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Chapter 1

Introduction

Renewable energy policies in the United States have become a cornerstone in efforts to accel-
erate the transition to clean power, but their implementation and effectiveness have varied
widely across the diverse array of contexts present in the country. Over the past two decades,
many U.S. states have adopted Renewable Portfolio Standards (RPS) and other incentives
to promote renewable generation (Barbose, 2024). RPS are state-level programs that require
electric utility companies to source a specified percentage or absolute capacity of electric-
ity from renewable sources. These standards typically establish mandatory targets with set
deadlines and include various policy mechanisms to incentivize or mandate compliance with
these goals (EIA, 2024a). RPS policies may also pursue more specific objectives in support
of their overarching goals. Certain renewable technologies can be targeted to fulfill man-
dated requirements through mechanisms such as class distinctions or solar carve-outs, which
explicitly require that a specific technology be used to meet renewable energy targets. These
same mechanisms may also be used to influence the distribution and scale of projects. For
example, they may prioritize rooftop solar over utility-scale installations, or encourage devel-
opment in low-income communities. Structural changes may also be implemented to support
growth, such as the creation of consistent and streamlined interconnection standards that
define how generators connect to the larger transmission grid (EPA, 2021), or the adoption
of net metering policies, which allow electricity to flow both to and from utility customers,
especially important for distributed and rooftop solar systems (DSIRE, n.d.).

Early empirical studies on the efficacy of RPS found mixed results. Some detected
no immediate increase in renewable electricity from RPS adoption (Carley, 2009), while
others observed positive impacts, though only when accounting for policy stringency (Yin &
Powers, 2010). These divergent findings suggested that context and details like the design
and ambition of policies, as well as temporal lags in investment may play a large part
in the policy outcomes. Subsequent research began to control for such heterogeneity. For
instance, Shrimali et al. (2015) showed that more stringent RPS targets are indeed associated
with greater in-state renewable capacity growth. Other research further highlighted the
importance of complementary measures like net metering, interconnection standards, or solar
carve-outs in enabling specific technologies such as solar to succeed (Steward & Doris, 2014).
In general, the literature over the past 15 years indicates that the existence of a renewable
energy policy does not necessarily guarantee a positive result on renewable energy capacity.
However, ambitious and well-crafted renewable energy policies do have the potential to drive
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deployment, especially if combined with favorable socioeconomic and environmental factors
both natural (e.g. solar resource availability, land suitability) and built (e.g. proximity to
infrastructure like transmission lines and substations).

Within this broad national trend, Maine offers a compelling case study. By the late
2010s, Maine had developed an unusual renewable energy profile. It relied heavily on legacy
hydropower and biomass and led New England in wind power, but utility-scale solar pho-
tovoltaics played almost no role in its energy mix (EIA, 2024b). Maine’s solar resources
remained modest throughout the 2010s, and state leadership during this time did little to
prioritized solar development. In fact, under Governor Paul LePage (Republican, 2011 –
2018), policies were often unfavorable to all renewable energy. As a result, by 2018 Maine
had only a handful of small solar farms, with virtually no large-scale solar projects online.
The political landscape changed dramatically though in 2019, when newly elected Governor
Janet Mills (Democrat, 2019 – Present) and the wider state administration passed three
landmark clean energy policies:

1. Legislative Document 1679: An Act To Promote Clean Energy Jobs and To Establish
the Maine Climate Council (2019)

2. Legislative Document 1494: An Act To Reform Maine’s Renewable Portfolio Standard
(2019)

3. Legislative Document 1711: An Act To Promote Solar Energy Projects and Distributed
Generation in Maine (2019)

These bipartisan laws established a climate action council and emission targets (LD
1679), massively expanded the RPS (LD 1494), and removed barriers to distributed and
community solar (LD 1711), and marked a major turning point in Maine’s renewable energy
policy environment. Together, the 2019 policies set some of the nation’s most aggressive
renewable targets and incentives, effectively guaranteeing a market for new solar projects in
Maine. The confluence of stronger policy support, shifting political leadership, and rapidly
improving solar economics created an exceptional opportunity to evaluate how these factors
influence utility-scale solar deployment.

Stemming from the political and socio-economic context described above, alongside the
uncertainty and gaps in the current body of literature, this thesis aimed to evaluate the
impact of the 2019 renewable energy policies passed in Maine on the deployment of utility-
scale solar power within the state, while accounting for relevant socio-political and geographic
factors. More explicitly, this research aimed to answer the following question:

How did Maine’s 2019 renewable energy policy package (LD 1679, LD 1494, and
LD 1711) affect the deployment of utility-scale solar photovoltaic capacity (in
megawatts) relative to areas which did not see similar policy, while accounting
for hyper-localized geographic, environmental, and economic factors relevant to
solar development?

To address this question, I applied a quantitative methodology informed by past RPS
policy evaluation literature. After constructing a counterfactual from national geospatial
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data using coarsened exact matching (CEM), the study employed an event-study framework
to compare Maine’s post-2019 solar capacity growth against its estimated trajectory absent
the policy intervention. This approach was extended by including socio-political variables
such as local political leanings and public opinion to capture the influence of community
support, and included levelized cost of energy (LCOE) for solar versus wind to account
for technology cost trends in various regions of the U.S. across time. By integrating these
factors into the analysis, the effect of the 2019 policies is isolated while controlling for political
context and market conditions.

The remainder of this thesis is structured as follows. Chapter 2 provides a literature
review, summarizing the research methodologies and empirical findings of past research on
renewable energy policy impacts. Chapter 3 presents the institutional background and policy
context, detailing Maine’s energy landscape and the specifics of the 2019 legislation. Chapter
4 describes the data used in the analysis and what specific pre-processing steps were taken.
Chapter 5 details the methodology, including the econometric models and variables used
to evaluate policy effects and to capture socio-political and economic influences. Chapter
6 reports the results for each empirical model. Chapter 7 provides a discussion of the
implications of these results in the context of each research question and compares the
results back to the findings of prior literature and Maine’s unique context. Finally, Chapter
8 concludes the thesis, highlighting the main findings and their significance.
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Chapter 2

Literature Review

In the early 2010s, as many RPS programs were just taking effect (Barbose, 2024), much
of the literature used difference-in-difference (DiD) analyses to assess impacts on renewable
capacity. Results were notably mixed. Carley (2009) examined RPS effects on renewable
electricity generation across states. Using state fixed-effects models to analyze state-level
data from 1998-2009, Carley found no significant immediate increase in renewable generation
from RPS adoption, though each additional year under an RPS was associated with a slight
uptick in renewable generation share (Carley, 2009). A dynamic treatment effect makes
intuitive sense in this context, and it persists as a pattern in later literature. Given the
development times associated with renewable energy projects, the results of Carley (2009)
could suggest a growing effect caused by the completion of projects which were initiated
shortly after RPS adoption. A year later though, Yin and Powers (2010) reported a positive
effect of RPS on the share of non-hydro renewable capacity, but only when taking into
account a measure of policy stringency, created by constructing an index of RPS targets. This
suggested that while RPS requirements simply being present may not measurably impact
renewable capacity, sufficiently stringent policies may (Yin & Powers, 2010). Other early
studies also found somewhat similar results; Shrimali and Kniefel (2011) employed a similar
state and time fixed effect model taking into account variations in not only RPS requirements,
but also variables measuring other state level requirements. The resulting estimates aligned
with the previous studies in that the effects of RPS are negligible or, in the findings of
Shrimali and Kniefel (2011), even a negative effect on the share of capacity produced by
renewables. These counterintuitive findings likely resulted from both heterogeneity in policies
and lags in investment response (Shrimali & Kniefel, 2011). This conclusion aligns with
the fact that renewable capacity, and especially utility-scale solar, was still developmentally
young in many states around 2010, and RPS policies appear to have differed widely in design
around this time.

Other studies at this time focused specifically on wind capacity, which was far more
dominant than utility-scale solar due to the relative technological maturity of wind turbines.
These studies too found no clear impact from RPS. Hitaj (2013) used county-level data from
1998 to 2007 to estimate the effect of state and federal incentives on wind capacity. Due to
the size of his unit of observation, a tobit/probit model was first used to model the likelihood
of existence of turbines within a county, then an instrumental variables (IV) approach to
account for exogeneous variables. Again, the influence of the policies (including RPS) had no
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significant effect. Similarly, after utilizing Synthetic Controls Method to measure the impact
of RPS on various early adopter states, Maguire & Munasib (2016) found very little evidence
of renewable capacity gains attributable to RPS. Of the six states examined, only the Texas
RPS was found to have a significant (and positive) effect on renewable capacity. These often
inconclusive or statistically insignificant results reflect a common challenge shared by these
early studies: a relative lack of longitudinal data, and difficulty in comparing a heterogenous
body of policies labeled as RPS across areas which vary widely in characteristics that impact
the viability of renewable energy. Within the heterogeneity of RPS and other renewable
energy policy often lies policy specifically geared towards incentivizing or mandating solar
development, such as solar carve-outs within RPS, or separate grants and incentives for
solar. The effects of these more targeted policies have been studied as well. Steward and
Doris (2014) find, unsurprisingly, that when solar development is mandated through solar
carve-outs, it does have a significant positive effect on solar development, even in areas with
less favorable conditions. The study also highlights the importance of foundational policies
such as net metering and interconnection policies which enable easier development.

Shrimali et al. (2015) attempted to tackle the problem of policy heterogeneity by building
a dataset to produce an indicator, so-called “Incremental Share Indicator”, which provided
a value to represent the relative stringency of a state’s RPS requirements. As a result,
they found that if controlling for policy heterogeneity, more stringent RPS requirements
did appear to lead to more in-state renewable development. Specifically, a 1 percentage-
point increase in an RPS’s renewable energy target was associated with roughly a 0.28–0.29
percentage-point increase in the state’s own renewable capacity share. Policy differences
related to flexibility the extent to which states allowed renewable energy to be purchased
from out-of-state was also highlighted as a significant source of heterogeneity across RPS
designs. As expected, greater flexibility was associated with a negative impact on the amount
of renewable capacity developed within a state’s borders.

Similar to the earlier Maguire & Munasib (2016), Upton and Snyder (2017) used Synthetic
Control Method to construct counterfactual groups for each RPS state using various measures
of political leanings and gross state product values. In addition, similar to Shrimali et al.
(2015), Upton and Snyder (2017) incorporated a measure of RPS stringency into their DiD
analysis. Again though, just as Maguire & Munasib (2016) had, Upton and Snyder (2017)
found that states with RPS did not experience a statistically significant increase in renewable
generation relative to their counterfactual.

Alternatives to Synthetic Control Method have also been used in the existing literature.
Wolverton et al. (2022) employed coarsened exact matching (CEM) to compare manufac-
turing plants in RPS states versus those in non-RPS states. After pre-matching manufac-
turing plants on domain-pertinent characteristics, then applying a DiD analysis, they found
RPS adoption was a significant, although small influence on industrial electricity prices at
manufacturing plants. The effect was especially small relative to earlier studies which also
examined electricity prices (e.g. Greenstone & Nath, 2020; Upton & Snyder, 2017). By
matching data at the manufacturing plant level, Wolverton et al. (2022) avoids bias caused
by state-level aggregation and thus improves the precision of their estimate. This use of
CEM, combined with an event study style analysis of high resolution, non-aggregated data,
closely aligns with the methodological approach of this thesis.

In more recent research, econometric evaluations of renewable energy policies have focused
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on using newer causal inference methods to address biases inherent to traditional two-way
fixed effects models like used in earlier studies (e.g. Shrimali & Kniefel, 2011; Upton &
Snyder, 2017). Sun & Abraham (2021) describe issues with the standard DiD with two-
way fixed effects and its ability to estimate effects on heterogenous and temporally dynamic
treatments like RPS. Recent work explicitly adjusts for these issues. Consequently, following
studies which use a DiD to estimate the effects of renewable energy policy use models which
are robust to heterogenous treatment effects (e.g. Deschenes et al., 2023).

