning the expectation on the observed methylation 
level 𝑚, we may condition it on the methylation value of zero, that is
𝔼(𝑌 ∣ 𝑁 = 𝑛,𝑀 = 0) − 𝔼𝑌 = 𝛼(𝑛 − 2𝑝) − 𝛽𝑀̄ − 2𝛾𝑀̄𝑝. (7)

This quantity represents the predicted phenotype of the individual if 
the locus were unmethylated (conveyed as a deviation from the average 
phenotype). Given that methylation states are dynamic, an unmethy-
lated state provides a baseline for comparison of individuals, as this is 
when genes can be fully expressed. We refer to this quantity as the basic 
genetic value of the genotype. The expected basic genetic value of the 
progeny of an individual with a given basic genetic value is not one-half 
its basic genetic value (see Table B.2 in Appendix B). The mean basic 
genetic value in a population equals −𝑀̄(𝛽 + 2𝛾𝑝).

2.6.  Breeding value

The traditional breeding value is given by 𝔼(𝑌 ∣ 𝑁 = 𝑛) − 𝔼𝑌 . To find 
𝔼(𝑌 ∣ 𝑁 = 𝑛), we apply the law of total probability for expectations, so 
that the breeding value is equal to
𝔼𝑀 [𝔼(𝑌 ∣ 𝑁 = 𝑛,𝑀)] − 𝔼𝑌 = (𝑛 − 2𝑝)

(

𝛼 + 𝛾𝑀̄
)

. (8)

Under random mating, the expected phenotypic deviation of the 
progeny of an individual is one-half of the breeding value of this indi-
vidual (see Table B.3 in Appendix B). The breeding value in our model 
has an expression that coincides with the quantity defined below:
𝔼
(

𝑌 ∣ 𝑁 = 𝑛,𝑀 = 𝑀̄
)

− 𝔼𝑌 = (𝑛 − 2𝑝)
(

𝛼 + 𝛾𝑀̄
)

.

This quantity represents the predicted genotypic value of the individual 
at the locus if its methylation level was equal to the population average. 
We also refer to it as the breeding value of the individual. The average 
breeding value in a population is zero.

Table 1 summarizes the definitions and formulas for the expressed 
genetic value, basic genetic value, breeding value, and their respective 
variances.

2.7.  Variances

In this section, we provide analytic expressions for the variances of 
the phenotype, the expressed and basic genetic values, the breeding val-
ues, and the phenotypic covariance between relatives.

2.7.1.  Phenotypic variance
By definition,

𝑉𝑃 = Var(𝑌 ) = 𝔼
(

𝑌 2) − (𝔼𝑌 )2 = 𝔼
[

(𝜇 + 𝛼𝑁 + 𝛽𝑀 + 𝛾𝑁𝑀 + 𝐸)2
]

− [𝔼(𝜇 + 𝛼𝑁 + 𝛽𝑀 + 𝛾𝑁𝑀 + 𝐸)]2.
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Table 1 
Expressed genetic value, basic genetic value, breeding value, and their variances.
 Quantity  Concept  Definition  Value  Variance
 Expressed  Predicted phenotypic deviation, 𝔼(𝑌 ∣ 𝑁 = 𝑛,𝑀 = 𝑚) 𝛼(𝑛 − 2𝑝) + 𝛽

(

𝑚 − 𝑀̄
)

2𝑝(1 − 𝑝)𝛼2

 genetic value  given the genotype and the −𝔼𝑌 +𝛾
(

𝑛𝑚 − 2𝑀̄𝑝
)

+𝑀̄
[

2𝑝(1 − 𝑝)𝛾(2𝛼 + 𝛾𝑀̄)
]

 observed methylation state. +𝑉𝑀
[

2𝑝(1 − 𝑝)𝛾2 + (𝛽 + 2𝑝𝛾)2
]

 Basic  Predicted phenotypic deviation, 𝔼(𝑌 ∣ 𝑁 = 𝑛,𝑀 = 0) 𝛼(𝑛 − 2𝑝) − 𝛽𝑀̄ 2𝑝(1 − 𝑝)𝛼2

 genetic value  given the genotype and supposing −𝔼𝑌 −2𝛾𝑀̄𝑝
 an unmethylated state.

 Breeding  Predicted phenotypic deviation, 𝔼(𝑌 ∣ 𝑁 = 𝑛) (𝑛 − 2𝑝)
(

𝛼 + 𝛾𝑀̄
)

2𝑝(1 − 𝑝)
(

𝛼 + 𝛾𝑀̄
)2

 value  given the genotype. Related to the −𝔼𝑌
 expected phenotype of offspring.

Under the assumptions of random mating and independence between 
𝑁 and 𝑀 , the above expression simplifies to (for a derivation, see Ap-
pendix A.1)
𝑉𝑃 =2𝑝(1 − 𝑝)𝛼2 + 𝑀̄ 2𝑝(1 − 𝑝)𝛾 2𝛼 + 𝛾𝑀̄

+ 𝑉𝑀
[

2𝑝(1 − 𝑝)𝛾2 + (𝛽 + 2𝑝𝛾)2
]

+ 𝑉𝐸 . (9)

[ ( )]

2.7.2.  Expressed genetic variance
The variance of the expressed genetic values is given by

𝑉𝑒𝑥𝑝 =2𝑝(1 − 𝑝)𝛼2 + 𝑀̄
[

2𝑝(1 − 𝑝)𝛾
(

2𝛼 + 𝛾𝑀̄
)]

+ 𝑉𝑀
[

2𝑝(1 − 𝑝)𝛾2 + (𝛽 + 2𝑝𝛾)2
]

. (10)

Clearly, the variance of the expressed genetic values is equal to the phe-
notypic variance minus the environmental variance. We will refer to 
the variance of expressed genetic values as the “expressed genetic vari-
ance”, for it involves genetic and epigenetic (e.g., DNA methylation) 
factors determining gene expression.

