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 A B S T R A C T

Study Region: The Upper Blue Nile Basin, Ethiopia
Study focus: This study addresses the challenge of utilizing satellite-based precipitation data 
in rainfall-runoff models for regions with limited ground observations. We propose a three-
stage methodology incorporating Variational Mode Decomposition (VMD) into a conceptual 
data-driven framework (CHM-VMD-ML). The method was tested on four PERSIANN family 
precipitation products (2005–2019) using two conceptual hydrological models (CHM: HBV and 
GR6J) and three machine learning models (ML: Random Forest Regression, Boosted Regression 
Forest, and CatBoost Regression), with VMD applied to improve model inputs.

New hydrological insights: Our results highlight that integrating VMD significantly enhances 
the reliability of hydrological simulations driven by satellite precipitation data, particularly 
during low-flow periods. This approach reduces biases in PERSIANN products and improves 
overall model performance, as evidenced by an increase in Nash–Sutcliffe Efficiency values from 
0.22–0.87 in the initial stage (CHM) to 0.74–0.92 in the final stage (CHM-VMD-ML). These 
findings underscore the importance of signal decomposition for refining data-driven models, 
facilitating better hydrological prediction and decision-making in data-scarce regions.

1. Introduction

Hydrological modeling plays a crucial role in understanding and managing water resources in various regions. The hydrological 
modeling of ungauged basins poses a significant challenge in the field of hydrology (Khan et al., 2010). An ungauged basin lacks 
the valuable data that is essential for traditional hydrological models. Therefore, the reliance on remote sensing data becomes an 
essential alternative to fill this data gap and enhance the hydrological modeling performance. Satellite-based meteorological data 
play the role of functional and alternative datasets, providing spatial and temporal variation over large areas (Lauri et al., 2014; Xu 

∗ Corresponding author at: Hydrology and Environmental Hydraulics Group, Wageningen University & Research, P.O. BOX 47, 6700AA, Wageningen, The 
Netherlands.

E-mail addresses: awad.negmeldinawad.mohammedali@wur.nl (A.M. Ali), m.abdallah.hhu@gmail.com (M. Abdallah), babak.mohammadi@smhi.se 
(B. Mohammadi), halzain944@gmail.com (H.E. Elzain).

1 These authors contributed equally to this work and should be considered co-first authors.

https://doi.org/10.1016/j.ejrh.2025.102337
Received 4 July 2024; Accepted 19 March 2025
vailable online 5 April 2025 
214-5818/© 2025 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license 
 http://creativecommons.org/licenses/by/4.0/ ). 

https://www.elsevier.com/locate/ejrh
https://www.elsevier.com/locate/ejrh
https://orcid.org/0000-0002-4618-6037
https://orcid.org/0000-0002-7151-6923
https://orcid.org/0000-0001-8427-5965
https://orcid.org/0000-0003-3356-4649
mailto:awad.negmeldinawad.mohammedali@wur.nl
mailto:m.abdallah.hhu@gmail.com
mailto:babak.mohammadi@smhi.se
mailto:halzain944@gmail.com
https://doi.org/10.1016/j.ejrh.2025.102337
https://doi.org/10.1016/j.ejrh.2025.102337
http://creativecommons.org/licenses/by/4.0/


A.M. Ali et al. Journal of Hydrology: Regional Studies 59 (2025) 102337 
et al., 2014). Due to the advantages of remote sensing datasets, previous studies have proved successful implementation of remote 
sensing information on ungauged basins (Maswood and Hossain, 2016; Poortinga et al., 2017; Andriambeloson et al., 2020; Nguyen 
et al., 2023).

One widely used satellite precipitation product is the PERSIANN (Precipitation Estimation from Remotely Sensed Information 
using Artificial Neural Networks) family product (Hsu et al., 1997), which employs infrared data sourced from geostationary satellites 
for the purpose of rainfall estimation through the utilization of artificial neural networks. It converts gridded infrared data from 
satellites like GOES-8, GOES-10, GMSfall-5, Metsat −6, and Metsat −7 into precipitation rates with 0.25◦ ×0.25◦ resolution for 
various time steps (1, 3, 6 h, and daily) (Kunnath-Poovakka and Eldho, 2023). PERSIANN family products offer some advantages 
to overcome the limitations of precipitation measurement in ungauged catchments and large areas. The PERSIANN family includes 
various versions, such as PERSIANN, PERSIANN-CCS, PERSIANN-CDR, and PERCIANN-CCS-CDR. The PERSIANN family products 
(such as PERSIANN-CCS) can provide near-real-time precipitation estimates across large, remote, or inaccessible areas, making 
them particularly useful for ungauged basins (Nguyen et al., 2018; Sadeghi et al., 2021; Salehi et al., 2022). Moreover, PERSIANN 
systems provide continuous, high-resolution spatial (0.25◦ ×0.25◦ and 0.04◦ ×0.04◦) and temporal (hourly and daily) rainfall data, 
which is essential for accurate and dynamic hydrological modeling. Periodic enhancements to the precision of the PERSIANN-
CCS system are achieved through consistent updates that incorporate microwave-derived rainfall estimates obtained from low-orbit 
satellites (Sorooshian et al., 2000). This globally available dataset has been widely used in hydrological modeling studies to improve 
the representation of precipitation inputs and enhance the performance of models in ungauged basins (Khoshchehreh et al., 2020; Le 
et al., 2020; Salehi et al., 2022). However, some studies showed poor performance of the PERSIANN family products in hydrological 
modeling across the Blue Nile basin (Bitew and Gebremichael, 2011). Bias-correction in the context of remote sensing-based 
precipitation products, such as those from the PERSIANN family, is crucial for enhancing the accuracy and reliability of precipitation 
data, therefore it is recommended to implement a bias-correction approach (Xiao et al., 2022) for the PERSIANN family products 
within the daily time intervals and this issue can be considered as a limitation for the application of PERSIANN family products (Eini 
et al., 2022). These techniques are vital for adjusting remote sensing data so that they more closely match observed ground truth data. 
However, the effectiveness of bias correction methodologies is heavily dependent on the availability and density of ground-based 
gauge stations.

The water resources of the Nile River depend heavily on the Upper Blue Nile Basin (UBNB) in Ethiopia, making it crucial to 
acknowledge the UBNB’s role in Nile River water management (Asmamaw, 2015; Digna et al., 2017). However, the basin faces 
various challenges, including the construction of the Grand Ethiopian Renaissance Dam (GERD) (Nasr and Neef, 2016), climate 
change impacts (Mengistu et al., 2021), and downstream water management issues (Ali et al., 2023). Moreover, the UBNB is the 
source of most of the Nile’s flow, on which millions of people in downstream countries (i.e., Sudan and Egypt) depend for their 
livelihoods. To address these challenges effectively, accurate hydrological modeling is essential in this basin, which facilitates a 
comprehensive understanding of the hydrological and climatic factors affecting the basin. However, a significant challenge lies in 
the accessibility of extended hydro-climatic data within the basin over an extended duration (Dile et al., 2018). A considerable 
portion of the basin lacks gauge instrumentation, and the existing gauges lack continuous monitoring and maintenance, leading to 
questionable data reliability (Jain Figueroa, 2012; Hussien, 2014; Allam, 2017). Additionally, uneven distribution of existing gauges 
and errors due to instrument defects further complicate the examination of the basin’s natural processes. Improving hydrological 
modeling input via satellite-based data is crucial in river basins like the UBNB, where there is a scarcity of data and limited or 
poor-quality hydrological and meteorological measurements. In order to achieve improved accuracy in hydrological modeling for 
the UBNB, the integration of reliable data sources and advanced data-driven tools with a conceptual hydrological model can increase 
the model capability.

