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A B S T R A C T

Seriola lalandi (Yellowtail Kingfish or Haku in te reo Māori) is emerging as an ideal species for aquaculture in 
New Zealand. The majority of S. lalandi production occurs in sea cages, however there is increased interest in 
using Recirculating Aquaculture Systems (RAS) that provide increased environmental control in the face of 
climate change, improved biosecurity, reduced water usage, and better waste capture. It is currently unknown 
whether a breeding program designed to generate genetic improvement in RAS would produce similar genetic 
gain in sea cages or if genotype-by-environment (GxE) interactions would limit the transfer of genetic 
improvement between growing systems. In this study we investigate the GxE interaction for both harvest length 
and harvest weight between S. lalandi reared in land-based RAS and flow through (FT) systems. We used 
genotyping-by-sequencing (GBS) SNP genotypes to estimate the genomic relationship matrix (GRM) for all in-
dividuals and used the GRM to estimate the genetic correlation of the same trait between the two systems. We 
found genetic correlations of 0.57 ± 0.1 and 0.54 ± 0.1 for harvest length and harvest weight respectively 
between the two systems. These lower-to-moderate genetic correlations indicate moderate-to-strong GxE because 
genotypes rank differently across the two systems for the same trait. We hypothesize that this GxE is primarily 
due to the large temperature and stocking density differences between the RAS and flow through systems. We 
also aimed to assess the relationship between the level of GBS SNP coverage and the standard errors of our 
genetic correlation estimates to determine possibilities for developing low or moderate density genotyping 
methods to reduce genotyping costs for future GxE experiments. Reducing the number of SNPs by 98.3 % from 
167 K to 2.8 K only increased the standard error of the genetic correlations between environments from 0.10 to 
0.13 in harvest weight and from 0.10 to 0.12 in harvest length. Therefore, it should be possible to reduce per- 
sample sequencing costs for future GxE experiments by using low or moderate density genotyping methods.

1. Introduction

The genus Seriola contains nine fish species commonly referred to as 
amberjacks or kingfish. S. quinqueradiata, S. lalandi, S. dumerili, and 
S. rivoliana are used for aquaculture production due to their rich texture, 
whole-fillet value, and popularity as raw sashimi grade products. In 
2020, over 160,000 metric tonnes of these four species were produced 
globally with over 85 % attributed to Japanese sea cage farming of 
S. quinqueradiata (Statistics Team of the Fisheries and Aquaculture Di-
vision, 2021).

The New Zealand National Institute of Water and Atmospheric 
Research (NIWA) identified S. lalandi, known indigenously as haku and 
commonly as yellowtail kingfish, as an excellent candidate species for 
aquaculture in New Zealand in the 1990s due to its culturability, fast 
growth rate in temperate climates, superior flesh quality, and high 
market demand (Symonds et al., 2014). From the late 1990s through the 
early 2010s, several research teams studied the reproductive physiology 
and early larval and juvenile rearing of yellowtail kingfish to achieve 
consistent seed production and commercial grow-out success (Abbink 
et al., 2012; Moran, 2007; Moran et al., 2007, 2010).
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While the vast majority of global Seriola are farmed in sea cage 
systems, there is growing interest in rearing these species in Recircu-
lating Aquaculture Systems (RAS). RAS are typically land-based, self- 
contained farming systems that repeatedly recycle up to 99 % of the 
water in fish growing tanks and use water filtration and treatment sys-
tems to concentrate and remove solid and dissolved fish waste products 
(Badiola et al., 2018; Rurangwa and Verdegem, 2015). While RAS can 
incur higher investment and operational costs than simpler production 
systems, its use in yellowtail kingfish production is attractive for several 
reasons: 1) RAS allow greater control over environmental conditions 
including water quality parameters and photoperiod while being insu-
lated from the volatility of the marine environment. 2) RAS are almost 
completely isolated from the marine environment and therefore offer 
higher biosecurity than traditional sea cages where pathogens can easily 
spread between cages and wild fish populations. 3) In contrast to sea 
cage farming where fish waste can pollute nearby marine environments, 
RAS waste is completely contained and can be properly captured for 
treatment or re-use. 4) The physical containment of RAS significantly 
reduces the risk of escape and therefore of genetic introgression from 
captive stocks into to wild Seriola populations.

The future of yellowtail kingfish aquaculture will likely include both 
sea cage and RAS production, but it is currently unknown whether a 
breeding program designed to produce genetic improvement in RAS 
would produce similar genetic gain in sea cages. Genotype-by- 
environment interactions (GxE) could limit the transfer of genetic 
improvement between system-types. Genotype-by-environment in-
teractions (GxE) occur when separate genotypes respond differently to 
varying environmental conditions (Falconer and Mackay, 1996). GxE is 
typically quantified as the genetic correlation between the same trait in 
separate environments, with a low genetic correlation indicating strong 
GxE because genotypes rank differently in the two systems. If GxE is 
high, it may be necessary to split the breeding program into two, with 
one focused on genetic improvement in RAS and the other in sea cages or 
to construct a selection index that targets an acceptable compromise in 
genetic gain for both systems.

