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Abstract
Precision agriculture (PA) and plant disease detection (PDD) are essential for farm crops’ life quality and crop yield. Unfor-
tunately, current PDD algorithms are trained and deployed with perfect plant images. This is impractical since PA sensor
networks (PANs) transfer imperfect data due to wireless communication imperfections, such as channel estimation and noise,
as well as hardware imperfections and noise. To capture the influence of channel imperfections and combat its effect, this work
considers on- and/or offsite PDD implementation using plant image data transferred over multi-path imperfect PAN. Here,
both traditional decode-and-forward (DF) data routing and channel effect considering machine learning data autoencoder
multi-path routing are used for image data transmission. The multi-path DF data routing considers equal gain combining
(EGC) and maximum ratio combining (MRC) techniques at the destination gateway for data decoding. In addition, a PDD
deep learning algorithm is developed to predict whether or not a farm plant is diseased, using the noisy image data captured by
the multi-path data routing PAN. From the PAN-PDD integrated system simulation, the proposed ML multi-path PAN-PDD
algorithms (i.e., EGC and MRC) are compared to the ML single-path PAN-PDD algorithm and the traditional single-path
PAN-PDD system. The simulation results showed that the multi-path approach performed fairly well over the other DF PAN-
PDD systems. Incorporating the channel effects in designing an intelligent wireless data transfer solution/technique improves
the communication system performance in PDD implementation.

Keywords Deep learning (DL) · Multi-path wireless sensor network (WSN) · Plant disease detection (PDD) ·
Convolutional neural network (CNN) · Autoencoder

1 Introduction

With the advent of the Internet of Things (IoT) and machine
learning (ML), intelligent applications such as smart homes,
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smart industry, smart agriculture, and many other applica-
tions have been developed and integrated into society to
improve the quality of life of individuals within society [1–
3]. The application of IoT networks and ML in “smart”
agriculture is termed precision agriculture (PA), and the
development of its technology to improve farming falls under
the recently coined and evolving term Farming 4.0 [1, 2, 4].
Farming 4.0 covers intelligent farm monitoring (e.g., soil
nutrients, soil moisture, plant and livestock monitoring, and
pestsmonitoring) andmechanization (e.g., application of fer-
tilizers, feeding of animals, weeding, and spraying), and the
intelligent inference and protocol execution (e.g., plant and
livestock disease detection, production planning, and farm
machinery control). PA seeks to reduce the impact of farm-
ing on the climate, make farming more efficient, and satisfy
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specific United Nations (UN) sustainable development goals
(SDGs) set for or associated with modernized farming. The
aim is to reduce farming costs, operations, and human labor
while increasing the availability of quality food and making
farming more attractive to individuals and investors. How-
ever, the development of the PA sensor networks (PANs) and
the intelligent farm applications (e.g., software and mobile
apps) need to be improved for efficiency and to satisfy the
UN SDGs [2].

Massive machine-type communications (mMTC) in PAN
for farm data acquisition and task execution research and
deployment are growing in academic and industrial research
[1, 2, 5]. From the protocols and algorithms point of view,
ML deep neural networks (DNNs) are increasingly used in
PA for farm monitoring and process automation protocols
and algorithms [3]. mMTCPANs andDNNs algorithms have
been increasingly used in PA research and development plant
disease detection (PDD) applications to improve crop pro-
duction and quality [6, 7]. However, unfortunately, the PAN
and DNN PDD have been investigated separately in their
research, design, and development stages [4, 5, 7, 8]. This
approach is not practical and inefficient. Also, this approach
does not factor in the significant influence both systems (PAN
and DNN PDD) have on each other. For example, know-
ing that the PAN acquires and transfers noisy data during
data routing due to the farm environment (i.e., the wire-
less communication channel structure, physical obstructions,
and other interfering signals) and the sensor hardware and
its operational imperfections. This PAN data transmission
imperfection effect is critical and must be factored into the
images acquired and used in training DNN PDD applica-
tions currently being studied and developed. This is because
current DNN PDD algorithms are trained using clean and
perfect images, which are impractical compared to the actual
PAN noisy image data. In addition, mMTC devices and the
current Long Range (LoRA) wireless communication net-
work use a limited number of bits and processing power for
transmitting and routing image noisy data over the PAN.
Hence, PAN-transferred image sizes must be reduced to
allow transmission through farm mMTC devices or use con-
current packet transmissions through the PAN. This strains
the PAN, reducing its efficiency and network lifespan. This
strain on the PAN reduces the quality of images processed,
transferred, and available for PDD. Due to the impractical
implementations of current PAN-PDD systems and research,
there is a need to improve and integrate the PAN-PDD sys-
tems in research and development [9, 10]. This issue has
been partially considered in our previous work in [11], which
focused on multi-hop single-path PAN-PDD integrated sys-
tem.

