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Abstract
Background  Ultra-processed food (UPF) consumption has been linked to adverse metabolic outcomes, potentially 
mediated by alterations in gut microbiota and metabolite production.

Objective  This study aims to explore the cross-sectional and longitudinal associations between NOVA-classified 
UPF consumption, fecal microbiota, and fecal metabolome in a population of Mediterranean older adults at high 
cardiovascular risk.

Methods  A total of 385 individuals, aged between 55 and 75 years, were included in the study. Dietary and lifestyle 
information, anthropometric measurements, and stool samples were collected at baseline and after 1-year follow-up. 
Fecal microbiota and metabolome were assessed using 16 S rRNA sequencing and liquid chromatography-tandem 
mass spectrometry, respectively.

Results  At baseline, higher UPF consumption was associated with lower abundance of Ruminococcaceae incertae 
sedis (β = − 0.275, P = 0.047) and lower concentrations of the metabolites propionylcarnitine (β = − 0.0003, P = 0.013) 
and pipecolic acid (β = − 0.0003, P = 0.040) in feces. Longitudinally, increased UPF consumption was linked to reduced 
abundance of Parabacteroides spp. after a 1-year follow-up (β = − 0.278, P = 0.002).

Conclusions  High UPF consumption was associated with less favorable gut microbiota and metabolite profiles, 
suggesting a possible link to reduced short-chain fatty acid (SCFA) production, altered mitochondrial energy 
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Introduction
Ultra-processed foods (UPF), categorized as Group 4 in 
the NOVA food classification system [1], are industrial 
formulations primarily composed of substances derived 
from foods, along with additives and cosmetic ingredi-
ents. These products typically contain minimal whole-
food content and are designed for convenience, enhanced 
palatability, and long shelf life [2].

The global increase in UPF consumption has emerged 
as an important public health concern, as it has been 
linked to several adverse health outcomes [3], including 
obesity [4], cardiovascular disease, and metabolic disor-
ders [5, 6]. To understand the impact of UPF consump-
tion on human physiology and metabolism, nutrition 
research has primarily focused on the dietary charac-
teristics of UPF, such as energy density and the content 
of added fats, sugars, and salt. However, other aspects 
introduced during food processing could play an equally 
substantial role, particularly by triggering inflammation-
related processes through interactions between the diet, 
microbiome, and host [7].

The gut microbiota, a complex ecosystem influenced by 
dietary and lifestyle factors, has emerged as a potential 
mediator of diet-related health outcomes [7–10]. Recent 
evidence suggests that UPF consumption may negatively 
impact the diversity and abundance of beneficial bacte-
ria, potentially disrupting metabolic pathways crucial 
for health [11, 12]. In contrast, dietary patterns like the 
Mediterranean diet (MedDiet), characterized by a higher 
intake of whole and minimally processed foods, have 
been shown to induce changes in gut microbiota compo-
sition linked to better metabolic health [13, 14].

Despite these associations, the relationship between 
UPF consumption and gut microbiota remains insuffi-
ciently explored, particularly in the context of long-term 
dietary changes. A previous study from our group sug-
gested an association between gastrointestinal inflamma-
tion-related taxa and high UPF consumption in a cohort 
of older adults at high cardiovascular risk. However, this 
study only demonstrated cross-sectional associations 
[12]. A recent review article highlights the limited avail-
ability of research and the need for further human and 
animal studies to better understand the effect of UPF on 
the gut microbiome [15]. To address this research gap, 
our study aims to provide new insights into the complex 

interplay between diet, gut microbiota, and metabolic 
health by examining how baseline and long-term changes 
in UPF consumption influence fecal microbial composi-
tion and metabolic profiles.

Utilizing the large-scale randomized clinical trial PRE-
DIMED (PREvención con DIeta MEDiterránea)-Plus [16] 
as a platform, and integrating 16  S rRNA sequencing 
and metabolomics, we explore both cross-sectional and 
longitudinal associations between NOVA-classified UPF 
consumption, fecal microbiota composition, and fecal 
metabolome in a cohort of 385 individuals. We hypoth-
esize that higher UPF consumption may be associated 
with a less favorable gut microbiota composition and 
metabolic profiles, both at baseline and after one year of 
follow-up. The study offers the opportunity to explore 
how diets rich in UPF might influence gut health.

