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Abstract: A sensitivity-based algorithm to establish state controllability is extended to establish output
controllability being the ability to control the outputs of a nonlinear dynamical system instead of the full

state. Due to

the exceptional efficiency of the sensitivity-based algorithm, large-scale nonlinear

dynamical systems can be handled, as demonstrated by several examples in this paper. As a final
contribution, this paper starts with a simple analysis of state and output controllability properties of
nonlinear dynamical systems in terms of connectivity’s and sensitivities. The latter relate directly to the

sensitivity-based algorithm.
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1. INTRODUCTION

State controllability and observability, being the ability to
control and observe the state of a dynamical system, were
initially developed for linear dynamical systems requiring
results from linear algebra (Kalman, 1960, 1962, 1963;
Kreindler and Sarachik, 1964; Weiss and Kalman, 1965; Ho
and Kalman, 1966). The same holds for output controllability
that appears to be introduced in Kreindler and Sarachik
(1964). The extension of these and other properties to
nonlinear dynamical systems requires linear algebra to be
replaced with differential geometry. This significantly
complicates the mathematics and computations such as the
definition and computation of state and output controllability
that now rely on Lie algebras (Hermann and Krener, 1977;
Nijmeijer, 1983; Nijmeijer and van der Schaft, 1990; Kwatny
and Blankenship, 2000).

On the other hand, canonical representations of both linear
and nonlinear dynamical systems obtained from state
controllability and observability are remarkably simple and
similar. This observation was exploited in Van Willigenburg
(2024) providing simple definitions and computations for
state controllability and observability based on connectivity’s
and sensitivities. Triggered by the development of a
sensitivity-based algorithm to establish identifiability of
large-scale nonlinear systems (Stigter and Molenaar, 2015),
sensitivities also appeared as keys to computing state
controllability and observability of large-scale nonlinear
dynamical systems. Remarkably, these computations
essentially concern the controllability and observability of
linearizations along trajectories of the nonlinear dynamical
system, describing exactly the sensitivity dynamics (Stigter,
van Willigenburg and Molenaar, 2018; Van Willigenburg,
Stigter and Molenaar, 2022). In this paper these results are
extended from state to output controllability.

The results in this paper apply to analytical dynamical
systems because these guarantee controllability properties to

be invariant over time. In practice, if dynamical systems are
not analytical, they are usually piecewise analytical and the
analysis can be applied to each separate interval over which
the system is analytical.

State and output controllability are presented and analyzed
in section 2. The sensitivity-based algorithm for state
controllability and its extension to output controllability are
specified in section 3. Section 4 considers numerical aspects
of the algorithms and their implementation. In section 5 small
as well as large-scale examples are presented showing that
nonlinear dynamical systems can be state controllable but not
output controllable and vice versa. Section 6 provides
conclusions.

2. STATE AND OUTPUT CONTROLLABILITY

The controllability canonical form of analytical dynamical
systems facilitates a simple definition and understanding of
state controllability, see Fig. 1. Not applying the appropriate
state-transformation in Fig. 1, controllable/uncontrollable
state-variables turn into controllable/uncontrollable modes
being combinations of all state-variables, see also (Van
Willigenburg, 2024). These modes represent directions in the
state-space in which one can/cannot steer.

General analytical

dynamical systems
777777777 Change of state-space

coordinates/State-
transformation

Controllability canonical form
Controllable state variables: state variables connected to the input

Fig. 1: An appropriate change of state-space coordinates
(state-transformation) realizes a canonical form in which
individual state-variables are either connected to the
input/controllable or not.
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Obviously, state-variables or modes that are not connected
to the input are insensitive to the input. The sensitivity-based
algorithm detects the modes/state-variables that are
insensitive to the input (Van Willigenburg, Stigter and
Molenaar, 2022). If there are no such modes/state variables
the system is state controllable.