The most significant recent analysis of RPS on capacity investment comes from Deschenes
et al. (2023). They assemble state-level data from 1990–2019 and address heterogeneous
treatment effects using a DiD methodology outlined by Callaway & Sant’Anna (2021). This
approach calculates year-by-year treatment effects for each “cohort” of adopters and then
aggregates, avoiding the bias that can arise in two-way fixed effects models when effects
change over time. Resulting, Deschenes et al. (2023) find robust causal impacts of RPS on
wind power development, but do not on solar. On average, they found that an RPS policy
caused an increase in wind capacity of about 600–1200 MW (a 44% jump relative to no
policy), but no statistically significant effect on utility-scale solar capacity. This contrasting
result is likely a reflection of the timespan of their data, as solar technology had only begun
to become economically competitive with wind in the last year of the examined period (Seel
et al., 2024; Wiser et al., 2024). Also notable were their findings on the speed of development
after RPS implementation. Most of the wind capacity growth they observed only occurred
more than five years after the policy was implemented. This pattern intuitively makes sense,
especially given the long development time associate with utility scale wind energy, often
taking between 3 and 8 years to complete (DOE, n.d.; Iberdrola, n.d.). It also helps explain
why some earlier studies with shorter post-treatment windows found negligible effects.

Despite substantial research examining the impact of RPS on renewable energy capacity,
notable gaps persist in the literature. Early studies using DiD models produced mixed
results largely due to limited longitudinal data given the then recent RPS implementations
and significant policy heterogeneity between states. More recent work has advanced their
methodology, incorporating measures of policy stringency (e.g. Carley et al., 2018; Shrimali
et al., 2015) and addressing heterogeneous treatment effects to better capture the dynamics
of renewable capacity growth. However, many of the recent studies have predominantly
focused on wind energy, leaving the distinct challenges and market dynamics of utility-scale
solar underexplored. In addition, few studies utilize counterfactuals to estimate renewable
capacity trajectory absent RPS policies for use in their analysis, instead opting to compare
states while controlling for relevant features. Those which do construct a counterfactual, do
so with data aggregated at the state level (e.g. Upton & Snyder, 2017), producing estimates
based on less granular data that masks localized variation and introduces aggregation bias.
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Chapter 3

Institutional Background and Policy
Context

3.1 Solar Energy Development in the U.S. and Maine

Over the past two decades, the United States has experienced rapid growth in renewable
energy generation, coinciding with both the implementation of RPS and significant tech-
nological advancements that have rendered new renewable energy solutions economically
viable. These concurrent trends prompt a critical question to this research: to what ex-
tent can RPS policies be credited with driving the observed growth? RPS are state-level
programs which contain policies that impose requirements on electric utility companies to
supply energy from low or zero carbon sources. RPS policies vary widely state to state in
structure, goals, enforcement mechanisms, and extent. The first RPS was introduced in Iowa
in 1983, and they have since spread across the country. 11 states implemented their own
RPS throughout the 1990s, and the proliferation of RPS continued into the 2000s. By 2019,
29 states and Washington D.C. had RPS programs (Barbose, 2024; EIA, 2024a).
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Figure 3.1: Timeline of Renewable Portfolio Standard (RPS) and Clean Energy Standard
(CES) enactments and major revisions across the U.S.

Source: (Barbose, 2024)

Although roughly half of all renewable capacity added in the U.S. since 2000 is associated
with state RPS requirements (Barbose, 2024), disentangling the direct impact of RPS from
overlapping factors such as declining renewable levelized cost of energy (LCOE), federal
policy, and technological advancements, is challenging. Early RPS policies in the 2000s were
often aimed at relatively modest goals (e.g. 10–20% targets by 2015 or 2020), but over
time many states raised their targets, especially in the late 2010s as concerns about climate
change grew (Barbose, 2024). Significant to utility scale solar, many RPS policies have
evolved to include specific carve-outs for certain technologies (such as solar), as discussed
further below. In the absence of a federal RPS or other federal renewable mandates, states
led the way in renewable energy policy, though federal incentives have played a supporting
role. The Production Tax Credit (PTC) for wind and the Investment Tax Credit (ITC) for
solar have provided crucial financial support, helping renewables compete with fossil fuels
(Lips, 2024). The ITC was first implemented in 1979 and provided a tax credit worth 10% of
the total value of the project, and has since been in place (with the exceptions of one month
in 1990, and four months in 1992 when the policies were allowed to expire by congress),
providing anywhere between 10-30% worth of tax credits to residential and commercial solar
and wind projects (Lips, 2024). Overall, legislation enacted from the early 1990s to the early
2010s established the policy framework that formed the basis for RPS.

During this period, wind energy emerged as the dominant source of new renewable elec-
tricity. Improved turbine technology, economies of scale, and the PTC subsidy made wind
farms increasingly economical. Wind power saw significant efficiency gains and capacity
factor improvements from technological advances such as taller towers and longer blades, all
while reducing costs roughly 50% over the 2000s. U.S. wind generation skyrocketed from
only about 6 billion kWh in 2000 to roughly 300 billion kWh by 2019 (and has continued
further to 434 billion kWh as of 2023)(Bowers, 2020; EIA, 2024a). By 2019, wind had even
surpassed hydropower as the nation’s largest source of renewable electricity (Francis, 2020).
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This reflects both wind’s rapid growth but also the stagnation of hydropower. Conventional
hydroelectric capacity has changed little since the 1970s. Hydropower provided a substan-
tial baseline of renewable generation throughout 2000–2019, but very little new hydropower
capacity has been developed in the U.S. since the 1970s (EIA, 2024b).

Hydropower technology remained mature with incremental upgrades (e.g. turbine im-
provements) but no major capacity expansion. Overall, wind dominated new-build renew-
able capacity under RPS mandates in the 2000s and early 2010s, while hydropower largely
maintained their legacy roles.

In the early 2000s, utility-scale solar power played only a negligible role in U.S. electricity.
Solar photovoltaic (PV) technology at this time was still prohibitively expensive – median
installed costs in 2010 were over 5 times higher per watt than a decade later, and most
early solar development was in small-scale, distributed installations rather than large power
plants (Bolinger et al., 2023). As a result, utility-scale solar contributed only a tiny fraction
of U.S. renewable generation until about 2010 (EIA, 2024b). Many state RPS programs
initially did not include special provisions for solar, and utilities often met RPS targets
using cheaper resources (wind, existing hydro) before turning to solar (Barbose, 2024; EIA,
2024b). To kickstart solar markets, several states began to implement solar carve-outs (or
set-asides) in their RPS: dedicated sub-requirements that a certain percentage of electricity
comes specifically from solar energy. As of 2023, 15 states plus D.C. had solar-specific policy
within their RPS (Barbose, 2024; NCSL, 2021). These carve-outs create assured demand for
solar even when it was not the lowest-cost option.

Utility-scale solar installations began to appear in the late 2000s and began to slowly
expand alongside an increasingly hospitable economic environment. Around 2010, the U.S.
had only a few hundred megawatts of utility-scale solar, but by the end of the decade solar
had become one of the fastest-growing electricity sources. It still trailed wind in absolute
terms, but its growth rate was highest among renewables. In 2019, solar energy (including
both utility-scale and distributed PV) was responsible for about 9% of U.S. renewable energy
consumed – a relatively small share, but up sharply from near-zero a decade earlier (EIA,
2024b; Francis, 2020; Seel et al., 2024).

Maine entered the 21st century with an unusual renewable energy profile compared to
most states. Thanks to long-standing hydropower dams and a sizable wood-products indus-
try providing biomass fuel, Maine has historically generated a large share of its electricity
from renewable sources. The state enacted its initial RPS in 1997 and began enforcement
in 1999, requiring that at least 30% of each retail electricity provider’s sales come from re-
newable resources, though the electric utility providers already surpassed 30% with existing
hydroelectric and biomass generation (DSIRE, 2025; EIA, 2024c). To promote new projects,
Maine designated a Class I RPS requirement, which mandated energy generation capacity
on a schedule which ramped up 1% each year from 2008-2017 (DSIRE, 2025).

Starting around 2007, Maine experienced increased development of utility-scale wind
projects, taking advantage of the wind resources on Appalachian ridgelines and the new
RPS demand for renewable credits. By the mid-2010s, Maine had become New England’s
leader in wind generation, hosting large wind farms that helped Maine meet its Class I RPS
(EIA, 2024b, 2024c). By 2018, approximately 19% of Maine’s in-state utility scale electricity
generation came from wind power, on top of roughly 15% from hydro and 10% from biomass
(EIA, 2024b).
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Figure 3.2: Share of total nameplate capacity (MW) in Maine by renewable technology
group, and non-renewable technologies as a whole, 2000–2023. A steady decline in the share
of non-renewable capacity can be seen as onshore wind and solar photovoltaic (PV) capacity
being to claim a higher share.

However, solar energy played almost no role in Maine’s pre-2019 energy mix. Maine’s
solar resource is low relative to most of the U.S. (but comparable to leading solar energy
producers in Europe, such as The Netherlands) and the state had not implemented policies
to aggressively promote solar development (CBS, 2024; Sengupta et al., 2018). There were no
solar carve-outs in Maine’s RPS, and under Republican Governor Paul LePage (2011–2018),
state policies toward renewable energy were at times unfavorable. For example, Maine had
a restrictive “gross metering” rule that rolled back net metering for rooftop solar in 2016
(Catherine Morehouse, 2019; Tux Turkel, 2016), and in 2018 LePage ordered a pause on
wind turbine permits (An Order Establishing the Maine Wind Energy Advisory Commission,
2018). As a result, by 2018 Maine had only a handful of small solar farms. In fact, all of
Maine’s 99 utility-scale solar generators on record as of September 2024 were built in 2017
or later, and just three were operating before 2019 (EIA, 2024b), revealing how little solar
development had been accomplished prior to the late 2010s.

3.2 Policy Changes in Maine (2019), and in the USA

In 2019, Maine enacted three landmark policies that together helped set the state’s clean
energy trajectory. These policies, signed by Governor Janet Mills in June 2019, received
bipartisan support and marked a major shift in direction from Gov. Mills’ predecessor’s
approach to renewable energy (Catherine Morehouse, 2019; Office of Gov. Janet T. Mills,
2019). First, Maine Legislative Document (LD) 1679 (2019) established a renewable energy
and climate change plan and framework for the state. This law created the Maine Climate
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Council to “assist Maine to mitigate, prepare for and adapt to climate change” and set
greenhouse gas reduction targets: a 45% reduction below 1990 levels by 2030, and an 80%
reduction by 2050, improving upon the original goal set in 2003 of 10% below 1990 levels
by 2020(Maine DEP, 2019). It also committed Maine to achieve carbon neutrality by 2045.
Though LD 1679 was primarily focused on greenhouse gas emissions and climate change
mitigation, it also explicitly set goalposts for clean electricity that would be implemented
through the state’s RPS (An Act To Establish the Maine Climate Change Council To Assist
Maine To Mitigate, Prepare for and Adapt to Climate Change, 2019; Office of Gov. Janet
T. Mills, 2019).

The second and most directly related policy to renewable energy was LD 1494: An
Act To Reform Maine’s Renewable Portfolio Standard. This act expanded Maine’s RPS in
accordance with the goals set in LD 1679, increasing the required share of renewables in
electricity supplied in Maine to 80% by 2030 (up from the previous requirement of 40% in
2019) and establishing a goal of 100% renewable electricity by 2050. Additionally, LD 1494
created a new “Class IA” resource category mandating a large increase in new renewable
generation: an additional 40% of Maine’s retail electric load must be met with new (post-
2019) renewable resources by 2030 . This Class IA is in addition to the existing RPS
classes (which had been 30% Class II (pre-2005 renewable capacity) existing and 10% Class
I (post 2005)). To help achieve this, the law directs the Maine Public Utilities Commission
to conduct long-term procurement of new renewable energy capacity by signing long-term
contracts for renewable generation and energy storage totaling an amount needed to meet
the Class IA targets (An Act To Reform Maine’s Renewable Portfolio Standard, 2019a;
An Act To Reform Maine’s Renewable Portfolio Standard, 2019b; Office of Gov. Janet
T. Mills, 2019). With LD 1494’s passage, Maine moved from a non-effective requirement
which mandated nothing more than the existing renewable capacity, to one of the most
aggressive RPS requirements in the country. For comparison, as of 2022 only 15 states have
a renewable energy capacity goal of 100% set, and only 7 of which have a shorter deadline
than 2050 (NCSL, 2021). Thus, this 2019 RPS revision injects a much stronger demand for
new renewables, effectively guaranteeing a market for utility-scale projects in Maine over
the coming decade.