2.7.3.  Variance of basic genetic values
The variance of the basic genetic values in a population is equal to 

(cf. Appendix A.3)
𝑉𝑏𝑔𝑣 = 2𝑝(1 − 𝑝)𝛼2, (11)

which is the additive genetic variance in Fisher’s classic model (how-
ever, see Section 3.2 about the estimation bias of 𝛼).

2.7.4.  Variance of breeding values
The variance of the breeding values in a population is equal to (cf. 

Appendix A.4)
𝑉𝐴 = 2𝑝(1 − 𝑝)

(

𝛼 + 𝛾𝑀̄
)2. (12)

2.7.5.  Covariance between relatives
The covariance between the genotypes of relatives is given by

Cov
(

𝑁𝑖, 𝑁𝑗
)

= 2𝑟𝑖𝑗𝑝(1 − 𝑝),

where 𝑟𝑖𝑗 is the expected additive genetic relationship between 𝑖
and 𝑗 (Sorensen, 2023). Under the assumptions of Cov(𝑀𝑖,𝑀𝑗

)

=
Cov

(

𝑁𝑖,𝑀𝑖
)

= 0, the phenotypic covariance between relatives in groups 
𝑖 and 𝑗 is given by the following expression (see Appendix A.2 for its 
derivation):

Cov
(

𝑌𝑖, 𝑌𝑗
)

= 2𝑟𝑖𝑗𝑝(1 − 𝑝)
(

𝛼 + 𝛾𝑀̄
)2. (13)

3.  Results and discussion

A few hypothetical cases are presented in this section to illustrate 
how the model captures genotype-to-phenotype relationships influenced 
by methylation levels. Figs. 1–4 show plots of expected phenotypes 
against methylation levels, with each line corresponding to a genotype 
(𝐴1𝐴1, 𝐴1𝐴2 or 𝐴2𝐴2).

Fig. 1 shows a scenario where higher methylation levels are associ-
ated with lower phenotypic values. The expected phenotype is identi-
cal across genotypes when the locus is completely methylated (𝑚 = 1). 

Fig. 1. Predicted phenotype versus methylation level. Each line corresponds to 
a genotype. The parameters in this example are 𝑝 = 0.9, 𝑀̄ = 0.2, 𝜇 = 2, 𝛼 = 1, 
𝛽 = −1, and 𝛾 = −1. From left to right: the basic genetic value (𝑀 = 0), the 
breeding value (𝑀 = 𝑀̄), and the expressed genetic value (𝑀 = 𝑚) of a het-
erozygote individual with 𝑚 = 0.4 are represented by line segments with arrows. 
The horizontal line at 𝑦 = 𝑌  represents the average phenotype in the population.

Fig. 2. Predicted phenotype versus methylation level. Each line corresponds 
to a genotype. The parameters in this example are 𝜇 = 2, 𝛼 = 0.3, 𝛽 = 2, and 
𝛾 = −1.5. The homozygous genotypes are re-ranked at 𝑚 = 0.2.

This pattern is conceptually coherent with methylation sites in the pro-
moter region, where full methylation silences gene expression, resulting 
in equal average phenotypes due to the lack of a functional gene contri-
bution. The figure also depicts the breeding, basic and expressed genetic 
values of a hypothetical heterozygous individual with a 40% methyla-
tion rate.
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Fig. 3. Predicted phenotype versus methylation level. A case of no interaction 
(𝛾 = 0). Each parallel line corresponds to a genotype. The parameters in this 
example are 𝜇 = 2, 𝛼 = 1, 𝛽 = −1, and 𝛾 = 0.

Fig. 4. Predicted phenotype versus methylation level. Parameterization with 
indicator variables (cf. Appendix C). The parameters in this example are 𝜇 = 3, 
𝛼1 = 1, 𝛼2 = −1, 𝛽 = −1, 𝛾1 = −2, and 𝛾2 = 1.

Fig. 2 represents a case where changing methylation levels may ei-
ther exacerbate or diminish the phenotypic differences among the geno-
types in a population; notably, genotypes may be re-ranked depending 
on the observed methylation level. Slopes differ when 𝛾 ≠ 0, indicating 
variation in the genotype-specific responses to methylation (i.e., there 
is interaction).

By contrast, Fig. 3 illustrates a scenario with no interaction, where 
all genotypes have the same slope. The case could be fit with a model 
without the interaction term. In experimental design, such a model is 
referred to as an analysis of covariance (Cochran, 1957; Montgomery, 
2017), with 𝑀 serving as the covariate.

In all cases, at any given methylation level, the lines of the homozy-
gotes are equidistant from the line of the heterozygote. This constraint, 
characteristic of additive models, may be addressed by using a domi-
nance model with indicator variables, which allows for a more flexible 
adjustment of slopes and intercepts (Fig. 4; cf. Appendix C).

3.1.  Equivalence to basic model

When a locus is unmethylated, 𝑀 = 0. Thus
𝔼(𝑌 ∣ 𝑁 = 𝑛,𝑀 = 0) − 𝔼𝑌 = 𝛼(𝑛 − 2𝑝).

Hence, when there is no methylation, the model reduces to the classic 
one. Similarly, for the variance formula, in the absence of methylation 
in the population, 𝑀̄ = 0 and 𝑉𝑀 = 0, yielding
Var(𝑌 ) = 𝑉𝑃 = 2𝛼2𝑝(1 − 𝑝) + 𝑉𝐸 . (14)

3.2.  Absence of information on methylation and bias

Consider that the true data generating mechanism is affected by 
methylation as given by the model (4). Absence of methylation data 
leads to the classic, reduced model (1), which does not estimate 𝛽 or 
𝛾. Let 𝛼∗ and 𝜇∗ denote the allelic substitution effect and the intercept, 
respectively, in the reduced model. Under the true model, we have that
𝔼[𝑌 ∣ 𝑁 = 𝑛] = (𝜇 + 𝛽𝑀̄) + (𝛼 + 𝛾𝑀̄)𝑛,

but the reduced model attempts to fit
𝔼[𝑌 ∣ 𝑁 = 𝑛] = 𝜇∗ + 𝛼∗𝑛.