A key insight, that seems to have been overlooked for a
long time in the literature, was obtained from the
development of sensitivity-based algorithms to establish state
controllability of analytical nonlinear dynamical systems
(often called local strong accessibility). Sensitivity dynamics
concern the propagation of infinitesimal deviations from
trajectories of the nonlinear system. Therefore, linearized
dynamics along the trajectory are an exact description of
sensitivities, not an approximation. As a result, controllability
of nonlinear dynamical systems is equivalent with state
controllability — of linearizations along non-singular
trajectories of the nonlinear system. Such a linearization is a
time-varying linear system in general, also called the
variational system. Moreover, trajectories of the nonlinear
system are generically non-singular (Sontag, 1992; Van
Willigenburg, Stigter and Molenaar, 2021, 2022).

State and output controllability of time-varying linear
systems were discovered and developed using linear algebra
(Kalman, 1960; Kreindler and Sarachik, 1964; Weiss and
Kalman, 1965). Given the time-varying linear system

x(1)=A(t)x(t)+B(r)u(r), y(t)=C(t)x(1),

@2.1)
xeR™, ye R", ue R"™,

its state response is

x(1)= ¢(t,t0)x(t0)+fd)(t,r)B(r)u(r)dr,t >1,. (2.2)
with ®(7,7,) being the state-transition matrix of system (2.1)
satisfying the differential equation

d®(t,t,)

y =A(1)®(1,1,), t 21, P(t,,1,)=1
t

2.3)

n,

with I, representing the square identity matrix of dimension

n_ . Similarly, the output response is

y(t)=C(1) <I>(t,t0)x(t0)+j¢>(t,r)B(r)u(r)dr (2.4)
From (2.2), an analytical time-varying linear system (2.1)
is state controllable if and only if the n_ rows of matrix

function @(7,7,)B(7) are independent over an interval
te|t,,t], t>1, (Weiss and Kalman, 1965). Similarly from

(2.4), an analytical time-varying linear system is output
controllable if the =7, rows of matrix function

C(t)®@(z.1,)B(7), te(t,.1],
(Kreindler and Sarachik, 1964).

t>t, are independent

3. SENSITIVITY-BASED ALGORITHM FOR STATE
AND OUTPUT CONTROLLABILITY

The sensitivity-based algorithm for state controllability of
analytical nonlinear dynamical systems was developed as the
dual of the algorithm for state observability (Stigter, van
Willigenburg and Molenaar, 2018; Van Willigenburg, Stigter
and Molenaar, 2022). Therefore it integrates the state-
equation of the nonlinear dynamical system

i(1)= f(x(1)u (1))

backward in time from a fixed terminal state x(tf) over a

3.1

small time-interval 7€ [z,,7,]. 7, <t, together with equation
(23) in which A(r)=9f /dx
B(t)=9f /ou

Next, taking

x=x(t)u=u(t)
, matrix function CID(tN,t)B(t) is
i=012,..,N,
N =n,-1. Each evaluation ®(z,,7,)B(s,) represents the

x=x(1),u=u(r)

evaluated at increasing time instants f,,

state response at time ¢, of the variational system resulting
from impulses J(z,) to each of its inputs. Concatenating

these evaluations provides sensitivity matrix

S, =[q)(tzv’to)B(to)’q)(tN’tl)B(tl)""

. 3.2)
D (ty.1,) B(1,)]e R™™

A singular value decomposition (SVD) applied to S,
provides n_ singular values and corresponding left singular
vectors. Taking n,_ evaluations of ®(7,,t)B(r) in (3.2)
prevents S, to be a-priori rank deficient if B(r) has minimal

rank 1 (making n,  effectively 1). The number of zero

u

singular values of §_ equals the number of uncontrollable

modes of the nonlinear system (3.1). The corresponding left
singular vectors span the null-space representing all

directions in which state x(z,) of system (3.1) cannot be

controlled locally. The non-zero components of these left
singular vectors indicate the state-variables together making
up all uncontrollable modes of system (3.1) (Van
Willigenburg, Stigter and Molenaar, 2022).