Methods
Study design and participants
This study was conducted as part of the PREDIMED-Plus 
randomized clinical trial, using an observational cross-
sectional and longitudinal design.

The PREDIMED-Plus trial is a 6-year, multicenter, 
parallel-group, randomized, single-blind intervention 
designed to evaluate the long-term effects of a lifestyle 
intervention—including an energy-reduced Mediter-
ranean diet, physical activity promotion, and behavioral 
support for weight loss—compared with a traditional 
Mediterranean diet with ad libitum caloric intake, on 
cardiovascular disease and mortality. Eligible participants 
were men and women aged between 55 and 75 years 
without cardiovascular disease at baseline, with a base-
line body mass index (BMI) between 27 and 40  kg/m², 
who met at least three criteria for metabolic syndrome 
[17]. Participants were randomized in a 1:1 ratio to either 
the intervention or control group. Additional details are 
provided elsewhere [16].

Detailed information regarding participant selection is 
available elsewhere [14]. A subsample of 400 participants, 
recruited from centers in Alicante, Barcelona, Reus, and 
Valencia, had fecal microbiota 16  S rRNA sequencing 
and fecal metabolomics data available at both baseline 
and after a 1-year follow-up. Of these 400 participants, 
15 were excluded since they were outside the pre-defined 
range for total energy intake.

metabolism, and impaired amino acid metabolism. These findings support the reduction of UPF consumption and 
the promotion of dietary patterns rich in fiber for better gut health. Further research is needed to confirm these 
associations and clarify the underlying mechanisms.

Trial registration  : ISRCTN89898870 (​h​t​t​p​​s​:​/​​/​d​o​i​​.​o​​r​g​/​​1​0​.​​1​1​8​6​​/​I​​S​R​C​T​N​8​9​8​9​8​8​7​0).
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General assessments and anthropometric measurements
Participants completed a comprehensive questionnaire 
to collect data on sociodemographic and medical his-
tory. Leisure-time physical activity was estimated using 
the validated REGICOR Short Physical Activity Ques-
tionnaire [18]. Waist circumference was measured twice 
at the midpoint between the lowest rib and the iliac 
crest using an anthropometric measuring tape. Body 
weight and height were also measured twice, using cali-
brated electronic scales and a wall-mounted stadiometer, 
respectively. The mean of both measurements was calcu-
lated and used.

Dietary assessments
Dietary intake was assessed by trained dietitians using 
a validated 143-item semi-quantitative Food Frequency 
Questionnaire (FFQ) [19] during face-to-face visits at 
baseline and at the 1-year follow-up. Detailed informa-
tion is available elsewhere [16]. Nutrient intake, includ-
ing sodium, saturated and trans fatty acids, fiber, alcohol 
(g/day), and total energy (kcal/day), was calculated using 
Spanish food composition Table [20]. The intake of spe-
cific food groups, such as fruits and vegetables (g/day), 
was also determined.

Participants who did not complete the FFQ at base-
line or after the 1-year follow-up, or whose total energy 
intake fell outside the pre-specified limits (women: <500 
or > 3500 kcal/day; men: <800 or > 4000 kcal/day), were 
excluded from the analysis (N = 15) [21].

The NOVA Food Classification system [2] was used to 
categorize food and beverage items from the FFQ into 
four groups based on their degree of processing. Using 
the FFQ data, we calculated the intake of foods and bev-
erages in the different NOVA groups, expressed in g/day. 
In the present study, we focused on food items classified 
as NOVA Group 4, which includes ultra-processed food 
and drink products, considered as a continuous variable.

Stool sample collection
Participants were instructed to collect stool samples 
and to keep them frozen until delivery to the laboratory 
within 12  h after excretion, as previously reported [14]. 
Specifically, participants were provided with a stool col-
lection kit containing a disposable cardboard urinal, a 50 
mL sterile container with a spatula, a portable cooler, cold 
packs, and a sealed plastic container. Detailed instruc-
tions were given to ensure proper sample collection, stor-
age, and transport. Participants collected a stool sample 
(approximately the size of a walnut) using the provided 
spatula, sealed the container, and immediately placed it 
in their home freezer. On the day of delivery, the sample 
was transported in the portable cooler with frozen cold 
packs to maintain a frozen state. Upon receipt, research-
ers processed the samples in a refrigerated environment, 

dividing each sample into 250  mg aliquots, which were 
stored in labeled cryovials at − 80 °C until analysis.