Motivation To further highlight the influence of the PAN
on PDD, this work proposes the deployment of an onsite
(farm) multi-hop and multi-path DNN PAN using an autoen-
coder and both the equal gain combining and maximum
ratio combining schemes at the destination and also fac-
tors in noisy data (image data) transmission due to channel
effects. The proposed DNN PAN is combined with a DNN
PDD algorithm to mimic a practical integrated PAN-PDD
implementation and interaction. The proposed integrated
PAN-PDD system can be used for further PAN-PDD investi-
gations in PA. The contributions of this work are as follows.

i Compared to our previous work in [11], which consid-
ered a multi-hop single-path PAN-PDD system model,
this work focuses on a multi-hop multi-path PAN-PDD
system. Additionally, with this work, both the equal gain
combining and maximum ratio combining approaches
were considered to combine the multi-path signals at the
central system.

ii Incorporating the negative influence of channel noise on
transferred images (distorted images), an autoencoder
transceiver design is proposed for the multi-hop multi-
path PAN sensor node operation. The autoencoder aids
in data size reduction for transmission through the lim-
ited resourced routing sensor nodes within the PAN to
the on/offsite DNN PDD.1

iii This work also presents DNN PDD training, testing,
validation, and predictions based on noisy data (crop
images) generated from the multi-hop multi-path PAN.
Our approach differs frommost current research because
the existingworks used clean captured images, which did
not consider the noise introduced during image trans-
mission within a communication network, making the
images distorted and containing noise. Hence, their DNN
PDD training and implementation uses perfect images
for DNN PDD training, testing, and validation. However,
our training in this work considered the noisy effects and
trained the DNN PDD based on noisy/distorted images.

Finally, through comparison of the proposed multi-hop
multi-path DNN PAN-PDD technique (MP-MDF) to the
transitional decode-and-forward (DF) multi-hop single-path
(SP-TDF) and multi-path (MP-TDF) PAN-PDD implemen-
tation showed the superiority of the proposed MP-MDF over
the SP-TDF and MP-TDF benchmarks. Also, the multi-path
schemes of theMP-MDF (i.e., EGCMP-MDFandMRCMP-
MDF) andMP-TDF (i.e., EGCMP-TDFandMRCMP-TDF)

1 Here, onsite or offsite DNN PDD refers to a centralized system built
on or off the farm, respectively.

123



Annals of Telecommunications

outperformed their single-path counterparts (i.e., SP-MDF
and SP-TDF).

Note, since, this work builds on the work presented in
[11], the single-path multi-hop approach is used as a bench-
mark and for comparison with the multi-path multi-hop
scenario presented in this paper. Additionally, to improve
readability, Table 1 containing abbreviations is included in
the manuscript to be used as a reference point for abbrevia-
tions.

2 Precision farming systemmodel

The work presented in this paper investigates an on/offsite
DNN PAN-PDD algorithm development based on acquired

