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1. INTRODUCTION 

State controllability and observability, being the ability to 

control and observe the state of a dynamical system, were 

initially developed for linear dynamical systems requiring 

results from linear algebra (Kalman, 1960, 1962, 1963; 

Kreindler and Sarachik, 1964; Weiss and Kalman, 1965; Ho 

and Kalman, 1966). The same holds for output controllability 

that appears to be introduced in Kreindler and Sarachik 

(1964). The extension of these and other properties to 

nonlinear dynamical systems requires linear algebra to be 

replaced with differential geometry. This significantly 

complicates the mathematics and computations such as the 

definition and computation of state and output controllability 

that now rely on Lie algebras (Hermann and Krener, 1977; 

Nijmeijer, 1983; Nijmeijer and van der Schaft, 1990; Kwatny 

and Blankenship, 2000). 

On the other hand, canonical representations of both linear 

and nonlinear dynamical systems obtained from state

controllability and observability are remarkably simple and 

similar. This observation was exploited in Van Willigenburg 

(2024) providing simple definitions and computations for 

state controllability and observability based on connectivity’s 

and sensitivities. Triggered by the development of a 

sensitivity-based algorithm to establish identifiability of 

large-scale nonlinear systems (Stigter and Molenaar, 2015), 

sensitivities also appeared as keys to computing state 

controllability and observability of large-scale nonlinear 

dynamical systems. Remarkably, these computations 

essentially concern the controllability and observability of 

linearizations along trajectories of the nonlinear dynamical 

system, describing exactly the sensitivity dynamics (Stigter, 

van Willigenburg and Molenaar, 2018; Van Willigenburg, 

Stigter and Molenaar, 2022). In this paper these results are 

extended from state to output controllability. 

The results in this paper apply to analytical dynamical 

systems because these guarantee controllability properties to 

be invariant over time. In practice, if dynamical systems are 

not analytical, they are usually piecewise analytical and the 

analysis can be applied to each separate interval over which 

the system is analytical. 

State and output controllability are presented and analyzed  

in section 2. The sensitivity-based algorithm for state 

controllability and its extension to output controllability are 

specified in section 3. Section 4 considers numerical aspects 

of the algorithms and their implementation. In section 5 small 

as well as large-scale examples are presented showing that 

nonlinear dynamical systems can be state controllable but not 

output controllable and vice versa. Section 6 provides 

conclusions. 

2. STATE AND OUTPUT CONTROLLABILITY 

The controllability canonical form of analytical dynamical 

systems facilitates a simple definition and understanding of 

state controllability, see Fig. 1. Not applying the appropriate 

state-transformation in Fig. 1, controllable/uncontrollable 

state-variables turn into controllable/uncontrollable modes

being combinations of all state-variables, see also (Van 

Willigenburg, 2024). These modes represent directions in the 

state-space in which one can/cannot steer. 

General analytical 
dynamical systems

Controllability canonical form
Controllable state variables: state variables connected to the input

x

x

Change of state-space 
coordinates/State- 

transformation

Fig. 1: An appropriate change of state-space coordinates 

(state-transformation) realizes a canonical form in which 

individual state-variables are either connected to the 

input/controllable or not.
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Obviously, state-variables or modes that are not connected 

to the input are insensitive to the input. The sensitivity-based 

algorithm detects the modes/state-variables that are 

insensitive to the input (Van Willigenburg, Stigter and 

Molenaar, 2022). If there are no such modes/state variables 

the system is state controllable. 

A key insight, that seems to have been overlooked for a 

long time in the literature, was obtained from the 

development of sensitivity-based algorithms to establish state 

controllability of analytical nonlinear dynamical systems 

(often called local strong accessibility). Sensitivity dynamics 

concern the propagation of infinitesimal deviations from 

trajectories of the nonlinear system. Therefore, linearized 

dynamics along the trajectory are an exact description of 

sensitivities, not an approximation. As a result, controllability 

of nonlinear dynamical systems is equivalent with state 

controllability of linearizations along non-singular

trajectories of the nonlinear system. Such a linearization is a 

time-varying linear system in general, also called the 

variational system. Moreover, trajectories of the nonlinear 

system are generically non-singular (Sontag, 1992; Van 

Willigenburg, Stigter and Molenaar, 2021, 2022). 