Fecal metabolomics analyses
Metabolomic profiling of stool samples collected at base-
line and at the 1-year follow-up was conducted using a 
liquid chromatography-tandem mass spectrometry plat-
form. Detailed information is available elsewhere [14]. 
The fecal metabolomics data included a total of 532 iden-
tified metabolites.

Fecal bacterial DNA extraction and 16 S amplicon 
sequencing
Microbial DNA was extracted using the QIAamp Pow-
erFecal DNA Kit (Qiagen, Hilden, Germany), and DNA 
quality was assessed with the Qubit 2.0 Fluorometer 
(Thermo Fisher Scientific, Waltham, MA, USA). The 
V4 region of the 16 S rRNA gene was amplified in trip-
licate PCR reactions, followed by purification and quan-
tification of the PCR products. Sequencing libraries were 
constructed from purified PCR products and sequenced 
on an Illumina NovaSeq platform, with mock communi-
ties and negative controls included for quality assurance. 
Detailed information on these analytical steps can be 
found elsewhere [14].

Amplicon sequence variants (ASV) were determined 
using the DADA2 pipeline [22], and taxonomy was 
assigned based on the Silva database [23], version 138.1. 
A total of 218 genera were identified after filtering the 
raw ASV counts to include only features with a total rela-
tive abundance ≥ 0.001 in at least 10% of the samples.

Statistical analyses
All statistical analyses were conducted using the R pro-
gramming language and software environment (version 
4.4.1) along with the RStudio integrated development 
environment (version 2023.6.0.421).

The baseline characteristics of the study population 
and 1-year changes were summarized using means and 
standard deviations for continuous variables and using 
numbers and percentages for categorical variables. Dif-
ferences between timepoints for continuous variables 
were tested using paired t-tests. UPF consumption (in g/
day) was adjusted for total energy intake using the resid-
ual regression method [24]. This approach allows UPF 
consumption to be expressed in g/day rather than as a 
percentage of energy intake, to account for foods with lit-
tle or no caloric content (e.g., artificially sweetened bev-
erages) and considering non-nutritional factors related to 
food processing (e.g., presence of food additives).

Fecal microbiota alpha diversity indices, including 
Chao1, Shannon, and Simpson [25–27], were calculated 
from absolute ASV counts. For the cross-sectional assess-
ment, the association between calculated indices and 
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baseline UPF consumption was examined by fitting linear 
regression models and adjusting for selected covariates: 
age, sex, center, smoking status, education level, preva-
lence of diabetes, hypertension and hypercholesterol-
emia, BMI, physical activity, alcohol intake, fiber intake, 
and consumption of food and beverages categorized by 
other NOVA groups. Before fitting the linear models, 
numerical covariates were standardized using z-scores. 
In a similar manner, for the longitudinal assessment, we 
explored the association between changes in alpha diver-
sity and changes in the UPF consumption over one year. 
These changes were calculated by subtracting baseline 
values from the values at 1 year. The PREDIMED-Plus 
study arm was also included as a covariate. Results with 
P < 0.05 were reported as significant.

Beta diversity was evaluated by calculating Euclid-
ean distance on centered log-ratio transformed genus 
counts (Aitchison distance) [28], including only features 
with a total relative abundance of ≥ 0.001 in at least 10% 
of observations. Permutational multivariate analysis of 
variance (PERMANOVA) [29] was implemented using 
the “adonis2” function from the R package vegan (ver-
sion 2.6–6.1) (available at ​h​t​t​p​​s​:​/​​/​C​R​A​​N​.​​R​-​p​​r​o​j​​e​c​t​.​​o​r​​g​/​p​
a​c​k​a​g​e​=​v​e​g​a​n) to test whether differences in fecal ​m​i​c​r​o​
b​i​o​t​a composition were significantly associated with the 
given predictors. Results with p < 0.05 were reported as 
significant.