Hence, omitting methylation creates biases in the estimates of 𝜇 and 𝛼. 
These biases are equal to 𝛽𝑀̄ and 𝛾𝑀̄ , respectively. There is no bias in 
𝛼∗ if 𝛾 = 0 (all genotypes share the same slope) or if 𝑀̄ = 0 (there is no 
methylation in the population).

To assess the bias of breeding values under model (1), we compare 
Eqs. (3) and (8):
[

𝛼∗(𝑛 − 2𝑝)
]

−
[(

𝛼 + 𝛾𝑀̄
)

(𝑛 − 2𝑝)
]

= (𝑛 − 2𝑝)
[

(𝛼∗ − 𝛼) − 𝛾𝑀̄
]

.

Since 𝔼(𝛼∗ − 𝛼) = 𝛾𝑀̄ , the expected value of the previous expression 
is zero. Therefore, we conclude that there is no bias in the breeding 
value estimates of the classic model, given the assumptions used so far.

3.3.  Phenotypic variance

Eq. (9) reveals that the phenotypic variance is determined by four 
factors: (i) the allele frequencies, (ii) the environmental variance,
(iii) the parameters 𝛼, 𝛽, 𝛾, and (iv) the distribution of methylation levels 
in the population (more precisely, its variance and mean). In Figs. 5–7, 
the phenotypic variance is plotted as a function of the allele frequency, 
while the other parameters are held fixed within each figure. The vari-
ances of the expressed genetic values, basic genetic values, and breeding 
values are also displayed together with the phenotypic variance. The 
curve that represents the phenotypic variance as a function of 𝑝 is sym-
metric around the line 𝑝 = 1∕2 if 𝛾 = −𝛽 (e.g., Fig. 6). Fig. 7 shows a 
case where a dominance model with indicator variables is used (for a 

Fig. 5. Phenotypic (𝑉𝑃 ), expressed (𝑉exp), basic (𝑉𝑏𝑔𝑣), and additive genetic (𝑉𝐴) 
variances as functions of allele frequency (𝑝). Each line corresponds to a type of 
variance. The parameters in this example are 𝛼 = 1, 𝛽 = −1, 𝛾 = −0.8, 𝑀̄ = 0.2, 
𝑉𝑀 = 0.1, and 𝑉𝐸 = 0.5.
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Fig. 6. Phenotypic (𝑉𝑃 ), expressed (𝑉exp), basic (𝑉𝑏𝑔𝑣), and additive genetic (𝑉𝐴) 
variances as functions of allele frequency (𝑝). The curve is symmetric around 
𝑝 = 0.5 when 𝛾 = −𝛽. The parameters in this example are 𝛼 = 1, 𝛽 = −1, 𝛾 = 1, 
𝑀̄ = 0.2, 𝑉𝑀 = 0.1, and 𝑉𝐸 = 0.5.

Fig. 7. Phenotypic (𝑉𝑃 ), expressed (𝑉exp), basic (𝑉𝑏𝑔𝑣), and additive genetic (𝑉𝐴) 
variances as functions of allele frequency (𝑝). Parameterization with indicator 
variables. The parameters in this example are 𝛼1 = −1, 𝛼2 = −1, 𝛽 = −2, 𝛾1 = 1, 
𝛾2 = 2, 𝑀̄ = 0.2, 𝑉𝑀 = 0.1, 𝑉𝐸 = 0.5.

description of this model, see Appendix C). The distribution of methy-
lation levels used for all examples is shown in Fig. 8.

By assuming independent methylation levels among related individ-
uals and no covariance between genotype and methylotype, the mod-
els we present share features with genotype-environment interactions, 
where methylation acts as a continuous environmental gradient (Mather 
and Jinks, 1982; Falconer and Mackay, 1996). Consequently, Figs. 1–4 
resemble reaction norm graphs.

We emphasize that, because DNA methylation patterns are tissue-
specific, the expressed genetic value and the basic genetic value pertain 
to specific tissues or cell types of a multicellular organism. Moreover, ex-
pressed genetic values should ideally be compared among individuals of 
similar ages due to the “epigenetic clock”, a process by which methyla-
tion levels change as individuals age (Horvath, 2013; Dufek et al., 2024). 
Therefore, expressed genetic values should be defined in the context of 
a particular tissue or cell type, at a specific age, and with reference to a 
specific locus and methylation site.

Fig. 8. Distribution of methylation levels used in Figs. 5 and 6. A beta distri-
bution with parameters 𝑎 = 0.12 and 𝑏 = 0.48 has mean 𝑀̄ = 0.2 and variance 
𝑉𝑀 = 0.1.

3.4.  Limitations of the model

For simplicity of exposition, we have assumed a linear relationship 
between methylation and phenotype. This simplification may overlook 
non-monotonic relationships or other functions that could better repre-
sent the underlying biological processes.

In the derivation of the formula of covariance between relatives, the 
covariance between methylation levels in any two relatives was set to 
zero; that is, we assumed Cov(𝑀𝑖,𝑀𝑗

)

= 0. This assumption can be vi-
olated in two ways: when close relatives share similar environments 
or genes affecting methylation levels; and in transgenerational epige-
netic inheritance. In animal breeding, shared environments are typically 
addressed by adding a common environment or litter effect in models 
for full siblings. Transgenerational epigenetic inheritance in vertebrates 
remains an ongoing topic of investigation. While much evidence sug-
gests it is weak or rare (Goddard and Whitelaw, 2014; Fitz-James and 
Cavalli, 2022; Bird, 2024), the lack of powerful experimental designs 
and the problem of confounding make it challenging to fully assess its 
prevalence and mechanisms. Plants, by contrast, have shown clearer in-
stances of transgenerational epigenetic inheritance across multiple gen-
erations, as seen in Arabidopsis thaliana (Johannes et al., 2009; Bošković 
and Rando, 2018; Furci et al., 2019). Similarly, studies in Caenorhabditis 
elegans (Klosin et al., 2017) and Drosophila melanogaster (Ciabrelli et al., 
2017) have demonstrated instances of transgenerational epigenetic in-
heritance, albeit via mechanisms other than DNA methylation.