Similarly, output controllability of the nonlinear
dynamical system (3.1) with output equation
y(1)=g(x(r) e R" (3.3)

uses n, evaluations at ¢,, i=0,1,2,.,,N=n_ -1 of matrix

function C(z,)®(t,.1)B(t) where C(t,)=dg/dx

x=x(ty)
This provides sensitivity matrix
Sy =I:C(IN)CI)(IN’IO)B(IO)’C(IN)q)(tN’tl )B(tl )’-"

3.4)
C(tN )q)(tN’tN )B([N ):| = C(tN)SX e Rt{‘.xn“ny

An SVD is now applied to matrix S, . Its interpretation

now concerns output controllability and equals the one above
for state controllability with state x replaced by output y .
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4. NUMERICAL ASPECTS AND IMPLEMENTATION
OF THE SENSITIVITY-BASED ALGORITHMS

A most important numerical aspect of the sensitivity-based
algorithm concerns the detection of numerically zero singular
values, since each one corresponds to an uncontrollable
mode/state variable. One generally considers singular values
to be numerically zero if these are below a significant gap
within all singular values. A rule of thumb is that this gap
should be at least as large as 4 to 5 decades. In general, as
system dimensions grow, the non-zero singular values cover
a wider range. Given the finite machine precision, to detect a
possible gap, one prefers the range of non-zero singular
values to be as small as possible.

One technique to decrease this range and enlarge a
possible gap is to concatenate the results of several
trajectories, not just one (Stigter, Joubert and Molenaar,
2017; Van Willigenburg, Stigter and Molenaar, 2022). For
state controllability, when concatenating the results of N >1
trajectories the algorithm computes sensitivity matrix

S, =[S, S; SM],

X2

SE=[@(ty.1,)B(t,). @ (ty1,) B(1,).-. (3.5)
®(1,,1,)B ] k=1,2,..M.
S, =S}, 8;...8) 1=C(1y )
Sf,:[Ct (1, t) (%), ( )@ (IN,I])B(II),.., (3.6)

C(t,)@( } =C(t =1,2,.,M.

An alternative to computing S and Sy in (3.2), (3.4) and

(3.5), (3.6) would be to compute the Gramian matrices

x

W, (ty.1) =Ifc1>(r,zf )B(7)B (7)®" (7.t,)dr  (3.7)
and t
Wy (tN’t) = C(tN)Wx(

1) C" (1)

respectively (Kreindler and Sarachik, 1964). However, the
squaring of the matrix function ®(7,7,)B(z) within W,

(3.8)

and W, respectively, causes their non-zero singular values to

be spread over a wider range. This is undesirable from the
point of view of detecting a possible gap as already noted in
the pioneering paper (Moore, 1981).

Numerical integration of the nonlinear dynamics (3.1),
(3.3) together with (2.3) is performed over time-interval
t€[ty.ty]. This time-interval may be very short, partly
causing the algorithms exceptional efficiency. But it must be
long enough to capture all relevant system and sensitivity
dynamics. Enlarging this time-interval is also another way of
decreasing the range of non-zero singular values.

Within (2.3), A(t):aflaxxzx(t)u:u(t) is computed using
automatic differentiation (Neidinger, 2010; Margossian,

2019) or using complex derivatives (Martins, Sturdza and
Alonso, 2022) providing exceptionally accurate derivatives.

The same applies to C(z,)= required to

x=x(ty)

compute S in (3.4), (3.6). Constant system inputs u(r)

often suffice. Only in exceptional cases they may cause the
trajectory to be singular or not sufficiently exciting. The fixed
terminal state x(7,) of the nonlinear system (3.1) should
preferably be obtained from integrating just (3.1) forward in
time over t€ [to,tN] starting from an arbitrary, but realistic,

state x(Z,). And finally, when concatenating the results of

several trajectories in (3.5), (3.6), these trajectories should be
such that they do not change the null-space made up by the
left singular vectors corresponding to zero singular values of
the SVD (Stigter, Joubert and Molenaar, 2017).

5. EXAMPLES

Example 1: Example 6.1 from (Kwatny and Blankenship,
2000).

X;
XX, +x,e” X
X 1
fxu)= 3 + u (3.9
X, — X, X, 0
xsz X%, = xz2 X X3

The outcome of the SVD obtained from the sensitivity-
based algorithm computing state controllability is listed in
Table 1. From it we conclude that system (3.9) has two
uncontrollable modes involving state-variables 2, 3 and 4,
since the first component of both left singular vectors is
numerically zero.

Table 1: Singular values for state controllability of system
(3.9) (left column) and the two left singular vectors
corresponding to the two numerically zero singular values.

