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1. Introduction
Most agricultural soils across the world have been contaminated with heavy metals such as cadmium
(Cd), arsenic (As), mercury (Hg), lead (Pb), chromium (Cr), and others. Heavy metals in high con-
centrations are harmful to all living forms, from bacteria to humans (Goyal et al., 2020). When heavy
metal concentrations exceed supraoptimal levels for plant normal functioning, they can inhibit plant
growth and agricultural output (Tiwari & Lata, 2018). Heavy metal concentrations in soils have grown
globally as a result of historical industrialization or from geogenic causes (Adriano, 2001). In plant
cells, a high concentration of bioavailable heavy metals produces free radicals and reactive oxygen
species (ROS). This is followed by uncontrolled oxidation and the start of a chain reaction involving
cellular biomolecules such as nucleic acids, proteins, and lipids, resulting in oxidative stress and
cellular damage. As a result, sensitive plants growing in heavy metal-contaminated areas exhibit
altered metabolism, decreased nutritional value, decreased photosynthesis, decreased growth,
decreased biomass production, and decreased yield (Kiran et al., 2022). To evade the consequences of
heavy metal toxicity, tolerant plants have evolved a number of mechanisms that activate when exposed
to heavy metals. Sequestration/buildup of toxic heavy metals in a cellular compartment such as
vacuole or apoplast, and detoxification, that is, conversion into nontoxic forms, are the two primary
strategies for heavy metal tolerance (Goyal et al., 2020). In this chapter, we summarized the negative
impacts of heavy metals on plants’ morphology, seed germination, and plant development, as well as
the effects of heavy metals on people, which eventually affects human health.
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2. Effect of heavy metals on plant growth
Heavy metals that are accessible for plant absorption include those that are present in the soil solution
as soluble components or that are easily solubilized by root exudates (Blaylock & Huang, 2000).
Although some heavy metals are required for plant development and maintenance, excessive levels of
these metals can be hazardous to plants. Plants’ capacity to amass necessary metals also allows them to
acquire nonessential metals (Djingova& Kuleff, 2000). Because metals cannot be broken down, when
concentrations inside the plant surpass ideal levels, they have both direct and indirect effects on the
plant (Chibuike & Obiora, 2014). Because of their existence in the soil environment, these heavy
metals are also known as trace elements (10 mg/kg or mg/L in soil/aquatic medium) or ultra-trace
elements (1 mg/kg or mg/L in soil/aquatic medium). In addition to these essential trace elements,
another category of heavy metals, Class B metals, which are considered nonessential trace elements
such as Hg, Ag, Pb, and Ni, etc., are extremely toxic in nature because they play no beneficial role in
plant growth; adverse effects have been recorded at very low concentrations of these metals in the
growth medium (Kumar et al., 2019). Other metals that are favorable to plants may benefit from
“small” concentrations of these metals in the soil, which may boost plant growth and development.
Plant growth has been shown to be reduced at greater concentrations of these metals (Chibuike &
Obiora, 2014). Certain heavy metals are toxic to the growth, biochemistry, and physiology of various
plants (Table 16.1).

Excessive heavy metal release into the environment causes plants to evolve various mechanisms to
deal with their detrimental effects (Franco-Franklin et al., 2021). A study of plant responses and
tolerance discovered that heavy metal stress induces the expression of many genes. Heavy metals
stimulate a variety of signaling pathways in plants, including calcium-dependent signaling, mitogen-
activated protein kinase (MAPK) signaling, ROS signaling, and phytohormonal response (Dutta et al.,
2018).

3. Bacterial endophytes
Plants naturally communicate with a wide range of microorganisms in a variety of ways. Endophytic
bacteria are bacteria that colonize the internal tissue of plants with no visible signs of illness or
detrimental influence on the host (Pavithra et al., 2021; Schulz & Boyle, 2006). Endophytic bacteria
can promote plant growth through a variety of mechanisms, including indole-3-acetic acid (IAA)
synthesis, phosphate solubilization activity, siderophore production under Fe-limiting conditions,
improved mineral nutrient uptake by plants, and nitrogen fixation activity (Ryan et al., 2008).
Endophytic bacteria can stimulate plant host development even in the presence of abiotic stress (Das
et al., 2021; Franco-Franklin et al., 2021).