Many studies have estimated GxE between aquaculture production 
systems that differ in key environmental parameters such as temperature 
(Gulzari et al., 2022; Sae-Lim et al., 2013), salinity (Domingos et al., 
2021; Setyawan et al., 2022), and dissolved oxygen level (Mengistu 
et al., 2020). While several production systems have been evaluated for 
GxE, comparatively few studies include RAS. Li et al. (2019) examined 
GxE for production traits in olive flounder (P. olivaceus) farmed in RAS 
vs flow through (FT) systems. Harvest weight and total length had a 
genetic correlation of 0.65 ± 0.13 and 0.33 ± 0.12 respectively between 
the two farming environments. Fernandes et al. (2019) estimated the 
genetic correlation for body weight as 0.67 between Nile Tilapia in RAS 
and freshwater cage environments when selection took place at 225 
days. Sae-Lim et al. (2013) estimated the genetic correlation of final 
harvest weight in rainbow trout between RAS and a high-elevation FT 
farm to be 0.40 ± 0.12. All three of these RAS GxE studies used the 
pedigree-based numerator relationship matrix (or A-matrix) to estimate 
variance components and genetic correlations. Tollervey et al. (2024)
investigated GxE for growth traits in genotyped Atlantic salmon smolts 
reared in a recirculating aquaculture system (RAS) and a freshwater 
loch. The genetic correlations between the loch and RAS for body 
weight, body length, and condition factor were 0.62 ± 0.14, 0.78 ±
0.15, and 0.85 ± 0.17 respectively. Premachandra et al. (2017) used 
eight microsatellite markers to estimate the genetic correlation between 
body weight in yellowtail kingfish reared in a sea cage and an indoor 
RAS tank and found a genetic correlation of 0.92 ± 0.49. The RAS tank 
operated at around the same temperature as the sea cage and the same 
stocking density of 6 kg per m3. Commercial RAS typically operate at 
higher temperatures and stocking densities than in this study, poten-
tially making the GxE estimate an overestimation in addition to its large 
standard error.

The goal of our study was to quantify GxE for two growth-related 

traits: harvest weight (HW) and harvest length (HL) in S. lalandi 
reared in two different production systems: 1) a RAS system and 2) a FT 
system which was intended as a proxy for a sea cage environment. Given 
the low genetic correlations observed in previous studies between RAS 
and other rearing systems, we hypothesized that there would be a large 
GxE effect (low genetic correlation) between the RAS and FT system. 
Because fish were produced using group spawning, traditional tag-based 
parentage tracking was impractical, and we used genotyping-by- 
sequencing (GBS) to both assign parentage and estimate the genomic 
relationship matrix (GRM) between experimental fish. We also aimed to 
assess the relationship between the number of SNPs used to estimate the 
GRM and the standard errors of our genetic correlation estimates typi-
cally used to quantify GxE to see whether it is possible to reduce geno-
typing costs for future GxE experiments.

2. Materials and methods

2.1. Production of experimental fish and fish husbandry

We produced experimental fish from thirteen group spawning 
(batch) events between October 15 and November 19, 2020, using 49 
genotyped males and 24 genotyped females of yellowtail kingfish. The 
broodstock were sourced from six tanks, each containing a unique, non- 
overlapping set of parents (see Supplemental 2, Fig. 1).

Each broodstock tank contributed between one to three spawning 
batches within a four-day period, collectively classified as a “hatch 
group” for that tank. The only exception was hatch group 5, which 
included eggs from two different broodstock tanks that spawned on 
consecutive days. Each batch was incubated separately. To optimize 
space and minimize within-tank variation in larval size, larvae from 
batches that hatched within one day of each other, regardless of their 
broodstock tank of origin, were combined in a single nursery tank. These 
nursery-reared larvae, distributed across six nursery tanks, were later 
consolidated into two larger larval flow-through (FT) tanks: Tank L1 (10 
m3): containing ten spawning batches from four broodstock tanks (hatch 
groups 1–4), with hatch dates ranging from October 16 to October 31, 
2020. Tank L2 (5 m3): containing three spawning batches from two 
broodstock tanks (hatch group 5), with hatch dates on November 20 and 
November 21, 2020.

To minimize the effect of hatching date on size at the start of Stage 2 
(Fig. 1) and ensure comparable initial body weights, we regulated 
growth through temperature control after weaning in the nursery tanks 
until tagging (see Supplemental 2, Fig. 1). Earlier-hatched groups were 
reared at lower temperatures, while later-hatched groups were kept at 
higher temperatures, all well within their tolerance range 
(18.5–24.0 ◦C). Growth was monitored through periodic weight mea-
surements, and the weight distribution at tagging followed a normal 
distribution.

Prior to Stage 2, we PIT-tagged and collected fin clips from fish 
(average of 165 g) in both tanks (L1 and L2). We assigned parentage 
using GBS, thus allowing us to deduce the broodstock tank of origin and 
estimate the hatching date of each hatch group to within two days based 
on the range of spawn dates recorded for each tank. For example, a fish 
from a tank from which eggs were collected between 15/10/2020 and 
19/10/2020 would have an estimated fertilization date of 17/10/2020, 
and an average hatch date of 19/10/2020 as the kingfish eggs hatch 
after two days of incubation.

After tagging before the start of Stage 2, we measured the weight and 
length of all fish from L1 and L2 (see Supplemental 2, Table 1) and 
proportionally split them into one 10 m3 circular flow through tank 
(FT1) (n = 306) at 8.34 kg/m3 and one 25m3 circular RAS tank (RAS1) 
(n = 1820) at 20.31 kg/m3 (Stage 2). FT1 and RAS1 fish were reared for 
230–231 and 195–197 days respectively until we recorded final phe-
notypes (Stage 3). On days 131–132 of Stage 2, RAS1 fish were split 
evenly into two equally sized tanks (RAS1 and RAS2) when the stocking 
density reached 104.87 kg/m3.
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The flow through water is sourced from a pipe approximately 500 m 
offshore in Bream Bay, NZ at a depth of 10 m. This seawater is me-
chanically filtered with glass-sand, sterilized using UV treatment, and 
passed through a 5 μm mesh filter prior to entering the tanks. The RAS 
contains mechanical drum filtration, moving bed biofiltration, a protein 
skimmer, and UV treatment. RAS tanks used a 24 h light photoperiod, 
whereas FT1 used an ambient photoperiod. Fish in RAS were automat-
ically fed 10 times per day over 24 h and fish in FT1 were automatically 
fed hourly during daylight hours (approximately 10–12 feeding bouts). 
Fish in both system types were fed to a ration based on NIWA’s size and 
temperature-dependent growth model (unpublished).