For the cross-sectional analysis, the association 
between differences in Aitchison distance and UPF 
consumption at baseline was tested, accounting for 
covariates. For the longitudinal analysis, the association 
between differences in Aitchison distance, calculated 
between baseline and 1-year counts, and the interac-
tion term UPF 1-year change × time was tested. In this 
analysis, participant IDs were specified as a variable 
within which permutations were constrained, and the 
PREDIMED-Plus study arm of the trial was included as 
an additional covariable.

Differential abundance analysis was performed using 
the MaAsLin2 R package [30], utilizing the same input 
data as the beta diversity analysis. General linear mod-
els were fitted, adjusting for the same covariates consid-
ered in the alpha and beta diversity association analyses, 
with the total number of reads included as an additional 
covariate. No further filtering was applied in the model. 
Continuous covariates were standardized to the same 
scale. Results were subset based on the exposure of inter-
est, and Benjamini-Hochberg adjusted P-values were cal-
culated, focusing comparisons solely on the predictor of 
interest while controlling for covariates. Findings with 
adjusted P-value < 0.05 were reported.

In the cross-sectional assessment, the association 
between fecal microbiota genera abundance and UPF 
consumption at baseline was tested. For the longitudinal 

assessment, the association between the 1-year change in 
fecal microbiota genera abundance and the 1-year change 
in UPF consumption was evaluated. The time between 
baseline and follow-up, as well as the PREDIMED-Plus 
study group, was included as fixed effects along with the 
other covariates. Participant IDs were specified as ran-
dom effects to account for the non-independence of sam-
ples from the same individual.

Output files generated with DADA2 (ASV table and 
representative sequences) were parsed and used as input 
for PICRUSt2 [31] to generate a table of inferred per-
sample abundances of KEGG orthologs. The omixer-
Rpm package [32] (version 0.3.3) was used to reconstruct 
microbial functionality by computing the abundance of 
predefined gut metabolic modules (GMM) [33] based 
on the KO abundances obtained. Differential abundance 
analysis was performed on GMM abundance tables, fol-
lowing the same approach used for taxonomic counts, to 
assess cross-sectional and longitudinal associations with 
UPF consumption.

In relation to fecal metabolomics, rank-based inverse 
normal transformation (INT) [34] was applied to the data 
prior to analysis to account for the typically skewed dis-
tribution of metabolites and to ensure robustness in sub-
sequent analyses. This method has been previously used 
in metabolomic studies [35] and performs well with other 
nonnormal data [36]. The INT involved a two-step pro-
cedure: first, the observations were transformed into the 
probability scale using the empirical cumulative distribu-
tion function; second, the observations were transformed 
into z-scores on the real line.

We used a penalized regression model with the Elas-
tic Net regularization technique [37] as the primary 
approach to identify metabolites most strongly asso-
ciated with UPF consumption. This method applies 
regularization to select only the most stable and repro-
ducible features across multiple iterations. Specifically, 
we assessed the cross-sectional relationship between 
UPF consumption and fecal metabolite concentrations at 
baseline, as well as the longitudinal association between 
1-year change in UPF consumption and 1-year changes 
in fecal metabolite concentrations.

Training and validation procedures were performed. 
Model training and hyperparameter tuning for alpha and 
lambda were executed using the caret R package [38]. 
A resampling strategy of 10-fold cross-validation (10-
fold CV) was implemented, with the process repeated 
10 times to enhance model reliability. This resampling 
was conducted on 90% of the dataset designated as the 
training set, with the remaining 10% held out for final 
model validation. The best model accuracy was achieved 
with alpha and lambda values of 0.6 and 36.5, respec-
tively, for the cross-sectional assessment, and with alpha 
and lambda values of 1 and 34.6, respectively, for the 

https://CRAN.R-project.org/package=vegan
https://CRAN.R-project.org/package=vegan
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longitudinal assessment. In a subsequent robustness 
check, 10-fold cross-validation Elastic Net models were 
run using the defined alpha and lambda values with dif-
ferent random seeds. Only metabolites with coefficients 
consistently different from zero across all 10 runs were 
retained, ensuring the selection of stable predictors for 
the outcome of interest.