2.3212e+00 | -3.9881e-13 | 1.4134e-15
2.8240e-02 | -4.1173e-02 | 2.2967e-01
2.2726e-14 9.8431e-01 | 1.7646e-01
2.5034e-17 1.7159e-01 | -9.5714e-01

Next consider output controllability of system (3.9) with

y=[x.2]

(3.10)
as well as

v=[x.2]. 3.11)

Table 2 lists the outcome of the SVD for output-
controllability in both cases. From it we may conclude that
system (3.9) with outputs (3.10) is output controllable
whereas with outputs (3.11) it is not. In the latter case the
uncontrollable output mode consists solely of output 2 being

x; . This complies with the fact that for state controllability,
X, is not involved in uncontrollable modes. Moreover, using

the Lie algebraic rank condition (LARC) we verified the
outcome of state and output controllability obtained from our
sensitivity rank condition (SERC). For state controllability,
LARC computes the rank of a matrix containing
concatenated Lie brackets that we computed using Hall bases
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(Duleba, 1997). For output controllability LARC computes
the rank of the same matrix pre-multiplied with dy/dx .

All computations were performed on a 3,10 gigahertz Intel
Core 15-8600 PC running Windows 10 and Matlab 2024a.

Table 2: Singular values for output controllability of system
(3.9) corresponding with outputs (3.10), (3.11) respectively
(left two columns) and the left singular vector corresponding
to the numerically zero singular value of output (3.11) (last
column) .

4.1374e+00
5.3098e-02

7.3527e-01
9.515%e-22

1.3417e-21
-1.0000e+00

In order to illustrate the capability of sensitivity-based
algorithms to handle large-scale systems very efficiently
consider the next example.

Example 2: Ring of coupled Kuramoto oscillators
(Kuramoto, 1975, 1984; Strogatz, 2000; Baggio, Bassett and
Pasqualetti, 2021). The dynamics of the ring of n coupled
oscillators is represented by

6,(1)=@ +sin(6.,(1)=6, (1) +sin(6,,()=6,()). 5,
i=12,..n

with i periodic mod 7 . One easily recognises that the phases
of the oscillators 6, may be considered state variables. The

oscillator frequencies @. are constant parameters apart from
the first that is slightly modified by the single control input

@ — @, +0.01u, (1). (3.13)

As a first case take n=n_=10, terminal time ¢ =1 and the
components of terminal state x(7) random numbers in

between 0 and 1. Furthermore, for @,, i=2,3,..,n take

random numbers in between 1 and 1.01 since the model
applies only to oscillators who’s angular frequencies are very
close together (Strogatz, 2000). And finally take
u(7)=u,(7) a constant randomly selected between 0 and 1.

For state controllability the singular values are plotted on a
logarithmic scale in Fig. 1 revealing controllability. Taking

round (7, /3) to be controlled outputs

y,=e ™ ,i=12,.,round(n,/3), j=round(n,/3) (3.14)
the singular values obtained for output controllability are
plotted in Fig. 2.
Next introduce a redundant output that is nonlinearly
related to two other outputs as follows

M=y (3.15)

Equation (3.15) overrules the first output as specified by
(3.14). As seen from Fig. 3a, the system is no longer output
controllable because of the redundant output (3.15). The
corresponding signature in Fig. 3b correctly indicates that the
single uncontrollable output mode involves outputs 1,2 and 3.
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Singular values sensitivity matrix

104§/

-
=

Singular values
=

102
1 2 3 4 5 6 7 8 9 10

Index
Fig. 1: Normalized singular values determining state

controllability for system (3.12), (3.13) with n=10. Being

well within the machine precision range of 2.210™'°, and not
showing a gap, there are no numerically zero singular values
so the system is state controllable. CPU time 0.491 s.

Singular values sensitivity matrix

104y

Singular values
=

1 2 3 4
Index

Fig. 2: Normalized singular values determining output
controllability for system (3.12), (3.13), (3.14) with n=10.
Being well within the machine precision range of 2.2107'°,
and not showing a gap, there are no numerically zero

singular values so the system is output controllable. CPU
time 0.573 s.