The third major policy change was LD 1711: An Act To Promote Solar Energy Projects
and Distributed Generation in Maine. Though LD 1711 appears to aim for a facilitation of
distributed and community solar, the incentives included in the bill overlap into the territory
of utility scale solar, and in fact includes a directive aimed at procuring 125 MW of new
distributed energy from “commercial or institutional customers”. Additionally, LD 1711
aimed to remove barriers that had stifled solar development in Maine. It authorized the
procurement of at least 375 MW of new distributed generation, primarily solar PV, with
separate programs for commercial/institutional solar and for community shared solar farms.
The law also eliminated the prior cap on the number of customers who could participate in
a community solar project and increased the size cap on eligible projects from 660 kW to
5 MW. In addition, LD 1711 includes provisions to ensure equitable access (e.g. requiring
some community solar projects to benefit low- and moderate-income customers) (An Act
To Promote Solar Energy Projects and Distributed Generation Resources in Maine, 2019;
Office of Gov. Janet T. Mills, 2019).

Though LD 1711 in name appears to mainly impact distributed solar, a term generally
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used for installations like rooftop solar or other small capacity installations, the wide-reaching
incentives provided by this bill represent a major boon to utility-scale solar, distributed solar,
and community solar alike. By increasing the limit on maximum eligible project size to 5MW,
it expands the support available for small utility-scale projects, now supporting projects that
otherwise would not be tracked as utility scale by the EIA 860 (projects greater than 1 MW).

Maine’s 2019 policy implementation occurred alongside broader trends in U.S. renewable
energy policy in the late 2010s. In passing LD 1494, Maine became part of a group of states
committing to 100% clean electricity by mid-century. A few examples in 2019 alone include
New Mexico, which passed the Energy Transition Act (SB 489) mandating 100% carbon-free
electricity by 2045, New York, which enacted the Climate Leadership and Community Pro-
tection Act, targeting 100% zero-emission electricity by 2040, and Nevada, which approved a
law (SB 358) raising its RPS to 100% by 2050 (Barbose, 2024; NCSL, 2021). Thus, Maine’s
move to 80% by 2030 and 100% by 2050 was in line with this nationwide trend towards
more ambitious climate and clean energy goals. Before the end of 2019, seven states plus
D.C. and Puerto Rico had 100% clean energy commitments in place, and several others (e.g.
Massachusetts in 2020) quickly followed suit (CESA, n.d.).
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Chapter 4

Data and Descriptive Statistics

The goal of this section is to describe the data framework used, outline the variables employed
in the analysis, and explain the rationale behind their selection. This paper consolidates
various geospatial datasets into a unified raster grid. Although this approach introduces
significant complexity and is far more computationally intensive than using an aggregated
framework, utilizing a high-resolution grid to observe units on a highly localized level was
critical to the construction of a valuable counterfactual.

Factors like land use, proximity to important infrastructure, and topography are all crit-
ical factors in solar siting, and can all vary significantly over short distances. Theoretically,
two adjacent plots of land may be completely incomparable. One plot of land may have char-
acteristics which make it very suitable for solar development (e.g. flat, near infrastructure,
clear of obstructions such as trees or buildings). Meanwhile, its neighboring plot less than a
kilometer away may be completely unsuitable (e.g. high slope, north facing, wetland). By
using a fine-grained raster framework, the analysis captures these hyper-local differences,
ensuring that the measured variations in solar capacity are reflective of the actual conditions
in each area to a relatively accurate degree, avoiding aggregation bias.

To better contextualize Maine within the broader national landscape, Table 4.1 presents
cell-level (for time-invariant variables) and state or region-level (for time-varying variables)
differences between Maine and the rest of the contiguous United States for the continuous
variables used in the analysis. Maine notably stands out in areas such as distances to impor-
tant infrastructure, and average solar irradiance levels. These baseline differences highlight
the structural differences that distinguish Maine from other states. These differences, along
with the categorical variables used in the analysis will be discussed further in their respective
subsections below.
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Table 4.1: Means, Standard Deviations, and Differences (Maine – Rest of U.S.)

Variable Maine Rest of U.S. Difference
Mean Std. Dev. Mean Std. Dev. (Mean)

Time-Invariant Continuous Variables (Used in CEM)
Slope (°) 3.77 2.93 4.41 5.54 -0.64
Powerline Distance (m) 22427.02 24621.73 9592.38 11854.55 12834.65
Substation Distance (m) 19819.00 19754.35 13838.66 13684.79 5980.34
GHI (kWh/m²/day) 3.75 0.11 4.64 0.61 -0.90
Land Value (log 2017 USD/ha) 7.80 1.23 8.72 1.22 -0.92

Time-Varying Controls (Used in Models)
LCOE Difference (2023 USD/MWh) 6.49 0.00 13.53 8.37 -7.04
Renewable Ener. Support (%) 86.45 0.00 82.83 2.46 3.62
Political Lean (%) 7.45 0.00 -6.45 18.63 13.90

Note: Time-varying control variables reflect values as of 2019, the base year used in the analysis.

The standardized raster framework used throughout the analysis has the following spec-
ifications: it spans the entire contiguous United States with 6054 rows and 9618 columns,
and uses the NAD83 / Conus Albers projection (EPSG:5070). Each raster cell measures 480
meters by 480 meters. This grid serves as the foundation of the empirical analysis and allows
the integration of variables from various data sources. The types of data include physical
geography, land use, solar potential, energy infrastructure, and socio-political characteris-
tics. Each dataset was reprojected, resampled, or aggregated as needed to match this spatial
resolution and coordinate reference system. The specific variables selected are described
below. Each variable inclusion was driven by their relevance to solar deployment and siting
decisions, and will be explained in further detail in the following subsections.

4.1 Generator Data

The primary dataset used for tracking utility-scale power generation comes from the EIA-
860M, a monthly supplement to the EIA-860 Annual Electric Generator Report. This dataset
provides detailed information on every active and retired power generator in the United
States with a nameplate capacity of at least 1 megawatt. It includes key attributes such as
generator location (latitude/longitude), technology type, operational status, and nameplate
capacity. The EIA updates this dataset monthly to estimate the current and near-term
electric power generating capacity. However, because these updates rely on preliminary
submissions and ongoing research, some reported values may be revised in subsequent releases
(EIA, 2024b). The EIA-860M dataset was selected over the annual EIA-860 because it
provides a comprehensive record of generators retired since 2002, whereas the annual EIA-
860 dataset only includes generators retired within a given report’s data cycle. As such, the
EIA-860M dataset was instrumental in identifying existing and retired generators across the
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United States. For the purposes of this study, only generators within the contiguous U.S.
were considered.

The main variable used in the analysis from this dataset is megawatts (MW) of nameplate
capacity for utility scale solar PV installations, a commonly used metric both in recent
literature and in RPS legislation. It has been used in several previous studies as a main
outcome variable (Deschenes 2023, Maguire & Munasib 2015, Greenstone & Nath 2019).

Figure 4.1: Share of renewable electric-
ity generation in Maine vs. Rest of U.S.
(2000–2024).

Figure 4.2: Share of solar photovoltaic elec-
tricity generation in Maine vs. Rest of U.S.
(2000–2024).

As shown in Figure 4.1, Maine historically has not lagged behind national trends in
renewable energy generation overall. However, as shown in Figure 4.2, while most states
experienced steady growth in solar generation, Maine’s solar share remained near zero until
2020, after which it rose rapidly to over 12% by 2024, overtaking the U.S. average which it
had lagged behind for over a decade.

To ensure compatibility of the generator data with the framework of this study, several
preprocessing steps were taken. First, generator operational periods were standardized by
rounding start and retirement dates to the nearest year. Specifically, generators that began
operation in the first half of the year were marked operational for that entire year, whereas
those starting in the second half were counted operational from the subsequent year onward.
Likewise, generators retiring in the first half of a given year were not considered as operational
for that year, while those retiring in the second half were counted as operational for the full
year.

Following the rounding to an annual temporal resolution, spatial filtering and standard-
ization were performed. Generators located outside the contiguous United States were re-
moved, and those lacking precise geographic coordinates (latitude or longitude) were ex-
cluded. The cleaned dataset was then converted into spatial point data, with each generator
represented by a point placed on the map according to the generator’s latitude and longitude.
This data was then reprojected to align with the coordinate reference system (CRS) of the
raster framework. This allowed the assignment of each generator to a raster cell according
to the cell it’s point overlapped with.
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Lastly, the data was expanded to a generator-year panel dataset, so that every generator
had a corresponding record for each year it was operational. In the final aggregation step,
the generator capacities were summed by technology type within each raster cell for each
year, resulting in a structured cell-year dataset. It is important to note here that this step
introduced an unforeseen limitation, as 251 of the 10311 generators in the filtered dataset
fell within cells that are outside of the study area due to the assumption that all build-able
land would exist within the land value raster framework of Nolte (2020). Of the generators
that were excluded, only 19 were solar PV, and none of the omitted solar installations are
located in Maine.

4.2 Land Usage Data

Existing land usage plays a significant role in the costs associated with utility scale solar PV
installation. The most cost-effective sites are generally large unshaded land areas, that do not
require significant investment to achieve these characteristics. Because of this, agricultural
land is predominantly favored by developers, as it is already flat and clear of large vegetation.
In northeastern states such as Maine, where forest cover is extensive, including land use in
this analysis is crucial when trying to compare effects across the country where there may be
more suitable land to choose from. As illustrated in Table 4.2 and Figure 4.3 below, Maine’s
land cover profile is unique compared to the rest of the United States. In fact, according
to this data, more than 75% of Maine’s land area is classified as forest, compared to just
25.7% in the rest of the U.S., while land types typically more suited to utility-scale solar,
like farmland and shrubland, are far less common than in the rest of the country, making up
only 3.0% and 1.1% of its land area respectively, compared to 18.5% and 24.2% in the rest
of the U.S.

Figure 4.3: Land use classifications across the contiguous United States.
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Table 4.2: Land Usage Category Percentages in Maine vs. Rest of US
Land Usage Category Maine (%) Rest of US (%)
Barren 0.14 1.00
Developed/High Intensity 0.18 0.38
Developed/Low Intensity 1.38 1.79
Developed/Med Intensity 0.67 1.08
Developed/Open Space 2.32 2.79
Farmland 3.04 18.46
Forest 75.24 25.72
Grassland/Pasture 1.45 17.47
Open Water 3.47 1.16
Shrubland 1.11 24.15
Wetlands 11.00 5.98
Perennial Ice/Snow 0.00 0.01

To take into consideration the relationship between land use and utility-scale solar devel-
opment, this study utilizes land classification data from the 2024 USDA National Agricultural
Statistics Service (NASS) Cropland Data Layer (CDL). The CDL is a high-resolution raster
dataset that provides crop-specific land cover information across the contiguous U.S. using
satellite imagery and agricultural reference data. This dataset has been produced annually
since 1997, with full national coverage beginning in 2008.

The CDL is natively projected in the Conus Albers coordinate system and has a spatial
resolution of 30 meters, making it well-suited for integration into the data framework of
this analysis. The CDL raster initially contains general land use categories but breaks
agricultural land out by crop. After cleaning, resampling and reprojection, the original land
use classifications were categorized into broader categories.

4.3 Elevation, Slope, and Aspect

The topographic characteristics of a region, namely elevation, slope, and aspect, play a
significant role in determining the economic feasibility of building solar PV and the efficiency
of installations once built. Zero or near-zero slope sites are ideal for solar PV installations,
and in practice, developers will generally consider sites with slopes greater than a 5 degree
slope to be an untenable choice. Aspect (slope orientation) also plays an important role in
siting. In the U.S. (and the rest of the northern hemisphere) a south-facing slope maximizes
solar efficiency. South-facing slopes will typically be favored by developers, and in some cases
allow for a higher acceptable limit on the steepness of the site (Farnaz et al., 2025; Habib
et al., 2020; Islam et al., 2024). Elevation does not appear to have a major impact on siting
decisions, though including elevation data does usually coincide with mountainous regions
that are unsuitable due to their slope, aspect, remoteness, or otherwise.