Table 1 Summary of abbreviations used

Abbreviation Definition

2D Two dimensional

3D Three dimensional

AWGN Additive white Gaussian noise

BLER Block error rate

CNN Convolutional neural network

DF Decode-and-forward

DL Deep learning

EGC Equal gain combining

GB Gigbytes

GW GateWay

IoT Internet of Things

LoRA Long Range

MDF Machine learning Decode-and-Forward

ME Equal gain combining multi-path

MM Maximum ratio combining multi-path

mMTC Massive machine-type communication

ML Machine learning

MP Multi-path

MRC Maximum ratio combining

PA Precision agriculture

PDD Plant disease detection

PAN Precision agriculture sensor network

QoS Quality-of-service

RAM Read access memory

SN Sensor node

SNR Signal-to-noise ratio

SP Single path

TDF Traditional decode-and-forward

TinyML Tiny machine learning

VS Visual sensor

WSN Wireless sensor network

noisy data (crop image) transmitted from an onsite farm
multi-path multi-hop PAN as shown in Figs. 1 and 2. This
work is an extension of [11], which focused on a single-path
multi-hop PAN-PDD solution. In detail, the system model is
made up of (i) onsite data acquisition, transfer, and process-
ing using autoencoder transceiver sensor nodes transferring
data over multiple paths and multi-hops PAN to the gate-
way/central system (GW) for further processing and transfer
via the internet to the offsite PDD application, and (ii) pre-
dicting whether a plant is diseased using the offsite PDD
algorithm. A graphical depiction of the PAN data transfer
and processing over multiple paths and multiple hops con-
sidered in this work is shown in Fig. 1. FromFig. 1, within the
proposed onsite farmPAN, the crop (maize) data (leaf image)
is captured using an onsite visual sensor (camera) (VS). The
acquired data is pre-processed using an autoencoder algo-
rithm (i.e., the encoder: the transmission channel effects
compensation is considered in the training2) and transmit-
ted through the farm monitoring sensor nodes (SNs) within
the PAN to the PANGW.Note that, unlike our previouswork,
which considered a single path for the information transfer,
this work considered the data transferred using several paths
within the monitoring SNs. The GW and the data receiv-
ing SNs within the multiple routing paths contain the other
portion of the autoencoder (i.e., the decoder portion, which
estimates the captured original plant leaf image), which pro-
cesses the received plant image data. The GW/SNs then
transmit the recovered data through an external network (e.g.,
internet + cloud) to the on/offsite PDD application to predict
whether the plant is diseased. This work focused on PAN as
a specific application of the proposed cascaded autoencoder
nodes.3 Note that the proposed DNN PAN can be applied to
otherWSNs for noisy data transmission. Next, the multi-hop
PAN autoencoder design is discussed.

3 Onsite farmmulti-pathmulti-hop PAN
transmission

This section discusses the details of the onsite farm PAN data
acquisition, processing, and transmission to the offsite PDD
application. As shown in Fig. 1, the VS captures the farm
plant (leaf) image, processes the data, and transmits the data

2 The compensation here refers to the consideration of the multi-hop
cascading channel gains (noise) within the autoencoder training phase.
3 The PAN comprises sensor nodes (SNs) with limited computation
and communication resources. Therefore, reducing the data size with
an autoencoder minimizes the strain on the PAN multi-hop SNs. The
data reduction and other imperfections at each node will be considered
in an extension of this work.
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Fig. 1 On- and offsite farm deep learning multi-path multi-hop PAN architecture

through the
∑I

i=1 Ki ≥ 04 PANmulti-pathmulti-hop SNs to
the gateway. Each PANSN is equippedwith a single antenna.
Also, the multi-hop data reception and re-transmission are
done by using either a DNN (autoencoder [12, 13] which can
be implemented usingTinyML techniques) or the transitional
DF technique [14].5 In this work, it is assumed that themulti-
path multi-hop PAN SNs and path from the image capturing
VS to the GW are already known.6

3.1 Signal flow for one path in themulti-path
autoencoder PAN

The data processing using the autoencoder ML approach
from the transmitter through the PAN multi-hop multi-path
routing nodes to the onsight gateway receiver for data com-
bining and processing is detailed below [11] and depicted in
Fig. 2.

4 Depending on the selected optimalmulti-hopmulti-path andVS loca-
tion; Ki = 0 or Ki ≥ 1 for VS-to-GW direct or i multi-paths with Ki
multi-hop transmission, respectively.
5 The DF technique involves each relaying node decoding its received
data signal before re-transmitting the decoded data to the next relaying
SN. TinyML is a type of ML implementation that allows models to run
on smaller, low-power devices such as PAN sensors.
6 Future work will consider the development of an efficient routing
algorithm.