A machine learning (ML) model has the ability to recognize patterns within data and generate predictions or decisions without 
knowledge about the phenomenon (Lary et al., 2016; Kumar et al., 2019). These models have demonstrated efficacy through their 
successful application across diverse fields, including hydrological studies, where they are used to make accurate hydrological 
predictions (e.g., streamflow) (Li et al., 2022; Kumar et al., 2023) and improve the performance of conceptual hydrological 
models (Okkan et al., 2021; Roy et al., 2023; Mohammadi et al., 2024). In the realm of hydrological modeling, ML stands out for its 
capability to handle complex and non-linear relationships between variables (Mosaffa et al., 2022). This sets it apart from traditional 
methods which often struggle in this regard. Moreover, ML has the advantage of being able to handle large and diverse datasets, 
making it a valuable tool for integrating various types of information such as remote sensing data into hydrological models (Lange 
and Sippel, 2020). On the other hand, the relatively recent introduction of the variational mode decomposition (VMD) technique 
has gained recognition for its adaptive signal decomposition algorithm and its effectiveness has been demonstrated in several areas, 
including hydrology (Seo et al., 2018; Sibtain et al., 2021; Abdallah et al., 2023; Ahmadi et al., 2023). VMD can break down a signal 
into a set of sub-signals with adjustable and adaptable bandwidths (Dragomiretskiy and Zosso, 2013; Chen et al., 2019), which can 
identify and extract important features and patterns in the original data and leads VMD to find more information from hydrological 
and meteorological time series data. The combination of ML and VMD techniques offers several advantages in hydrological modeling 
and this type of integration can improve the model’s ability to capture the complex dynamics and non-linear relationships within 
the hydrological system, leading to more accurate hydrological simulation.

Both ML and VMD have shown great potential for improving the accuracy and reliability of hydrological modeling in various 
climates (He et al., 2019; Zuo et al., 2020). For instance, Dibike and Solomatine (2001) utilized ML techniques such as artificial 
neural networks (ANNs) to model rainfall-runoff processes and found them to outperform traditional modeling methods in terms of 
prediction accuracy. Similarly, Govindaraju (2000) reviewed the application of data-driven methods in hydrology and concluded that 
ML approaches could handle non-linearity and complexity better than traditional methods. Regarding VMD, Rehman and Mandic 
2 
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(2010) introduced the concept and demonstrated its effectiveness in decomposing complex signals into intrinsic mode functions 
with limited and adaptive bandwidths. In the context of hydrology, VMD has been used by Hu et al. (2021) to decompose daily 
streamflow data into several sub-signals, which were then modeled separately to improve prediction accuracy.

The integration of ML and VMD has also been explored in some studies. For example, He et al. (2019) used signal decomposition 
techniques (such as VMD) to decompose runoff data into multiple sub-signals, and then the deep learning model was applied as 
a predictor model to forecast daily runoff, resulting in the best performance for VMD simulated based runoff compared to the 
empirical mode decomposition (EMD) and ensemble EMD approaches. For instance, in a study by Seo et al. (2018), VMD was 
applied to partition input and target time series into constituent sub-time series. The study developed machine learning models, 
including Extreme Learning Machine (ELM) and Least Squares Support Vector Machines (LSSVR), coupled with VMD to model 
daily rainfall-runoff processes. The results showed that the VMD-ELM and VMD-LSSVR models outperformed the ELM and LSSVR 
models without VMD. In another study by Wu et al. (2023a), an ensemble deep-learning model was formulated for the prediction of 
runoff across three hydrological stations. In their study, they employed explainable artificial intelligence alongside meteorological 
variables harnessed from ensemble models within the realm of deep learning to facilitate the accurate runoff prediction. The results 
showed that the model outperformed traditional models in terms of accuracy and interpretability. In a recent investigation conducted 
by Zhang et al. (2023), an innovative coupled model, VMD-SSA-BiLSTM, was introduced for the prediction of monthly runoff in the 
lower Yellow River. The application of VMD in signal processing effectively reduced the noise inherent in the original runoff series, 
extracting intricate and pertinent information embedded in the runoff data. Subsequently, the Singular Spectrum Analysis (SSA) 
technique was employed to refine the BiLSTM model, optimizing key parameters such as the number of hidden units, maximum 
training period, and initial learning rate. This optimization significantly enhanced the efficiency of model parameter selection. The 
integrated VMD-SSA-BiLSTM model demonstrated notable accuracy in predicting runoff, as evidenced by high levels of accuracy 
during the training and testing phases.

In this study, we propose a three-stage framework (CHM-VMD-ML) to explore integrating ML and VMD techniques for reducing 
uncertainty in satellite-based precipitation products in simulating discharge within conceptual hydrological models (CHMs). We 
use PERSIANN family products as a case study to model discharge in the UBNB. Then, the specific objectives of this study can be 
introduced as: (1) to evaluate the effectiveness of two CHMs (namely HBV and GR6J) in simulating daily discharge using different 
satellite-based precipitation products (SPPs) over the period from 2005 to 2019; (2) to explore the potential of three ML models 
namely Random Forest Regression (RFR), Boosted Regression Forests (BRF), and Catboost Regression (CBR) in conjunction with the 
outputs of the conceptual hydrological models and meteorological variables; and (3) to assess the impact of coupling VMD techniques 
with CHM-ML models on improving the accuracy and reliability of discharge simulations, particularly among the different seasons.

2. Study area and data

2.1. Study area

The UBNB in Ethiopia is situated in the eastern segment of the Nile basin, as depicted in Fig.  1a, and holds significance as a 
major contributor to the Nile River, encompassing an area of approximately 176,000 km2. The topography within the basin exhibits 
a descent from high altitudes in the north-east, reaching up to 4261 m.a.s.l at Ras Dashen Mountain, to the lowest elevation of 
489 m.a.s.l at the western outlet, as illustrated in Fig.  1b. Notably, an average annual flow of about 50 km3 of water occurs through 
the Ethiopia-Sudan border, specifically at the Eldiem station, with pronounced seasonality, as 80% of this flow takes place solely 
from July to October (Kim and Kaluarachchi, 2009). Moreover, the UBNB experiences varying annual rainfall ranging from 200 mm 
in the north-east to 2200 mm in the south-west Fig.  1c. Additionally, the annual potential evapotranspiration ranges from 1000 to 
1800 mm (Conway, 2000), while air temperature in the region fluctuates between 13 and 26 ◦C (Tekleab et al., 2013).

Our particular focus on the UBNB stems from the challenges posed by the construction of the Grand Ethiopian Renaissance Dam 
(GERD) and the ongoing political tensions involving Ethiopia, Sudan, and Egypt (Turhan, 2021). These circumstances have resulted 
in a lack of transparency, and difficulties in data sharing and underscore the necessity for an enhanced modeling framework to 
effectively manage downstream areas, as highlighted by Ali et al. (2023).

2.2. Hydrometeorological datasets

2.2.1. Ground observations
The absence of readily available and accessible ground observations poses a challenge and serves as a driving force for our 

research. Fourteen ground stations of precipitation during the period 2006–2019 were obtained from the National Meteorological 
Agency (NMA) of Ethiopia. The stations are unevenly distributed and mostly located in the center of the basin as shown in Fig.  1b. 
A brief summary of rainfall stations’ location and elevation is illustrated in Table S.1 in the supplemetary materials.