Singular values sensitivity matrix

107

Singular values

g

102
| 2 3 4

Index
Fig. 3a: Normalized singular values determining output
controllability for system (3.12), (3.13), (3.14), (3.15) with
n=10. Being well within the machine precision range of
2.2107'"°, one numerically zero singular value is found so the
system is not output controllable. CPU time 0.483 s.

Signature

oy
L=

Component value
o

1 2 3 4
Component/State index

Fig. 3b: Signature of the output uncontrollable system
(3.12), (3.13), (3.14), (3.15) showing the components of the
left singular vector corresponding to the single numerically
zero singular value.
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Singular values sensitivity matrix

Singular values
-
=

10?

N O A S N DO A QN DA RN A D N B

Index
Fig. 4: Normalized singular values determining state
controllability for system (3.12), (3.13) with n=50, t=10
for one trajectory (lower red stars) and after concatenating
the result of four trajectories (top red dots) bringing the
singular values within the machine precision range. In the
latter case there are no numerically zero singular values so
the system again turns out state controllable. CPU time all
four trajectories together 23.663 s.

Singular values sensitivity matrix

10

Singular values
=
i A
f fr—it)
7 —0
o
s

10

mTr T T T T T

Fig. 5: Normalized singular values determining output
controllability for system (3.12), (3.13), (3.14) with n=50,
t =10 after concatenating the result of four trajectories.
There are no numerically zero singular values so the system
is again output controllable. CPU time of all four trajectories
23.508 s.

Singular values sensitivity matrix

<
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w0

Singular values

g

10
N R BB A D 9,00 D000

Index

Fig. 6a: Normalized singular values determining output
controllability for system (3.12), (3.13), (3.14), (3.15) with
n=50, t=10 computed from concatenating four
trajectories. There is one numerically zero singular value so
the system again turns out not output controllable with a
single uncontrollable mode. CPU time all four trajectories
23.579 s.

Signature

-1

Component value
=}
A_°

R i i e

Compenent/State index

Fig. 6b: Signature of the output uncontrollable system (3.12),
(3.13), (3.14), (3.15) showing the components of the single
left singular vector corresponding to the single numerically
zero singular value.

When increasing 7, the singular values start to cover the
full range of the machine precision causing difficulties in
establishing numerically zero singular values. On the other
hand, since the singular values are actually measures of
controllability, very small singular values indicate very poor
controllability in directions given by the corresponding left
singular vectors.

To alleviate the problem of detecting numerically zero
singular values, terminal time 7, may be increased and the

results of several trajectories may be concatenated as shown
in Figs. 4-6. The additional three trajectories have different
parameter values @),, i=2,3,..,n. For the second trajectory

they are random numbers in between 2 and 2.01, for the third
in between 3 and 3.01, and for the fourth in between 4 and
4.01. Finally, all trajectories share the same terminal state

x(tf)of system (3.1) thereby fulfilling the requirement

mentioned at the end of section 4.
6. CONCLUSIONS

A sensitivity-based  algorithm  computing  state
controllability of large-scale nonlinear dynamical systems has
been extended to compute output controllability. As can be
seen from equations (3.2), (3.4), due to the linear nature of
sensitivity dynamics, the modification comes down to a pre-
multiplication of state sensitivity matrix S _, obtained for

state controllability, with matrix C(7, ) being the sensitivity

of the output to the state at the terminal time of the trajectory
used by the sensitivity-based algorithm.

Small and large-scale examples showed that nonlinear
dynamical systems can be state controllable, but not output
controllable and vice versa.

Sensitivity-based algorithms rely on numerical integration
along trajectories and a sensitivity rank condition (SERC)
requiring the detection of zero singular values of a sensitivity
matrix. The singular values obtained from a singular value
decomposition (SVD) are actually measures of controllability
in directions given by the corresponding left singular vectors
obtained from the SVD. These measures are highly valuable
information to engineers concerning ‘practical
controllability’. Theoretically, if the smallest of the singular
values is very small yet non-zero, the system is controllable.
Therefore the sensitivity-based algorithms may provide a
theoretically erroneous answer if singular values fall below
the range determined by the machine precision. The large-
scale examples in this paper showed how prolonging
trajectories and concatenating the results of several
trajectories alleviate this problem.
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