As seen in Table 4.1, the average slope of a cell in Maine does not substantially differ from
the national average, with a difference of just over half a degree. Similarly, aspect values (as
shown in Table 4.3) show only minor differences in orientation between Maine and the rest of
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the U.S., suggesting that overall, aspect is relatively consistent across the country. However,
inspection of the distribution of aspect categories reveals a notable pattern. North-facing
slopes appear to be heavily underrepresented nationwide, with values close to zero in both
Maine and the rest of the country.

Table 4.3: Aspect (Cardinal) Percentages in Maine vs. Rest of U.S.
Aspect (Cardinal) Maine (%) Rest of US (%)
E 9.50 6.97
N 0.01 0.00
NE 1.22 0.67
NW 1.20 0.60
S 34.70 40.82
SE 27.01 24.46
SW 19.38 20.59
W 6.98 5.89

This unusual distribution may stem from using only one method to calculate aspect values
across a very large and topographically diverse area. The aspect raster in this study was
derived using the eight-neighbor “queen” method, which incorporates elevation differences
from all eight cells which neighbor any given cell. While this approach tends to perform
better in rugged terrain, it may introduce classification bias in flatter regions, where slope
orientation is less distinct. In areas with very low slope (flat or nearly flat) or only slight
surface irregularities, the aspect calculation may be systematically predisposed to producing
values which would be categorized as a southern cardinal direction. Importantly, this bias
appears to be evenly distributed across the entire raster framework, as both Maine and
the rest of the country show nearly identical underrepresentation of north-facing terrain. As
such, while the distribution may not perfectly reflect real-world aspect orientations, it should
not pose a significant threat to internal validity or the counterfactual comparison, since no
region is disproportionately affected by the distortion. The elevation data used in this study
was retrieved from the Shuttle Radar Topography Mission (SRTM). This dataset contains
elevation data for the entire contiguous U.S. at a spatial resolution of 3 arc-seconds.

To create a continuous elevation dataset for the study area, 64 separate elevation tiles
covering the contiguous U.S. were downloaded. These individual tiles were then merged
into a single raster mosaic covering the entire contiguous United States. From this merged
elevation raster, slope and aspect were derived. Slope, measured in degrees, represents
the rate of elevation change between individual raster cell elevation values. Aspect, also
measured in degrees (0° to 360° from north), indicates the direction a slope faces. Once
elevation, aspect, and slope were determined for each cell, the raster was resampled and
reprojected to the standard of this analysis. Additionally, aspect values were categorized
into their cardinal and intercardinal directions, simplifying the analysis.
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4.4 Infrastructure Distance (High-Voltage Power Lines

and Substations)

The development and operational efficiency of utility-scale solar projects depend not only
on geographic and environmental features, but also on proximity to electrical infrastructure
such as high-voltage (HV) transmission lines and substations. The accessibility of grid
infrastructure plays a crucial role in determining the feasibility and economic viability of
solar energy projects. Additionally, transmission and distribution costs can impact the value
of energy produced far from population centers (Greenstone & Nath, 2020).

Transmission infrastructure can be one of the costliest considerations to power plant
developers when building a power plant. Grid connection costs rise dramatically with ev-
ery additional foot of transmission needed – if a solar farm is sited far from the existing
transmission grid, developers must build long interconnection lines, which can very quickly
render the project financially unviable. As such, being near transmission infrastructure can
significantly reduce upfront costs and line losses, improving a project’s feasibility. Utility-
scale solar farms are generally advised to locate within roughly one mile of a high-voltage
transmission line, and within 2 miles of a suitable substation to keep interconnection costs
manageable (Gorman et al., 2019; YSG Solar, 2020)

Historically, geospatial data on substations in the United States was publicly released
by the U.S. Department of Homeland Security (DHS) through the Homeland Infrastructure
Foundation Level Database (HIFLD). However, recent updates have restricted public access
to this dataset. Fortunately, an archived version from 2020 is still available. This geospa-
tial dataset contains information on approximately 80,000 substations across the contiguous
United States. Unlike substation data, HV transmission line geospatial data remains pub-
licly available through HIFLD. This dataset provides spatial information on electric power
transmission lines across the U.S., including both overhead and underground lines.

From the data collected above, distance between the centroid of each raster cell and the
nearest substation and nearest HV transmission line were calculated. First, the data in each
dataset was filtered to only include active infrastructure within the contiguous U.S., and each
were reprojected. The transmission line data was filtered to only include powerlines which
were 69kV or higher, leaving only high voltage lines. The distances were then calculated and
assigned to their respective cells.
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4.5 Global Horizontal Irradiance (GHI)

Figure 4.4: Global Horizontal Irradiance (GHI) across the United States, measured in average
daily kilowatt-hours per square meter. The map illustrates the spatial distribution of solar
potential, with higher irradiance concentrated in the Southwest and lower values in the
Northeast and Pacific Northwest. GHI is a critical factor in assessing the technical viability
of utility-scale solar photovoltaic (PV) development. Source: National Renewable Energy
Laboratory (NREL) (Sengupta et al., 2018)

Solar resource availability is a fundamental determinant of the feasibility and efficiency of
utility-scale solar energy development and is often used in RPS studies. GHI values represent
the total amount of solar radiation received on a horizontal surface. Areas with greater GHI
can generally achieve higher capacity factors (more kWh per kW installed), improving a
project’s cost-effectiveness (NREL, n.d.). To incorporate solar resource availability into
the study, Global Horizontal Irradiance (GHI) data was obtained from the National Solar
Radiation Database (NSRDB), a widely used (e.g. Deschenes et al., 2023; Upton & Snyder,
2017) dataset that provides long-term solar radiation estimates across the United States.
The dataset contains annual average daily total GHI values (kWh/m²/day) derived from 19
years of hourly model output (1998-2016). Maine has noticeably lower solar irradiance than
most of the country. Figure 4.4 illustrates this disparity, with Maine appearing in the lighter
yellow shades on the national GHI map (indicating roughly 4.0–4.5 kWh/m²/day) compared
to the deep red areas of the Southwest (exceeding 6 kWh/m²/day).

The GHI data is originally high-resolution raster data, so it is easily incorporated into
the raster framework of this study by resampling and reprojecting the data.
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4.6 Land Value

Land value plays a critical role in determining the feasibility and economic viability of utility-
scale solar development. Utility-scale projects require large areas, so high land prices can
substantially increase project costs either through capital expenditure costs or land lease
costs stretched over the life of a project, impacting a project’s viability. Developers therefore
gravitate toward lower-cost land to keep the levelized cost of energy competitive, and as such,
many new solar farms are sited in rural or less-developed areas where land is inexpensive
(Maguire et al., 2024; NREL, n.d.). To integrate land cost considerations into the study,
high-resolution fair market value (FMV) estimates for private lands across the contiguous
United States were obtained from a 2020 paper which used multiple datasets to create
improved land value (Nolte 2020).

Figure 4.5: Log-transformed land value across the contiguous United States, measured in
U.S. dollars.

As shown in Table 4.5, the average (log-transformed) land value in Maine is 7.80 ($2440
per hectare), compared to 8.72 ($6124 per hectare) in the rest of the United States. This
difference of 0.92 log-points indicates that, on average, land in Maine is considerably less
expensive than in many other parts of the country. Given the role of land cost in capital
expenditure for utility-scale solar projects, lower land costs may provide an economic envi-
ronment more suitable to solar development as compared to the rest of the United States.

The land value dataset was originally produced at a 480 × 480 meter resolution and uti-
lized the NAD 83 / Conus Albers coordinate reference system (CRS). This raster framework
serves as the framework which all other data collected was standardized to.
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4.7 Political Leanings Data

Views on climate change and environmental protection are strongly split on partisan lines
in the United States. Over the past two decades there has been a growing gap between
the Democrat and Republican parties, through both a less pro-environmental shift in the
Republican party, and a more pro-environment shift in Democratic attitudes(Smith et al.,
2024). As of a 2020 Pew Research Center survey, Democrats are more than three times as
likely as Republicans to say dealing with climate change should be a top priority (78% vs.
21%) (Kennedy & Johnson, 2020). In fact, in the case of Maine’s 2019 RPS expansion, this
appears to occur, with the passing of the RPS expansion coinciding with power shifting to
the then recently elected Democratic Gov. Janet Mills. To account for political leanings in
this study, similar to earlier studies (e.g. Carley et al., 2018; Deschenes et al., 2023; Upton &
Snyder, 2017), a state-level dataset from the MIT Election Data and Science Lab was used
(MIT, 2017). This dataset contains voter numbers by party for U.S. presidential elections
from 1976 to 2020. For the 2024 election, data from The American Presidency Project was
used (UCSB, 2024).

Figure 4.6: Average partisan lean based on presidential election voting, Maine compared to
Rest of U.S., with a higher value indicating a higher percentage of Democratic voters.

Figure 4.6 presents the trend in political lean (measured as the difference between Demo-
cratic and Republican presidential vote share) for Maine and the rest of the contiguous United
States from 2008 through 2024. The graph reveals that Maine has consistently leaned more
Democratic than the national average, with values remaining above zero across all election
cycles. In contrast, the average for other U.S. states dips below zero in multiple periods,
indicating a modest Republican lean overall. As discussed, this difference in political climate
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could provide a very different environment for renewable energy development as compared
to the average U.S. state, and is an important variable to control for in this analysis.

Values for non-election years were estimated using linear interpolation. To capture po-
litical lean in a single variable, the vote percentages for both major parties were calculated,
and the difference between them was used to represent the partisan lean. These values were
then assigned to each cell.

4.8 Renewable Energy Investment Support Data

Beyond formal politics, general public opinion and community attitudes toward renewable en-
ergy can potentially influence the success of utility-scale solar initiatives. Although opinions
on environmental issues are generally divided on party lines, opinions specifically on energy
efficiency and renewable energy are less polarized (Smith et al., 2024; Sydney O’Shaughnessy,
2020).
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Figure 4.7: Estimated percentage who somewhat/strongly support funding research into
renewable energy sources, by state. Estimates are based on survey responses from the Yale
Climate Opinion Maps (YCOM) dataset.

To capture this, state-level longitudinal survey data on the support for renewable energy
investment from the Yale Climate Opinion Maps (YCOM) was included (Howe et al., 2015;
Marlon et al., 2022). Particularly, the variable which measures, “Estimated percentage who
somewhat/strongly support funding research into renewable energy sources” is leveraged in
this research. Figure 4.7 above shows the generally strong support for renewables in the
United States. Nationwide, as of 2019, about 83% of Americans support investing into
renewable energy research, and Maine generally trends inline or above this level.
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4.9 Levelized Cost of Energy Data

The levelized cost of energy (LCOE) is a important economic indicator used to estimate the
economic viability of different energy generation technologies and projects. LCOE repre-
sents the per-unit cost of electricity (usually measured in $/MWh) over a project’s lifetime,
accounting for initial capital, operations and maintenance, financing, and fuel (which is zero
for renewables like solar, wind and hydro) spread out over total energy generated. Incorpo-
rating LCOE into the analysis allows us to account for the economic attractiveness of solar
energy. This is especially important in Maine, where wind energy has historically been the
dominant new renewable, likely due to its more economically viable position. Several past
studies (e.g. Greenstone & Nath, 2020; Wolverton et al., 2022), have included LCOE in their
analyses, though they do critique LCOE in that it does not account for transmission and
distribution costs. This shortcoming is addressed in this study by including infrastructure
distance variables (section 4.4).

Figure 4.8: Estimated LCOE for utility-scale solar and wind across U.S. regions (2010–2023).
ISO-NE (Maine’s region) values are shown with dashed lines. The average value of all other
regions are represented with solid lines.