State and output controllability of time-varying linear 

systems were discovered and developed using linear algebra 

(Kalman, 1960; Kreindler and Sarachik, 1964; Weiss and 

Kalman, 1965). Given the time-varying linear system

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ), ,

, , ,yx u
nn n

x t A t x t B t u t y t C t x t

x y u

= + =

∈ ∈ ∈

ɺ

ℝ ℝ ℝ
  (2.1) 

its state response is  

( ) ( ) ( ) ( ) ( ) ( )
0

0 0 0
, , ,

t

t

x t t t x t t B u d t tτ ττ τ= Φ + Φ ≥ . (2.2) 

with ( )0
,t tΦ  being the state-transition matrix of system (2.1)

satisfying the differential equation 

( )
( ) ( ) ( )0

0 0 0 0

,
, , , ,

xn

d t t
A t t t t t t t I

dt

Φ
= Φ ≥ Φ =   (2.3) 

with 
xnI  representing the square identity matrix of dimension 

x
n . Similarly, the output response is  

( ) ( ) ( ) ( ) ( ) ( ) ( )
0

0 0, ,

t

t

y t C t t t x t t B u dτ ττ τ
 

= Φ + Φ  
 

 (2.4) 

From (2.2), an analytical time-varying linear system (2.1) 

is state controllable if and only if the 
x

n  rows of matrix 

function ( ) ( )0
, t Bτ τΦ  are independent over an interval 

[ ]0
,t tτ ∈ , 

0
t t>  (Weiss and Kalman, 1965). Similarly from 

(2.4), an analytical time-varying linear system is output 

controllable if the 
y

n  rows of matrix function 

( ) ( ) ( )0
,C t t Bτ τΦ , [ ]0

,t tτ ∈ , 
0

t t>  are independent 

(Kreindler and Sarachik, 1964). 

3. SENSITIVITY-BASED ALGORITHM FOR STATE 

AND OUTPUT CONTROLLABILITY 

The sensitivity-based algorithm for state controllability of 

analytical nonlinear dynamical systems was developed as the 

dual of the algorithm for state observability (Stigter, van 

Willigenburg and Molenaar, 2018; Van Willigenburg, Stigter 

and Molenaar, 2022). Therefore it integrates the state-

equation of the nonlinear dynamical system 

( ) ( ) ( )( ),x t f x t u t=ɺ (3.1) 

backward in time from a fixed terminal state ( )fx t  over a 

small time-interval [ ]0
,

N
t t t∈ , 

0 N
t t<  together with equation  

(2.3) in which ( )
( ) ( ),

/
x x t u u t

A t f x
= =

= ∂ ∂ . Next, taking 

( )
( ) ( ),

/
x x t u u t

B t f u
= =

= ∂ ∂ , matrix function ( ) ( ),
N

t t B tΦ  is 

evaluated at increasing time instants 
i

t , 0,1, 2,..,i N= , 

1
x

N n= − . Each evaluation ( ) ( ),
N i i

t t B tΦ  represents the 

state response at time 
N

t  of the variational system resulting 

from impulses ( )i
tδ  to each of its inputs. Concatenating 

these evaluations provides sensitivity matrix 

( ) ( ) ( ) ( )

( ) ( )

0 0 1 1
, , , ,..,

, x u x

x N N

n n n

N N N

S t t B t t t B t

t t B t
×

= Φ Φ
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 (3.2) 

A singular value decomposition (SVD) applied to 
x

S

provides 
x

n  singular values and corresponding left singular 

vectors. Taking 
x

n  evaluations of ( ) ( ),
N

t t B tΦ  in (3.2) 

prevents 
x

S  to be a-priori rank deficient if ( )B t  has minimal 

rank 1 (making  
u

n  effectively 1). The number of zero 

singular values of 
x

S  equals the number of uncontrollable 

modes of the nonlinear system (3.1). The corresponding left 

singular vectors span the null-space representing all 

directions in which state ( )N
x t  of system (3.1) cannot be 

controlled locally. The non-zero components of these left 

singular vectors indicate the state-variables together making 

up all uncontrollable modes of system (3.1) (Van 

Willigenburg, Stigter and Molenaar, 2022). 

Similarly, output controllability of the nonlinear 

dynamical system (3.1) with output equation 

( ) ( )( ) yn
y t g x t= ∈ ℝ (3.3) 

uses 
y

n  evaluations at 
i

t , 0,1, 2,.., 1
y

i N n= = −  of matrix 

function ( ) ( ) ( ),
N N

C t t t B tΦ  where ( )
( )

/
N

N x x t
C t dg dx

=
= . 