Bacteria in serpentine soil and their interactions with hyperaccumulating plants have piqued the
interest of several researchers due to biotechnological applications for bioremediation and studying the
composition of bacterial communities living in a naturally contaminated environment (Pavithra et al.,
2020). Bacterial endophytes have been identified from a variety of plant species, and in certain sit-
uations, they may boost plant development or give increased tolerance to biotic and abiotic stressors
such as heavy metals. Furthermore, endophytic bacteria can be genetically engineered to provide the
host plant with additional capacities for phytoremediation. Endophytes describe an appealing and
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Table 16.1 Toxicity of certain heavy metals to the growth, biochemistry, and physiology of
various plants.

Heavy metal Plant
The toxic effect on
plant References

Al Mouse-ear cress,
Arabidopsis thaliana

Growth inhibition; ROS
increase; lipid
peroxidation

Kochian et al. (2015),
Reyna-Llorens et al.
(2015)

As Canola (Brassica napus) Stunted growth;
chlorosis; wilting

Cox et al. (1996)

Mung bean (Vigna
radiata)

Inhibition of
germination, root
growth, and cell division

Mumthas et al. (2010)

Rice (Oryza sativa) Reduction in seed
germination; decrease in
seedling height; reduced
leaf area and dry matter
production

Marin et al. (1993),
Abedin et al. (2002)

Tomato (Lycopersicon
esculentum)

Reduced fruit yield;
decrease in leaf fresh
weight

Barrachina et al. (1995)

Co Tomato (Lycopersicon
esculentum)

Reduction in plant
nutrient content

Jayakumar et al. (2013)

Mung bean (Vigna
radiata)

Reduction in antioxidant
enzyme activities;
decrease in plant sugar,
starch, amino acids, and
protein content

Jayakumar et al. (2008)

Radish (Raphanus
sativus)

Reduction in shoot
length, root length, and
total leaf area; decrease
in chlorophyll content;
reduction in plant
nutrient content and
antioxidant enzyme
activity; decrease in
plant sugar, amino acid,
and protein content

Jayakumar et al. (2007)

Cd Wheat (Triticum sp.) Reduction in seed
germination; decrease in
plant nutrient content;
reduced shoot and root
length

Ahmad et al. (2012),
Yourtchi and Bayat
(2013)

Garlic (Allium sativum) Reduced shoot growth;
Cd accumulation

Jiang et al. (2001)

Maize (Zea mays) Reduced shoot growth;
inhibition of root growth

Wang et al. (2007)

Cr Wheat (Triticum sp.)

Continued
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Table 16.1 Toxicity of certain heavy metals to the growth, biochemistry, and physiology of
various plants.dcont’d

Heavy metal Plant
The toxic effect on
plant References

Reduced shoot and root
growth

Sharma and Sharma
(1993), Panda and Patra
(2000)

Tomato (Lycopersicon
esculentum)

Decrease in plant
nutrient acquisition

Moral et al. (1995),
Moral et al. (1996)

Onion (Allium cepa) Inhibition of
germination process;
reduction of plant

Nematshahi et al. (2012)

Cu Bean (Phaseolus
vulgaris)

Accumulation of Cu in
plant roots; root
malformation and
reduction

Cook et al. (1998)

Black bindweed
(Polygonum
convolvulus)

Plant mortality; reduced
biomass and seed
production

Kjær and Elmegaard
(1996)

Rhodes grass (Chloris
gayana)

Root growth reduction Sheldon and Menzies
(2005)

Hg Rice (Oryza sativa) Decrease in plant height;
reduced tiller and
panicle formation; yield
reduction;
bioaccumulation in
shoot and root of
seedlings

Du (2005), Kibra (2008)

Tomato (Lycopersicon
esculentum)

Reduction in
germination percentage;
reduced plant height;
reduction in flowering
and fruit weight;
chlorosis

Shekar et al. (2011)

Mn Broad bean (Vicia faba) Mn accumulation shoot
and root; reduction in
shoot and root length;
chlorosis

Arya and Roy (2011)

Cucumber (Cucumis
sativus)

Chlorosis, necrosis,
inhibition of growth

Dragi�si�c Maksimovi�c
et al. (2012)

Mung bean (Vigna
radiata)