The daily discharge measurements for the Eldiem hydrometric station were collected from the Ministry of Irrigation and Water 
Resources of Sudan (MoIWR) from 2006 to 2019. It is noteworthy that the discharge measurement at the Eldiem station is derived 
through the utilization of rating curves established on observed water levels. Commencing from 2012, the Eldiem Station has 
encountered the influence of the backwater effect stemming from the Roseires dam, particularly in the filling months spanning from 
June to October. Within this time frame, the MoIWR computes the outflow from the Roseires dam via water balance assessments (Ali 
et al., 2023). Data from January 1, 2005, to December 31, 2015, were used in this work to calibrate our two CHMs and train the 
coupled ML models. Following that, the models’ performance was verified using data ranging from January 1, 2016, to December 
31, 2019. For the CHMs, a warm-up phase was also considered using data of the first year (i.e., 2015). The time series graph of 
daily discharge is illustrated in Fig.  2.
3 
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Fig. 1. Hydrometeorological data pertaining to the UBNB. (a) Geographical location of the UBNB within the Nile basin. (b) Visualization of the river network, 
and discharge and rain gauging stations. (c) Annual precipitation averages for the period (2005–2019), were computed using PERSIANN, PERSIANN-CCS, 
PERSIANN-CDR, and PERSIANN-CCS-CDR datasets.

Fig. 2. Time series graph of input datasets to conceptual hydrological models and observed discharge during the full modeling period (2005–2019). We display 
precipitation from the PERSIANN family products range (light green line) and mean (green line), mean potential evapotranspiration from GLEAM v3.7a (orange 
line), mean temperature from ERA5 (red line), and discharge at Eldiem station from MoIWR (blue line). (For interpretation of the references to colour in this 
figure legend, the reader is referred to the web version of this article.)
4 
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Table 1
Information of selected remote sensing datasets to force two conceptual hydrological models over the UBNB from 2005 to 2019.
 Input Products Spatial resolution Temporal resolution Time span Bias Correction 
 Precipitation PERSIANN 0.25◦ × 0.25◦ hourly to yearly 2000–present No  
 PERSIANN-CCS 0.04◦ × 0.04◦ hourly to yearly 2003–present No  
 PERSIANN-CDR 0.25◦ × 0.25◦ daily to yearly 1983–present Yes  
 PERSIANN-CCS-CDR 0.04◦ × 0.04◦ 3-hourly to yearly 1983–present Yes  
 Temperature ERA5 0.25◦ × 0.25◦ Hourly 1950–present –  
 Potential Evapotranspiration GLEAM 3.7a 0.25◦ × 0.25◦ daily to yearly 1983-present –  

2.2.2. Satellite-based precipitation products
Four products of satellite-based precipitation from the PERSIANN family were used for the analysis in this study which are 

PERSIANN, PERSIANN-CCS, PERSIANN-CDR, and PERSIANN-CCS-CDR were collected from the Center for Hydrometeorology and 
Remote Sensing (CHRS) Data Portal. The characteristics of the products are provided in Tabel 2. The time series graph during the 
study period (range and mean value) from PERSIANN family products is illustrated in Fig.  2.

PERSIANN is a real-time across the world with high-resolution satellite precipitation products (Hsu et al., 1997). The rainfall rate 
is estimated by the present operational PERSIANN using neural network functionality (classification/approximation) algorithms. Its 
main input was originally longwave infrared images from geostationary orbiting (GEO) satellites, but it was subsequently expanded 
to incorporate visible imagery taken during the day. During the availability of independent rainfall estimations, its adaptive training 
function changes the network parameters.

PERSIANN-Cloud Classification System (PERSIANN-CCS) is a global product with a high spatial resolution (Hong et al., 2004). 
It categorizes cloud patch properties by taking into account satellite-retrieved information regarding cloud height, areal breadth, 
and texture variation. These categories assist in determining the quantity of precipitation that should be attributed to each cloud’s 
pixel according to a specific curve depicting the relationship between precipitation rates and brightness temperature.

PERSIANN-Climate Data Record (PERSIANN-CDR) has given a near-global precipitation dataset since January 1983 (Ashouri 
et al., 2015). It was created to meet the demand for an ongoing and consistent global precipitation dataset that would help in 
various climate-related investigations. It is an altered form of the PERSIANN approach that uses GEO satellite infrared images as the 
primary data source for the ANN model. Nevertheless, unlike the PERSIANN approach, which uses passive microwave imaging for 
updating the network’s configuration parameters, PERSIANN-CDR develops the ANN model utilizing Stage IV hourly precipitation 
obtained from the National Centers for Environmental Prediction (NCEP). The approach is subsequently employed to estimate 
historical information using predefined parameters. The estimations are then bias-corrected for the whole-time frame in record 
utilizing the Global Precipitation Climatology Project (GPCP) dataset. However, there is approximately a three-month delay in the 
public availability of the dataset (Nguyen et al., 2018).

PERSIANN-CCS-CDR is intended to alleviate earlier products’ shortcomings by delivering precipitation amounts with high 
spatiotemporal precision and over a longer time of record (Sadeghi et al., 2021). PERSIANN-CCS-CDR integrates the techniques 
used in the development of PERSIANN-CCS and PERSIANN-CDR and uses information from GEO satellites as inputs in order to 
generate highly accurate spatiotemporal precipitation datasets with an extended record span. The PERSIANN-CCS method is used 
to globally merge infrared output from the Gridded satellite (GridSat-B1) and NOAA Climate Prediction Centre (CPC-4 km) in this 
procedure.

2.2.3. Temperature and potential evapotranspiration
For hydrological modeling, daily mean air temperature information above 2 meters from 2005 to 2019 was collected from ERA5. 

Model-based 4D-Var data assimilation approach was used by the European Centre for Medium-Range Weather Forecasts (ECMWF) 
to produce the global datasets (Hersbach et al., 2019).

In this study, the daily average potential evapotranspiration (PET) time series was obtained from the Global Land Evaporation 
Amsterdam Model (GLEAM) version 3.7a during the study period. The GLEAM PET information was derived from various reanalysis 
datasets using the Priestley-Taylor algorithm based on surface radiation and near-surface air temperature (Miralles et al., 2011). 
Recently, several studies employed GLEAM products in the field of hydrometeorology applications since developed (Jiang et al., 
2021; McNamara et al., 2021; Wang et al., 2022; Alghafli et al., 2023). The average daily time series is illustrated in Fig.  2 while 
a description of PET GLEAM product was provided in Table  1.

3. Methodology

The procedural framework employed in our investigation, aimed at accomplishing the aforementioned objectives, is briefly 
illustrated in Fig.  3. The initial phase involved both continuous and categorical statistical assessment to evaluate the performance 
of various PERSIANN family products in comparison to the depicted rain stations in Fig.  1b. Following this, an exploration into 
improving the reliability of conceptual hydrological modeling was conducted through a comparative analysis of simulated discharge 
outcomes across three distinct stages.

In the first stage, we forced two CHMs namely GR6J and HBV, utilizing daily temperature, potential evapotranspiration, and four 
PERSIANN precipitation products as described in Section 2.2.2. Moving to the second stage, the diverse outputs from each CHM, 
integrated with satellite-based meteorological products, served as inputs for three tree-based ML models; RFR, BRF, and CBR. The 
5 
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Fig. 3. Flow chart illustrating the implemented rainfall-runoff modeling framework. Our approach initiates with the assessment of satellite-based precipitation 
products, followed by three modeling stages: CHM, CHM-ML, and CHM-VMD-ML. Our work concludes with a comparative analysis of the simulated discharge 
across the three stages.

final stage replicated the preceding one, with the differentiation being the utilization of inputs to drive the ML models after signal 
decomposition using VMD techniques. For clarity in the result description and discussion, we delineate distinct model configurations 
denoted by ‘Cf’ followed by a two-part numeric code indicating the stage number (1: CHM, 2: CHM-ML, 3: CHM-VMD-ML) and ML 
model number (1: RFR, 2: BRF, 3: CBR). It is pertinent to note that in the initial stage where ML models are not employed, only 
one configuration exists, denoted as Cf1. In the following subsections, we offer a detailed and comprehensive explanation of the 
methodology we have employed.