To examine the directionality and effect sizes of these 
pre-selected metabolites, we conducted linear regres-
sion analyses adjusting for covariates. Since the metabo-
lites were already pre-selected based on their association 
with UPF consumption, applying additional FDR correc-
tion at this stage would not meaningfully improve sta-
tistical rigor and could introduce artificial bias. Instead, 
we relied on the prior selection process of Elastic Net to 
ensure robust feature selection.

Linear regression models were fitted using the same 
approach as that employed to explore the association 
between alpha diversity and exposure. Results with 
P < 0.05 were reported as statistically significant.

Results
General characteristics of the study population
The general baseline characteristics of the study popula-
tion are presented in Table 1.

The baseline and 1-year changes in selected covariates 
are summarized in Table  2. Participants had a signifi-
cant decrease in BMI (–1.00 ± 5.09 kg/m2) and waist cir-
cumference (–3.17 ± 14.51 cm) after 1-year follow-up. In 
addition, there was a significant improvement in physical 
activity (106.70 ± 477.35 METs min/day). After one year, 
the fiber intake and the NOVA Group 1 consumption sig-
nificantly increased (3.16 ± 10.92 and 107.06 ± 484.81  g/
day, respectively), while the NOVA Group 3 and UPF 
consumption significantly decreased (–71.55 ± 300.68 
and − 61.43 ± 172.51 g/day, respectively).

Results of fecal microbiota analysis
We did not observe any significant cross-sectional asso-
ciations between calculated alpha diversity indices and 
UPF consumption at baseline (Supplementary Tables 1, 
2, 3), nor any longitudinal association between 1-year 
changes in calculated alpha diversity indices and 1-year 
change in UPF consumption (Supplementary Tables 
4, 5, 6). We did not observe significant variance in gut 
microbiota composition explained by UPF consumption 
at baseline (Supplementary Table 7), neither explained 
by 1-year change in UPF consumption (Supplementary 
Table 8). Differential abundance analysis revealed a nega-
tive cross-sectional association between the abundance 
of Ruminococcaceae incertae sedis and the UPF con-
sumption (β = − 0.275, adjusted P = 0.047) (Fig.  1). The 
longitudinal analysis showed a significant decrease in 
the abundance of Parabacteroides spp. associated with 
increased UPF consumption after 1-year follow-up (β = 
− 0.278, adjusted P = 0.002) (Fig. 2).

Differential abundance analysis of GMM did not 
yield significant results, either cross-sectionally or 
longitudinally.

Table 1  Baseline characteristics of the study population
Characteristics N = 385
Women, n (%) 166 (43.1)
Age (years), mean ± SD 64.57 ± 4.93
Education, n (%) Primary 214 (55.6)

Secondary 103 (26.8)
Tertiary 68 (17.7)

Center, n (%) Reus 218 (56.6)
Alicante 84 (21.8)
Barcelona 44 (11.4)
Valencia 39 (10.1)

Smoking status, n (%) Never 185 (48.1)
Former 152 (39.5)
Smoker 48 (12.5)

Diabetes prevalence, n (%) 88 (22.9)
Hypertension prevalence, n (%) 314 (81.6)
Hypercholesterolemia prevalence, n (%) 258 (67.0)

Table 2  Baseline and 1-year changes in selected anthropometric, physical activity and dietary variables
Characteristics Baseline 1-year change P value
BMI (kg/m2) 32.83 ± 3.51 –1.00 ± 5.09 < 0.001
Waist circumference (cm) 107.75 ± 9.99 –3.17 ± 14.51 < 0.001
Physical activity (METs min/day) 368.29 ± 324.39 106.70 ± 477.35 < 0.001
Alcohol intake (g/day) 10.83 ± 13.45 –1.19 ± 18.31 0.204
Fiber intake (g/day) 26.74 ± 7.99 3.16 ± 10.92 < 0.001
NOVA G1 consumption (g/day) 1349.27 ± 355.99 107.06 ± 484.81 < 0.001
NOVA G2 consumption (g/day) 60.67 ± 18.49 –1.93 ± 25.48 0.137
NOVA G3 consumption (g/day) 432.34 ± 219.68 –71.55 ± 300.68 < 0.001
UPF (NOVA G4) consumption (g/day) 155.89 ± 135.80 –61.43 ± 172.51 < 0.001
BMI, body mass index; MET, metabolic equivalent of task; G1, Group 1; G2, Group 2; G3, Group 3; G4, Group 4; UPF, ultra-processed food. Differences between 
timepoints tested with paired t-test. Significant P < 0.05
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Results of fecal metabolomics analysis
A total of 21 metabolites were selected across all 10 
iterations of the binomial elastic net regression cross-
validation for the baseline UPF consumption (Fig.  3). 
Specifically, 11 metabolites presented negative coeffi-
cients, and 10 metabolites presented positive coefficients. 
The linear regression analysis adjusted for covariates 
returned two metabolites significantly associated with 
UPF consumption (Supplementary Table 9). Specifically, 
we observed a negative association with propionylcar-
nitine (β = − 0.0003, P = 0.013) and L-Pipecolic acid (β = 
− 0.0003, P = 0.040) (Fig. 4).