Reduction in
germination, growth,
and chromosome length

Mumthas et al. (2010)

Pea (Pisum sativum) Reduction in
chlorophylls a and b
content; reduction in
relative growth rate;

Doncheva et al. (2005)
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Table 16.1 Toxicity of certain heavy metals to the growth, biochemistry, and physiology of
various plants.dcont’d

Heavy metal Plant
The toxic effect on
plant References

reduced photosynthetic
O2 evolution activity
and photosystem II
activity

Spearmint (Mentha
spicata)

Decrease in chlorophyll-
a and carotenoid
content; accumulation
of Mn in plant roots

Asrar et al. (2005)

Tomato (Lycopersicon
esculentum)

Slower plant growth;
decrease in chlorophyll
concentration

Shenker et al. (2004)

Ni Pigeon pea (Cajanus
cajan)

Decrease in chlorophyll
content and stomatal
conductance; decreased
enzyme activity which
affected Calvin cycle
and CO2 fixation

Sheoran et al. (1990)

Rye grass (Lolium
perenne)

Reduction in plant
nutrient acquisition;
decrease in shoot yield;
chlorosis

Khalid and Tinsley
(1980)

Wheat (Triticum sp.) Reduction in plant
nutrient acquisition

Pandolfini et al. (1992),
Barsukova and
Gamzatova (1999)

Rice (Oryza sativa) Inhibition of root growth Lin and Kao (2006)

Pb Maize (Zea mays) Reduction in
germination percentage;
suppressed growth;
reduced plant biomass;
decrease in plant protein
content

Hussain et al. (2013)

Portia tree (Thespesia
populnea)

Reduction in the number
of leaves and leaf area;
reduced plant height;
decrease in plant
biomass

Kabir et al. (2010)

Oat (Avena sativa) Inhibition of enzyme
activity which affected
CO2 fixation

Moustakas et al., 1994

Zn Cluster bean
(Cyamopsis
tetragonoloba)

Reduction in
germination percentage;
reduced plant height and
biomass; decrease in

Manivasagaperumal
et al. (2011)

Continued
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long-term bio-based method for increasing agricultural yield and tolerance to environmental chal-
lenges (Tiwari, 2022). As highlighted in major research (Nguyen & Phan, 2023; Tiwari et al., 2023),
bacterial and fungal endophytes have exhibited favorable effects in addressing HM contamination and
enhancing plant tolerance for greater adaptation and survival.

4. Arsenic contamination
From the 1890s until the 1970s, agricultural applications of arsenate-based pesticides left substantial
acreage of As residues, notably on land utilized for apple, potato, and blueberry crops. Arsenate was
used at rates of up to 80 kg per ha in most fruit orchards until pesticides like DDT (dichloro-
diphenyl-trichloroethane) were introduced in the late 1940s, resulting in widespread pollution.
As-polluted soils in large regions and tiny localized areas are difficult and expensive to treat using
traditional methods. Endophytic bacteria and fungi that colonize certain plants have been demon-
strated to improve plant nutrient utilization, boost disease resistance, and promote the degradation of
soil and water pollutants such as trichloroethylene (TCE) and polycyclic aromatic hydrocarbons
(PAHs). Plant growth was hampered by high As concentrations in the soil. A high concentration of
As in the soil typically interferes with the normal absorption of nutrients such as P and Fe, hindering
plant development. When compared to nontreated plants, inoculation with endophytic bacteria had a
greater favorable effect on the number of nodules, shoot, and root biomass. This phenomenon may
occur as a result of their capacity to solubilize phosphate, produce siderophores, and/or fix nitrogen
to create an appropriate form of P, Fe, and N, so encouraging plant development. Many nonrhizobial
bacteria have been shown to fix nitrogen and generate nitrogen-fixing nodules on legume roots
(Martinez-Hidalgo & Hirsch, 2017).