This provides sensitivity matrix 

( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

0 0 1 1, , , ,..,

, y u y

y N N N N

n n n

N N N N N x

S C t t t B t C t t t B t

C t t t B t C t S
×

= Φ Φ

Φ = ∈ ℝ
(3.4) 

An SVD is now applied to matrix 
y

S . Its interpretation 

now concerns output controllability and equals the one above 

for state controllability with state x  replaced by output y . 
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4. NUMERICAL ASPECTS AND IMPLEMENTATION 

OF THE SENSITIVITY-BASED ALGORITHMS 

A most important numerical aspect of the sensitivity-based 

algorithm concerns the detection of numerically zero singular 

values, since each one corresponds to an uncontrollable 

mode/state variable. One generally considers singular values 

to be numerically zero if these are below a significant gap

within all singular values. A rule of thumb is that this gap 

should be at least as large as 4 to 5 decades. In general, as 

system dimensions grow, the non-zero singular values cover 

a wider range. Given the finite machine precision, to detect a 

possible gap, one prefers the range of non-zero singular 

values to be as small as possible.  

One technique to decrease this range and enlarge a 

possible gap is to concatenate the results of several 

trajectories, not just one (Stigter, Joubert and Molenaar, 

2017; Van Willigenburg, Stigter and Molenaar, 2022). For 

state controllability, when concatenating the results of 1N >

trajectories the algorithm computes sensitivity matrix 

( ) ( ) ( ) ( )

( ) ( )

1 2

0 0 1 1

[ , ,.., ],

, , , ,..,

, , 1, 2,.., .

M

x x x x

k

x N N

k

N N N

S S S S

S t t B t t t B t
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=
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M
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S S S S C t S

S C t t t B t C t t t B t
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  (3.6) 

An alternative to computing 
x

S  and 
y

S  in (3.2), (3.4) and 

(3.5), (3.6) would be to compute the Gramian matrices 

( ) ( ) ( ) ( ) ( ), , ,
Nt

T T

x N f f

t

W t t t B B t dτ τ τ τ τ= Φ Φ   (3.7) 

and 

( ) ( ) ( ) ( ), ,
T

y N N x N N
W t t C t W t t C t=  (3.8) 

respectively (Kreindler and Sarachik, 1964). However, the 

squaring of the matrix function ( ) ( ),
N

t Bτ τΦ  within 
x

W

and 
y

W  respectively, causes their non-zero singular values to 

be spread over a wider range. This is undesirable from the 

point of view of detecting a possible gap as already noted in 

the pioneering paper (Moore, 1981). 

Numerical integration of the nonlinear dynamics (3.1), 

(3.3) together with (2.3) is performed over time-interval 

[ ]0
,

N
t t t∈ . This time-interval may be very short, partly 

causing the algorithms exceptional efficiency. But it must be 

long enough to capture all relevant system and sensitivity 

dynamics. Enlarging this time-interval is also another way of 

decreasing the range of non-zero singular values. 

Within (2.3), ( )
( ) ( ),

/
x x t u u t

A t f x
= =

= ∂ ∂ is computed using 

automatic differentiation (Neidinger, 2010; Margossian, 

2019) or using complex derivatives (Martins, Sturdza and 

Alonso, 2022) providing exceptionally accurate derivatives. 

The same applies to ( )
( )

/
N

N x x t
C t dg dx

=
=  required to 

compute 
y

S  in (3.4), (3.6). Constant system inputs ( )u t

often  suffice. Only in exceptional cases they may cause the 

trajectory to be singular or not sufficiently exciting. The fixed 

terminal state ( )N
x t  of the nonlinear system (3.1) should 

preferably be obtained from integrating just (3.1) forward in 

time over [ ]0
,

N
t t t∈  starting from an arbitrary, but realistic, 

state ( )0
x t . And finally, when concatenating the results of 

several trajectories in (3.5), (3.6), these trajectories should be 

such that they do not change the null-space made up by the 

left singular vectors corresponding to zero singular values of 

the SVD (Stigter, Joubert and Molenaar, 2017). 

5. EXAMPLES 

Example 1: Example 6.1 from (Kwatny and Blankenship, 

2000).