Transmitter (encoder portion) [11] At the VS, the
captured image7 goes through the following autoencoder
(encoder portion) steps before transmitting through the SNs.8

a. Image data processing (Embedding stage): the image
is converted to binary format (s) data stream (i.e., the
embedding phase: conversion from 3D pixel matrix (S)
to 2D decimal matrix (S̄) and then 1D bits vector (s)).
Hence, the image data transformation is f : S → s.

b. DNN data processing: the s data vector is fed to the DNN
for data stream dimension reduction. Here, the DNN per-
forms the dimension reduction using a symbol mapping
(i.e., number of bits per symbol (k)) to match a chosen
modulation scheme (e.g., QPSK (2k, k = 2), 16QAM
(2k, k = 4)) and PAN allowable data packet size. In
detail, the image bits (s) are converted to a set of sym-
bols M, where each symbol consists of 2k bits based
on the modulation scheme and each symbol Ŝ is rep-
resented by a value in the set {1, 2, . . . , M}). Now, for
each symbol to be transmitted, the symbol message is
transformed to an ŝ ∈ R

n of size n, where n equals
the size of transmit signal and number of data stream

7 In this proof of concept work, leaf images from PlantVillage were
used [15].
8 The autoencoder in this work was based on the modification of the
wireless communication autoencoder model proposed and used in [12,
13, 16]. Also, it is the same as the one presented in our previous work
in [11].
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Fig. 2 Autoencoder representation for a multi-path multi-hop PAN communication model

ŝ accessed channels. In summary, the encoder portion
does the data modulation based on learned channel state
f : S → S̄ → s → Ŝ ∈ {1, 2, . . . , M} → ŝ ∈ R

n .
c. Transmit data normalization: the resulting data stream

is converted to a complex-valued data set (i.e., equal
portions of real and imaginary components). Finally, the
transmit data is normalized to satisfy the transmit power
constraint, that is, x̂0 = ‖ŝ‖2 ≤ PVS.

PAN multi-hop The VS data stream is transmitted through
Gi SNs per path (i) to the GW for final decoding and trans-
mission to the offsite unit. This implies that the total routing
paths (I) and SNs are totaled as

∑I
i=1 Gi . The data received

at a multi-hop SN is deduced as

x̂gi = hgi x̂gi−1 + φgi , g = 1, 2, . . . ,Gi , (1)

where hgi represents the single-path inter-node channel
(modeled as additive white Gaussian noise (AWGN) chan-
nels) and φgi represents the antenna noise at single-path SN

gi . Each SN uses the MDF (autoencoder) to decode and re-
transmit information. The received signal at the GW from a
single path is given as

x̂Gi+1 = hGi+1x̂Gi + φGi+1. (2)

Receiver (GW) [11] At the GW, the decoder portion of the
autoencoder is implemented as follows.

a. The received complex single-path data is concatenated
(real and imaginary components, x̂Gi+1 → x̃i ), and the
real value components are passed to the DNN after the
multiple path signals are combined.

b. At theGW, all themultiple path signals received are com-
bined using equal gain combining and maximum ratio
combining, which are represented respectively as

x̃ = 1

I

I∑

i=1

x̃i , and x̃ =
I∑

i=1

hGi
∑I

i=1 |hGi |2
x̃i . (3)

Fig. 3 Architecture of the VGG16 model [17]
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Table 2 DNN multi-path multi-hop PAN simulation setup

Parameter Value

Inter-node SNR E0 0 to 12 dB

Channel model AWGN

{paths,relays, bits, channels} number {I = 2, Ki = 2, b = 2, n = 2}
Number of plant images 100

Plant disease Maize common rust

c. DNN data processing: the reverse of the DNN in the
encoder occurs here, where the n data stream vector is
transformed to an estimated symbol of size 2k bits using
softmax function (softmax layer) (x̃ → s̃).

d. Image recovery: the estimated 1D image bit vector s̃ is

reshaped to the estimated 2D decimal matrix ( ˜̄S), then
to the estimated 3D pixel matrix (S̃). The total decod-
ing process is presented as f : x̃ ∈ R

n → S̃ ∈
{1, 2, . . . , M} → s̃ → ˜̄S → S̃.

The recovered image data is then transmitted over the
internet to the DNNPDD offsite system for disease detection
predictions. Note, the training of the autoencoder involves
the use of random generated bits as input and outputs for
the training and validation sets of the autoencoder [12, 13].
In addition, the autoencoder training and validation incorpo-
rated the channel characteristics into the learning process.