Table 16.1 Toxicity of certain heavy metals to the growth, biochemistry, and physiology of
various plants.dcont’d

Heavy metal Plant
The toxic effect on
plant References

chlorophyll, carotenoid,
sugar, starch, and amino
acid content

Pea (Pisum sativum) Reduction in
chlorophyll content;
alteration in structure of
chloroplast; reduction in
photosystem II activity;
reduced plant growth

Doncheva et al. (2001)

Ryegrass (Lolium
perenne)

Accumulation of Zn in
plant leaves; growth
reduction; decrease in
plant nutrient content;
reduced efficiency of
photosynthetic energy

Bonnet et al. (2000)
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Proteobacteria, Actinobacteria, Acinetobacter, Burkholderiales, Flavobacterium, Pseudomonas,
Rahnella, and Firmicutes were identified based on 16S rRNA gene sequence analysis of typical
endophytic bacterial isolates utilized against As (Tashan et al., 2021). Agrobacterium, Steno-
trophomonas, Pseudomonas, Rhodococcus, and Bacillus were the most common genera discovered.
The bacteria with the highest arsenite resistance (minimum inhibitory concentration >45 mM)
belonged to the genera Agrobacterium and Bacillus. The strains with high As tolerance also produced a
lot of IAA (Gu et al., 2018).

5. Lead and cadmium contamination
Pb and Cd are two heavy metals that are widely employed in industrial processes; therefore, their
ambient levels have risen significantly (Kumar, Subrahmanyam, et al., 2021; Kumar, Tripti, et al.,
2021). They have no useful role in biological systems and, even at low concentrations, are highly
harmful to living organisms. Pollution from Pb and Cd is a big problem across the world since they are
stable, persistent, and cannot be biodegraded. As a result, they accumulate in many crops and enter the
food chain, producing chronic and acute diseases in people (Tchounwou et al., 2012). To lower Pb and
Cd concentrations in the environment and thereby avoid adverse impacts on human health and eco-
systems, physicochemical approaches have been developed. Despite their efficiency, most are costly,
inefficient, and environmentally unfriendly. Phytoremediation is an environmentally beneficial
approach that removes Pb and Cd from soil and water using plant species and other endophytic
bacteria (Fan et al., 2020; Rubio-Santiago et al., 2023).

Bacillus megaterium is a gram-positive soil bacterium with considerable potential for phytor-
emediation of metal-polluted areas (Esringüa et al., 2014). Li et al. (2017) revealed that a hybrid
Pennisetum with endophytic B. megaterium H3 may be used for biomass production and Cd phy-
tostabilization at various degrees of Cd contamination in aquatic settings (Saleem et al., 2007). And it
was discovered that B. megaterium might promote Cd accumulation in plants by minimizing the
detrimental impacts of heavy metals (Esringüa et al., 2014). Pseudomonas aeruginosa biosorption of
Pb and Cd in aqueous solution was previously reported (Chang et al., 1997). P. aeruginosa strain
ASU6a was discovered to immobilize lead [Pb2þ] via cell surface carbonyl, phosphate, hydroxyl, and
amino groups (Gabr et al., 2008). Another study discovered that amide and sulfonamide groups, as
well as carboxyl and hydroxyl groups on the cell surface of “Bacillus sp. ATS-2” may bind Pb2þ
(Abuk et al., 2006). Similar results were obtained when Saccharomyces cerevisiae was used to
immobilize Pb2þ (Abuk et al., 2007). The primary Pb concentration and pH have a considerable
influence on the adsorption capacity of Pb2þ on the cell surface. Metal biosorption is enhanced with
increasing pH from 2 to 6 in research with Pseudomonas pseudoalcaligenes and Micrococcus luteus
(Leung et al., 2000). The maximum absorption capacity was observed at pH 5 with an initial metal
content of 100 mg L�1. Pb-resistant P. aeruginosa strain 4 EA isolated from vehicle battery waste has
been shown to survive 0.8 mM Pb nitrate by considerable Pb biosorption (11% by weight) on cell
(Naik & Dubey, 2011). Muñoz et al. (2015) discovered that the bacterial isolate Klebsiella sp. 3S1 is
very efficient in Pb absorption via biosorption and might be employed as an inexpensive biosorbent for
Pb-contaminated soil reclamation. Rahman et al. (2019) discovered that a Pb-resistant bacterium,
Staphylococcus hominis strain AMB-2, isolated from an industrial environment, demonstrated
considerable Pb and Cd biosorption from an aqueous medium. Chen et al. (2019) identified a Pb-binding
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flagellin protein (a protein rich in carbonyl-containing amino acids) produced by Enterobacteriaceae
Serratia Se1998. The protein has a very high Pb-binding capability and contributes significantly to the
microbial molecular process of Pb tolerance and biosorption. These properties of Pb-tolerant bacterial
strains imply that they are appropriate instruments for the bioremediation of Pb-contaminated soil or water
(Mitra et al., 2021).