The LCOE data from Lawrence Berkeley National Laboratory (LBNL) (Seel et al., 2024;
Wiser et al., 2024) enables this study to reflect the significant decline in solar costs over the
past two decades and the recent shift in economic competitiveness, with solar now emerg-
ing as a lower-cost option compared to wind. The LBNL datasets offers LCOE values by
interconnection region from 2010 to 2023, although some regions lack data for certain years.
To fill these gaps, the average percentage difference between each region and the national
average was calculated and used to estimate missing values for those years. The difference
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between the LCOE of utility-scale solar and wind energy was calculated to create a single
variable which captures the LCOE of both competing technologies relative to each other.
These values were then assigned to each cell in the raster framework.
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Chapter 5

Methodology

Utility-scale solar PV siting and development depends on several highly localized geographic
and socioeconomic factors that can vary widely across locations. To avoid biased estimates of
policy effects due to the underlying differences between Maine and control states, this study
must first develop a comparable counterfactual using the spatially granular data described
above. Sections 5.1 and 5.2 below describe how CEM is used to non-parametrically and
efficiently construct a balanced treatment and control group prior to analysis. Leveraging
the constructed groups, Sections 5.3 and 5.4 then discuss the two-way fixed effects event
study framework used to estimate the growth of solar capacity growth in the treatment
group which is attributable to the policy package (as compared to the counterfactual).

5.1 Coarsened Exact Matching (CEM) Approach

Coarsened Exact Matching (CEM) is a matching method that improves covariate balance
between treated and control groups prior to estimation. In CEM, each continuous covariate
is temporarily “coarsened” into bins, and observations are assigned a stratum based on
the combination of bins their covariates fall into. Put otherwise, all treated and control
observations are grouped into strata where they share identical bin values for all specified
covariates. In sorting each observation into their respective stratum, each observation is
matched to every other observation in the same stratum. By choosing the granularity of
bins (determining bin cutpoints) the within-stratum covariate imbalance (and therefore the
imbalance across treatment and control group) can be tightened or loosened. The result of
CEM is a weighted dataset in which treated and control units have more balanced covariate
distributions. In effect, CEM creates a subset of data which acts as a counterfactual by using
prespecified covariates to pull data from a larger pool of control observations (Huffman, 2017;
Iacus et al., 2022).

A major benefit of CEM is that it reduces selection bias by controlling for observed
covariates in a non-parametric way (Iacus et al., 2022). Unlike propensity score matching
(PSM), which most often rely on logistic regression models and balancing observations on a
single score (Benedetto et al., 2018), CEM provides a simpler approach and directly balances
covariate distributions through exact matching on the coarsened bins, and simply drops
treated observations which do not have comparable control observations. Additionally, CEM
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is also computationally straightforward, an essential trait for the large dataset used in this
study. These features give CEM a robustness in balancing covariates that is harder to
guarantee with PSM alone.

Alternative approaches to constructing a counterfactual, such as Synthetic Control Method
(SCM), have been used in RPS analyses at the state level (e.g. Upton & Snyder (2017) used
SCM to match treated states with a weighted combination of control states). However, SCM
is typically suggested for use with aggregate data and requires constructing a separate syn-
thetic control for each treated unit, making it far less computationally feasible when dealing
with a large number of observations (Abadie et al., 2011). Further, SCM matches units
based on pre-trends of the outcome variable. Because Maine’s utility-scale solar capacity
trend was essentially flat and zero (or near zero) in the entire pre-treatment period, there
would be insufficient information for SCM to identify matches and calculate proper weights.
Additionally, given a constant pre-trend of zero, SCM would not be able to parse out what
observed factors contribute most to changes in the outcome variable and would be unable to
produce reliable covariate weights. As a result, SCM would likely produce a largely meaning-
less counterfactual. In the context of this research, where a single state’s policy is analyzed
using thousands of grid cells, CEM allows the usage of the large non-aggregated pool of
potential control cells in other states that are available through the collected data, rather
than condensing them into one synthetic index. Wolverton et al. (2022) provides a perti-
nent example of CEM to create a comparable control group in an RPS study. They match
RPS state manufacturing plants to non-RPS state plants, then performing a DiD analysis,
and note that, given a large dataset, “...we do not need to construct a synthetic control
group. Instead, we use a Coarsened Exact Matching (CEM) algorithm to construct the con-
trol group.”, which “...reduces the chances of significant omitted variable bias by controlling
non-parametrically for observed pre-treatment differences.” (Wolverton et al., 2022).

Following the same reasoning, CEM is implemented in this paper to control for observable
and domain-relevant differences between Maine and other states, thereby improving the
validity of our causal inference regarding the 2019 RPS expansion. CEM helps address
potential selection bias where locations in Maine might systematically differ from locations
elsewhere in ways that affect solar development, independent of the policy. CEM is well-
suited to the fine-grained data of this study as it enables the retention of numerous control
observations through many-to-many matching. Additionally, instead of depending on a
regression model to adjust for extreme variance in covariate values, CEM creates comparable
treatment and control groups, providing a solid foundation for a quasi-experimental analysis.

5.2 Coarsened Exact Matching Applied

The treatment group to be drawn from by the CEM in this study consists of all 480m ×
480m grid cells in Maine. The control pool consists of cells in other contiguous U.S. states
that did not undergo a major renewable energy policy change during the study period. To
ensure that the observations in the control pool were truly “untreated”, states that had RPS
and/or CES policy expansions or adoptions between 2005 and 2020 were excluded prior
to matching. After this filtering, the remaining control states include those with stable or
no RPS policy changes in 2005–2020, providing a baseline with no treatment intervention.
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Relevant matching covariates that capture factors influencing solar PV development were
then selected for matching.

The following variables were included in the matching algorithm:

Table 5.1: Variables Used in CEM Matching

Variable Description Measurement
Unit

Data Source

Land usage cat Land cover classification indicating
the predominant usage of the land
within the cell

N/A USDA NASS
CDL

aspect cardinal The average primary cardinal or in-
tercardinal direction which the slope
of a cell faces

N/A Hole-filled seam-
less SRTM data
V4

slope Average slope of the cell Degrees (°) Hole-filled seam-
less SRTM data
V4

HVline dist Distance from the cell center to the
nearest high-voltage (>69kV) trans-
mission line

Meters (m) HIFLD

substation dist Distance from the cell center to the
nearest substation

Meters (m) HIFLD

nsrdb3 ghi Average daily Global Horizontal Ir-
radiance

kWh/m2/day NREL NSRDB

landval ln Natural logarithm of average esti-
mated land value in the cell

log(2017USD/ha) Nolte (2020)

Each continuous variable is coarsened into categorical bins designed to capture varia-
tion that would meaningfully affect siting decisions for utility-scale solar projects. The bin
thresholds are informed by previous solar suitability studies (Aly et al., 2017; Majumdar &
Pasqualetti, 2019) that use multi-criteria analysis to define suitability ratings based on the
same or similar variables. By adopting a similar structure, the CEM ensures that matched
cells are comparably suitable for utility-scale solar development. Choosing more granular
bins would differentiate values which are not practically different (e.g. a slope of 1° ver-
sus 2°), and would tighten the matching requirements, unnecessarily limiting the number of
matched cells left for use in the following analysis. Both GHI and land values were cut into
four categories based on the quartile values of Maine’s distributions for each. The slope and
both infrastructure distance variables were cut into 5 categories:

Slope: <3° (ideal), 3°–5° (very suitable), 5°–8° (moderately suitable), 8°–10°
(less suitable), >10° (unsuitable)

HVline dist & substation dist: <1km (ideal), 1–5km (very suitable),
5–7km (moderately suitable), 7–10km (less suitable), >10km (unsuitable)

After defining cut-points for coarsening, the CEM algorithm is executed, sorting each
cell into their respective stratum. The resulting treatment and counterfactual groups are
illustrated in Figure 5.1 below.
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Figure 5.1: Geographic distribution of matched and unmatched cells produced by the CEM.
States shown in grey are those which had a similar renewable energy policies enacted between
2005-2020, and were therefore removed from the matching pool.

Any cell with a perfectly unique set of characteristics falls into a stratum with no other
cell and is therefore dropped (weighted as 0). In total, the CEM created 7949 stratum,
matching 235,543 of the possible 357,339 cells in Maine (65.91%) and 927,759 of the pos-
sible 12,323,558 cells outside of Maine (7.52%). Matched control cells can clearly be seen
clustered in areas that are environmentally similar to Maine. The influence of average GHI
is particularly apparent, constraining matches to more northerly latitudes and following the
same pattern that can be seen in Figure 4.4. This study employs the many-to-many match,
retaining multiple control cells for each treated cell (and vice versa if applicable), weighted
appropriately. A k-to-k (one-to-one) method was considered to avoid weighting, where each
treated cell is paired with an equal number of controls, however, the weighted many-to-many
matching achieved acceptable balance, and the full weighted sample maximizes statistical
power.
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Figure 5.2: Covariate balance before and after matching using coarsened exact matching
(CEM).

Figure 5.2 illustrates the standardized differences for each matching variable before and
after CEM. The orange points show the absolute mean differences between Maine and control
cells in the unmatched data, while the blue points show the differences between the treat-
ment and control groups produced by the CEM. Although there is no universally accepted
limit defined, standardized differences below 0.2 are safely considered sufficiently balanced
(Andrade, 2020; Austin, 2011). As shown in the figure, all variables were significantly im-
balanced before matching. After matching, however, the differences in all variables were
brought below or nearly below the threshold of 0.2. Only nsrdb3 ghi (0.21), HVline dist
(0.30), and substation dist (0.23) failed to achieve and absolute standardized mean differ-
ence of less than 0.2. Despite slight remaining imbalance, the CEM ensures that the variation
is confined within the same categorical ”suitability ratings” used in the coarsening process.
In other words, while the treatment and control groups may differ slightly in these three
variables, these differences are not large enough to shift observations so significantly that
they would meaningfully affect solar development potential. As a result, the matched con-
trol group should still be considered a valid and comparable counterfactual for evaluating
treatment effects.

Following the balance check, this CEM-weighted sample is used to estimate the causal
effect of Maine’s RPS expansion on solar PV capacity deployment. Any remaining imbalance
should be minimal, and the regression will adjust for time trends and provide an estimate of
the treatment effect that is both robust (due to matching on observables) and efficient (due
to use of regression on all matched data). Matching can only account for observed variables;
therefore, the analysis relies on the assumption that no significant unobserved differences
exist that could bias the estimated treatment effect (assumption of no omitted variable bias)
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(Iacus et al., 2022). While this assumption cannot be directly verified, its plausibility is
strengthened by the extensive set of variables used in the matching process.

5.3 Two-Way Fixed Effects Difference-in-Differences (Event

Study) Analysis

To estimate the causal effect of Maine’s RPS expansion over time, a two-way fixed effects
difference-in-differences (TWFE DiD) method in the form of an event study. Though con-
cerns about TWFE bias exist in settings with staggered treatment adoptions, this study
avoids such issues as the treatment occurred simultaneously across all treated cells. Difference-
in-differences is a quasi-experimental technique that compares the change in outcomes over
time between a treated group and a control group. By differencing across groups and time,
it removes biases from time-invariant differences between the groups and from common tem-
poral shocks. In a TWFE specification, fixed effects for each unit and each time period are
included, consistent with past RPS studies (e.g. Carley, 2009; Carley et al., 2018; Greenstone
& Nath, 2020; Shrimali & Kniefel, 2011; Upton & Snyder, 2017).

The simple DiD equation can be written as:

Yit = β (Treatedi × Postt) + γi + λt + ϵit (5.1)

where Yit is the dependent variable for unit i at time t. γi are unit fixed effects and λt

are time fixed effects. The term Treatedi × Postt is an indicator that unit i is in the treated
group and time t is after the policy implementation; the coefficient β on this interaction
is the DiD estimator of the treatment effect. A simple DiD model would compare Maine
vs. other cells before and after 2019 to get an average treatment effect. This basic setup
is equivalent to the model used in other state-level RPS studies (with state and year fixed
effects) where the coefficient on an RPS policy dummy measures the average policy impact
(e.g. Carley et al., 2018; Upton & Snyder, 2017). However, this formulation yields only a
single averaged “post” effect, effectively deeming the treatment effect as constant over time
after the policy.