Fig. 4 Example of the TDF recovered images for increasing signal-to-noise transmit power values
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Fig. 5 Example of the MDF recovered images for increasing signal-to-noise transmit power values

3.2 Signal flow for multi-pathmulti-hop traditional
decode-and-forward PAN (benchmark)

A summary of the signal flow for traditional DF multi-path
multi-hop routing PAN used in this work is presented as fol-
lows [11].9

TransmitterThe image data processing portion for the DF
technique is the same as that of the encoder approach. Simi-
larly, the 1D bits data (s) is then modulated using the chosen
modulation scheme (ŝ) and transmitted over several/single

9 An argument can be made for the VS (Visual sensor) having the
capability to run the PDD algorithm (via TinyML) and instead forward
the prediction data. However, this may require additional hardware and
programming embedded into the VS devices. This will increase the
purchase cost of devices and operational expenses (VS node battery
consumption, replacement, and lifespan), proportional to the number
of VS devices needed for a farm. Also, this defeats the purpose of
using mMTC devices for smart precision farming equipped with 5G
and beyond technologies.

packets depending on the device coherence time allowable
packet size. Note, x̂0 = ‖ŝ‖2 ≤ PVS must be satisfied.

PAN multi-path multi-hop Transmission through the∑I
i=1 Gi SNs is achieved through the traditional DF (TDF)

approach, where the received data (Eq.1) as SN gi is decoded
and then decoded information is re-transmitted (Eq. 2) to
SNgi or GW.

Receiver (GW) At the GW, the received data is combined
as presented in (3), demodulated, and the image data is recov-
ered using the same encoder image recovery process. Next,
the DNN PDD is presented.

4 Plant disease detection using CNN

The acquired PAN image data must be used in PDD training
to test and affirm our noisy data theory and our proposed
cascaded encoder design for PAN-PDD. Hence, we briefly
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discuss the pre-existing PDD algorithm used to confirm our
deductions and proposed solution.

The high-precision and widely used VGG16 is adopted in
this work for the PDD based on the images acquired from the
PAN simulation. The architecture of the VGG16 is depicted
in Fig. 3. TheVGG16 consists of the typical CNNmodelwith
three layers: a convolutional layer, a pooling layer, and a fully
connected layer [18]. The VGG16 is adopted because of its
high precision in PDD, as shown in [19]. We pre-train on the
PlantVillage datasets. Further details on the ML implemen-
tation are provided in Section 5.1.1.

5 System evaluation

5.1 Onsite farmmulti-pathmulti-hop PAN
simulation

5.1.1 Simulation setup

The multi-path multi-hop PAN simulation setup is summa-
rized in Table 2. Details of the autoencoder implementation
adopted for the data routing within a single path follow a
similar structure as those found in [12, 13, 16]. The plant
(corn) images used for the PAN and DNN PDD simulations
were acquired from “PlantVillage” [15]. We acquired 1600
unhealthy and 1600 healthy noisy plant images from the PAN
image transmission simulations. Two paths (i.e., I = 2) are
used within the simulation for the multi-paths, and two rout-
ing (i.e., Ki = 2) hops per each routing path. Next, the results
(i.e., acquired noisy images) from the PAN simulation are
presented. The Block Error Rate (BLER) is chosen as the
quality-of-service (QoS) to discuss data quality. For compar-
ison, the MDF is categorized into the single-path multi-hop
(SP-MDF [11]), equal gain combining multi-path multi-hop
(ME-MDF), and the maximum ratio combining multi-path
multi-hop (MM-MDF) schemes. Similarly, the TDF consists
of the single-path multi-hop (SP-TDF [11]), equal gain com-
bining multi-path multi-hop (ME-TDF), and the maximum
ratio combining multi-path multi-hop (MM-TDF) schemes.
In addition to the single-path benchmarks, two upper-bound
benchmarks, namely, the single-path (SP-CDF) and multi-
path (ME-CDF and MM-CDF) coded DF, are presented in
the BLER plots. This is to evaluate the performance of the
MDF schemes and affirm the simulations are accurate. Each
BLER plot was acquired using 103 iterations (experiments).

5.1.2 Simulation discussion

Figures4 and 5 show the “recovered” plant images at the
GW for both the TDF (i.e., SP-, ME-, and MM-TDFs,
respectively) and MDF (i.e., SP-, ME-, and MM-MDFs,
respectively) approaches for SN transmit powers of 0 dB,

6 dB, and 12 dB. It can be seen from the recovered images
that the MDF approach has better image quality than the
TDF approach. This is because the MDF approach is based
on a trained ML that considers the channel effect. However,
this does not apply to the TDF approach, which is uncoded
and does not consider the channel effect. Even though both
schemes have the worst images at 0dB, the TDF scheme is
worse than the MDF scheme. The ME- and MM- considera-
tions for the MDF and that of the TDF have the same image
quality. This implies that the equal gain combining and max-
imum ratio combining result in a similar BLER. Also, the
TDF schemes exhibit image distortions amongst all three
considered SNR values. The MDF schemes see near-perfect
images for SNR greater than 6 dB.