3.1. Conceptual hydrological modeling (CHM)

3.1.1. GR6J model
The GR6J is introduced by Pushpalatha et al. (2011) as conceptual hydrological model can be utilized for rainfall-runoff 

modeling, with six parameters (𝑋1 to 𝑋6) related to the production store, routing and exponential routing stores, unit hydrograph, 
and groundwater exchange (Poncelet et al., 2017; Crochemore et al., 2020). In order to determine the optimal parameter values, the 
GR6J model uses meteorological input data, including air temperature, potential evaporation, and precipitation while a discharge 
as a reference. The GR6J model initially calculates net precipitation (𝑃𝑛) and actual evapotranspiration (𝐴𝐸𝑇 ), then the production 
storage level (𝑃𝑟𝑜𝑑), routing store level (𝑅𝑜𝑢𝑡), routing store outflow (𝑄𝑅), exponential store outflow (𝑄𝑅𝐸𝑥𝑝), and direct flow 
(𝑄𝐷). Finally, the simulated flow is computed by adding 𝑄𝑅, 𝑄𝑅𝐸𝑥𝑝, and 𝑄𝐷 together. The GR6J model can be calibrated manually 
or automatically using Michel’s approach (Michel, 1987) while there are four objection criterion functions called Nash–Sutcliffe 
Efficiency (NSE; Nash and Sutcliffe (1970)), Kling–Gupta efficiency (KGE; Gupta et al. (2009)), modified KGE (KGE′; Kling et al. 
(2012)), and RMSE. In this study, we employed the lumped model structure of GR6J, with the automatic Michel calibration 
techniques and NSE as objective function. The parameter ranges for calibrating the model are shown in Table  2. In this regard, 
a preliminary screening procedure is performed for parameter sets or predetermined grids. Then, by starting with the process 
of screening findings the steepest descent local search method is satisfied. In this study, daily streamflow was simulated using 
PERSIANN family products across the UBNB.

3.1.2. HBV-light model
The Hydrologiska Byråns Vattenavdelning (HBV) represents a conceptual rainfall-runoff model devised by Bergström (1995). This 

model is applicable in both lumped and semi-distributed forms, proficiently simulating discharge in large catchments with minimal 
input data and parameters. In our investigation, we employed the HBV-light, a lumped variant recognized for its efficiency in 
capturing hydrological nuances in the UBNB, as highlighted by Ali et al. (2023). HBV-light incorporates daily averaged precipitation, 
temperature, and potential evapotranspiration to model daily discharge, following the four main routines: snow, soil moisture, 
groundwater and response, and routing. Based on model inputs and parameters, the model calculates the water content in the 
soil box (𝑆𝑀) and the recharge to the groundwater (𝑅𝐶𝐻), then estimates the storage in the upper (𝑆𝑈𝑍) and lower (𝑆𝐿𝑍) 
6 
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Table 2
Parameter setting of the HBV and GR6J model with a description of each parameter and optimal value for each product.
 Model Parameter Description Range PERSIANN PERSIANN 

-CCS
PERSIANN 
-CDR

PERSIANN 
-CCS-CDR

 

 HBV FC Maximum soil moisture
(mm)

[200, 1000] 340.69 1000 1000 1000  

 LP Soil moisture threshold
for evaporation reduction

[0.5, 0.7] 0.62 0.50 0.50 0.50  

 BETA Shape coefficient [1, 4] 1.38 2.02 2.12 2.19  
 PERC Maximum flow from upper

to lower groundwater box 
(mm d−1)

[1.4, 2.8] 1.40 1.40 1.40 1.40  

 UZL Threshold for K0 outflow
(mm)

[10.2, 25.6] 25.60 25.60 25.60 25.60  

 K0 Recession coefficient (d−1) [0.05, 0.2] 0.05 0.05 0.05 0.05  
 K1 Recession coefficient (d−1) [0.01, 0.2] 0.076 0.13 0.11 0.10  
 K2 Recession coefficient (d−1) [0.006, 0.05] 0.05 0.05 0.05 0.05  
 MAXBAS Length of weighting

function (day)
[1.5, 2.9] 2.90 1.70 2.90 1.81  

 GR6J X1 Capacity of the production
store (mm)

[0, 200] 0.00 0.00 0.00 21.46  

 X2 Groundwater exchange
coefficient (mm)

[−5, 6] −1.17 −1.22 −3.96 −5.33  

 X3 Capacity of the non-linear
routing store (mm)

[0, 1000] 421.03 300.68 491.88 499.23  

 X4 Unit hydrograph time
base (day)

[0.5, 20] 4.33 4.20 4.14 3.81  

 X5 Catchment exchange
threshold

[−2.0, 2.0] 0.25 −0.05 0.21 0.24  

 X6 Exponential store
depletion coefficient

[0, 200] 17.32 165.67 31.97 34.99  

groundwater boxes. The final discharge is simulated as the sum of the three runoff components; rapid surface flow (𝑄0), slow 
surface flow (𝑄1), and base flow (𝑄2) taking the routing into account. Optimization of the model is achieved through Monte Carlo 
or GAP optimization methods within predefined parameter ranges. In our research, we utilized GAP optimization with NSE as the 
objective function, guided by parameter ranges specified in Table  2 based on Ali et al. (2023). Given the absence of snow in the 
study area, our discharge simulations exhibit insensitivity to the snow routine parameters. Similar to the GR6J model, HBV-light 
was forced using the four precipitation products from the PERSIANN family, along with ERA5 and GLEAM 3.7a.

3.2. Machine learning models

In this section, a theoretical description of several advanced models will be provided, including RFR, BRF, and CBR models 
as well as the VMD techniques to enhance predictive accuracy of rainfall-runoff modeling. These models play a crucial role in 
advancing hydrological research and improving the accuracy of hydrological predictions, thereby contributing to better water 
resource management and decision-making (Zounemat-Kermani et al., 2021).

3.2.1. Random Forest Regression (RFR)
The RFR is an adaptable and robust ensemble learning algorithm introduced by Breiman (2001). The concept of RFR is based 

on decision trees to create a powerful predictive regression model. Instead of relying on a single decision tree, it builds multiple 
trees independently, each trained on a random subset of the training data and a random subset of features. The training of RFR 
uses a technique called bagging to create diverse sets of training data for each tree. It randomly selects samples with replacements 
from the original training dataset to create multiple bootstrap samples. The bootstrap sample is employed to partition and shuffle 
the dataset into uniformly distributed subsets. Each tree is trained using randomly selected subsets from this bootstrapped dataset. 
Typically, two-thirds of the dataset is utilized within the bootstrap sample, while the remaining one-third is left out. These left-out 
samples, referred to as out-of-bag (OOB) samples, are used for estimating the out-of-bag error (OOBE). The OOB-error rate is utilized 
to validate the performance accuracy of the model. Once all the trees are trained, predictions are made by averaging the predictions 
of all individual trees in the forest.