Lastly, to treat 𝑁 and 𝑀 as independent random variables may be 
unrealistic depending on the methylation site and genomic positions 
being considered. For example, in a study of 15 million CpG methylation 
sites in a human population, it was found that approximately 10% of 
the sites had their methylation rate associated with a cis-acting DNA 
sequence variant (Stefansson et al., 2024).

3.5.  Applications to observed data sets

While the model is presented in an expository manner to advance 
theoretical understanding, it can be readily applied to observed data 
for exploratory analyses. Phenotypes and genotypes may be grouped, a 
methylation metric selected, and the multiple linear regression with an 
interaction term performed for each genotype-methylation locus com-
bination. Based on the regression estimates, one could discover the na-
ture of the model for a particular locus (as illustrated in Figs. 1–4). The 
model accommodates various methylation metrics, such as the propor-
tion of methylated reads at cytosine sites, global methylation levels, or 
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average methylation rates in promoter regions. While genotype data can 
take various forms, the assumption of a biallelic locus makes single-
nucleotide polymorphisms (SNPs) a practical choice. However, testing 
all possible combinations of methylated cytosines and SNPs can result in 
a combinatorial explosion, posing computational challenges. This issue 
may be addressed by restricting the analyses to methylation sites and 
loci that are spatially proximal in the genome.

3.6.  Extensions to multiple loci

Due to the polygenic nature of most complex traits, single-locus mod-
els offer limited potential for achieving high prediction accuracies. Con-
sequently, extending the models to include multiple loci and methyla-
tion sites is a desirable goal. Mixed model methodologies achieve this 
by predicting SNP effects through covariance structures among related 
individuals (Meuwissen et al., 2001; VanRaden, 2008; de los Campos 
et al., 2013).

We have presented a model for the one-locus case and provided sev-
eral formulas under the assumptions of random mating, independence 
of methylation levels between relatives, and independence of methy-
lation and genotype. Expanding the model to multiple loci and mul-
tiple methylation sites introduces complexities such as epistasis, link-
age, and a combinatorial increase in interaction terms, which bring es-
timation and identifiability issues. Many models cope with these chal-
lenges by focusing solely on additive effects. However, genome-wide 
approaches should require careful management of interaction terms, 
covariances between methylation and genotype, and methylation co-
variance among relatives. Overcoming these challenges is needed to 
develop more robust, genome-wide and methylome-wide prediction
models.

4.  Conclusion

We have presented a single-locus model that incorporates DNA 
methylation as an extra variable. Our approach builds on Fisher’s classic 
decomposition of the genotypic value and phenotypic variance. Statis-
tically, the model is formulated as a multiple linear regression with two 
predictor variables and an interaction term. For simplicity, we assumed 
that methylation levels were independent across individuals and uncor-
related with the genotype.

The expressed genetic value is the expected phenotypic deviation, 
conditional on the genotype and on the observed methylation level; the 
basic genetic value is the expected phenotypic deviation, conditional 
on the genotype and on the methylation value of zero. The breeding 
value is the expected phenotypic deviation, conditional on the geno-
type; conditioning the methylation level on the population average also 
yields the breeding value. Under the aforementioned assumptions, the 
presence of methylation introduces no bias in the estimated breeding
values.

The phenotypic variance is determined by the functional relation-
ship between phenotype, methylation and genotype, the distribution of 
methylation values in a population, the allele frequency, and the en-
vironmental variance. The phenotypic covariance is determined by the 
additive genetic relationship, the regression coefficients 𝛼 and 𝛾, the 
allele frequency, and the average methylation rate in the population.
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Appendix A.  Derivation of variances

A.1.  Derivation of the phenotypic variance formula

The following steps lead to Eq. (9). The first term expands to
𝔼
(

𝜇2 + 𝛼2𝑁2 + 𝛽2𝑀2 + 𝛾2𝑀2𝑁2 + 𝐸2

+ 2𝜇𝛼𝑁 + 2𝜇𝛽𝑀 + 2𝜇𝛾𝑀𝑁 + 2𝜇𝐸

+ 2𝛼𝛽𝑀𝑁 + 2𝛼𝛾𝑀𝑁2 + 2𝛼𝑁𝐸

+ 2𝛽𝛾𝑀2𝑁 + 2𝛽𝑀𝐸 + 2𝛾𝑀𝑁𝐸
)

.

By linearity of expectation, this is equal to
𝔼(𝜇2) + 𝔼(𝛼2𝑁2) + 𝔼(𝛽2𝑀2) + 𝔼(𝛾2𝑀2𝑁2)

+ 𝔼(𝐸2) + 𝔼(2𝜇𝛼𝑁) + 𝔼(2𝜇𝛽𝑀) + 𝔼(2𝜇𝛾𝑀𝑁)

+ 𝔼(2𝛼𝛽𝑀𝑁) + 𝔼(2𝛼𝛾𝑀𝑁2) + 𝔼(2𝛼𝑁𝐸)

+ 𝔼(2𝜇𝐸) + 𝔼(2𝛽𝛾𝑀2𝑁) + 𝔼(2𝛽𝑀𝐸)

+ 𝔼(2𝛾𝑀𝑁𝐸)

= 𝜇2 + 𝛼2𝔼(𝑁2) + 𝛽2𝔼(𝑀2) + 𝛾2𝔼(𝑀2𝑁2)

+ 𝔼(𝐸2) + 2𝜇𝛼𝔼(𝑁) + 2𝜇𝛽𝔼(𝑀)

+ 2𝜇𝛾𝔼(𝑀𝑁) + 2𝜇𝔼(𝐸) + 2𝛼𝛽𝔼(𝑀𝑁)

+ 2𝛼𝛾𝔼(𝑀𝑁2) + 2𝛼𝔼(𝑁𝐸) + 2𝛽𝛾𝔼(𝑀2𝑁)

+ 2𝛽𝔼(𝑀𝐸) + 2𝛾𝔼(𝑀𝑁𝐸).