6. Copper contamination
Copper is widely utilized, particularly in the metal and metal-related sectors. As a result, it is commonly
found in wastewater effluents and receiving bodies of these effluents. It is extremely harmful to soil and
water resources. As a result, copper-containing wastewater effluents should be treated properly before
being discharged into receiving bodies. The USEPA established a copper discharge limit of 1.3 mg L�1

and the WHO established a limit of 2 mg L�1 (Al-Saydeh et al., 2017). Despite being an important
nutrient, large amounts of copper can be harmful to plants (Fathollahi et al., 2021). In one study,
Leifsonia xyli, a rhizospheric bacterium, was found to reduce copper metal stress in tomatoes by
generating two distinct PGRs, gibberellins and IAA (Kang et al., 2017). Pantoea sp. was found in the
rhizosphere of Ziziphus nummularia synthesizing the ACC deaminase enzyme and relieving copper
stress in wheat crops (Singh & Jha, 2018). In another study, the copper-accumulating bacteria Pseu-
domonas sp. were shown to produce ACCD (1-aminocyclopropane-1-carboxylate deaminase) and
improve plant development in Helianthus annuus L. (Kumar, Subrahmanyam, et al., 2021; Kumar,
Tripti, et al., 2021). Similarly, Acinetobacter sp. and Pseudomonas putida, which produce siderophores,
IAA, and phosphorus solubilization, have been found to alleviate copper stress in maize and improve
growth by increasing biomass and chlorophyll content (Rojas-Tapias et al., 2014). Bacillus sp. and
Streptomyces griseus showed good biosorption yields, indicating that they might be employed reliably
for bioremediation of copper-contaminated wastewaters, according to Özkoç et al. (2022, pp. 1e17).
Huo et al. (2012) discovered that inoculating guinea grass with the Cu-resistant endophytic bacteria
Pantoea sp. Jp3-3 greatly reduced Cu uptake and accumulation during extreme Cu stress. The absorption
and accumulation of metals, whether it rises or decreases in the presence of endophytes, is mostly
determined by the concentration of metals in the soil (Li et al., 2012).

7. Nickel contamination
Because of its role in plant development and environmental feedback, the bioavailable proportion of
nickel (Ni) in the soil is critical. High Ni concentrations in the soil environment, particularly in the root
zone, may slow plant development, resulting in lower plant biomass and production. Endophytic
microbes, on the other hand, show high potential for reducing Ni toxicity, especially when combined
with zeolite (Naveed et al., 2020). However, other researchers believe that the existence of metal-
resistant endophytes reduces plant metal absorption and accumulation. Lode-wyckx et al. (2001)
discovered that inoculating Ni-resistant Herbaspirillum seropedicae into Lolium perenne led in a
considerable drop in Ni content in the roots (11%) and shoots (14%). Similarly, Madhaiyan et al.
(2007) discovered that inoculating tomato plants with the endophytic bacteria Methylobacterium
oryzae and Burkholderia sp. decreased Ni and Cd absorption and accumulation. Caulobacter sp.
MN13, an endophytic plant growth-promoting endophytic bacteria isolated from surface-disinfected
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roots of maize plants (Naveed et al., 2014; Prischl et al., 2012), was employed to improve growth,
production, and Ni immobilization (Naveed et al., 2020). Stenotrophomonas sp., Pseudomonas sp.,
and Sphingobium sp., three novel endophytic bacterial species of Tamarix chinensis, display numerous
plant growth-promoting properties indole acetic acid (IAC), siderophores, and 1-aminocyclopropane
(Chen et al., 2020).

8. Chromium contamination
Cr is an essential element for all living things. In recent years, several human activities have been
responsible for Cr(VI) pollution of the environment (Murthy et al., 2022). Cr enters the ecosystem as a
result of anthropogenic activities such as urbanization, industrialization, and mining (Samuel et al.,
2018), all of which contribute to global Cr pollution. It is one of the most dangerous and carcinogenic
heavy metals present in the earth’s crust (Bhalerao & Sharma, 2015), even at concentrations as low as
0.2 g m3 (Darakas et al., 2013; Pratush et al., 2018). Although Cr is required in trace levels by all living
forms, it is a very deadly contaminant when excessive concentrations enter the food chain (McNeill
et al., 2012, p. 36; Shrivastava et al., 2002).