In hydrology, RFR is often utilized for its ability to handle nonlinear relationships between hydrological variables. It excels 
in capturing complex interactions and non-linearities in hydrological data, making it suitable for tasks such as evapotranspiration 
modeling (Douna et al., 2021), flood prediction (Tan et al., 2024), groundwater vulnerability (Giri et al., 2023), and water quality 
estimation (Harrison et al., 2021; Elzain et al., 2024).
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3.2.2. Boosted Regression Forest (BRF)
BRF is a machine learning ensemble technique introduced by Friedman (2001) which that combines the concepts of both boosting 

and random forests to create a powerful predictive model. In BRF, boosting is applied to a collection of decision trees, where each 
new tree is trained with a specific form of boosting to minimize the loss function with respect to the predictions of the existing 
ensemble. However, each tree is trained on a random subset of the training data and a random subset of features, similar to random 
forests. This hybrid approach leverages the strengths of both boosting and random forests to create a robust and accurate predictive 
model. BRF aggregates the predictions from all the trees in the ensemble to make predictions for new data points. The final prediction 
is the sum of the predictions of individual trees, weighted by their respective contributions to the model.

BRF is valuable in hydrology for its capability to sequentially refine models and improve predictive performance. It is particularly 
useful for capturing subtle relationships and patterns in hydrological data, thereby enhancing the accuracy of predictions in tasks 
such as streamflow forecasting (Katipoğlu and Sarı göl, 2023) and drought monitoring (Bueechi et al., 2023).

3.2.3. CatBoost Regression (CBR)
CBR is a powerful algorithm and presents a permutation-based alternative to traditional algorithms and represents an innovative 

approach for handling categorical features within the modeling process (Prokhorenkova et al., 2018). It combines the flexibility of 
gradient boosting with the efficient handling of categorical data, making it a popular choice for a wide range of regression problems. 
CBR is built upon the gradient-boosting framework. Gradient boosting is an ensemble learning technique where a series of weak 
learners, typically decision trees, are built sequentially to correct the errors of the preceding models. The final prediction is the sum 
of the predictions of all the individual trees. CBR incorporates various regularization techniques to prevent overfitting. These include 
controlling the depth of the trees, using a leaf-wise tree growth strategy, and considering combinations of features. CBR combines 
predictions from all the trees in the ensemble to make predictions for new data points. CBR has gained popularity in hydrology for 
its efficient handling of categorical variables and robustness to noisy data (Huang et al., 2019; Wang et al., 2023b; Elzain et al., 
2024).

3.2.4. Variational mode decomposition (VMD)
VMD is a signal processing technique introduced by Dragomiretskiy and Zosso (2013). It is designed for the decomposition of 

a given signal into a set of oscillatory components called intrinsic mode functions (IMFs). This method is particularly effective for 
analyzing non-stationary and multi-component signals. VMD operates on the assumption that a signal can be expressed as the sum 
of a finite number of modes with varying frequencies. The theory of VMD involves an optimization problem that tries to find these 
IMFs by minimizing a cost function. 

𝑚𝑖𝑛𝑢𝑘{𝛴
𝐾
𝑘=1(

1
2
‖𝑥 − 𝑢𝑘‖

2
2 + 𝛾𝜑(𝑢𝑘))} (1)

𝑢𝑘(𝑡) represents the 𝑘th mode, and the optimization is carried out over all i-k modes simultaneously. The first term 12‖𝑥 − 𝑢𝑘‖22
enforces fidelity to the original signal, ensuring that the modes accurately represent the input signal. The second term 𝜑(𝑢𝑘)
introduces a regularization parameter 𝛾 to control the smoothness of each mode. The regularization term 𝛾𝜑(𝑢𝑘) penalizes the 
roughness or complexity of the mode, promoting simpler and more interpretable solutions. The optimization problem is typically 
solved using an iterative algorithm that alternates between updating the modes and the Lagrange multipliers. The resulting 
decomposition provides a set of modes that capture different oscillatory components present in the signal. The modes are sorted 
in order of increasing frequency, allowing for the identification and analysis of different spectral components. The mathematical 
foundation of VMD, rooted in optimization theory and regularization, enables effective signal decomposition and mode extraction, 
contributing to the understanding and interpretation of complex signals in diverse applications.

In our framework, the VMD approach was adopted to decompose the meteorological variables (SPP and E) and the output of the 
HBV (𝑆𝑀 , 𝑅𝐶𝐻 , 𝑆𝑈𝑍, 𝑆𝐿𝑍, 𝑄1, and 𝑄2) or GR6J (𝑄𝐷, 𝑄𝑅, 𝑄𝑅𝐸𝑥𝑝, 𝑃𝑛, 𝑄𝑃𝑟𝑜𝑑 , 𝑅𝑜𝑢𝑡) models into a sequence of IMFs with varying 
frequency (Fig.  3). The total number of decomposition levels is acknowledged to have a significant impact on model accuracy (Wen 
et al., 2019; Abdallah et al., 2023). This study employed VMD techniques with a parameter such as moderate bandwidth limit 
(𝛼 = 5000), noise tolerance (𝜏 = 0), omega initialization (𝑖𝑛𝑖𝑡 = 0), convergence tolerance (𝑡𝑜𝑙 = 0.000001), and decomposition layer 
(𝐾 = 7) based on prior studies (Ali et al., 2021; Kang et al., 2022).

VMD models are increasingly applied in hydrology for their ability to decompose complex hydrological time series data 
into distinct modes or components (Gan et al., 2021). This decomposition allows for a better understanding of underlying 
patterns and dynamics in hydrological processes, aiding in tasks such as streamflow prediction (Ahmadi et al., 2023) and drought 
forecasting (Ekmekcioğlu, 2023).

3.3. Performance evaluation

To conduct a comprehensive assessment and comparison of the simulated discharge resulting from the three stages, our evaluation 
employed a range of methodologies, including statistical metrics, flow-duration curves, and seasonal analysis.

Adhering to the evaluation guidelines outlined by Moriasi et al. (2007), we employed three statistical metrics; NSE, ratio of 
RMSE to measured standard deviation (RSR), and Percent bias (PBIAS) for a primary evaluation. Firstly, with a focus on the 
results of HBV and GR6J, we explored the performance of PERSIANN family products during both the calibration (2006–2015) 
and validation (2016–2019) periods. This allowed us to gain insights into the limitations associated with the use of each product in 
conventional modeling. Second, we compared the overall performance changes attributed to the introduction of ML models without 
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Fig. 4. Comparison of daily hydrograph of observed (dotted black line) and simulated discharge data using HBV (first row) and GR6J (second row) models 
forced by PERSIANN (dark blue line), PERSIANN-CCS (cyan line), PERSIANN-CCS-CDR (light teal line), and PERSIANN-CDR (ligh green line) during calibration 
(left column) and validation (right column) period. Note that, we show only a four-year time series span (2010–2013) for visibility of results in the calibration 
period. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

(Stage 2) and with (Stage 3) VMD techniques. This comparative analysis provided an understanding of the implications introduced 
by the additional steps. Additionally, we employed the flow-duration curve to further comprehend the alterations in discharge 
brought about by the different stages. This also facilitated an understanding of the sensitivity of the approach to the selection of 
the hydrological model and the machine learning algorithm. Lastly, we delved into the impact of the different stages on the four 
seasons: MAM (March-May), JJA (June-August), SON (September-November), and DJF (December-February). This enabled us to 
highlight the significance of adding new stages for diverse hydrological applications. In this analysis, we also incorporated a Taylor 
diagram for a more thorough assessment (Taylor, 2001).

4. Results

4.1. Simulated discharge from stage 1 (CHM)

Fig.  4 shows the hydrograph of observed and simulated daily discharge, by forcing PERSIANN family products into HBV and 
GR6J models, during the calibration and validation periods. The optimized parameter values of both models are presented in 
Table  2. During the calibration phase, the hydrograph shows an acceptable performance in simulating the daily discharge of all 
PERSIANN family products according to HBV and GR6J models. However, PERSIANN, PERSIANN-CCS, and PERSIANN-CCS-CDR 
products indicate poor performance in capturing the peak flow during the validation period. On the contrary, the PERSIANN-CDR 
product well-capturing both low and peak flows.