We assume independence between 𝑀 and 𝑁 . This implies 𝔼(𝑀𝑁) =
𝔼𝑀𝔼𝑁 and 𝔼(𝑀2𝑁2) = 𝔼

(

𝑀2)𝔼
(

𝑁2). Additionally, 𝔼𝐸 = 0, 𝔼𝑁 =
2𝑝, and under Hardy–Weinberg equilibrium 𝔼(𝑁2) = 2𝑝(1 + 𝑝). To 
shorten the notation, let 𝑀̄ = 𝔼𝑀 , 𝑉𝑀 = Var(𝑀), 𝑉𝑃 = Var(𝑌 ), and 
𝑉𝐸 = Var(𝐸). Then
𝔼
(

𝑌 2) = 𝜇2 + 2𝛼2𝑝(1 + 𝑝) + 𝛽2𝔼
(

𝑀2)

+ 2𝛾2𝔼
(

𝑀2)𝑝(1 + 𝑝) + 𝑉𝐸 + 4𝜇𝛼𝑝

+ 4𝛽𝛾𝔼
(

𝑀2)𝑝 + 2𝜇𝛽𝑀̄ + 4𝜇𝛾𝑀̄𝑝

+ 4𝛼𝛽𝑀̄𝑝 + 4𝛼𝛾𝑀̄𝑝(1 + 𝑝)

= 𝜇2 + 2𝛼2𝑝(1 + 𝑝) + 𝛽2
(

𝑉𝑀 + 𝑀̄2)

+ 2𝛾2
(

𝑉𝑀 + 𝑀̄2)𝑝(1 + 𝑝) + 𝑉𝐸 + 4𝜇𝛼𝑝

+ 4𝛽𝛾
(

𝑉𝑀 + 𝑀̄2)𝑝 + 2𝜇𝛽𝑀̄ + 4𝜇𝛾𝑀̄𝑝

+ 4𝛼𝛽𝑀̄𝑝 + 4𝛼𝛾𝑀̄𝑝(1 + 𝑝).
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The second term is:
(𝔼𝑌 )2 = [𝔼(𝜇 + 𝛼𝑁 + 𝛽𝑀 + 𝛾𝑁𝑀 + 𝐸)]2

=
[

𝜇 + 2𝛼𝑝 + 𝛽𝑀̄ + 2𝛾𝑀̄𝑝
]2

= 𝜇2 + 4𝛼2𝑝2 + 𝛽2𝑀̄2 + 4𝛾2𝑀̄2𝑝2

+ 4𝜇𝛼𝑝 + 2𝜇𝛽𝑀̄ + 4𝜇𝛾𝑀̄𝑝

+ 4𝛼𝛽𝑀̄𝑝 + 4𝛽𝛾𝑀̄2𝑝 + 8𝛼𝛾𝑀̄𝑝2.

Their difference can be simplified to
𝑉𝑃 = 2𝛼2𝑝(1 − 𝑝) + 𝑀̄

[

2𝛾𝑝(1 − 𝑝)
(

𝛾𝑀̄ + 2𝛼
)]

+ 𝑉𝑀
[

2𝛾2𝑝(1 − 𝑝) + (𝛽 + 2𝛾𝑝)2
]

+ 𝑉𝐸 .

A.2.  Derivation of the phenotypic covariance formula

Cov
(

𝑌𝑖, 𝑌𝑗
)

= Cov(𝜇 + 𝛼𝑁𝑖 + 𝛽𝑀𝑖 + 𝛾𝑁𝑖𝑀𝑖 + 𝐸𝑖,
𝜇 + 𝛼𝑁𝑗 + 𝛽𝑀𝑗 + 𝛾𝑁𝑗𝑀𝑗 + 𝐸𝑗 ).

By the property of the covariance of sums of random variables, this ex-
pands to:
Cov

(

𝑌𝑖, 𝑌𝑗
)

= 𝛼2Cov
(

𝑁𝑖, 𝑁𝑗
)

+ 𝛼𝛽Cov
(

𝑁𝑖,𝑀𝑗
)

+ 𝛼𝛾Cov
(

𝑁𝑖, 𝑁𝑗𝑀𝑗
)

+ 𝛽𝛼Cov
(

𝑀𝑖, 𝑁𝑗
)

+ 𝛽2Cov
(

𝑀𝑖,𝑀𝑗
)

+ 𝛽𝛾Cov
(

𝑀𝑖, 𝑁𝑗𝑀𝑗
)

+ 𝛾𝛼Cov
(

𝑁𝑖𝑀𝑖, 𝑁𝑗
)

+ 𝛾𝛽Cov
(

𝑁𝑖𝑀𝑖,𝑀𝑗
)

+ 𝛾2Cov
(

𝑁𝑖𝑀𝑖, 𝑁𝑗𝑀𝑗
)

.

We assume Cov(𝑁𝑖,𝑀𝑗
)

= Cov
(

𝑀𝑖,𝑀𝑗
)

= 0, from which it follows 
that Cov(𝑁𝑖𝑀𝑖,𝑀𝑗

)

= 0. Further, we use the identity Cov(𝑁𝑖, 𝑁𝑗
)

=
2𝑟𝑖𝑗𝑝(1 − 𝑝). Thus:
Cov

(

𝑌𝑖, 𝑌𝑗
)

= 𝛼2
[

2𝑟𝑖𝑗𝑝(1 − 𝑝)
]

+ 2𝛼𝛾Cov
(

𝑁𝑖, 𝑁𝑗𝑀𝑗
)

+ 𝛾2Cov
(

𝑁𝑖𝑀𝑖, 𝑁𝑗𝑀𝑗
)

.