Six metabolites were selected when analyzing the 
1-year change in UPF consumption using binomial 
elastic net regression across all 10 iterations of the 
cross-validation. (Fig.  5). Specifically, four metabolites 
presented negative coefficients, and two metabolites 
presented positive coefficients. However, the linear 
regression analysis did not show any statistically sig-
nificant association between these metabolites and the 

1-year change in UPF consumption (Supplementary 
Table 10).

Discussion
Our study explored the link between UPF consumption, 
the fecal microbiota composition and the fecal metabo-
lites concentrations in a population of Mediterranean 
older adults at high cardiovascular risk, within the frame-
work of the PREDIMED-Plus trial. We found that higher 
UPF consumption was associated with alterations in both 
fecal microbiota and metabolites, suggesting additional 
insights into how UPF consumption may impair meta-
bolic health.

At baseline, higher UPF consumption was associated 
with lower abundance of Ruminococcaceae incertae sedis. 
While some members of the Ruminococcaceae family 
are known to contribute to short-chain fatty acid (SCFA) 
production, the role of Ruminococcaceae incertae sedis 
remains unclear. Therefore, the observed reduction sug-
gests a potential link to reduced short-chain fatty acids 

Fig. 1  Differentially abundant taxa associated with baseline ultra-processed foods (UPF) consumption. Multivariable association tested with generalized 
liner model adjusted for sex, age, education (primary, secondary, tertiary), recruiting center (Alicante, Barcelona, Reus, Valencia), smoking status (never, 
former, smoker), diabetes, hypertension, hypercholesterolemia prevalence, body mass index, waist circumference, physical activity, alcohol intake, fiber 
intake, NOVA Group 1, Group 2, and Group 3 foods consumption. Values in x axe indicate UPF consumption in g/day, values in y axe indicate genera 
centered log-ratio relative abundance with Benjamini-Hochberg adjusted P < 0.05
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(SCFA) production [39], although this interpretation 
remains speculative and requires further investigation. 
This finding aligns with previous research indicating 
that UPF are typically low in fiber [40], a key substrate 
for SCFA production [40, 41]. However, the relationship 
between UPF consumption and Ruminococcaceae may 
involve mechanisms beyond fiber intake alone. Reduced 
SCFA production has been shown to negatively affect 
host energy metabolism and immune function [42, 43], 
as SCFA have anti-inflammatory properties and serve as 
an energy source for colonic epithelial cells [44].

Additionally, higher UPF consumption was associ-
ated with a lower fecal concentration of propionylcarni-
tine. This could potentially be explained by reduced fiber 
intake and the consequent decrease in microbial pro-
pionate production [45]. Propionyl-CoA, a precursor of 
propionylcarnitine, is an intermediate in microbial pro-
pionate production [46, 47]. The propanediol pathway 
relies on specific gut microbes, including members of 

the Ruminococcaceae family, to convert dietary fiber into 
propionate [47, 48]. The observed reduction in both fecal 
Ruminococcaceae incertae sedis abundance and propi-
onylcarnitine concentration suggest that UPF consump-
tion may impair pathways related to SCFA production, 
potentially leading to lower SCFA availability. Propi-
onylcarnitine also contributes to mitochondrial energy 
metabolism by maintaining the mitochondrial acyl-CoA/
CoA ratio and potentially stimulating the tricarboxylic 
acid cycle [49]. It indirectly supports mitochondrial func-
tion and energy production [49]. Reduced fecal concen-
trations of propionylcarnitine may indicate impaired 
mitochondrial function and altered energy metabolism 
due to UPF consumption [50], though further mechanis-
tic studies are needed to confirm these mechanisms.