Temperature in the RAS tanks averaged 21.6 ◦C (range 18–26.6 ◦C) 
while FT1 had an average of 16.1 ◦C (range 14–19.9 ◦C) over the 
growing period. Fig. 2 shows a time series comparing temperatures 
between tanks. Final harvest stocking densities in Stage 3 were 67.11 

kg/m3, 70.00 kg/m3, and 46.20 kg/m3 for RAS1, RAS2, and FT1 tanks 
respectively (Table 2).

2.2. Phenotypic data collection

We collected phenotypic data at the end of Stage 3 for both harvest 
weight (HW) and harvest length (HL) on all experimental fish after 378 
days and 412 days of total growth for RAS and FT fish respectively. RAS 
fish were harvested when average weight exceeded ~1.9 kg which is 
within the range of a typical commercial harvest weight. FT fish grew 
more slowly and were harvested when the average weight reached ~1.5 
kg which is the minimum acceptable commercial harvest weight. A total 
of 1820 fish in RAS and 306 fish in FT were phenotyped at harvest. Data 
was collected on one day for FT fish and over the course of two days for 
RAS fish. Before harvest phenotyping, fish were anaesthetized in 30 ppm 
AQUI-S (AQUI-S New Zealand Ltd, Lower Hutt, NZ). We measured each 
fish to the nearest 5 mm and 10 g and collected a 3 mm square fin clip 
which we stored in 100 % ethanol. Fin clip samples were sent to 
AgResearch (Lincoln, New Zealand) for genotyping and quality control. 
Downstream data analyses and processing was conducted using R soft-
ware (R Core Team, 2021).

2.3. Genotyping, parentage assignment, and genomic relationship matrix

The DNA extraction and GBS were performed by GenomNZ from 
AgResearch, NZ (www.genomnz.co.nz). The DNA was extracted from 
~3 mm tissue punch from fin clips preserved in ethanol using a pro-
teinase K ethanol precipitation method (Clarke et al., 2014). Using PstI/ 
MspI restriction enzymes, 100 ng of DNA was digested for GBS library 
construction according to the methods outlined in Elshire et al. (2011)
with modifications as outlined in (Dodds et al. (2015). Each GBS library 
included negative control samples (no DNA), and each library under-
went size selection using a Pippin Prep (SAGE Science, Beverly, Mas-
sachusetts, United States) to select fragments in the size range of 
193–318 bp (genomic sequence plus 123 bp of adapters). Each library 
consisted of 376 individually barcoded samples that were run on one 

Fig. 1. Paths of fish movement through each tank in the experiment. FT tanks are labeled in red and RAS tanks are shown in blue. (For interpretation of the ref-
erences to color in this figure legend, the reader is referred to the web version of this article.)

Table 1 
Number of recorded fish (N), mean of the trait, and coefficient of variation (CV) 
of phenotypes and rearing length in degree days measured from the start of stage 
2 to Harvest. * means for the same trait between environments were significantly 
different by two-sample Student’s t-test. #start weight indicates the weight of 
fish at the beginning of stage 2 when they were first separated into FT and RAS 
systems.

Trait Time point/ 
period

Environment N Mean CV

Start Weight# (kg) Start Stage 2 RAS 1820 0.28 0.20
Start Weight# (kg) Start Stage 2 FT 306 0.27 0.19
HW (kg) Harvest RAS 1820 1.89*a 0.19
HW (kg) Harvest FT 306 1.51*a 0.16
HL (cm) Harvest RAS 1820 49.50*b 0.06
HL (cm) Harvest FT 306 45.00*b 0.05
Age (days) Harvest RAS 1820 377.81*c 0.03
Age (days) Harvest FT 306 411.58*c 0.03
Degree Days (days * 

temperature)
Start Stage 2 
-Harvest

RAS 1820 4234

Degree Days (days * 
temperature)

Start Stage 2 
-Harvest

FT 306 3711

N.K. Jacob et al.                                                                                                                                                                                                                                Aquaculture 606 (2025) 742592 

3 

http://www.genomnz.co.nz


lane of an Illumina HiSeq2500 utilizing v4 chemistry and single-end 
sequencing (1 × 101 bp; ~ 22–24 Gb data). Raw fastq files were qual-
ity checked using a custom qc pipeline (available at https://github.com/ 
AgResearch/DECONVQC). As one of the qc steps raw fastq files were 
quality checked using FastQC v0.10.1 (http://www.bioinformatics.ba 
braham.ac.uk/projects/fastqc/). Following QC, reads were demulti-
plexed using GBSX v1.3 (Herten et al., 2015) with settings ‘-mb 0 -me 0 - 
n false’.

The adapters were removed using cutadapt v2.9 (Martin, 2011) with 
settings ‘-a AGATCGGAAGAGCGGTTCAGCAGGAATGCCGAG -m 40’. 
Using a custom Python script, internal PstI cut sites were detected, to 
identify potential chimeric reads. These reads were virtually digested 
and only the first fragment (5 prime end) was kept for further analysis. 
Processed reads shorter than 40 bp were discarded. The clean reads were 
then aligned to the yellowtail kingfish (S. lalandi) genome 
GCA_003054885.1 available at (https://www.ncbi.nlm.nih.gov/assem 
bly/GCA_003054885.1), using bwa mem v0.7.17-r1188 (Li and Dur-
bin, 2009) with default settings. The alignments were further filtered 
using samtools v1.9 (Li et al., 2009) with settings ‘-q 30’. For variant 
detection, bcftools v1.0 was used (Li, 2011) with settings ‘mpileup 
–max-depth 8000 –skip-indels -a AD’, ‘call -cv’, ‘view -M2’.