We seek Cov(𝑁𝑖, 𝑁𝑗𝑀𝑗
)

, which can be rewritten as
𝔼
(

𝑁𝑖𝑁𝑗𝑀𝑗
)

− 𝔼𝑁𝔼
(

𝑁𝑖𝑀𝑗
)

= 𝔼
(

𝑁𝑖𝑁𝑗
)

𝔼𝑀 − 𝔼𝑁𝔼𝑁𝔼𝑀.

Thus

Cov
(

𝑁𝑖, 𝑁𝑗𝑀𝑗
)

= 𝔼
(

𝑁𝑖𝑁𝑗
)

𝑀̄ − (𝔼𝑁)2𝑀̄

= 𝔼
(

𝑁𝑖𝑁𝑗
)

𝑀̄ − 4𝑝2𝑀̄.

It follows from Cov(𝑁𝑖, 𝑁𝑗
)

= 2𝑟𝑖𝑗𝑝(1 − 𝑝) that 𝔼(𝑁𝑖𝑁𝑗
)

= 2𝑟𝑖𝑗𝑝(1 − 𝑝) +
4𝑝2. Therefore
Cov

(

𝑁𝑖, 𝑁𝑗𝑀𝑗
)

=
[

2𝑟𝑖𝑗𝑝(1 − 𝑝) + 4𝑝2
]

𝑀̄ − 4𝑝2𝑀̄
= 2𝑟𝑖𝑗𝑝(1 − 𝑝)𝑀̄.

The expression for Cov(𝑁𝑖𝑀𝑖, 𝑁𝑗𝑀𝑗
) is obtained in a similar way:

Cov
(

𝑁𝑖𝑀𝑖, 𝑁𝑗𝑀𝑗
)

= 𝔼
(

𝑁𝑖𝑁𝑗𝑀𝑖𝑀𝑗
)

− [𝔼(𝑁𝑀)]2

= 𝔼
(

𝑁𝑖𝑁𝑗
)

𝑀̄2 − 4𝑝2𝑀̄2

= 2𝑟𝑖𝑗𝑝(1 − 𝑝)𝑀̄2.

We can now use them in the expression for the phenotypic covariance:
Cov

(

𝑌𝑖, 𝑌𝑗
)

= 𝛼2
[

2𝑟𝑖𝑗𝑝(1 − 𝑝)
]

+ 2𝛼𝛾
[

2𝑟𝑖𝑗𝑝(1 − 𝑝)𝑀̄
]

+ 𝛾2
[

2𝑟𝑖𝑗𝑝(1 − 𝑝)𝑀̄2]

= 2𝑟𝑖𝑗𝑝(1 − 𝑝)
(

𝛼 + 𝛾𝑀̄
)2.

A.3.  Derivation of the variance of basic genetic values

𝑉𝑏𝑔𝑣 = 𝔼
[

(

𝛼(𝑁 − 2𝑝) − 𝛽𝑀̄ − 2𝛾𝑀̄𝑝
)2
]

−
{

𝔼
[

𝛼(𝑁 − 2𝑝) − 𝛽𝑀̄ − 2𝛾𝑀̄𝑝
]}2

= 𝔼
(

𝛼2𝑁2 − 4𝛼2𝑝𝑁 + 4𝛼2𝑝2 − 2𝛼𝛽𝑀̄𝑁

+ 𝛽2𝑀̄2 + 4𝛼𝛽𝑀̄𝑝 + 4𝛾2𝑀̄2𝑝2

+ 4𝛽𝛾𝑀̄2𝑝 − 4𝛼𝛾𝑀̄𝑝𝑁 + 8𝛼𝛾𝑀̄𝑝2
)

−
[

− 𝑀̄(𝛽 + 2𝛾𝑝)
]2

= 2𝛼2𝑝(1 + 𝑝) − 8𝛼2𝑝2 + 4𝛼2𝑝2 − 4𝛼𝛽𝑀̄𝑝

+ 𝛽2𝑀̄2 + 4𝛼𝛽𝑀̄𝑝 + 4𝛾2𝑀̄2𝑝2

+ 4𝛽𝛾𝑀̄2𝑝 − 8𝛼𝛾𝑀̄𝑝2 + 8𝛼𝛾𝑀̄𝑝2

−
(

𝛽2𝑀̄2 + 4𝛾2𝑀̄2𝑝2 + 4𝛽𝛾𝑀̄2𝑝
)

= 2𝛼2𝑝 − 2𝛼2𝑝2 = 2𝑝(1 − 𝑝)𝛼2.

A.4.  Derivation of the variance of breeding values

𝑉𝐴 = 𝔼
{

[(

𝛼 + 𝛾𝑀̄
)

(𝑁 − 2𝑝)
]2
}

−
{

𝔼
[(

𝛼 + 𝛾𝑀̄
)

(𝑁 − 2𝑝)
]}2

= 𝔼
(

𝛾2𝑀̄2𝑁2 − 4𝛾2𝑀̄2𝑁𝑝 + 4𝛾2𝑀̄2𝑝2

+ 2𝛼𝛾𝑀̄𝑁2 − 8𝛼𝛾𝑀̄𝑁𝑝 + 8𝛼𝛾𝑀̄𝑝2

+ 𝛼2𝑁2 − 4𝛼2𝑁𝑝 + 4𝛼2𝑝2
)

− 02

= −8𝛾2𝑀̄2𝑝2 + 4𝛾2𝑀̄2𝑝2

+
(

2𝛾2𝑀̄2𝑝2 + 2𝛾2𝑀̄2𝑝
)

− 16𝛼𝛾𝑀̄𝑝2

+
(

4𝛼𝛾𝑀̄𝑝2 + 4𝛼𝛾𝑀̄𝑝
)

+ 8𝛼𝛾𝑀̄𝑝2

− 8𝛼2𝑝2 + 4𝛼2𝑝2 +
(

2𝛼2𝑝2 + 2𝛼2𝑝
)

= −2𝛾2𝑀̄2𝑝2 + 2𝛾2𝑀̄2𝑝 − 4𝛼𝛾𝑀̄𝑝2

+ 4𝛼𝛾𝑀̄𝑝 − 2𝛼2𝑝2 + 2𝛼2𝑝

= 2𝑝(1 − 𝑝)
(

𝛼 + 𝛾𝑀̄
)2.