We evaluated the simulated daily discharge against observed discharge using numerous statistical metrics, the finding of which 
are reported in Table  3. During the calibration phase, all PERSIANN family products simulate daily discharge with good performance 
through the two CHMs. While during the validation phase, the PERSIANN-CCS product simulates daily discharge with unsatisfactory 
performance when forced in the HBV model (NSE = 0.21, RSR = 0.89, and PBIAS = 28.51%). This high bias indicates the 
overall positive bias (i.e., overestimation) over the basin, which was also noticed in GR6J (PBIAS = 24.12%). On the contrary, the 
PERSIANN-CCS-CDR product indicates good performance and PERSIANN-CDR indicates very good performance during the validation 
phase. PERSIANN product resulted in the highest negative bias with PBIAS of −30.85 (HBV) and −27.69 (GR6J).

The distinct model structures of HBV and GR6J models resulted in different model performances when employing the same 
input datasets. However, both models agreed on the ranking of the products, with PERSIANN-CDR resulting the best performance, 
followed by PERSIANN-CCS-CDR, PERSIANN, and PERCIANN-CCS. These results are affected by the performance of the products 
in capturing the rainfall magnitudes during the validation years, thus suggesting the need for further approaches to improve their 
predictive skills.

4.2. Simulated discharge using the three-stage framework (CHM-VMD-ML)

The statistical performance of simulated daily discharge data during the validation period based on the three-stage approach is 
illustrated in a matrix for each statistical metric (Fig.  5) and Table  4. Cf1 corresponds to the outcomes detailed in Section 4.1, with 
NSE ranging from 0.21 to 0.87, RSR ranging from 0.39 to 0.89, and PBIAS ranging from −31% to 29%. Cf2 exhibits the results of 
CHM-ML which use meteorological data and output component of HBV and GR6J models with the three ML models including RFR 
9 
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Table 3
Performance evaluation of simulated daily discharge using HBV and GR6J when forced by PERSIANN family products.
 Model Product Calibration (2006–2015) Validation (2016–2019)
 NSE (-) RSR (-) PBIAS (%) NSE (-) RSR (-) PBIAS (%) 
 HBV PERSIANN 0.76 0.49 −6.82 0.67 0.58 −30.85  
 PERSIANN-CCS 0.77 0.48 3.59 0.21 0.89 28.51  
 PERSIANN-CCS-CDR 0.81 0.43 3.79 0.71 0.54 9.30  
 PERSIANN-CDR 0.85 0.38 2.12 0.87 0.36 3.45  
 GR6J PERSIANN 0.72 0.53 2.89 0.56 0.67 −27.69  
 PERSIANN-CCS 0.81 0.44 3.39 0.55 0.67 24.12  
 PERSIANN-CCS-CDR 0.86 0.38 2.53 0.80 0.45 −3.35  
 PERSIANN-CDR 0.87 0.37 2.00 0.86 0.38 −4.78  

Fig. 5. Enhanced discharge predictions across stages. Cf1 corresponds to the standalone CHM, Cf2 denotes the CHM-ML configuration, and Cf3 signifies the 
CHM-VMD-ML configuration. The numerical designation following each configuration indicates the machine learning algorithm (1: RFR, 2: BRF, 3: CBR).

Table 4
Performance range of simulated daily discharge using HBV and GR6J at each stage during the validation period. The minimum and maximum 
values are based on the three ML and four PERSIANN family products.
 Model Configuration NSE (-) RSR (-) PBIAS (%)
 Min. Max. Min. Max. Min. Max.  
 HBV Cf1: CHM 0.21 0.87 0.36 0.89 −30.85 28.51 
 Cf2: CHM-ML 0.80 0.90 0.31 0.45 −6.26 3.46  
 Cf3: CHM-VMD-ML 0.86 0.92 0.27 0.37 −9.96 0.87  
 GR6J Cf1: CHM 0.55 0.86 0.38 0.67 −27.69 24.12 
 Cf2: CHM-ML 0.66 0.90 0.32 0.58 −29.15 12.3  
 Cf3: CHM-VMD-ML 0.74 0.89 0.33 0.51 −19.45 1.42  

(Cf21), BRF (Cf22), and CBR (Cf23). Cf2 is remarkably better than Cf1 for all statistical metrics, products, and model combinations
(NSE of 0.66–0.90, RSR of 0.31–0.58, and PBIAS of −29%–12%). Furthermore, a noticeable improvement is evident in the third
stage (Cf31, Cf32, and Cf33), representing the outcomes of CHM-VMD-ML. In comparison to the second stage, the application of
VMD techniques increased the accuracy of simulated daily discharge and reduced uncertainty related to model input (i.e., PERSIANN
family products) resulted in NSE of 0.74–0.92, RSR of 0.27–0.51, and PBIAS of −19%–1.4%. Nevertheless, in HBV results, the bias
experienced a marginal rise following the incorporation of VMD, a phenomenon attributable to the trade-off between bias and
variance affecting the overall performance.
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Fig. 6. Flow-duration curves comparing observed (black line) and simulated discharges at the UBNB outlet. The top row illustrates outcomes generated by the 
HBV model, while the bottom row displays results obtained from the GR6J model. The solid-colored lines represent outputs from Cf2, whereas the dotted lines 
represent outputs from Cf3. It is important to note that the smaller panels provide a zoomed-in view of the low-flows (probability of exceedance ≥ 75%) of 
each corresponding panel.

We analyzed the flow duration curve to delve deeper into the contributions of the three stages, as illustrated in Fig.  6. In the initial 
phase involving standalone models (i.e., Cf1), it became evident that HBV consistently underestimated flows with a probability of 
exceedance surpassing 50%, while GR6J notably overestimated such flows. Within the PERISANN family products, PERSIANN-CDR 
stands out by exhibiting the least disparities with the actual discharge curve in both CHMs. Transitioning to Cf2, we observed a 
significant enhancement in matching the flow curve across all levels of exceedance. In the third stage, the application of VMD 
techniques resulted in the most substantial improvement in simulating discharge, compared to Cf1 and Cf2, particularly in low-flow 
conditions (refer to the zoomed panels in Fig.  6). The discharge curves of Cf3 closely aligned with the actual discharge curve, 
emphasizing the significance of incorporating VMD for accurately representing extreme discharge events.

4.3. Seasonal (comparative) analysis

To gain deeper insights into the enhancements achieved through the incorporation of the VMD, we conducted an analysis 
using the Taylor diagram, focusing on the least effective precipitation product (i.e., PERSIANN-CCS) across the four seasons: MAM, 
JJA, SON, and DJF (Fig.  7). Assessing the performance of the two CHMs and three ML algorithms, we observed an incremental 
improvement as we progressed through successive stages, with notable advancements particularly evident from Cf1 to Cf2. Notably, 
our findings imply that the signal decomposition of ML predictors (i.e., Cf3) led to heightened correlation, reduced error, and 
diminished relative variability (manifested as a smaller disparity between simulated and observed standard deviation).

To assess performance variations across seasons, we examined the relative change in RMSE compared to Cf1 (Fig.  8). For the 
HBV simulated discharge, the most significant enhancements occurred in SON, with an average RMSE change of −66.4% for Cf2 and 
−73.4% for Cf3. In the case of GR6J, the maximum improvement was observed in the DJF, showing an average change of −70.7% 
for Cf2 and −78.4% for Cf3.