Several remediation solutions for Cr-contaminated sites have been established; they mostly focus
on promoting green technologies via different chemical transformations, adsorption, oxidation-
precipitation, and oxidation-reduction processes (Jiang et al., 2020). Bacteria operate as phytor-
emediation promoters by producing IAA, solubilizing phosphate, and producing EPS. The chromate
reductase (ChR) gene is found in endophytic bacteria and catalyzes the reduction of Cr(VI) to Cr(III)
(Patra et al., 2010). Agrobacterium rhizogenes have the ability to collect and decrease heavy metal
Cr(VI) while also promoting plant development (Rosariastuti et al., 2013). Bacillus, Pseudomonas,
Enterobacter, Staphylococcus, Microbacterium, and Arthrobacter isolated from Prosopis juliflora
generate supportive chemicals for Cr(VI) phytoremediation, according to Khan et al. (2015). Ac-
cording to Chitraprabha and Sathyavathi (2018), Enterobacter cloacae coupled with Tagetes erecta
can accumulate and decrease Cr(VI). Kumar et al. (2014) isolated Enterobacter aerogenes that were
resistant to Cr(VI) at concentrations up to 600 mg/L and could generate IAA and solubilize phosphate.
Khan et al. (2015) discovered an Enterobacter sp. that is resistant to Cr(VI) and can produce
phytoremediation-supporting chemicals. Endophytic bacteria that tolerate Cr(VI) have the ChR gene.
Wani and Adeosun (2017) discovered that the ChR gene encodes an enzyme that catalyzes the
reduction conversion of Cr(VI) to Cr(III). According to Patra et al. (2010), the ChR gene is found in
Arthrobacter aurescens, Bacillus atrophaeus, and Rhodococcus erythropolis. Klebsiella pneumoniae
andMangrovibacter yixingensis both carried a ChR gene, according to Sanjay et al. (2018). Wang et al.
(1990) discovered the ChR gene in Escherichia coli ATCC 33456, Ochrobactrum anthtopi, and
E. cloacae HO1. By using NAD(P)H extracellular reductase, these bacteria may decrease Cr(VI)
aerobically. Endophytic bacteria Kocuria rhizophila of Oxalis corniculata (hyperaccumulator plant)
may accumulate metal ions and have higher resistance to Cr (Haq et al., 2016).

9. Zinc contamination
Zinc (Zn) is involved in several biological activities. It is necessary for macromolecule structural
stability and functions as a cofactor for over 300 enzymes (McCall et al., 2000). In excess,
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however, it may impede the aerobic respiratory chain, be poisonous, and operate as a powerful
disruptor of biological systems (Blanco, 2000). Zn concentrations on agricultural land that have
reached harmful levels as a result of numerous human activities, such as the application of metal-
contaminated sewage sludge or mining operations, may endanger sustainable and high-quality
food production (Li & Christie, 2001). Cupriavidus, Klebsiella, Serratia, Micrococcus, Pseudo-
monas, Streptomyces, Proteus, and other Zn-tolerant PGPR strains have been identified (Afzal
et al., 2017; Bhojiya and Joshi et al., 2016; Ortiz-Ojeda et al., 2017). Paenibacillus sp. RM (Host-
Tridax procumbens) is a suitable option for Zn bioremediation because of its possible role in
encouraging plant growth, secondary metabolite synthesis, and heavy metal bioremediation
(Govarthanan et al., 2016). Two symbiotic isolates, Mesorhizobium loti and Agrobacterium
radiobacter, show the best potential for HM resistance and PGP features (Hubber et al., 2007).
Sedum alfredii’s bacterial endophytes VI8L2, II8L4, and VI8R2 may be one of the finest possi-
bilities for boosting phytoremediation of Zn-contaminated soil due to their innate capacity to
enhance plant development (Long et al., 2013).