The effects of the noisy data decoding are presented in
Fig. 6. Generally, as the SNR increases, the BLER for all
schemes improves. From Fig. 6, it is observed that there
is a large BLER performance gap between the {MDF +
CDF} schemes compared to the TDF schemes. In addi-
tion, there are slight performance differences between the
various subschemes (SP-, ME-, and MM-) for the TDF
scheme. However, this is not the same behavior for the CDF
and MDF schemes. Even though the CDF outperforms the
MDF schemes marginally, both schemes’ ME- and MM-
subschemes slightly outperform their SP- subscheme coun-
terparts, respectively.

Next, the influence of increasing the number of rout-
ing hops (multi-hops) has on the BLER in Fig. 9. It is
observed from the figure that as the number of hops increases,
the BLER worsens (increasing value). This observation is
because as the number of routing hops increases, the amount
of channel effect (data noisy effect) increases, increasing the
BLER. As expected, the MDF and the CDF schemes outper-

Fig. 6 PAN BLER vs SNR with Ki = 2
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form the TDF approach. The performance gap between SP-,
ME-, and MM-TDF remains constant for increasing Ki . The
ME- andMM-MDF have the same performance. This behav-
ior is the same for theME- andMM-CDF.However, there is a
constant gap between themulti-pathMDF and CDF schemes
and their respective single-path approach. The BLER for the
CDF, MDF, and TDF is approximately between the range
10−3 and 10−2.

This influence of noisy data is observed in the sample
image data set for increasing routing hops (multi-hop (Ki ))
are presented in Figs. 7 and 8 for TDF and MDF, respec-
tively. Here, the TDF and MDF approaches maintain similar
image quality with increasing Ki = {2, 6, 10} because of the
small recorded BLER range of 10−3 to 10−2 at an SNR value
of 8 dB. However, the TDF approaches have worse images
compared to the MDF approaches (Fig. 9).

Our simulation results on BLER clearly demonstrate the
pressing need for improved data transfer quality in precision
farming communication networks. It can easily be observed

that the images acquired for the proposed solutions are far
clearer compared to the traditional solutions. Additionally,
the slight differences in BLER, with the proposed scheme
having superior values, show that the proposed solution has
a better quality of service. The potential of machine learning
in communication to address the issue of noisy data trans-
fer by mitigating the noisy channel effect is significant. By
implementing an SN autoencoder within PAN,we can imme-
diately begin to improve the data transfer link performance
and ensure the improved future success of PDD in on-field
precision farming through noisy data transfer improvement
by machine learning techniques.

5.2 Plant disease detection

5.2.1 Dataset

A sample dataset from PlantVillage [15, 20] is extracted and
used as discussed above to assess the impact of PAN on the

Fig. 7 Example of the TDF recovered images for increasing number of routing hops
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performance of PDD models. This implies that the PlantVil-
lage images are simulated to pass through the PAN network
to the gateway, acquiring the noisy image data for the PDD
prediction. The Corn dataset contains plant images (i.e., corn
healthy and common rust unhealthy image datasets) essential
for training an effective PDDmodel. ThePlantVillage dataset
was chosen because it is the most used open-source plant
disease dataset. The sizes and distribution of the datasets are
found in Table 3.

5.2.2 Simulation setup

The DNN PDD experiments were run on an Apple Mac-
Book computer with anM1Max processor and 32GB RAM.
Microsoft Visual Studio [21] operating Python 3.9 was used
to run the model. For each dataset, an {80%, 20%} split is
made where the 20% is used for testing, and the 80% is fur-
ther split into 80% training and 20% validation sets. We used

two transfer learningmodels (i.e.,VGG16model) fromKeras
[22] for the DNN PDD development and proof of concept of
PDD training based on noisy image data. These models were
utilized to classify the images. We used transfer learning to
fine-tune both models for plant disease detection using the
PlantVillage dataset. The fully connected layers of the model
were removed, and two layers were frozen during the train-
ing, switching from trainable to non-trainable. Table 4 shows
the hyperparameters used for the experiments.