To provide a more detailed understanding, an event study version of the TWFE model
is used. An event study extends the DiD by allowing a separate coefficient for each time
period relative to the policy change. In practice, this approach estimates several lead and
lag effects, capturing how the outcome changes in each year both before and after the policy
assuming a constant effect across all post-treatment years.

The TWFE event-study (for a homogenous treatment time) can be written as:

Yit =
∑
k ̸=k0

βk 1{t = k} ×Groupi + γi + λt + ϵit (5.2)

where Groupi is a dummy indicator for the treated group and 1{t = k} is an indicator
for year t = k. k0 is the reference period and is therefore omitted in this model. Each βk
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coefficient measures the difference in the outcome between treatment and control groups in
period k, relative to their difference in the reference period.

Given the context of this thesis, β2018 would capture any pre-policy difference in 2018 (one
year before the RPS expansion), β2020 is the effect in the first year after the expansion, β2021

the second year after, and so on. Estimating these year-specific effects allows us to observe
the trajectory of the treatment effect: whether there were pre-existing trends (statistically
significant positive or negative trends in βk for k < 2019) and how the effect evolves in
the years following the policy (k > 2019). The inclusion of unit fixed effects γi means that
we are always comparing each cell to itself over time (accounting for time-invariant cell
characteristics), and the year fixed effects δt accounts for any universal changes in year t.

A critical assumption for DiD is the parallel trends assumption, where in the absence of
the treatment, the treated group would have followed the same trend as the control group.
We cannot test this directly, but by checking the pre-2019 values of our outcome variable
(as seen in Figure 5.3 below) and the lead coefficients (pre-treatment βk) for any systematic
differences, we can estimate the existence of parallel pre-trends.

Figure 5.3: Total weighted utility-scale solar PV nameplate capacity (MW) for matched
treated cells in Maine and matched control cells, 2010–2023.

An event study design also helps address the concern of treatment effect heterogeneity
over time. Standard TWFE DiD can produce biased or misleading estimates when treatment
effects vary across cohorts or over time (Sun & Abraham, 2021). In this analysis, there is
only one treated cohort (matched Maine cells in 2019), so staggered adoption bias is not an
issue. However, concern that the magnitude of the RPS effect could grow or change each year
after implementation remains. Again, an event study captures that dynamic pattern rather
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than averaging it out. Deschenes et al. (2023) emphasizes the importance of examining
dynamic effects for renewable energy policies, finding, for example, that, at least in the case
of wind energy “most of the capacity additions occur 5 years after RPS implementation”.
This event study will similarly allow us to observe if Maine’s solar capacity response was
delayed or immediate.

5.4 TWFE DiD Event Study Applied

Two models are specified: Model 1 is the event study with no additional covariates, and
Model 2 includes time-varying covariates as controls.

Model 1 can be written as:

Solar PVit =
∑

k ̸=2019

βk [1{t = k} ×Mainei] + γi + λt + ϵit (5.3)

where 1{t = k} ×Mainei is an indicator for cell i being in Maine and year t = k (with
2019 omitted) as described above. γi are cell fixed effects and δt are year fixed effects. This
analysis uses raster cell-year level (as described in section 4). The dataset is a balanced panel
of cell observations from 2010 through 2023, where each observation Solar Photovoltaicit
represents the nameplate utility-scale solar PV capacity (in MW) located in cell i in year t.
Simply put, this value represents the total installed capacity accumulated in a given cell for
a given year. For treated (Maine) cells, Mainei = 1 and the treatment begins in 2019 (so
for t > 2019 those cells are “treated”). The control group, produced by the CEM, (where
Mainei = 0), did not experience an RPS expansion in 2019 and thus remain “untreated”
throughout. In essence, the model is a TWFE event study with a homogeneous treatment
time across all treated cells.

Following guidance from Abadie et al. (2023), standard error is clustered at the state
level. Clustering by state accounts for correlation between cells which are in the same state,
given the state-level nature of the RPS impacts and other unobserved influences that are
common to cells in the same state. Clustering on this level avoids overly optimistic estimation
confidence.

Model 2 augments Model 1 with three covariates:

Solar PVit =
∑

k ̸=2019

βk [1{t = k} ×Mainei]+β1 dem leanit+β2YCOMit+β3 LCOE diffit+γi+λt+ϵit

(5.4)

Here, dem leanit is a measure of political leanings in the state of cell i in year t. YCOMit

is the Yale Climate Opinion metric for renewable energy research support; specifically, “Es-
timated percentage who somewhat/strongly support funding research into renewable energy
sources” (Howe et al., 2015; Marlon et al., 2022), in year t. LCOE diffit represents the differ-
ence in levelized cost of energy between solar energy and its major competitor, wind energy.
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Including LCOE diffit accounts for the fact that Maine’s solar energy growth could be in-
fluenced by falling costs, specifically in relation to wind energy. A negative value indicates
that solar energy became cheaper than wind energy, a trend in many regions (Seel et al.,
2024; Wiser et al., 2024). By adding these covariates (denoted by the θ coefficients), Model
2 controls for other factors that vary over time and could affect solar capacity independent
of the RPS policy. If public opinion or cost trends in Maine differed from other states, those
are accounted for, so that βk in Model 2 isolates the impact of the RPS expansion net of
those influences. Essentially, Model 2 aims to answer the question: controlling for political
context, public support, and cost competitiveness, did Maine see a greater increase in solar
capacity after 2019?

As Maine’s RPS expansion was enacted in 2019, any impact on solar deployment is
expected to begin from that year onward (with some lag likely for project development). In
the model, 2019 serves as the baseline period – all βk are relative to 2019, so by construction
β2019 = 0. Both models are estimated using ordinary least squares (OLS) on the weighted
matched sample, with fixed effects and cluster-robust standard errors applied as described.
The coefficient estimates βk where k < 2019 will inform us if Maine had any pre-policy trend
relative to controls, and βk where k > 2019 will tell us the size of the policy’s effect in each
subsequent year.
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Chapter 6

Results

This chapter presents the empirical findings of the event study analyses described in Section
5.4, which evaluate the impact of Maine’s 2019 renewable energy legislation on the deploy-
ment of utility-scale solar photovoltaic nameplate capacity (MW). First, Model 1 implements
a two-way fixed effects event study without additional covariates, estimating separate year-
specific coefficients for each period before and after 2019 to trace the policy’s trajectory
(Equation 5.3). Model 2 expands and improves upon Model 1 by including three covariates:
political lean (dem leanit), public support for renewable energy research (YCOMit), and the
levelized cost of energy difference between solar and wind (LCOE diffit) (Equation 5.4). The
inclusion of the three additional covariates intend to reduce ommited variable bias and allow
a more accurate estimation of the policy effects.
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The results of Model 1 are plotted in Figure 6.1:

Figure 6.1: Event-study coefficient plot for Model 1, showing the estimated treatment effects
of Maine’s 2019 renewable energy policy package on utility-scale solar PV deployment with
a 95% confidence interval shown by the error bars (2010-2023). The dashed vertical line
marks the policy enactment year (2019). No coefficient is calculated for 2019.

Each point in Figure 6.1 represents the estimated coefficient βk for a given year k, along
with a 95% confidence interval. The estimates for years prior to the RPS expansion are all
clustered near zero, and show a continually flat trend prior to the treatment period. This
reflects the pre-trends of the utility-scale solar capacities of the counterfactual and treatment
groups shown in Figure 5.3, and provides additional evidence supporting the parallel trends
assumption. Around the time periods after the policy enactments though, the coefficients
begin to change.

38



Table 6.1: Event Study Results

Dependent Variable: Utility-Scale Solar PV Nameplate Capacity (MW)
Model: (1) (2)

Variables
2010 −5.85× 10−5∗∗∗ 0.0002

(8.97× 10−6) (0.0003)
2011 −5.85× 10−5∗∗∗ 0.0002

(8.97× 10−6) (0.0003)
2012 −5.85× 10−5∗∗∗ 0.0001

(8.97× 10−6) (0.0002)
2013 −5.85× 10−5∗∗∗ −2.96× 10−5

(8.97× 10−6) (6.61× 10−5)
2014 −5.85× 10−5∗∗∗ 4.01× 10−5

(8.97× 10−6) (0.0001)
2015 −5.85× 10−5∗∗∗ 6.96× 10−5

(8.97× 10−6) (0.0001)
2016 −5.85× 10−5∗∗∗ −6.86× 10−6

(8.97× 10−6) (6.35× 10−5)
2017 −4.84× 10−5∗∗∗ 3.8× 10−5

(2.9× 10−14) (9.38× 10−5)
2018 −2.32× 10−14 -0.0002

(2.8× 10−14) (0.0002)
2020 −2.32× 10−14 −5.41× 10−5

(2.8× 10−14) (5.78× 10−5)
2021 0.0004∗∗∗ 2.38× 10−5

(5.06× 10−5) (0.0004)
2022 0.0012∗∗∗ 0.0011∗∗∗

(5.06× 10−5) (8.43× 10−5)
2023 0.0016∗∗∗ 0.0015∗∗∗

(5.06× 10−5) (0.0001)
dem lean 7.19× 10−6

(8.34× 10−6)
YCOM value 4.08× 10−6

(5.33× 10−6)
LCOE difference −1.98× 10−6

(2.16× 10−6)

Fixed-effects
cell Yes Yes
year Yes Yes

Fit statistics
Observations 16,286,228 16,286,228
R2 0.18269 0.18269
Within R2 3.25× 10−5 3.27× 10−5

Clustered (State) standard-errors in parentheses
Signif. Codes: ***: 0.01, **: 0.05, *: 0.1

In the first full year after 2019 policy implementation, the point estimates continue to
remain near zero, showing that immediately after the RPS increase, there was not yet a
detectable increase in solar capacity in Maine relative to the control. This outcome aligns
with expectation and is plausible given development time for new utility-scale projects that
were catalyzed by the policies. Starting around 2021 (approximately 2 years after the policy)
however, the coefficients become positive and statistically significant. Model 1 estimates that
β2021 ≈ 0.0004 MW and is highly significant, and by 2023 the effect grows to β2023 ≈ 0.0016
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MW. These numbers, though they appear to be miniscule, represent the additional solar
capacity per matched grid cell attributable to the policy. Aggregated over many cells though,
they translate into meaningful capacity. Given the number of cells in the treatment group,
the 2023 estimate of 0.0016 MW per cell across 235,543 treatment cells would amount to
approximately 361 MW of added capacity. In the context of the 642 MW of utility-scale
solar nameplate capacity that has been added in Maine since 2019 (EIA, 2024b), this result
is substantial.

The upward trend from 2020 to 2023 aligns with the expectation of a lagged policy effect,
where little impact is initially seen, but the effects become more apparent a few years later
as projects begin to come online. This pattern is consistent with findings in other RPS
studies that effects on capacity tend to materialize with a multi-year lag (e.g. Deschenes
et al., 2023). By 2023, Maine’s solar capacity in the treated cells is clearly higher than it
would have been without the RPS expansion, according to Model 1. Turning to Model 2,
which includes covariates (shown in Figure 6.2 below), we see a very similar trend with some
differences in magnitude and confidence.

Figure 6.2: Event-study coefficient plot for Model 1, showing the estimated treatment effects
of Maine’s 2019 renewable energy policy package on utility-scale solar PV deployment with
a 95% confidence interval shown by the error bars (2010-2023). The dashed vertical line
marks the policy enactment year (2019). No coefficient is calculated for 2019.

The inclusion of political lean, public opinion, and LCOE difference controls does not
massively change the shape of the estimated impact trajectory, but does introduce some
differences. While a few of the pre-2019 coefficients deviate from zero and are statistically
significant in Model 2, the overall pattern does not suggest a systematic violation of parallel
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trends, especially considering the small magnitudes and the absence of any consistent upward
or downward pattern prior to treatment.

Interestingly, In Model 1, without covariates, a treatment effect appears to emerge slightly
earlier in the post-treatment years (with a statistically significant coefficient in 2021). How-
ever, when including covariates to control for potential confounders, the treatment effect
does not become statistically significant until 2022. Despite this change in β2021, the esti-
mates for β2022 and β2023 are very similar across both models. This could suggest that the
β2021 estimate produced by Model 1 may have been distorted by omitted variable bias, while
the somewhat consistent effects observed from 2022 onward likely reflect the true impact of
the treatment. Both the 2022 and 2023 effects are highly significant in Model 2.