10. Mercury contamination
Hg is a nonessential metal that is toxic and persistent (Selin, 2014). Few anthropogenic sources of Hg
include the production of paints, disinfectants, medicines, pulp and paper, fungicides, and bactericidal
agents. Hg is also discharged into the environment as a by-product of Hg mining, gold refining, fuel
combustion, and instrument fabrication (Moreno et al., 2008). Hg bioaccumulation and bio-
magnification in the trophic chain have consequences for society, the environment, and human and
animal health (Matulik et al., 2017). Endophytic bacteria Bacillus amyloliquefaciens of Eleusine
indica and Jeotgalicoccus huakuii of Cynodon dactylon are employed for phytoremediation of Hg-
contaminated soil due to their high siderophore synthesis and absence of hemolysis (Ustiatik et al.,
2021). To improve growth on Hg-contaminated substances and minimize Hg phytotoxicity, Acineto-
bacter baumannii, Serratia marcescens, Pseudomonas sp., K. pneumoniae, and other Hg-resistant
endophytic bacteria were introduced into maize plants (Mello et al., 2020). Bacillus sp., Bur-
kholderia sp., Enterobacter sp., K. pneumoniae, Lysobacter soli, and Pantoea sp. aided maize (Zea
mays) growth on Hg-supplemented substrates (Mello et al., 2019).

11. Conclusion
In conclusion, utilizing endophytic bacteria to mitigate abiotic stresses caused by environmental
variations, physiological changes within plants, and a harmful effect of synthetic fertilizers, pesticides,
and heavy metal contamination is essential. The emerging field of bioremediation, which involves
using endophytic bacteria to detoxify recalcitrant residues of herbicides, insecticides, synthetic
chemicals, and heavy metals, holds great promise. Further research on endophytic bacteria can
enhance our understanding of their relationship with host plants and provide new insights into this area
of research. To identify the most effective bacterial strains for bioremediation and better comprehend
the plantebacteria relationship, additional studies on the inoculation of effective bacterial strains on
various plants are necessary. It is also crucial to investigate the efficiency of individual strains in
detoxification and the plantebacteria relationship of plants growing in metalliferous soils. While
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genetically engineered microbes may have the potential for bioremediation, their impact on the
ecosystem must be evaluated before commercialization.
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Muñoz, A. J., Espı́nola, F., Moya, M., & Ruiz, E. (2015). Biosorption of Pb (II) ions by Klebsiella sp. 3S1 isolated
from a wastewater treatment plant: Kinetics and mechanisms studies. BioMed Research International, 2015,
719060.

Murthy, M. K., Khandayataray, P., & Samal, D. (2022). Chromium toxicity and its remediation by using endo-
phytic bacteria and nanomaterials: A review. Journal of Environmental Management, 318, 115620.

Naik, M. M., & Dubey, S. K. (2011). Lead-enhanced siderophore production and alteration in cell morphology in a
Pb-resistant Pseudomonas aeruginosa strain 4EA. Current Microbiology, 62, 409e414.

Naveed, M., Bukhari, S. S., Mustafa, A., Ditta, A., Alamri, S., El-Esawi, M. A., Rafique, M., Ashraf, S., &
Siddiqui, M. H. (2020). Mitigation of nickel toxicity and growth promotion in sesame through the application
of a bacterial endophyte and zeolite in nickel contaminated soil. International Journal of Environmental
Research and Public Health, 17(23), 8859.

Naveed, M., Mitter, B., Reichenauer, T. G., Wieczorek, K., & Sessitsch, A. (2014). Increased drought stress
resilience of maize through endophytic colonization by Burkholderia phytofirmans PsJN and Enterobacter sp.
FD-17. Environmental and Experimental Botany, 97, 30e39.

Nematshahi, N., Lahouti, M., & Ganjeali, A. (2012). Accumulation of chromium and its effect on growth of
(Allium cepa cv. Hybrid). European Journal of Experimental Biology, 2(4), 969e974.

Nguyen, K. B. T., & Phan, T. H. T. (2023). Application of plant endophytic microorganisms (Endophytes) in the
treatment of heavy metal pollution in Soils. In P. L. Vo, D. A. Tran, T. L. Pham, H. Le Thi Thu, & N. Nguyen
Viet (Eds.), GTER 2022; environmental science and engineeringAdvances in research on water resources and
environmental systems. Cham, Switzerland: Springer.
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