Appendix B.  Genetic values of progeny

Assuming random mating, the expected expressed genetic value of 
the progeny of an 𝐴1𝐴1 individual is
𝑝
[(

𝛼 + 𝛾𝑀̄
)

(1 − 2𝑝)
]

+ (1 − 𝑝)
[

−2
(

𝛼 + 𝛾𝑀̄
)

𝑝
]

= −
(

𝛼 + 𝛾𝑀̄
)

𝑝;

that of an 𝐴1𝐴2 individual is
1
2

{

𝑝
[(

𝛼 + 𝛾𝑀̄
)

(1 − 2𝑝)
]

+ (1 − 𝑝)
[

−2
(

𝛼 + 𝛾𝑀̄
)

𝑝
]

}

+ 1
2

{

𝑝
[

2
(

𝛼 + 𝛾𝑀̄
)

(1 − 𝑝)
]

+ (1 − 𝑝)
[(

𝛼 + 𝛾𝑀̄
)

(1 − 2𝑝)
]

}

= 1
2
(

𝛼 + 𝛾𝑀̄
)

(1 − 2𝑝).

Lastly, that of an 𝐴2𝐴2 individual is
𝑝
[

2
(

𝛼 + 𝛾𝑀̄
)

(1 − 𝑝)
]

+ (1 − 𝑝)
[(

𝛼 + 𝛾𝑀̄
)

(1 − 2𝑝)
]

=
(

𝛼 + 𝛾𝑀̄
)

(1 − 𝑝).

Table B.1 summarizes these results, showing that that the expected ex-
pressed genetic value of the progeny of a parent is not one half the 
expressed genetic value of the parent.

Similar calculations for the basic genetic value and the breeding 
value yield Tables B.2 and B.3, respectively.

Table B.1 
Expressed genetic value of parent and expected expressed genetic value of 
progeny, according to genotype of parent.
    
Genotype

 Expressed genetic value
  Parent  Progeny
 𝐴1𝐴1 𝛼(1 − 2𝑝) + 𝛽

(

𝑚 − 𝑀̄
)

+ 𝛾
(

𝑚 − 2𝑀̄𝑝
) (

𝛼 + 𝛾𝑀̄
)

(−𝑝)  
 𝐴1𝐴2 𝛼(2 − 2𝑝) + 𝛽

(

𝑚 − 𝑀̄
)

+ 𝛾
(

2𝑚 − 2𝑀̄𝑝
) (

𝛼 + 𝛾𝑀̄
) 1
2
(1 − 2𝑝) 

 𝐴2𝐴2 𝛼(3 − 2𝑝) + 𝛽
(

𝑚 − 𝑀̄
)

+ 𝛾
(

3𝑚 − 2𝑀̄𝑝
) (

𝛼 + 𝛾𝑀̄
)

(1 − 𝑝)  
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Table B.2 
Expected basic genetic value of progeny according to the genotype 
of the parent.
    
Genotype

 Basic genetic value
  Parent  Progeny
 𝐴1𝐴1 −𝑀̄(𝛽 + 2𝛾𝑝) − 2𝛼𝑝 −𝑀̄(𝛽 + 2𝛾𝑝) − 𝛼𝑝  
 𝐴1𝐴2 −𝑀̄(𝛽 + 2𝛾𝑝) − 2𝛼𝑝 + 𝛼 −𝑀̄(𝛽 + 2𝛾𝑝) − 𝛼𝑝 + 1

2
𝛼  

 𝐴2𝐴2 −𝑀̄(𝛽 + 2𝛾𝑝) − 2𝛼𝑝 + 2𝛼 −𝑀̄(𝛽 + 2𝛾𝑝) − 𝛼𝑝 + 𝛼  

Table B.3 
Average breeding value of progeny according to the genotype of 
a parent.
    
Genotype

 Breeding value
  Parent  Progeny
 𝐴1𝐴1

(

𝛼 + 𝛾𝑀̄
)

(−2𝑝)
(

𝛼 + 𝛾𝑀̄
)

(−𝑝)  
 𝐴1𝐴2

(

𝛼 + 𝛾𝑀̄
)

(1 − 2𝑝)
(

𝛼 + 𝛾𝑀̄
) 1
2
(1 − 2𝑝)  

 𝐴2𝐴2
(

𝛼 + 𝛾𝑀̄
)

(2 − 2𝑝)
(

𝛼 + 𝛾𝑀̄
)

(1 − 𝑝)  

Appendix C.  Model with indicator variables

We may represent the genotype as a factor with three levels using 
two indicator variables, 𝑋1 and 𝑋2, with the coding defined in Table C.1. 
This parameterization provides more flexibility in modeling the relation-
ships for each genotype, as illustrated in Fig. 4.
𝑌 = + + + + + + (C.1)𝜇 𝛼1𝑋1 𝛼2𝑋2 𝛽𝑀 𝛾1𝑋1𝑀 𝛾2𝑋2𝑀 𝐸

Each genotype has its own slope and intercept:

𝑌 =

⎧

⎪

⎨

⎪

⎩

𝜇 + 𝛽𝑀 + 𝐸, if 𝐴1𝐴1,
(

𝜇 + 𝛼1
)

+
(

𝛽 + 𝛾1
)

𝑀 + 𝐸, if 𝐴1𝐴2,
(

𝜇 + 𝛼2
)

+
(

𝛽 + 𝛾2
)

𝑀 + 𝐸, if 𝐴2𝐴2.