We further filtered the raw GBS vcf file containing 374,149 SNPs 
using the KGD package in R (Dodds et al., 2015) prior to estimating the 
genomic relationship matrix (G). We removed individual fish samples 
with a mean sample depth of <0.3 reads/SNP, duplicate genotyping 
records, incomplete parentage assignment, and sample IDs not found in 
the GBS data. SNPs observed to be mono-allelic, Hardy-Weinberg 
disequilibrium values < − 0.05 (observed frequency of reference allele 
homozygote minus its expected frequency), or sample depth < 0.01 

were removed. After filtering, 167,795 SNPs and 2186 individuals (2115 
of 2126 experimental fish and 71 of 73 parents) remained. This left 304 
fish in FT and 1811 in RAS. The full GRM was calculated using all SNPs 
with the calcG() function in the KGD package. To estimate relatedness 
between individuals, we used the KGD package which calculates kinship 
using a depth adjustment (KGD) method to account for depth (including 
zero depth) of genotype calls (Dodds et al., 2015). This makes KGD well 
suited for estimating the GRM from GBS data which often contains 
missing or low call depth for genotypes.

We assigned individuals to parents using the GBSPed()function from 
the KGD package (Dodds et al., 2019), and used this parentage infor-
mation to build a shallow A-matrix which contained only information 
regarding experimental fish and their assigned parents. The inverted A- 
matrix was constructed using the ainverse() function in ASReml-R 
version 4.1.0.160 (Butler et al., 2018). Individuals missing one or both 
parental assignments were discarded.

2.4. Animal model, heritabilities and genetic/phenotypic correlations

We estimated genetic parameters for the two traits HL and HW in 
both RAS and FT environments using the resulting 2115 experimental 
fish. Genetic parameters, heritabilities, and genetic correlations were 
estimated by creating a 4-trait animal model in ASReml-R (Butler et al., 
2018). In this model, the same trait measured in different environments 
were considered as separate traits. Hatch Group, and Tanks nested 
within Environment were used as fixed effects: 

yi,j,k,l = ui +HatchGroupj +Tanks(Env)i,k + rl + ei,j,k,l 

In the animal model, yi,j,k,l is a vector of phenotypic values of the four 

Fig. 2. Daily temperatures (upper plot) and dissolved oxygen (lower plot) for each system type from Stage 2-Stage 3. Line gaps indicate missing data. The blue line 
shows RAS1, the purple line shows RAS2, the green line shows FT1, and the red line shows the average sea surface temperature of Bream Bay where the FT1 water 
was sourced. Bream Bay temperature data was taken from the NOAA ERDAPP database (https://coastwatch.pfeg.noaa.gov/erddap/index.html). (For interpretation 
of the references to color in this figure legend, the reader is referred to the web version of this article.)

Table 2 
Stocking densities at the start and end of Stages 2 and 3 for all tanks. RAS = Recirculating Aquaculture System, FT = Flow Through System.

Density (kg/m3)

Stage 2 Stage 3

Tank Start End Start End

FT1 8.3 – – 46.2
RAS1 20.3 104.9 52.5 67.1
RAS2 – – 52.5 70
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traits (HW-RAS, HL-RAS, HW-FT, and HL-FT); ui is a vector containing 
the mean for the four traits used (i = 1–4 for HW-RAS, HL-RAS, HW-FT, 
and HL-FT); HatchGroup is a fixed effect to account for differences in 
average hatching dates between five hatch groups of experimental fish 
(j = 1–5, Date-1, Date-2, Date-3, Date-4, Date-5); Tanks(Env)i,k is the 
fixed effect for the combination of stage 1 and stage 3 tanks, nested 
within each environment (k = 1–2 for FT, 3–6 for RAS, Fig. 1); rl is 
random additive genetic effect of the l-th individual; ei,j,k,l is a vector of 
random residuals for each individual l.

The random animal additive genetic effects (r) were distributed as:  

where G is the genomic relationship matrix, σ2
a is the additive genetic 

variance of a given trait; ra is the genetic correlation between two traits. 
R1 = trait 1 in RAS, R2 = trait 2 in RAS, F1 = trait 1 in FT, and F2 = trait 
2 in FT. The residual effects (e) were distributed as:  

where I is the identity matrix, σ2
e is the residual variance of a given trait. 

re is the residual correlation between two traits. Residual correlations for 
traits measured in different systems were fixed at 0 because for indi-
vidual fish reared in a single system, the model produces only one re-
sidual value. Residual correlations between different traits within the 
same system type were allowed to differ from 0 as both traits were 
measured on the same fish, and the model estimates two residuals. We 
determined the heritability for each trait as the additive genetic variance 
(σ2

a) divided by the phenotypic variance (σ2
p) corrected by fixed effects, 

h2 = σ2
a

σ2p
. GxE was estimated through the genetic correlation ra,RjFj of the 

same trait j in different systems and calculated as: ra,RjFj =
COV(σ2

a,Rj ,σ2
a,Fj)

σa,Rjσa,Fj
. 

A high value (close to unity) of ra,RjFj would be indicative of a low 
genotype-by-environment interaction, while a value lower than 0.8 is 
generally considered indicative of significant GxE (Robertson, 1959).