Furthermore, when comparing the last two stages, VMD-related improvement was consistently observed across different seasons, 
with the most substantial enhancements occurring at the onset of the high-flow season (JJA) with an averaged enhancement of 
−21.7% for HBV and −24.9% for GR6J. This was followed by enhancements in the low-flow season (MAM) with an averaged 
enhancement of −20.7% for HBV and −21.6% for GR6J. Notably, the introduction of VMD eliminated differences among ML 
algorithms, resulting in fewer discrepancies. These results indicate that, using the variational mode decomposition within a 
conceptual data-driven model has the potential to increase the reliability of satellite precipitation products.

5. Discussion

5.1. Hydrological modeling sensitivity to the quality of SPPs

Precipitation is a critical meteorological variable for understanding hydrological processes, managing water resources, and 
long-term climate research (Shayeghi et al., 2020; Gebremicael et al., 2022). Precipitation input errors can cause significant 
uncertainty in discharge simulations (Alfieri et al., 2014; Wang et al., 2021). Previous research indicates that the uncertainty of 
rainfall data accounts for between 70% and 80% of the error in discharge simulations (Gebregiorgis and Hossain, 2012). In the 
UBNB, precipitation was identified as the primary source of uncertainty in discharge estimation, accounting for 45% of the annual 
11 



A.M. Ali et al. Journal of Hydrology: Regional Studies 59 (2025) 102337 
Fig. 7. Taylor diagram illustrating simulated discharges forced by PERSIANN-CCS (during validation period from 2016 to 2019) throughout the four distinct 
seasons (MAM, JJA, SON, and DJF). The top row showcases outcomes derived from the HBV model, while the bottom row presents results obtained from the 
GR6J model. Discrete stages are distinguished by color, with CHM represented in red, CHM-ML in yellow, and CHM-VMD-ML in blue. Various ML algorithms 
are denoted by distinct shapes, including RFR represented by squares, BRF by triangles, and CBR by circles.

Fig. 8. Relative RMSE change for three ML algorithms across MAM, JJA, SON, and DJF, assessed at Cf2 and Cf3 with Cf1 as reference. Top row: outcomes 
from the HBV model. Bottom row: results from the GR6J model. These results were calculated for the simulated discharge forced by PERSIANN-CCS product 
during the validation period (2016–2019).

average uncertainty (Alghafli et al., 2023). Unfortunately, ground rainfall observations are inadequate or absent in many localities, 
particularly in poor countries (Behrangi et al., 2011). High-density precipitation observation networks are essential to capture the 
peak flow (Bárdossy and Anwar, 2023). In areas that are poorly, unevenly distributed, or ungauged, SPPs are increasingly becoming 
a necessary choice for getting reliable precipitation data (Alriah et al., 2022). The assessment of SPPs using observed streamflow 
data through the hydrological modeling enables the ongoing exploration of error propagation associated with these products, as 
opposed to direct comparison with gauge rainfall-based statistical metrics (Camici et al., 2018; Satgé et al., 2019; Nawaz et al., 
2021).

The performance of PERSIANN family products in precipitation estimation and discharge simulation varied across different 
regions. For example, daily precipitation estimations and discharge simulations using PERSIANN family products are unsatisfactory 
(KGE with range −9.0 to 0.22) across the Wełna catchment in Poland (Eini et al., 2022). Also, Salehi et al. (2022) stated that 
the PERSIANN family products failed to capture the peak of simulated daily, monthly, and winter discharge during the period 
of 2012–2018 over the Russian River catchment in California. Some studies reported the poor performance of PERSIANN family 
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products in hydrological simulation across the Nile Basin (Bitew and Gebremichael, 2011; Bitew et al., 2012; Gebere et al., 2015; 
Gebremicael et al., 2022). However, the PERSIANN-CDR product indicates better performance and is comparable to other products 
over the Nile Basin (Guermazi et al., 2019; Musie et al., 2019; Gebremicael et al., 2022; Ali et al., 2023) and other regions (Zhu 
et al., 2016; Bâ et al., 2018; Ma et al., 2018).

It is noteworthy that the accuracy of simulated discharge is closely linked to the quality of input precipitation and other datasets. 
Within the realm of hydrological applications, the PERSIANN family provides a suite of products tailored to diverse needs. Notably, 
PERSIANN-CDR exhibits superior statistical and categorical performance when compared to alternative products (Figure S.1 and 
S.2 in the supplementary materials). This distinction is attributed to the incorporation of bias corrections derived from the GPCP 
precipitation dataset (Khan et al., 2010). As a result, hydrological models driven by PERSIANN-CDR demonstrate the most favorable 
discharge outcomes (Table  3 and Fig.  4). In light of this, the diminished performance of alternative products, particularly PERSIANN-
CCS, hinders their reliability for intended purposes of real-time monitoring and hydrological forecasting. Therefore, relying solely 
on CHM, developing reliable flood early warning system is challenging due to the high biases introduced by PERSIANN and 
PERSIANN-CCS (Fig.  4).

5.2. CHM-VMD-ML framework opportunities

Recently, a great effort has been made to enhance precipitation estimation by merging multiple satellite products with ground 
observation stations based on statistical approaches. Their application in hydrological simulation resulted in reducing the uncertainty 
of individual products and improved the accuracy of discharge simulation (Ma et al., 2018; Ur Rahman et al., 2020). However, 
such merging approach needs a very high density of observation network to well represent the catchment, which is not available 
in many regions including the UBNB. Moreover, the recommended bias-correction of PERSIANN family (Xiao et al., 2022) is no 
longer feasible. Due to these constraints, we proposed to use the VMD techniques and ML models based on meteorological data and 
output of CHM to improve the reliability of PERSIANN family products to simulate daily discharge. This is particularly relevant 
for low-latency but biased products (i.e., PERSIANN and PERSIANN-CCS), enabling robust real-time discharge prediction. The 
use of decomposition with ML models proved to be beneficial to different hydrological studies such as estimating the reference 
evapotranspiration (Kang et al., 2022), solar radiation (Abdallah et al., 2023), discharge simulation (Sezen and Partal, 2022), 
vegetation periodic changes (Wang et al., 2023a).

In this study, we endeavored to enhance the effectiveness of conceptual hydrological models through the application of ML 
algorithms. A remarkable deficiency in the initial stage is the substantial disparity noted between observed and simulated below-
average flows (i.e., exceeding a 50% probability of exceedance). These flows exhibit underestimation by the HBV model and 
overestimation by the GR6J model (Fig.  6). Besides the quality of the SPPs, this disparity can be attributed to the utilization of 
NSE as the objective function, a metric known for its insensitivity to low-flow conditions (Steinfeld et al., 2015). The integration 
of ML algorithms (in Cf2) significantly improved the performance of the conceptual models across all flow values, aligning with 
findings from prior research. Notably, the incorporation of Long Short-Term Memory (LSTM) neural networks in a hybrid model 
with HBV and GR6J resulted in enhanced performance compared to their standalone configurations (Xiong et al., 2021; Yu et al., 
2023). Moreover, the implementation of the random forest algorithm reduced prediction uncertainty in the HBV-PF model, thereby 
enhancing overall predictive accuracy (Roy et al., 2023). Therefore, Cf2 outperformed Cf1 due to the ability of ML algorithms to 
capture non-stationarity, noise complexity, and non-linear relationships (Yaseen et al., 2015), thus better link CHM’s outputs with 
observed discharge.