We also observed that higher UPF consumption was 
linked with lower fecal concentrations of pipecolic 
acid, a non-proteinogenic amino acid involved in lysine 
catabolism [51]. Pipecolic acid is partially produced by 

Fig. 2  Differentially abundant taxa 1-year change associated with ultra-processed foods (UPF) consumption 1-year change. Multivariable longitudinal 
association tested with generalized liner model adjusted for time (baseline, 1 year), sex, age, education (primary, secondary, tertiary), recruiting center 
(Alicante, Barcelona, Reus, Valencia), smoking status (never, former, smoker), diabetes, hypertension, hypercholesterolemia prevalence, body mass index, 
waist circumference, physical activity, alcohol intake, fiber intake, NOVA Group 1, Group 2, and Group 3 foods consumption. Participants’ ID was specified 
as random effect. Values in x axe indicate UPF consumption 1-year change in g/day, values in y axe indicate genera centered log-ratio relative abundance 
with Benjamini-Hochberg adjusted P < 0.05
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certain gut bacteria through lysine breakdown, and a 
disrupted microbiota could result to reduced produc-
tion of this metabolite [52]. UPF are often characterized 
by lower overall nutritional quality, including reduced 
protein content [53, 54], which could potentially limit 
lysine availability. However, the relationship between 
UPF consumption and pipecolic acid levels may not be 
fully explained by protein intake alone, as other factors, 
such as inflammation or gut barrier dysfunction, could 
also play a role [55–57], potentially affecting the conver-
sion of lysine to pipecolic acid. Given its role in immune 
modulation, reduced pipecolic acid levels may contribute 
to inflammatory processes [58].

Our findings further suggest that UPF consumption 
may disrupt amino acid metabolism, as indicated by the 
observed reduction in pipecolic acid. This disruption 
could be linked to negative effect of UPF on mitochon-
drial function, given the central role of mitochondria in 
amino acid metabolism [50]. UPF often contain advanced 
glycation end-products (AGE), which can impair mito-
chondrial function and lead to oxidative stress [50, 59]. 
These AGE, along with other food additives found in UPF, 
may exacerbate gut dysbiosis and inflammation, particu-
larly through the accumulation of reactive metabolites 
that can damage cellular structures, including mitochon-
dria [59]. The observed reduction in pipecolic acid could 
be indicative of this mitochondrial dysfunction, as mito-
chondria are involved in its production. However, the 

direct relationship between UPF consumption and fecal 
pipecolic acid concentrations requires further investi-
gation. Future studies should explore the links between 
UPF consumption, lysine intake, gut microbiome altera-
tions, and pipecolic acid production and excretion.

Over one year, increased UPF consumption was asso-
ciated with reduced abundance of Parabacteroides spp., 
a genus linked with beneficial metabolic effects, dietary 
fiber intake, and SCFA production [60, 61]. Our findings 
suggest that long-term UPF consumption may promote 
gut dysbiosis, potentially worsening metabolic health. 
However, longitudinal research on specific microbial 
genera remains limited, and longer follow-up periods are 
needed to confirm these findings.

Binomial elastic net regression identified six metabo-
lites associated with changes in UPF consumption over 
one year. Four metabolites (allopurinol riboside, sphin-
gomyelin, xanthine, 7-dehidrodesmosterol) showed nega-
tive coefficients, while two metabolites (glyceric acid, 
tartaric acid) showed positive coefficients, indicating 
distinct metabolic responses. However, linear regression 
analyses did not confirm significant relationships, high-
lighting the need for cautious interpretation.