2.5. Generating lower density SNP subsets

To investigate the effect of lower-density genotyping on parameter 
estimates, we created GBS datasets with a smaller number of SNPs to 
cover the whole genome. This smaller SNP panel could be the result of 
using a different restriction enzyme combination, a targeted GBS 
approach like that of Martinez et al., 2023, which captures fewer 
genome segments for sequencing, or the development of a lower density 
SNP chip to reduce genotyping costs. Because SNPs in GBS often occur in 
clusters due to the specificity of the enzyme digestion and size-selection 
that results in DNA fragments for sequencing, we used a custom script 
“GBSsnpClusterThinKeep.R” (Supplemental 1) to randomly sample 
these DNA fragments (“SNP clusters”) rather than individual SNPs. 

Clusters were defined as SNPs within 340 bp on either side of a randomly 
sampled SNP taken from the full KGD-filtered vcf file containing 
167,795 SNPs. We aimed to make subsets for the following target 
number of SNPs with the desired number of replicates in parenthesis: 
100,000(10), 50,000(10), 25,000(10), 10,000(10), 5000(10), 2500(10), 
2000(15), 1000(15), and 500(30). From each SNP subset we generated a 
new GRM and used it in the same four-trait animal model described 
above. We also used our shallow A-matrix in the four-trait animal model 
to serve as a base reference level for standard errors of genetic corre-
lation estimates. The genetic correlations between the same traits in 

different environments and their standard errors were recorded from 
each replicate. The standard errors were used to compare the accuracies 
of these genetic correlation estimates from each SNP subset.

3. Results

3.1. Descriptive statistics

There was no significant difference in the mean weight between FT 
and RAS fish when they were first stocked into their respective systems 
at the start of Stage 2 (Table 1). However at harvest, weight and length 
were significantly different (p < 0.0001) between FT and RAS with RAS 
having a higher average harvest length and weight. This difference 
existed even though RAS fish were harvested at an average age of 378 
days while FT fish were harvested at a higher average age of 412 days. 
The coefficient of variation was similar between all like traits across the 
two systems. RAS fish were on average reared for 523 degree days more 
than FT fish which equates to 24 extra days of growth at 21.6 ◦C 
(average RAS temperature in stages 2 and 3).

3.2. Parental contributions

Parentage assignment was successful for all 2115 genotyped exper-
imental fish that passed genotype filtering and identified 187 full-sib 
families. The contribution of each family to the total pool of experi-
mental fish is shown in Fig. 3. The smallest number of parents were 
found in hatch group 1 (October 19, 2020), which was produced by 5 
males and 6 females.

3.3. Genetic parameters

The genetic variances for each trait in RAS were approximately 
double the genetic variance of the same trait in FT (Table 3), but error 
variances in RAS were around triple for the same traits in FT. This 
resulted in RAS having lower heritability estimates than FT. Overall, 
heritability estimates for all traits in both systems were relatively high. 
The standard errors of the heritability estimates in RAS were around one 
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ra,F1R1σa,F1σa,R1 ra,F1R2σa,F1σa,R2 σ2
a,F1 ra,F1F2σa,F1σa,F2

ra,F2R1σa,F2σa,R1 ra,F2R2σa,F2σa,R2 ra,F2F1σa,F2σa,F1 σ2
a,F2

⎤

⎥
⎥
⎦

⎞

⎟
⎟
⎠,

e ∼

⎛

⎜
⎜
⎝

⎡

⎢
⎣

0
0
0
0

⎤

⎥
⎦, I

⎡

⎢
⎢
⎣

σ2
e,R1 re,R1R2σe,R1σe,R2 0 0

re,R2R1σe,R2σe,R1 σ2
e,R2 0 0

0 0 σ2
e,F1 re,F1F2σe,F1σe,F2

0 0 re,F2F1σe,F2σe,F1 σ2
e,F2

⎤

⎥
⎥
⎦

⎞

⎟
⎟
⎠,
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third of those of FT which was expected given the larger number of RAS 
fish in the study.

Phenotypic correlations between HL and HW within each environ-
ment were very high (Table 4). Genetic correlations between HL and HW 
within each environment were also high at 0.92 for RAS and 0.88 for FT. 
Genetic correlations between the same trait in different environments 
were much lower. The estimates were similar for the two traits HW (0.54 
± 0.10) and HL (0.57 ± 0.10). These estimates indicate a strong 
genotype-by-environment interaction for both traits and we observed 
substantial reranking of parental estimated breeding values for the same 

trait in both environments (Fig. 4). However, for both HW and HL, 
parents with the most favorable breeding values showed large changes 
in scale but limited reranking. When looking at the performance of the 
top 10 % of all parents, RAS and FT shared 6 of the top 7 individuals for 
HW and 5 of the top 7 for HL. There was more reranking among parents 
with moderate breeding values.

3.4. SNP subsets

The accuracy of estimated genetic correlations between the same 
trait in RAS and FT decreased when we used fewer SNPs to build the 
GRM (Fig. 5). Using fewer SNPs also resulted in an increase in the 
variation in SE between replicates. Reducing the number of SNPs by 
98.3 % from 167 K to 2.8 K only increased the mean S.E. from 0.10 to 
0.13 in HW and from 0.10 to 0.12 in HL. Further reductions in SNP 
numbers below 2.8 K give increasingly larger SE. To achieve a level of 
accuracy comparable to the cross-environment genetic correlation esti-
mate based on a shallow pedigree, the average number of SNPs needed 
was ~1.7 K for HW and ~2.1 K SNPs for HL respectively. Statistics on 
SNP subset groups can be seen in Table 5.