Moreover, we aimed to investigate the opportunities offered by introducing the VMD in the modeling framework. Given our 
analysis of the different stages, it is clear that the decomposition of the meteorological datasets and CHM outputs is most likely 
to outperform the performance of ML without the VMD. This improvement was found to be more noticeable from May to August 
as demonstrated in Fig.  8. Therefore, such an approach provides a promising opportunity and contributes towards more reliable 
modeling thus informed decision making in data-scarce regions. A previous study employed a hybrid model based on decomposed 
GR6J outputs using wavelet transformation and an artificial neural network (Sezen and Partal, 2022). The study concluded that 
the hybrid model outperformed the individual conceptual and data-driven models in three tested subbasins in Turkey. Another 
hydrogeological study compared five ML models with their hybrid wavelet models and attributed the improvement made by the 
wavelet-transform due to its capability to capture the non-linearity and seasonality of the data (Samani et al., 2023). In summary, 
implementing our proposed framework helps mitigate the shortcomings found in PERSIANN family products, thereby enhancing 
their reliability for their intended uses.

5.3. Limitations and future perspectives

In the course of our investigation, certain considerations were omitted, though with an expected marginal impact on the 
outcomes, yet not on the fundamental conclusion. First, the choice of the objective function is anticipated to influence the relative 
enhancements achieved in the subsequent stages. For instance, employing log (NSE) as an alternative metric would likely yield 
superior performance of the CHMs during low-flow periods, potentially compromising accuracy in capturing peak flows due to its 
insensitivity to high-flow events (Krause et al., 2005). In that case, the subsequent stages are projected to result in improvements 
during seasons characterized by high-flow regimes. Second, the construction of the Grand Ethiopian Renaissance Dam at the basin’s 
outlet, coupled with the start of its filling operations in 2020, introduces alterations to downstream water availability (Ali et al., 
2023). Despite this, we maintain confidence in the resilience of our fundamental conclusion. Notably, methodologies such as 
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random forest have demonstrated suitability for quantifying human activities and climate change impacts on alterations in discharge 
patterns (Liu et al., 2022). Third, our reliance was exclusively on tree-based algorithms; however, the incorporation of VMD markedly 
enhanced the performance of models utilizing deep learning approaches, such as LSTM and Convolutional Neural Networks (Wu 
et al., 2023b).

We acknowledge several limitations that are important to consider for a comprehensive understanding of the current research. 
The current study heavily depends on the quality and availability of SPPs, and any gaps or inaccuracies in these data sets could 
significantly impact the outcomes of the modeling results. Additionally, our evaluation of PERSIANN family products was based on 
gauging stations that are clustered in the center of the UBNB (see the supplementary materials). Therefore, our evaluation is not 
representative for the whole basin. In analogous situations, we suggest utilizing other comprehensive evaluation approaches such as 
the Triple collocation method (Stoffelen, 1998) or its extended version (McColl et al., 2014). In another view, this research focuses 
on the UBNB, which raises questions about the generalizability and transferability of our findings to other geographic locations or 
hydrological contexts. Different regions with unique hydrological characteristics might require adjustments to the model or different 
approaches altogether. Also, integrating VMD with CHM and ML models introduces a level of complexity that could pose challenges 
in computational resources, model calibration, and interpretation of results, particularly if integrated into distributed hydrological 
models. The intricate nature of this situation requires a delicate equilibrium between the sophistication of the model and its practical 
applicability. In addition, the study’s emphasis on daily discharge simulations implies that our results may not be directly applicable 
to alternative temporal scales, such as hourly or monthly runoff forecasts. Hydrological processes may demonstrate diverse behaviors 
at different temporal scales, thus requiring distinct modeling methodologies. Additionally, the complex task of quantifying the 
uncertainties that naturally arise in the modeling process, particularly when incorporating various advanced techniques, persists. 
The uncertainties associated with these factors play a crucial role in shaping the decision-making processes within water resource 
management. Consequently, accurately quantifying these uncertainties is of utmost importance to effectively apply our research 
findings.

A potential field for future investigation involves the implementation and evaluation of our proposed modeling framework 
in various hydrological settings beyond the UBNB. This would aid in evaluating the model’s capacity to generalize and adapt 
to diverse climatic conditions, topographies, and land-use patterns. To improve the handling of intricate nonlinear relationships 
within hydrological processes, future studies may examine the application of advanced algorithms, such as deep learning and neural 
networks. There is also a need for more robust methods to quantify uncertainties in both the input data and the model outputs. This 
might involve incorporating event-based modeling techniques and analyzing extreme value statistics. Understanding the impacts of 
climate change on the performance of the proposed modeling framework is an important research aspect. This involves the analysis 
of how shifts in precipitation patterns, temperature, and other climatic variables could potentially influence the reliability and 
accuracy of the proposed framework.

6. Conclusion

In summary, our study introduces a three-stage data-driven framework integrating machine learning and variational mode decom-
position techniques to address the challenges associated with satellite-based precipitation products in the UBNB. The primary goal 
is to reduce uncertainty and enhance the accuracy of (real-time) discharge simulations, thereby advancing conceptual hydrological 
models. By simulating discharge through the integration of decomposed signals from a calibrated conceptual hydrological model 
outputs and meteorological satellite data into a machine learning algorithm, our framework demonstrates consistent improvements 
across various stages. During the validation period (2016–2019), the NSE values ranged from 0.22 to 0.87 in stage 1, improved 
to a range of 0.66 to 0.90 in stage 2, and further enhanced to a range of 0.74 to 0.92 in stage 3. Importantly, the observed 
improvements are not only statistically significant but also hold consistent across different seasons, reinforcing the framework’s 
efficacy in capturing diverse hydrological conditions. For example, during the high-flow season onset (JJA), coupling the less reliable 
SPP (i.e., PERSIANN-CCS) with ML models resulted in an average RMSE reduction of 21.7% for HBV and 24.9% for GR6J after 
decomposition, compared to simulations without decomposition. This enhanced capability contributes to better-informed decision-
making in regions characterized by data scarcity, particularly crucial for water resource management. The practical implications 
of our findings extend to improved accuracy in discharge predictions, offering valuable insights for environmental policies and 
sustainable water resource utilization. As we navigate the complexities of hydrological modeling, this research lays a foundation for 
implementing innovative approaches that directly impact real-world water management scenarios.
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Code and data availability

Data for this study was sourced from various repositories and agencies. Air temperature data above 2 meters was obtained 
from ERA5 (European Center for Medium-Range Weather Forecasts-ECMWF), accessible for download via the Copernicus Climate 
Data Store (https://cds.climate.copernicus.eu/). Potential evapotranspiration (PET) data was retrieved from Global Land Evaporation 
Amsterdam Model-GLEAM 3.7a, which is accessible through the GLEAM website (https://www.gleam.eu/). Additionally, PERSIANN 
family products were obtained from the Center for Hydrometeorology and Remote Sensing (CHRS) at the University of California, 
Irvine (https://chrsdata.eng.uci.edu/). However, rain gauge data, crucial for this study, is not publicly available and can be requested 
from the Ethiopian National Meteorological Agency website (http://www.ethiomet.gov.et/).

The models and analysis techniques employed in this study were implemented using various programming languages and 
packages. The GR6J model was executed in R Programming Language using the airGR package (https://hydrogr.github.io/airGR/), 
while the Random Forest Regression (RFR) model utilized the randomForest package in R (https://cran.r-project.org/package=
randomForest/). Boosted Regression Forest (BRF) modeling was performed using the grf package in R (https://cran.r-project.
org/package=grf/), and Variational Mode Decomposition was applied using the VMDecomp package in R (https://cran.r-project.
org/package=VMDecomp/). Lastly, the Catboost Regression (CBR) model was developed in Python using the catboost package 
(https://pypi.org/project/catboost/). This comprehensive approach ensured a robust analysis framework for the study.
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