( )

2

11 3 2

3

4 2 3

2 2
33 2 4 2 3

1
,

0

x xx x x e

x
f x u u

x x x

xx x x x x

 +  
   
   = +   −
   

+ −    

  (3.9) 

The outcome of the SVD obtained from the sensitivity-

based algorithm computing state controllability is listed in 

Table 1. From it we conclude that system (3.9) has two 

uncontrollable modes involving state-variables 2, 3 and 4, 

since the first component of both left singular vectors is 

numerically zero. 

Table 1: Singular values for state controllability of system

(3.9) (left column) and the two left singular vectors 

corresponding to the two numerically zero singular values. 

 2.3212e+00 

 2.8240e-02 

 2.2726e-14 

2.5034e-17

-3.9881e-13 

-4.1173e-02 

  9.8431e-01 

1.7159e-01

 1.4134e-15 

 2.2967e-01 

 1.7646e-01 

-9.5714e-01

Next consider output controllability of system (3.9) with 

2 2

1 2,
T

y x x =   (3.10) 

as well as 

2 2

1 3,
T

y x x =   .  (3.11) 

Table 2 lists the outcome of the SVD for output- 

controllability in both cases. From it we may conclude that 

system (3.9) with outputs (3.10) is output controllable 

whereas with outputs (3.11) it is not. In the latter case the 

uncontrollable output mode consists solely of output 2  being 
2

3
x . This complies with the fact that for state controllability, 

1
x  is not involved in uncontrollable modes. Moreover, using 

the Lie algebraic rank condition (LARC) we verified the 

outcome of state and output controllability obtained from our 

sensitivity rank condition (SERC). For state controllability, 

LARC computes the rank of a matrix containing 

concatenated Lie brackets that we computed using Hall bases 
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(Duleba, 1997). For output controllability LARC computes 

the rank of the same matrix pre-multiplied with /dy dx .  

All computations were performed on a 3,10 gigahertz Intel 

Core i5-8600 PC running Windows 10 and Matlab 2024a. 

Table 2: Singular values for output controllability of system 

(3.9) corresponding with outputs (3.10), (3.11) respectively 

(left two columns) and the left singular vector corresponding 

to the numerically zero singular value of output (3.11) (last 

column) .

4.1374e+00 

5.3098e-02

7.3527e-01 

9.5159e-22

 1.3417e-21 

-1.0000e+00

In order to illustrate the capability of sensitivity-based 

algorithms to handle large-scale systems very efficiently 

consider the next example. 

Example 2: Ring of coupled Kuramoto oscillators 

(Kuramoto, 1975, 1984; Strogatz, 2000; Baggio, Bassett and 

Pasqualetti, 2021). The dynamics of the ring of n  coupled 

oscillators is represented by 

( ) ( ) ( )( ) ( ) ( )( )1 1
sin sin ,

1,2,..,

i i i i i i
t t t t t

i n

θ ω θ θ θ θ− += + − + −

=

ɺ
  (3.12) 

with i  periodic mod n . One easily recognises that the phases 

of the oscillators 
i

θ  may be considered state variables. The 

oscillator frequencies 
i

ω  are constant parameters apart from 

the first that is slightly modified by the single control input 

( )1 1 1
0.01u tω ω→ + .  (3.13) 

As a first case take 10
x

n n= = , terminal time 1t =  and the 

components of terminal state ( )x t  random numbers in 

between 0 and 1. Furthermore, for 
i

ω , 2,3,..,i n=  take 

random numbers in between 1 and 1.01 since the model 

applies only to oscillators who’s angular frequencies are very 

close together (Strogatz, 2000).  And finally take 

( ) ( )1
u uτ τ=  a constant randomly selected between 0 and 1. 

For state controllability the singular values are plotted on a 

logarithmic scale in Fig. 1 revealing controllability. Taking 

( )round / 3
x

n  to be controlled outputs 

( ) ( )1 , 1,2,.., round / 3 , round / 3i jx

i x xy e i n j n− +−
= = =  (3.14) 

the singular values obtained for output controllability are 

plotted in Fig. 2. 

Next introduce a redundant output that is nonlinearly 

related to two other outputs as follows 

2 2

1 2 3
y y y= + .  (3.15) 

Equation (3.15) overrules the first output as specified by 

(3.14). As seen from Fig. 3a, the system is no longer output 

controllable because of the redundant output (3.15). The 

corresponding signature in Fig. 3b correctly indicates that the 

single uncontrollable output mode involves outputs 1,2 and 3. 