Fig. 3. Relative contribution (percentage) from each of the 187 families in Flow Through (FT) and RAS. The horizontal red line indicates the mean contribution of all 
families (0.53 %). (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

Table 3 
Additive genetic variance (σ2

a), residual variance (σ2
E), phenotypic variance (σ2

P), and heritability (h2) for both traits in both environments estimated with the G from the 
full GBS dataset. Standard errors are shown in parenthesis, HL = Harvest Length, HW = Harvest Weight, RAS = Recirculating Aquaculture System, FT = Flow Through 
System.

Trait Environment σ2
a σ2

E σ2
P h2 ± se

HL RAS 3.96 (0.40) 3.63 (0.20) 7.59 (0.33) 0.52 (0.03)
HW RAS 0.066 (0.006) 0.047 (0.003) 0.11 (0.005) 0.59 (0.03)
HL FT 2.54 (0.62) 1.60 (0.39) 4.14 (0.39) 0.61 (0.11)
HW FT 0.034 (0.007) 0.015 (0.004) 0.05 (0.005) 0.70 (0.10)

Table 4 
Genetic correlations (se) (below diagonal), phenotypic correlations (se) (above 
diagonal), and heritabilities (se) (on diagonal) for both traits in both environ-
ments. n.e. = not estimable phenotypic correlations due to fish being in different 
environments. HL = Harvest Length, HW = Harvest Weight, RAS = Recircu-
lating Aquaculture System, FT = flow through system.

HL-RAS HL-FT HW-RAS HW-FT

HL-RAS 0.52 (0.03) n.e. 0.90 (0.01) n.e.
HL-FT 0.57 (0.10) 0.61 (0.11) n.e. 0.88 (0.01)
HW-RAS 0.92 (0.01) 0.46 (0.10) 0.59 (0.03) n.e.
HW-FT 0.54 (0.10) 0.88 (0.04) 0.54 (0.10) 0.70 (0.10)
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4. Discussion

Understanding the genotype-by-environment interaction for pro-
duction traits has important implications for breeding program design. If 
GxE is sufficiently strong, particularly if the between environment ge-
netic correlations are close to zero or negative, it would be necessary to 
have separate breeding programs for different rearing environments or 
use a selection index to appropriately balance selection between them. 
In this study, we estimated GxE between RAS and flow through (FT) 
systems for harvest weight and harvest length in yellowtail kingfish. The 
FT system was meant to approximate a sea cage environment with 
fluctuating temperature and photoperiod, and thus the results of this 
study could help yellowtail kingfish breeders to optimize a breeding 
program that results in genetic gain for both RAS and sea cages.

The genetic correlations of 0.54 for HW and 0.57 for HL between the 
RAS and FT indicate moderate-to-strong GxE, and suggest that fish 
derived from a RAS-focused breeding program will only realize 54 % 
and 57 % of the genetic gain for HW and HL respectively when raised in 
FT. Given that some of the environmental variables (mainly weather and 
mechanical/UV pre-filtration) in the FT system were more similar to a 
RAS than a true sea cage, it is likely that the GxE between RAS and sea 
cages is even stronger than between RAS and FT. The moderate to strong 
GxE observed for harvest weight and length indicates that the genetic 
architectures responsible for the same trait in RAS and flow through 
environments are substantially different. Strong GxE results in sub-
stantial re-ranking (Fig. 4) which leads to a suboptimal selection of 

breeding candidates and consequently decreased genetic gain in one or 
both environments. The majority of re-ranking occurred for individuals 
with moderate breeding values and is limited among the top individuals 
(Fig. 4). The limited re-ranking of top selection candidates in the current 
generation, however, does not guarantee that this will hold true in 
subsequent generations of selection.

Given the GxE observed, there are several options for breeding 
program design: 1) a single breeding program optimized for one system 
type with limited transfer of genetic gain to the other, 2) a balanced 
selection index designed for a single breeding program to favor gener-
alist individuals that perform well “on average” across environments, 
and 3) separate breeding programs set up for each system type with the 
attendant costs of operating two breeding programs. Option 3 must be 
justified by the increased genetic gain achieved compared to option 2. 
The decision to use a balanced selection index vs separate breeding 
programs can be determined by finding the “break-even correlation”. 
This is the genetic correlation where genetic gain is equal between the 
two breeding program designs when controlling for program cost 
(Mulder et al., 2006). The break-even correlation must be determined 
individually by a breeder depending on operational, genotyping, and 
phenotyping costs.

While our study was designed to estimate the overall effect of the two 
rearing environments rather than to identify the system-specific envi-
ronmental effects that drive the observed GxE, we hypothesize that there 
are three likely variables: density, temperature, and photoperiod. It is 
possible to isolate the effects of these variables, however this requires 

Fig. 4. Ranking of deregressed parental estimated breeding values for harvest weight and harvest length in both RAS and flow through environments.

N.K. Jacob et al.                                                                                                                                                                                                                                Aquaculture 606 (2025) 742592 

7 



carefully manipulating each variable independently to avoid con-
founding them with the system environment. Because commercial RAS 
operate at higher densities, temperature, and photoperiod, we inten-
tionally grouped these effects into our system-type variable, so our 
findings have practical application for industry. It is still important to 
note how the FT and RAS systems differed in our experiment so that 
future studies can estimate the system-specific effects of these environ-
mental variables.

Fish in RAS were stocked at the start of Stage 2 at 20.3 kg/m3, 146 % 
higher than FT fish. RAS densities peaked at 104.9 kg/m3, with a final 
density of 67.1 kg/m3 at harvest which was 45 % higher than in FT. 
While intensive rearing is a key feature of RAS, the limited staff avail-
ability due to the SARS-CoV-2 pandemic during the end of stage 2 
resulted in higher rearing densities than originally planned. Since 
excessively high densities in any rearing system will have a negative 
impact on growth, e.g., in rainbow trout and tilapia (Gibtan et al., 2008; 
Holm et al., 1990), it is possible that the short period of higher than 
intended density in RAS imposed a penalty on growth even with suffi-
cient feed.