When an individual has no DNA methylation for the locus, 𝑀 = 0 and
𝔼
(

𝑌 ∣ 𝑋1 = 𝑥1, 𝑋2 = 𝑥2,𝑀 = 0
)

= 𝜇 + 𝛼1𝑥1 + 𝛼2𝑥2.

If there is Hardy–Weinberg equilibrium, with 𝑋1 and 𝑀 , 𝑋2 and 𝑀
independent, then
𝔼𝑌 = 𝜇 + 2𝛼1𝑝(1 − 𝑝) + 𝛼2𝑝

2 + 𝑀̄
[

𝛽 + 2𝛾1𝑝(1 − 𝑝) + 𝛾2𝑝
2].

Thus, under model (C.1) the basic genetic value is given by:
𝔼
(

𝑌 ∣ 𝑋1 = 𝑥1, 𝑋2 = 𝑥2,𝑀 = 0
)

− 𝔼𝑌

= 𝛼1𝑥1 + 𝛼2𝑥2 −
{

2𝛼1𝑝(1 − 𝑝) + 𝛼2𝑝
2 + 𝑀̄

[

𝛽 + 2𝛾1𝑝(1 − 𝑝) + 𝛾2𝑝
2]}.

Similarly, the expressed genetic value is
𝔼
(

𝑌 ∣ 𝑋1 = 𝑥1, 𝑋2 = 𝑥2,𝑀 = 𝑚
)

− 𝔼𝑌

= 𝛼1𝑥1 + 𝛼2𝑥2 +
(

𝛽 + 𝛾1𝑥1 + 𝛾2𝑥2
)

𝑚

−
{

2𝛼1𝑝(1 − 𝑝) + 𝛼2𝑝
2 + 𝑀̄

[

𝛽 + 2𝛾1𝑝(1 − 𝑝) + 𝛾2𝑝
2]
}

,

while the breeding value is
𝔼
(

𝑌 ∣ 𝑋1 = 𝑥1, 𝑋2 = 𝑥2,𝑀 = 𝑀̄
)

− 𝔼𝑌

= 𝛼1𝑥1 + 𝛼2𝑥2
−
{

2𝛼1𝑝(1 − 𝑝) + 𝛼2𝑝
2 + 𝑀̄

[

𝛾1𝑥1 + 𝛾2𝑥2 + 2𝛾1𝑝(1 − 𝑝) + 𝛾2𝑝
2]}.

The following variance formulas are given for the model with indi-
cator variables. We omit their proofs, which follow the same path as the 
previous derivations for the other model.

Table C.1 
Indicator variable representation of genotypes.
 Genotype 𝑋1 𝑋2

𝐴1𝐴1  0  0
𝐴1𝐴2  1  0
𝐴2𝐴2  0  1

The formula for the phenotypic variance is:
𝑉𝑃 = 𝑝(1 − 𝑝)

{

𝑀̄2{𝛾21 [2 − 4𝑝(1 − 𝑝)] + 𝛾22𝑝(1 + 𝑝) − 4𝛾1𝛾2𝑝2
}

− 4𝛼1
{

𝑀̄
[

𝛾2𝑝
2 + 𝛾1(2𝑝(1 − 𝑝) − 1)

]

+ 𝛼2𝑝
2}

+ 2𝛼2𝑝𝑀̄
[

𝛾2(1 + 𝑝) − 2𝛾1𝑝
]

+ 𝛼21 [2 − 4𝑝(1 − 𝑝)] + 𝛼22𝑝(1 + 𝑝)
}

+ 𝑉𝑀
{

𝛽2 + 2𝛽𝛾2𝑝2 + 𝛾2𝑝
2 + 2𝛾1

(

2𝛽 + 𝛾1
)

𝑝(1 − 𝑝)
}

+ 𝑉𝐸 .

By subtracting the environmental variance from the phenotypic vari-
ance, we obtain the expressed genetic variance (i.e., the variance of the 
expressed genetic values):
𝑉𝑒𝑥𝑝 = 𝑝(1 − 𝑝)

{

𝑀̄2{𝛾21 [2 − 4𝑝(1 − 𝑝)] + 𝛾22𝑝(1 + 𝑝) − 4𝛾1𝛾2𝑝2
}

− 4𝛼1
{

𝑀̄
[

𝛾2𝑝
2 + 𝛾1(2𝑝(1 − 𝑝) − 1)

]

+ 𝛼2𝑝
2}

+ 2𝛼2𝑝𝑀̄
[

𝛾2(1 + 𝑝) − 2𝛾1𝑝
]

+ 𝛼21 [2 − 4𝑝(1 − 𝑝)] + 𝛼22𝑝(1 + 𝑝)
}

+ 𝑉𝑀
{

𝛽2 + 2𝛽𝛾2𝑝2 + 𝛾2𝑝
2 + 2𝛾1

(

2𝛽 + 𝛾1
)

𝑝(1 − 𝑝)
}

.

The variance of the basic genetic values is given by:
𝑉𝑏𝑔𝑣 =𝛼212𝑝(1 − 𝑝)[1 − 2𝑝(1 − 𝑝)] + 𝛼22 (1 − 𝑝)2𝑝(2 − 𝑝) − 4𝛼1𝛼2𝑝(1 − 𝑝)3.

The variance of the breeding values is given by:
𝑉𝐴 =

(

𝛼1 + 𝛾1𝑀̄
)22𝑝(1 − 𝑝)[1 − 2𝑝(1 − 𝑝)]

+
(

𝛼2 + 𝛾2𝑀̄
)2(1 − 𝑝)2𝑝(2 − 𝑝)

− 4
(

𝛼1 + 𝛾1𝑀̄
)(

𝛼2 + 𝛾2𝑀̄
)

𝑝(1 − 𝑝)3.
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