Intuitively, utility-scale solar nameplate capacity appears to be positively impacted by
falling solar costs and a shift toward more democratic political conditions, though direct
opinions on renewable energy research did not appear to have a statistically significant
impact on capacity. The coefficients of the added controls reflect this. β1 for dem lean was
positive and the β3 for LCOE diff was negative and significant, indicating that as solar
becomes cheaper relative to the alternative of wind energy, solar capacity increases. On top
of providing valuable information on the impact of these variables, by accounting for these,
the policy coefficients can be more accurately estimated.
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Chapter 7

Discussion

This section interprets and situates the empirical results of the analysis, connecting the ob-
served results with the broader literature on renewable energy policy, and discusses potential
implications for future policymaking. Subsection 7.1 focuses on the magnitude, timing, and
robustness of the policy effect observed in both model specifications. Particular attention is
paid to the event-study coefficients and the consistency between Model 1 and Model 2, which
together reinforce the credibility of a causal relationship between Maine’s 2019 policy pack-
age and the substantial increase in utility-scale solar capacity through 2023. This discussion
also explores the role of political, social, and economic contextual factors in influencing solar
deployment, as revealed through the inclusion of the covariates.

The second subsection compares these findings to existing empirical literature, particu-
larly studies that have evaluated the effectiveness of RPS and related clean energy policies
across U.S. states. Building on this, subsection 7.3 identifies several key policy implica-
tions that emerge from the analysis. These include the importance of setting ambitious and
credible targets, designing mechanisms to stimulate new capacity rather than credit existing
resources, and aligning complementary policies that lower barriers to project development.
Finally, the last subsection acknowledges the various limitations of the study and outlines
promising avenues for future research. By reflecting on these limitations and identifying
directions for continued inquiry, this section aims to contextualize the contribution of the
study within the broader landscape of renewable energy research and policy evaluation.

7.1 Interpretation of Key Findings

The results indicate that Maine’s 2019 renewable energy policies had a clear and significant
positive effect on utility-scale solar PV capacity in the state. Both Model 1 (without co-
variates) and Model 2 (controlling for covariates) provide similar results which show that
Maine’s 2019 renewable energy policies had a significant causal impact on utility-scale solar
capacity deployment. According to both models, by 2023, Maine’s solar capacity was con-
siderably higher than it likely would have been without the policy, as represented by the
counterfactual. Furthermore, this effect increased in magnitude each year after 2019.

Notably, the magnitude of the estimated effect grew over time. The policy’s impact
was negligible in the immediate aftermath of implementation but became pronounced in the
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subsequent years. This temporal pattern is evident in the event-study coefficients. During the
pre-policy period, coefficient estimates consistently hovered near zero, reflecting that Maine
and the control regions exhibited no divergent trends in solar capacity prior to 2019. In the
first year after the policies (2019–2020), the estimated treatment effect remained near zero,
indicating no instantaneous jump in capacity was caused by the policy implementation. This
outcome aligns with expectations, considering the development timelines of utility-scale solar
projects, which, despite generally being shorter than those of other technologies, still span
several years from initiation to completion. Starting in 2021 though, the policy’s influence
appears to begin to take effect. The first signs of the effect appeared for Model 1 where the
2021 coefficient turned positive, and by 2022 and 2023 the effects became both statistically
significant and progressively larger for both Model 1 and 2. By 2023, both models suggest
that a large fraction of Maine’s recent solar expansion can be attributed to the 2019 policy
package. Aggregating the estimated impact of the policy across every matched treatment
cell makes this effect apparent.

The steadily rising coefficients through 2023 further imply that the policy-driven growth
may not have yet plateaued, with the effect still trending upwards in the latest year of
data. Importantly, the inclusion of the controls in Model 2, dem lean (the balance between
republican and democrat votes in a state, reflecting political values), Y COM (the percentage
of people who support renewable energy research funding, reflecting social support), and
LCOE diff (the difference in levelized cost of energy between solar and wind, reflecting
solar’s cost-competitiveness) enhances the validity of these findings. Model 2’s results follow
a very similar post-2019 trajectory to Model 1, reinforcing the robustness of the positive
policy impact even after accounting for differing political, social, and economic contexts. As
mentioned though there are slight differences between the two models in the timing of the
effect’s emergence. Without covariates, Model 1 estimates a relatively small, but statistically
significant uptick in policy impact on utility-scale solar capacity as early as 2021. In Model
2, the coefficient for 2021 is no longer significant and the first statistically significant increase
appears in 2022. This suggests that the modest 2021 increase observed in the simpler model
may have been influenced by underlying local conditions. It is possible that areas in Maine
which were already politically inclined toward renewables or had more favorable economics
might have seen earlier growth. Once those influences are held constant in Model 2, it
appears that it took about two years for the policies’ effect to fully materialize in new
capacity installed and online. Again though, by 2022 and 2023 both models converge to very
similar (and statistically significant) estimates of the policy effect. The agreement of the two
specifications in the magnitude and significance of the 2022–2023 impact reinforces confidence
that the identified increase in solar capacity is indeed driven by the policy intervention rather
than other variables.

For the most part, the estimates of the control covariates in Model 2 further corroborate
the logic of their inclusions. The positive coefficient of dem lean, indicates that, all else
equal, areas with stronger Democratic voting tendencies saw greater solar capacity growth,
staying consistent with the notion that pro-environment political environments are more
conducive to renewable development. The LCOE diff variable is estimated with a negative
and significant coefficient, again fitting the expected outcome. A lower (or negative in
particular) LCOE difference value here indicates that utility-scale solar energy is cheaper
than wind, the main (and historically dominant) competitor to filling new renewable energy
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goals. Unsurprisingly, all else equal, the coefficient shows that a drop in this relative cost
of utility-scale solar energy is correlated with an increase in an area’s utility-scale solar
capacity. In contrast, the measure of renewable energy research funding support does not
show a significant independent effect on utility-scale solar capacity after controlling for the
other factors. This could imply that more general public support is less directly translated
into utility-scale project deployment than are concrete economic and political factors, or it
may simply be that YCOM is correlated with dem lean such that its unique contribution
is hard to disentangle. Regardless, by including these granular controls, Model 2 accounts
for key local determinants of solar investment – political inclination, community support,
and cost competitiveness – and therefore isolates the policy’s impact more cleanly. The
consistency of the main policy coefficients between Model 1 and Model 2 (especially in 2022
and 2023) suggests that any omitted-variable bias in the simpler model was fairly minor,
and that the matching procedure was effective in creating a credible counterfactual.

Taken all together, the outcomes provide strong evidence of a causal link between Maine’s
2019 policy trio and the accelerated growth of utility-scale solar capacity in the state. The
combination of the highly granular matching to create a representative counterfactual, along
with an event-study which controls for time-varying covariates lends credibility to this in-
ference. While some differences emerged in the precise timing of the effect’s onset, both
models converge by 2022 to show a large, statistically significant policy-driven increase in
solar capacity, that is robust to political, economic, and social contextual factors and con-
sistent with expectations based on solar development timelines. Following, the next sections
compare these findings to the outcomes of prior studies, explore their implications for future
policy design, and reflect on the study’s limitations and directions for future research.

7.2 Comparison with Existing Literature

The results of this thesis both confirm and expand upon the findings from previous studies
on renewable energy policy over the past two decades. A significant portion of the literature
has focused on the implications of the heterogeneity of RPS implementation, the impact of
project development on effect lag, and the ability of utility companies to effectively meet
RPS requirements through economically viable resources.

As noted, early empirical evaluations (Carley, 2009; Shrimali & Kniefel, 2011; Yin &
Powers, 2010) often found weak or no immediate impacts of RPS on renewable generation.
Due likely to the examination of a later period and a strong policy implementation (especially
in relation to early RPS), this study provides an outcome counter to those early studies. Later
studies acknowledge the importance of these conditions as well (Carley et al., 2018; Deschenes
et al., 2023; Greenstone & Nath, 2020; Maguire & Munasib, 2016; Shrimali et al., 2015).
Throughout these papers, various features like in-state requirements, solar carve-outs and
renewable energy credit trading rules are discussed as impactful to a meaningful analysis.
Carley et al. (2018) goes so far as to develop a measure of RPS stringency to explicitly
control for the heterogeneity. Maine’s 2019 policies act as a case study of a stringent, well-
designed policy, incorporating several best-practice elements: effectively enacting in-state
requirement for new generation via Class IA and state procurement of community solar,
and supportive policies like net metering and streamlined permitting to complement the
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RPS. This multifaceted approach in Maine reflects the idea that a combination of policy
instruments often works best. The importance of this is particularly exemplified by Maguire
& Munasib (2016), who despite concluding that RPS generally did not influence renewable
energy capacity, indicated that one state at that time, Texas, succeeded partly due to its
transmission investments, properly complementing the RPS. In Maine, the already ambitious
RPS update (LD 1494) was complimented by the facilitation of distributed and community
solar (LD 1711) to help meet RPS goals, and the establishment of the Maine Climate Council
(LD 1679) to keep broad support and planning in place. The results of this paper cannot
parse out the effect of each act individually, but the overall effect indicates the synergy of
these policies.

As previously noted, an important contribution of this research is its focus on a more
recent period which captures key policy and technological advances that earlier studies, which
were limited to earlier time frames, did not observe. The significance of this limitation is
exacerbated by the lagged nature of renewable policy effects. Deschenes et al. (2023) found
that (for wind energy), most capacity came about 5 years after RPS adoption due to project
development times. This thesis similarly indicates that Maine’s solar capacity ramped up
over a few years, and it’s plausible that even more capacity will come online in 2024–2025 as
a result of the 2019 policy. The trends shown in the coefficients of Model 1 and Model 2 (see
Figure 6.1 and Figure 6.2) suggest the impact was still growing through 2023, and that the
full effect may yet be seen. Evaluations of RPS (or any renewable policy) should consider a
sufficiently long horizon. Using the September 2023 EIA-860M caught only approximately
four years of data post-policy, though fortunately; given the relatively short development
runway of solar, it was still possible to observe some policy effect.

Though there is some limitation shared with past literature regarding the temporal scope
of the data used, this study also improves on past literature by implementing a highly granu-
lar raster framework. This approach improves spatial resolution and captures characteristic
variation far beyond the state-level analyses seen in previous literature. Only Hitaj (2013)
used more granular data, opting for county-level observations. This granularity enhances the
ability to construct a credible counterfactual. While several previous studies (e.g. Maguire
& Munasib, 2016; Upton & Snyder, 2017) developed counterfactuals using highly aggregated
data, this analysis leveraged CEM to match treatment and control cells on relevant charac-
teristics at a small scale. By doing so, this study more precisely develops a counterfactual and
minimizes heterogeneity between treatment areas substantially. As a result of an improved
counterfactual, the proceeding causal inference is strengthened.

In summary, the findings of this thesis largely align with past literature, while providing
up-to-date and highly granular data that highlights the importance of policy design and
political and economic context. Maine’s case adds evidence that under the right conditions
renewable energy policy can create significant impact on renewable energy within a state.
It validates arguments like those made by Shrimali et al. (2015) that RPS can work when
tailored properly, and it offers a successful case to compare against the less successful ones
documented in literature. This kind of case study approach was even recommended by
Shrimali et al. (2015) as a follow-up to their work, and indeed Maine appears to serve as a
valuable case to study how a combination of factors yields a positive outcome.
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7.3 Policy Implications

The outcomes of this research carry several implications for energy policy makers and con-
scientious voters aiming to support renewable energy growth, both within and outside of
Maine.

The clearest implication of the results is that specific renewable energy policy design may
have a large impact on the policy’s effect. Though this study cannot isolate the effect of
any individual policy component, Maine’s experience suggests that setting ambitious targets
(80% by 2030, 100% by 2050) and including provisions for new capacity (Class IA) may
stimulate capacity growth. Policymakers should consider raising RPS targets to levels that
truly challenge the market rather than enacting easy-to-meet (or already met, like initially
done in Maine) targets that credit existing facilities. Furthermore, incorporating carve-outs
or sub-targets for new projects help prevent simply reallocating old resources and instead
ensure that additional capacity is built. Again, Maine’s renewable energy class distinctions
create a guaranteed market for new renewable projects. However, when designing such
stringent command-and-control type policies, there must be consideration taken for a realistic
implementation timeline. Maine’s target is aggressive but provided a more than 10-year
runway for utility companies to hit the set goal.