Fig. 1: Normalized singular values determining state 

controllability for system (3.12), (3.13) with 10n = . Being 

well within the machine precision range of 2.2
16

10
−

, and not 

showing a gap, there are no numerically zero singular values 

so the system is state controllable. CPU time 0.491 s. 

Fig. 2: Normalized singular values determining output 

controllability for system (3.12), (3.13), (3.14) with 10n = . 

Being well within the machine precision range of 2.2
16

10
−

, 

and not showing a gap, there are no numerically zero 

singular values so the system is output controllable. CPU 

time 0.573 s. 

Fig. 3a: Normalized singular values determining output 

controllability for system (3.12), (3.13), (3.14), (3.15) with 

10n = . Being well within the machine precision range of 

2.2
16

10
−

, one numerically zero singular value is found so the 

system is not output controllable. CPU time 0.483 s. 

Fig. 3b: Signature of the output uncontrollable system 

(3.12), (3.13), (3.14), (3.15) showing the components of the 

left singular vector corresponding to the single numerically 

zero singular value. 
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Fig. 4: Normalized singular values determining state 

controllability for system (3.12), (3.13) with 50n = , 10t =

for one trajectory (lower red stars) and after concatenating 

the result of four trajectories (top red dots) bringing the 

singular values within the machine precision range. In the 

latter case there are no numerically zero singular values so 

the system again turns out state controllable. CPU time all 

four trajectories together 23.663 s.

Fig. 5: Normalized singular values determining output 

controllability for system (3.12), (3.13), (3.14) with 50n = , 

10t =  after concatenating the result of four trajectories. 

There are no numerically zero singular values so the system 

is again output controllable. CPU time of all four trajectories 

23.508 s. 

Fig. 6a: Normalized singular values determining output 

controllability for system (3.12), (3.13), (3.14), (3.15) with 

50n = , 10t =  computed from concatenating four 

trajectories. There is one numerically zero singular value so 

the system again turns out not output controllable with a 

single uncontrollable mode. CPU time all four trajectories  

23.579 s. 

Fig. 6b: Signature of the output uncontrollable system (3.12), 

(3.13), (3.14), (3.15) showing the components of the single 

left singular vector corresponding to the single numerically 

zero singular value.

When increasing n , the singular values start to cover the 

full range of the machine precision causing difficulties in 

establishing numerically zero singular values. On the other 

hand, since the singular values are actually measures of 

controllability, very small singular values indicate very poor 

controllability in directions given by the corresponding left 

singular vectors. 

To alleviate the problem of detecting numerically zero 

singular values, terminal time 
f

t  may be increased and the 

results of several trajectories may be concatenated as shown 

in Figs. 4-6. The additional three trajectories have different 

parameter values 
i

ω , 2,3,..,i n= . For the second trajectory 

they are random numbers in between 2 and 2.01, for the third 

in between 3 and 3.01, and for the fourth in between 4 and 

4.01. Finally, all trajectories share the same terminal state 

( )fx t of system (3.1) thereby fulfilling the requirement 

mentioned at the end of section 4. 

6. CONCLUSIONS 

A sensitivity-based algorithm computing state 

controllability of large-scale nonlinear dynamical systems has 

been extended to compute output controllability. As can be 

seen from equations (3.2), (3.4), due to the linear nature of 

sensitivity dynamics, the modification comes down to a pre-

multiplication of state sensitivity matrix 
x

S , obtained for 

state controllability, with matrix ( )N
C t  being the sensitivity 

of the output to the state at the terminal time of the trajectory 

used by the sensitivity-based algorithm. 

Small and large-scale examples showed that nonlinear 

dynamical systems can be state controllable, but not output 

controllable and vice versa. 

Sensitivity-based algorithms rely on numerical integration 

along trajectories and a sensitivity rank condition (SERC) 

requiring the detection of zero singular values of a sensitivity 

matrix. The singular values obtained from a singular value 

decomposition (SVD) are actually measures of controllability 

in directions given by the corresponding left singular vectors 

obtained from the SVD. These measures are highly valuable 

information to engineers concerning ‘practical 

controllability’. Theoretically, if the smallest of the singular 

values is very small yet non-zero, the system is controllable. 

Therefore the sensitivity-based algorithms may provide a 

theoretically erroneous answer if singular values fall below 

the range determined by the machine precision. The large-

scale examples in this paper showed how prolonging 

trajectories and concatenating the results of several 

trajectories alleviate this problem. 
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