S. lalandi has an optimal temperature range for growth from 24 to 

26.5 ◦C when dissolved oxygen levels are adequate (Abbink et al., 2012; 
Bowyer et al., 2014). Our study took place primarily during the winter 
months in New Zealand where FT temperatures routinely dropped 
below 15 ◦C. The average RAS temperature of 21.6 ◦C was 4.5 ◦C 
warmer than the average FT temperature of 16.1 ◦C which could largely 
explain the differences in growth between the two system types. 
Importantly, the quantity of feed given to each tank was not based solely 
on fish biomass but also on tank temperature. Because RAS tanks were 
much warmer for most of the experiment, RAS fish were given more feed 
which almost certainly resulted in higher growth. The decision to feed 
fish in RAS more was not made to introduce bias but rather to more 
accurately mimic a RAS production environment which operates at a 
higher temperature. The FT system in our study was set up to reflect the 
temperatures of a sea cage environment and tracked the temperature of 
the oceanic environment extremely well (Fig. 2). While the Bream Bay 
sea surface temperature was on average slightly higher than the FT tank, 
it is likely an overestimation of the temperature in sea cages which 
typically extend some distance below the ocean surface.

Photoperiod is another factor that could influence growth. RAS fish 
in our study were kept under 24-hour light to increase the daily feeding 

Fig. 5. Standard errors of genetic correlation estimates between RAS and FT for HW (left) and HL (right) estimated using between 10 and 29 different random subsets 
of the GBS SNPs. = The standard error using the full SNP set, = SE using the shallow A-matrix.

Table 5 
Number of SNPs (#SNPs) and number of SNP clusters selected per replicate. SD = Standard Deviation, CV = Coefficient of Variation.

Average #SNPs SNP clusters Mean 
#SNPs

Min 
#SNPs

Max 
#SNPs

Range 
#SNPs

SD CV Number of replicates

0.59 K 122 594.1 549 693 144 49.0 0.08 29
1.12 K 245 1122.2 984 1204 220 74.7 0.07 15
1.96 K 430 1956.9 1768 2144 376 106.5 0.05 15
2.82 K 616 2822.5 2648 3050 402 126.9 0.04 10
5.46 K 1244 5456.5 5293 5644 351 114.6 0.02 10
10.89 K 2534 10,892 10,562 11,221 659 181.1 0.02 10
26.37 K 6727 26,373.9 26,039 26,732 693 211.7 0.01 10
50.68 K 15,116 50,679.2 50,328 51,140 812 307.8 0.01 10
98.97 K 42,410 98,968.4 98,578 99,374 796 206.6 0.002 10
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window while FT fish were kept under ambient photoperiod and were 
fed only during daylight hours. The higher number of feeding bouts in 
RAS could lead to more efficient feed utilization and weight gain as seen 
in other aquaculture fish species (Argüello-Guevara et al., 2018; Daud-
pota et al., 2016; Holm et al., 1990).

The aim of using a FT system was to approximate a commercial sea 
cage environment with ambient temperature and light profiles; how-
ever, for other parameters, our FT was more similar to a RAS. FT water 
was cleaner and contained fewer pathogens than raw seawater, as it was 
filtered and UV-sterilized before entering the facilities, making it 
effectively sterile in comparison. The FT tank structure itself is like a 
RAS tank, and other fluctuations in environmental conditions such as 
weather patterns, tides, and oceanic debris that affect sea cages were 
nearly eliminated. Because our FT environment is an intermediate 
environment between a RAS and sea cage, we believe our GxE findings 
are likely to be conservative estimates of what would be expected be-
tween a RAS and a true sea cage farm. Conversely, Premachandra et al. 
(2017) produced optimistic genetic correlations between sea cages and 
RAS for harvest weight (0.92 ± 0.47) and length (0.97 ± 0.67) by 
keeping RAS temperatures and densities similar to the sea cage. The RAS 
densities of 6 kg per m3 were tenfold lower than in our study. Because 
commercial RAS operate at higher temperatures and densities than sea 
cages, the genetic correlations by Premachandra et al. (2017) likely 
underestimate GxE and, given their large standard errors, are less 
informative than the estimates in this study.

One complication of this study is that RAS and FT fish were harvested 
at different weights and ages with RAS fish being harvested earlier and 
at heavier weights. The animal model partially accounts for this because 
the fixed hatch-group and tank effects re-express the data as deviations 
from contemporary groups. Nevertheless, when comparing rearing time 
in degree days, RAS fish had 24 extra days of growth at their average 
RAS temperature of 21.6 ◦C. Hence, it is possible that the GxE observed 
is to some extent, a function of size and/or age rather than just the 
rearing environment. If the genetic correlation between weight and 
length at the two ages/sizes is low, then treating them as the same trait is 
unjustified. Thorland et al., 2020 found the genetic correlation between 
body weight at harvest and 4 months prior in Atlantic salmon to be 0.92. 
Turra et al., 2012 found a genetic correlation of 0.9 for weight between 
Nile tilapia at 130 and 200 days old which is towards the end of the 
growth cycle. He et al., 2017 found a genetic correlation of ~0.85 for 
body weight measured at 100 and 140 days in Nile tilapia. All three of 
these studies found that the genetic correlation between body weight 
decreased as the time between measurements increased. Harvest weight 
and length in RAS were measured on fish that were 34 days younger in 
absolute growth days and 24 days older when considering degree days. 
These age differences are smaller or similar to the differences reported 
above. Therefore, we don’t expect that these age and weight differences 
had a large impact on our estimates of genetic correlation for traits 
between the two systems.