In addition to the RPS expansion, Maine’s success may have been aided by complemen-
tary measures that systematically alter the energy production and transmission environment
(e.g., net metering expansion, removal of size caps, procurement of community solar). For
solar specifically, facilitating grid interconnection and financing for projects is crucial. States
governments can implement standardized interconnection rules, offer financing support, and
update land use regulations to accommodate utility-scale renewables. The overarching point
here is that a systemic approach to policy that aligns renewable portfolio standards, utility
regulations, and local incentives may yield better results than any single policy in isolation.

Lastly, one of the more unique insights of this study relates to the role that small or
community utility-scale solar plays. Like done through Maine’s LD 1711, which focuses
on incentivizing solar projects smaller than 5 MW, actively cultivating small renewable
projects may have significant impact. An extraordinary 87 of the 96 solar farms built since
the implementation of the policies have been 5 MW or less, accounting for approximately
54% of all new solar capacity (EIA, 2024b). This suggests that community-scale projects
can be rapidly deployed and may better suit energy needs in a context similar to Maine’s.
The localized nature of such projects may also mitigate potential opposition related to land
use and visual impacts, as community members are more likely to support projects from
which they can derive direct benefits. This idea aligns with prior research (e.g. Steward &
Doris, 2014; Taminiau et al., 2022) which describes how policies emphasizing smaller-scale,
community-focused renewable projects tend to generate higher local acceptance and drive
significant capacity additions. Therefore, the policy implication here is to design incentives
and lower regulatory barriers for small-scale utility solar development, not just large-scale.

46



7.4 Limitations and Directions for Future Research

The findings should be interpreted with caution given the following limitations. The use
of high-resolution data and CEM is a strength, as it addresses many observable differences
between treated and control areas. However, focusing on a single state limits generalizability.
Maine has certain unique characteristics (considerable forested land, a relatively small pop-
ulation, a history of high renewable usage from hydro and biomass, etc.) that may impact
results for a more urbanized state attempting a similar solar expansion. In addition, the
use of CEM necessarily excludes some treated cells that cannot be adequately matched to
a comparable control, resulting in an analysis based on a subset of Maine that is similar
to the constructed counterfactual. While the results remain informative for assessing the
causal impact of the policy, they truly reflect outcomes for a ”matched Maine” rather than
the state in its entirety. Future research could apply a similar methodology to multiple other
states that implemented renewable energy policies, to see if the results seen for Maine hold.

Another limitation is the time frame of analysis. Only roughly 4 years of post-policy data
was examined. While this captures the immediate impact, the longer-term effects remain
uncertain. It’s possible that Maine experienced a short explosion in solar development as
“low-hanging fruit” projects were built, and that growth could plateau afterward if the most
economically viable sites have been taken. If, for example, LD 1711 was responsible for a
significant amount of the solar development due to its procurement mandates which expired
in July of 2024, future development may start to flatten. Alternatively, the development
already seen could be the start of a steady climb towards the 100% goal in 2050. Only further
years of data can distinguish between an initial burst and a sustained trend. Therefore, future
research should look at a longer horizon to assess longer-run outcomes. This would also allow
the examination of whether any backlash or saturation occurs.

This study also did not explicitly account for spillover effects. Though the Maine policies
do explicitly legislate for in-state renewable energy development, as considered by Carley et
al. (2018), it’s possible that Maine’s policy had regional effects, or that other state policies
had effects on Maine’s solar capacity. Including the difference in LCOE between wind and
solar for each region may provide some control for this effect given the potential impact of
state policies on LCOE, but this certainly does not negate spillover.

Another limitation to acknowledge is the assumption that the CEM and TWFE DiD fully
accounted for potential confounders. It is certainly possible that some unobserved factors
changed in and around 2019 in Maine which could bias results. The covariates used, focused
on political lean, renewable energy attitudes, and cost-competitiveness, which were central
to the research questions. However, other socio-economic factors could also be important
and may have helped better answer these questions. Additional covariates which may impact
treatment assignment, or the magnitude of the treatment effect could improve the precision
of the results. Likewise, (natural and built) environmental variables like land values, solar
irradiation, or proximity to transmission lines are critical drivers of solar project siting.
While the CEM does control for these factors, future studies which explicitly examine land
suitability and availability across the United States using multi-criteria analysis (similar to
that of Majumdar & Pasqualetti (2019)) would be of great value.

Additionally, the scope was limited to utility-scale solar nameplate capacity as the out-
come. This was appropriate given the policy focus (L.D. 1711 targeting 660 kW - 5 MW
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community solar, L.D. 1494 and 1679 aimed at utility-scale renewables). However, these
policies almost certainly also had effects on other outcomes such as distributed rooftop solar
adoption or wind energy development. Taking these into account in some way may have
been prudent, as even if not considered as an outcome during the analysis, another level of
“spillover” could have been taken into account by considering the level of energy demand or
RPS requirements fulfilled by other sources. Future work could broaden the lens to examine
a larger group of outcomes. How did the policies impact the broader renewable energy mix,
or what was the effect on greenhouse gas emissions? How did the cost to consumers change
after implementation?

Lastly, the CEM provides a suitable counterfactual, but can be administered with many
different cutpoints and variables, creating some uncertainty in the matching process. Alter-
native binning methods, both data driven and theory driven, (including automatic binning
rules such as Sturges’ rule, Freedman-Diaconis’ rule etc.) were considered and basic balance
checks were used to evaluate the match, but given ample time and computing power, a sen-
sitivity analysis could likely provide valuable information on the robustness of the analysis
to different matching specifications, enhancing the credibility of the estimates.
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Chapter 8

Conclusion

In conclusion, this study finds that Maine’s 2019 renewable energy policies triggered a sub-
stantial expansion of utility-scale solar capacity in the state. In the years immediately
following the policy changes, solar development accelerated far beyond historical trends and
beyond what would be expected without the policy interventions. By comparing Maine’s
growth to a no-policy counterfactual, the analysis shows a clear effect between the three 2019
policies passed in Maine are linked with a substantially higher amount of solar capacity than
would have occurred otherwise.

This outcome directly answers the question this paper set out to answer, demonstrating
that the new policies had a large and significant effect on utility-scale solar PV nameplate
capacity growth. The state’s updated aggressive Renewable Portfolio Standard and the solar-
specific incentives created a strong environment for project development. This finding aligns
with past literature suggesting that stringent, well-designed renewable policies can have a
significant impact on renewable energy deployment (Shrimali et al., 2015). In Maine’s case,
what had been one of the slowest states to adopt solar energy quickly became a regional
leader, indicating that policy commitments like those made in LD 1679, LD 1494, and LD
1711 can rapidly change the trajectory of renewable energy adoption.

The role of political preferences and renewable energy opinions emerged in the context
and results of this paper as well. The inclusion of political, social, and economic control
variables helped to isolate the effect of Maine’s 2019 renewable energy policies and provided
additional insight into the broader conditions that shape solar development. The results
revealed that areas with stronger political leanings towards the Democratic Party were pos-
itively associated with the level of utility-scale solar capacity, suggesting that local political
opinions may play a role in the realization of state-level policy goals related to solar and
potentially other renewable energy sources. Maine’s political environment appears on the
surface to support the idea that political ideologies are related to renewable energy devel-
opment. The political shift from a governor who opposed many renewable initiatives to one
who championed them was seemingly a critical enabling condition. The bipartisan nature
of the passage of the 2019 bills indicates a broader political will, but the analysis confirms
that a partisan alignment does exist with renewable energy goals. This is consistent with
broader studies that emphasize government ideology and leadership as drivers of renewable
outcomes (Carley et al., 2018; Upton & Snyder, 2017). In contrast, the measure of attitudes
toward renewables given by the Yale Climate Opinion Map survey did not show any sig-
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nificant relationship with utility-scale solar deployment in the model, potentially suggesting
that there may be some level of systemic misrepresentation or disconnect stemming from
the limitations of a two-party system, where opinions like renewable energy preferences are
marginalized due to structural polarization and are therefore more isolated from general
societal actions than expected. While general public support for clean energy might be rel-
atively high, it is the concrete actions of political actors which translate public support into
change. Given the change in governors and therefore the controlling party, the socio-political
landscape in Maine proved mostly supportive.

The economic context also proved to be an important underlying factor. Over the 2010s,
the cost of solar photovoltaics plummeted, and by around 2019 the LCOE of utility-scale
solar had become consistently competitive with or lower than that of onshore wind in many
markets, including New England, where Maine is located. The analysis confirmed that this
cost-competitiveness has a significant relationship with the solar deployment in Maine. This
outcome was unsurprising, and suggests that developers may have reacted to favorable mar-
ket conditions. As solar became cheaper relative to the previously dominant new renewable
energy source in Maine, onshore wind, the state also began to see additional solar capac-
ity being built. These parallel trends cannot draw a causal relationship between the two
factors, but does align with the expectation that mandated renewable energy development
would be met with the most economically cost-efficient method. In Maine, the timing was
fortuitous for solar, as the 2019 policies came into effect just as solar prices fell and efficiency
improved, pulling the economic context towards conditions correlated with more utility-scale
solar development.

For policymakers in Maine and beyond, these findings carry several important implica-
tions. Maine’s 2019 effective renewable energy strategy can serve as a model for other states
seeking to boost their clean energy sectors. Although the results are not without limitations,
and cannot parse out the individual effects of each piece of legislation, it does suggest that
the multi-faceted policy approach used in Maine was effective in achieving its goal. Combin-
ing mandated long-term targets with enabling measures (such as procurement plans for new
projects, and removal of barriers to community solar development) appear to have created
a strong environment for investment. States aiming to replicate Maine’s progress should
consider not only raising their renewable targets but also adopting complementary policies
that address common bottlenecks in development, often related to permitting, power grid
capacity and connection limitations, as well as financing options for both utility-scale and
distributed projects. Additionally, Maine’s surge in solar capacity was substantially driven
by projects in the 1–5 MW range. These could have been motivated by the incentives and
facilitation of LD 1711, indicating that smaller and community solar can scale up rapidly
when given the opportunity. Thus, policy designs that encourage a mix of project sizes
(rather than focusing solely on large utility-scale solar farms) may achieve faster and more
broadly distributed gains.

For future research, an extended post-treatment timeframe and continual monitoring of
Maine’s solar trajectory in the coming years would provide even more valuable results. As
more data become available, researchers can assess whether the initial surge is sustained,
and how various other emerging trends and challenges (e.g., grid congestion or evolving net
metering rules) might affect the growth trend. Additionally, another valuable avenue would
be to apply the high-resolution data and methodological framework of this study to multiple
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other states, like done so often in earlier literature. Such comparative studies could employ
CEM like used here to build counterfactual scenarios and test the generalizability of Maine’s
outcomes. A wider focus on multiple power generation technologies would also offer even
more information and bolster the results of this study. Continued study of Maine’s and other
state’s clean energy transitions can not only benefit state policymakers but also enrich the
broader understanding of how climate and energy policies can be designed to achieve specific
and effective results.

In closing, Maine’s deployment of utility-scale solar power since 2019 stands as a great
example of effective policy-driven change. This thesis has shown that the trio of 2019 re-
newable energy laws passed, along with a favorable socio-political climate and accelerating
technological progress resulted in a substantial increase in solar capacity in a short time.
By systematically evaluating the outcome of this case, the study contributes evidence that a
detailed and multi-faceted policy coupled with supportive context can unlock rapid growth
even in a technology which had severely lagged in development. As governments hopefully
continue to strive to meet climate goals, the lessons from Maine highlight the power of ambi-
tious targets, supportive policy, and market-ready mature technologies working in tandem.
Maine’s progress as of 2023 is encouraging, but the ultimate measure of these policies’ impact
on utility-scale solar will be the ability to sustain and build on these gains in the coming
years.
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