5.2.3 Simulation discussion

Results and discussion presented on the PDD test results are
presented in Table 5 and are based on the following metrics:

i Accuracy: It represents the overall performance of the
DNN PDD algorithm in ability to predict the right clas-
sification (i.e., healthy and unhealthy crops), which is

Fig. 8 Example of the MDF recovered images for increasing number of routing hops
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Fig. 9 PAN BLER vs Ki with Eb/No = 8dB

mathematically represented as

accuracy= true healthy+true unhealthy

true healthy+true unhealthy+false healthy+false unhealthy
.

(4)

ii Precision: It represents the overall performance of the
DNN PDD algorithm in its ability to truly determine the
unhealthy crops out of all the positive predictions made.
The precision is determined mathematically as

precision = true unhealthy

true unhealthy + false unhealthy
. (5)

iii Recall: It represents the performance capability of the
DNN PDD algorithm to determine all unhealthy crops,
that is, out of all the data predictions that should be
unhealthy crops, howmanywere predicted correctly. The
recall is deduced analytically as

recall = true unhealthy

true unhealthy + false healthy
. (6)

Table 3 Overview of the training and testing datasets

Dataset Healthy Diseased

Corn (default, TDF, MDF) (800, 800, 800) (800, 800, 800)

Total 2400 2400

Table 4 Overview of VGG16 and Inception V3 hyperparameters

Hyperparameters VGG16

Input size (224, 224, 3)

(Batch size, learning rate) (32, 0.0002)

(Number of epochs, optimizer) (15, Adam)

iv F1-score: It represents the performance ratio between
the precision and recall. It is defined mathematically as

F1 = 2

(
precision × recall

precision + recall

)

. (7)

The results show that both transfer learning VGG16 mod-
els can distinguish the diseased images from the healthy
images for all three datasets. Also, the DNN PDD per-
formance for the MDL (i.e., SP-, ME-, and MM-MDFs)
images is marginally better than that of the TDF images
(i.e., SP-,ME-, andMM-TDF) because the images were aug-
mented (perfectly cropped) and high-definition images from
PlantVillage. However, on-field real-time captured images
are expected to be of low definition (i.e., low quality and
blurry/distorted captured images due to low equality and
specification cameras) and to have blockages such as other
leaves, branches, and other plant parts, impeding the desired
plant leaf area of focus present in the captured images.
These camera usage abstractions and distortions will be fur-
ther increased because of the data transmission noise. This
leads to a reduced ability to isolate the plant leaf area of
focus for DNN PDD training and prediction, unlike the
perfectly isolated high-definition images used in this work.
Hence, the performance differences between the usage of
on-field low-definition captured images and the perfectly
isolated high-definition images used in this work will be
significant. This effect or prediction is affirmed from the
results presented. Comparing the results of perfectly isolated
high-definition images passed through the noisy multi-hop

Table 5 VGG16 results on PAN generated datasets

Dataset Accuracy Precision Recall F1-score

Default 100.000% 100.000% 100.000% 100.000%

SP-TDF 96.000% 99.291% 93.333% 96.220%

ME-TDF 97.665% 98.462% 96.970% 97.710%

MM-TDF 95.720% 99.187% 92.424% 95.686%

SP-MDF 97.276% 98.450% 96.212% 97.318%

ME-MDF 98.054% 98.473% 97.727% 98.099%

MM-MDF 97.276% 96.992% 97.727% 97.358%
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(i.e., both single- and multi-path ) relay network to results
acquired from the perfect images from PlantVillage, trained
directly without going through the PAN simulation, had per-
fect results (100%). Note that the default had perfect results
because the ideal (original) images, which are not practical
images, were used.

6 Conclusion

This paper presented work on onsite farm multi-path multi-
hop PAN using traditional (TDF) and ML (MDF) decode-
and-forward approaches and farm offsite deep neural net-
work (DNN) plant disease detection (PDD) implementation.
It was shown that the MDF approach is better compared to
the TDF approach, and image acquisition for DNN PPD off-
site is better. However, for the DNN PDD execution, the
MDF and TDF had similar prediction values. The following
research stage involves designing and incorporating both a
spectrum- and energy-efficient routing protocol based on tra-
ditional and ML approaches. In addition, other modulation
schemes will be considered for the system model. Finally,
physical implementation will be done.
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