Another potential concern is the smaller sample size in FT (n = 304) 
compared to RAS (n = 1811), which could reduce the precision of ge-
netic parameter estimates and potentially introduce bias to the resulting 
genetic correlation estimates used to assess GxE. Sae-Lim et al. (2010)
simulated bias in genetic correlation estimates and found that for low- 
heritability traits (h2 = 0.1), small fish family sizes (<10) led to down-
ward bias. For moderate-heritability traits (h2 = 0.3), slight downward 
bias occurred when the number of fish per environment was low 
(300− 1000) and the true genetic correlation was high (rg = 0.8). 
However, this bias was minimal and not reported as statistically sig-
nificant, and the standard errors of their genetic correlations were high 
ranging from 0.18 to 0.32. In other simulations with small numbers of 
fish, no bias was observed when the true rg was 0 or 0.5. Given that our 
traits have high heritabilities (h2 = 0.52–0.70), moderate genetic cor-
relation estimates (0.54–0.57), and low standard errors (0.10), we 
believe our genetic correlation estimates fall outside the range of sce-
narios at risk of downward bias described in Sae-Lim et al. (2010). 

Nonetheless, further research with larger FT sample sizes would help 
confirm our findings.

Genotyping-by-sequencing was found to be a powerful tool to 
generate more accurate estimates of genetic correlations based on 
genomic relationships in comparison to pedigree-based estimates, 
however for our application, as well as others (Kriaridou et al., 2020), 
the number of SNPs produced by our genotyping workflow is potentially 
excessive. We found that randomly reducing our full SNP dataset by 
98.3 % to 2.8 K SNPs (616 GBS SNP clusters) only increased the S.E. 
from 0.10 to 0.13 in HW (genetic correlation = 0.54) and from 0.10 to 
0.12 in HL (genetic correlation = 0.57). The average number of SNPs 
needed to outperform the pedigree-based estimates was ~1.7 K for HW 
and ~2.1 K SNPs for HL respectively. We used a shallow pedigree matrix 
where only the parents and the experimental animals were included. 
Most breeding programs have pedigrees with many more generations 
which will result in more accurate relationship matrices and better es-
timates of genetic parameters.

For most practical applications, it is convenient for breeders to use 
the same genotyping data to estimate both breeding values and variance 
components. Therefore it is important to know the minimum number of 
markers necessary to obtain both accurate breeding values and variance 
components. Kriaridou et al., 2020 found that using as few as 1000 
randomly sampled SNPs gave a genomic prediction accuracy compara-
ble to the full SNP panel for four different aquaculture species and traits. 
Fraslin et al., 2023 found that 3000 randomly selected SNPs yielded 
breeding value accuracies comparable to a 28 K SNP panel for Fla-
vobacterium columnare resistance in rainbow trout. Song and Hu (2021)
found that pruning to 3000 SNPs based on linkage disequilibrium 
resulted in the same accuracy of genomic breeding value prediction as 
using high density SNP panels ranging from 12 K–57 K for four aqua-
culture species and traits.

While the relationship between SNP array density and accuracy of 
genomic prediction of breeding values is well studied, to our knowledge, 
no one has researched the relationship between the number of SNPs and 
the confidence intervals of genetic correlation estimates used to quantify 
GxE.

The GBS fragment size in our study was only 680 bp which likely 
produces high linkage disequilibrium between SNPs within clusters. 
This means that the number of randomly selected clusters in our simu-
lations is approximately comparable to the number of randomly selected 
SNPs in a SNP array, where SNPs are typically included based on being 
evenly spread across the genome. The 2.8 K SNPs or 616 random SNP 
clusters is enough to estimate genetic correlations with limited loss of 
accuracy and therefore the 1000–3000 SNP needed for accurate 
breeding value estimation (Fraslin et al., 2023; Kriaridou et al., 2020) 
should also be enough to effectively estimate genetic correlations. One 
assumption of our SNP sampling was that SNPs retained the same 
sequencing depth regardless of the number of sampled SNPs. Standard 
GBS techniques may not be able to greatly reduce the number of SNPs in 
GBS without lowering sequencing depth; however, recently developed 
genotyping methods such as 3D-GBS (de Ronne et al., 2023), RAD 
capture (Rapture) (Ali et al., 2016), and GT-seq (Campbell et al., 2015) 
offer cost saving opportunities by utilizing unique restriction enzyme 
combinations, biotinylated oligonucleotide baits, or SNP-targeted oli-
gonucleotides, respectively, to reduce genome coverage and produce 
less markers than traditional GBS at the same sequencing depth. Alter-
natively, our data could be used to develop a low or moderate density 
SNP array. Both approaches could lower genotyping cost and facilitate 
genotyping more individuals for the same budget.

5. Conclusions

In this study, moderate-to-strong genotype-by-environment in-
teractions (GxE) were found for harvest weight and harvest length in 
yellowtail kingfish reared in flow through and recirculating aquaculture 
systems. Providing both production systems with a breeding program 
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will require a balanced selection index for performance in both system 
types or two separate breeding programs for each system type. The 
number of SNPs used to estimate genetic correlations between the same 
trait in different environments can be significantly reduced from stan-
dard SNP arrays that usually contain 30 K or more SNPs. Reducing 
genome representation in GBS, or using lower coverage SNP panels, will 
have a limited impact on accuracy of genetic correlation estimates and 
should reduce genotyping costs.

Abbreviations

FT flow through
RAS Recirculating Aquaculture System
HW Harvest Weight
HL Harvest Length
GxE genotype-by-environment interaction
GBS genotyping-by-sequencing
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