Our study benefits from a well-characterized cohort 
with diverse Spain geographic representation, enhanc-
ing the generalizability of our findings within large at-risk 
populations. The integration of 16  S rRNA sequenc-
ing and metabolomics provides a comprehensive 

Fig. 3  Mean coefficients of baseline fecal metabolites concentration selected 10 times in the 10-fold cross-validations of the binomial elastic net regres-
sion for the baseline ultra-processed foods consumption
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multi-dimensional view of both microbial and metabolic 
alterations linked to UPF consumption. Furthermore, 
the longitudinal design provides a unique opportunity 
to examine temporal associations, enhancing our under-
standing of how UPF consumption might influence gut 
microbiota composition and metabolic outcomes over 
time.

The NOVA classification provides a widely used frame-
work for assessing food processing levels, however, it 
does not differentiate between nutritionally distinct 
UPFs, such as fiber-rich vs. nutrient-poor products. This 
heterogeneity may complicate the interpretation of the 

findings. Our statistical models were adjusted for fiber 
intake to account for this potential confounding, and the 
consistency of our findings suggests that fiber content 
alone does not fully explain the observed associations. 
Future studies should subclassify UPFs based on their 
nutritional quality to better understand their impact on 
gut health and metabolism.

The observational nature of the study limits causal 
inference, and the lack of longitudinal associations con-
sistent with the cross-sectional findings underscores the 
need for caution when interpreting these results. Future 
randomized dietary interventions are needed to confirm 

Fig. 4  Baseline fecal metabolites selected by the binomial elastic net regression significantly associated with baseline ultra-processed foods (UPF) con-
sumption. Association tested with linear regression adjusted for sex, age, education (primary, secondary, tertiary), recruiting center (Alicante, Barcelona, 
Reus, Valencia), smoking status (never, former, smoker), diabetes, hypertension, hypercholesterolemia prevalence, body mass index, waist circumference, 
physical activity, alcohol intake, fiber intake, NOVA Group 1, Group 2, and Group 3 foods consumption. Values in x axe indicate UPF consumption in g/day, 
values in y axe indicate rank-based inverse normal transformation of metabolite concentration with P < 0.05
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the observed associations and clarify the temporal rela-
tionships between UPF consumption and gut health.

The inclusion of numerous covariates, while justified 
by their theoretical relevance, may introduce bias due 
to collinearity or unmeasured confounders. Although 
some covariates did not significantly contribute to 
microbiota variability in PERMANOVA analyses, they 
were retained to ensure consistency and control for 
potential confounding. Additional limitations include 
the limited generalizability of the findings to other pop-
ulations and the use of 16  S rRNA sequencing, which 
provides only genus-level taxonomic profiling. Future 
research should employ multi-omics approaches in 
more diverse populations.

The results related to the fecal metabolome profile 
should be interpreted with caution, as gut metabolites 
can arise from the interaction between dietary metabo-
lites, secondary metabolites produced by gut microbiota, 
and endogenous metabolites secreted by enterocytes and 
associated immune cells.

Finally, FFQ may misclassify UPF intake due to self-
report bias, leading to potential over- or underestima-
tions across NOVA categories. Future studies should 
incorporate alternative dietary assessment tools (e.g., 
24-hour recalls, food diaries) for improved accuracy.

Conclusions
Our study highlights significant associations between 
UPF consumption and alterations in fecal microbiota 
composition and metabolite concentrations, providing 
valuable insights into the impact of UPF consumption on 
gut health.

While our study is observational, it suggests that UPF 
consumption may contribute to metabolic dysregulation 
and inflammation, particularly in vulnerable populations, 
warranting further investigation into the underlying 
mechanisms. Future analyses should explore the poten-
tial relationships between these microbial and metabolic 
alterations to further elucidate the link between diet, gut 
health, and cardiometabolic outcomes.

Fig. 5  Mean coefficients of fecal metabolites concentration 1-year change selected 10 times in the 10-fold cross-validations of the binomial elastic net 
regression for the ultra-processed foods consumption 1-year change
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From a dietary perspective, our findings suggest that 
interventions targeting the gut microbiota, such as 
increasing fiber intake or following a Mediterranean-
style diet, may help mitigate the negative metabolic and 
inflammatory effects of UPF consumption. Choosing 
whole, minimally processed foods rich in fiber and essen-
tial nutrients could potentially counteract some of the 
negative effects associated with UPFs.
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