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ARTICLE INFO ABSTRACT

Keywords: Computer vision and deep neural networks offer a great potential for the automation of labor-intensive and
Uncertainty repetitive monitoring tasks, including the assessment of animals in livestock farming. However, in such un-
Multi-view controlled environments, the application of vision-based methods faces several challenges. This includes envi-
Krsl:f;niﬁences ronmental conditions such as illumination that affect the image quality, but also animal poses that hinder precise
Robustness assessment. These challenges contribute to an inherent uncertainty associated with predictions made by neural

networks. To enhance robustness of visual assessment systems, particularly in uncontrolled settings, this study
proposes an approach that utilizes information from entire image sequences rather than single images.
Considering the estimated uncertainty of individual predictions made on each image within the sequence, our
method selectively aggregates these predictions into a final output. In our experiments, we evaluated the
assessment performance of the proposed approach against conventional approaches on image level using a
dataset focused on plumage condition assessment in chickens. To demonstrate the method’s general applica-
bility, we additionally utilized the MARS-Attributes dataset for person age estimation. Further, we investigated
the impact of limited image numbers on our method and explored the use of different uncertainty estimators. The
results demonstrated that our aggregation approach outperformed the conventional image-level model in terms
of accuracy across both datasets by up to 7.15%. It also surpassed conventional methods even when confronted
with limited data and when utilizing alternative uncertainty metrics. This method will therefore substantially
contribute to enhancing the robustness of visual monitoring systems, especially in uncontrolled environments.

1. Introduction the prediction. Next to this uncertain nature of the data, caused by

environmental influences, uncertainty can also arise from the presence

In recent years, rapid advancements in computer vision and deep
learning technologies have increased their significance in the agricul-
ture and livestock domain. Particularly for labor-intensive and repetitive
monitoring tasks like the condition assessment of animals, there is a
large potential for automation. While traditionally, farmers have relied
on manual inspections of individual animals’ condition to ensure their
health and well-being, emerging approaches aim to automate these as-
sessments using cameras and advanced deep learning algorithms
(Lamping et al., 2022).

Still, however, vision-based applications face various challenges in
uncontrolled environments such as farms. Unpredictable factors such as
varying illumination, occlusions, and the dynamic motion of animals
can significantly impact the quality of captured images. Thus, the reli-
ability of assessments made by deep learning algorithms is influenced by
these environmental factors which results in an increased uncertainty of
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of unknown input that the model has not been trained on. This is
particularly relevant when considering out-of-distribution data, where
the algorithm encounters samples that differ significantly from the
training data distribution.

While relevant in livestock farming, the issue of dealing with un-
certain predictions and low-quality input is not unique to this domain. It
extends to other agricultural applications, such as weed detection (Jeon
et al., 2011), and even finds relevance in non-agricultural fields like
automated driving (Arnez et al., 2020). Currently, the majority of deep
learning models operate at the single-image level, which poses a prob-
lem when the input image itself is of low quality, causing the predictions
to be highly unreliable. This issue becomes particularly critical as many
models lack the capability to provide an indicator or measure of the level
of uncertainty in their predictions, leaving users unaware of the reli-
ability of the provided results. Even if multiple observations of an object

Received 20 February 2024; Received in revised form 22 October 2024; Accepted 23 February 2025

Available online 22 March 2025

0168-1699/© 2025 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).


https://orcid.org/0000-0002-3652-9075
https://orcid.org/0000-0002-3652-9075
mailto:christian.lamping@wur.nl
www.sciencedirect.com/science/journal/01681699
https://www.elsevier.com/locate/compag
https://doi.org/10.1016/j.compag.2025.110182
https://doi.org/10.1016/j.compag.2025.110182
http://crossmark.crossref.org/dialog/?doi=10.1016/j.compag.2025.110182&domain=pdf
http://creativecommons.org/licenses/by/4.0/

C. Lamping et al.

or a scenario are available, for instance through a video sequence, it is
not possible to select the most reliable one without knowledge of the
individual prediction uncertainties.

To address this issue, this work focuses on the development of an
uncertainty-aware approach for reliable object assessment from image
sequences. Instead of providing an end-to-end trained solution for the
assessment of sequences, our method leverages the capabilities of deep
learning models operating at the image level. It selectively incorporates
the information derived from multiple images within a sequence to
enhance the accuracy of assessments. By adopting this approach, we aim
to create a framework that is able to utilize the strength of task-specific
standard models while simultaneously exploiting the additional context
provided by multiple images. To achieve this, we integrate measures of
uncertainty into the image-level predictions, enabling us to carefully
select and combine the most reliable predictions for a comprehensive
assessment.

To summarize, our main contributions are as follows:

— We propose a novel method that selectively incorporates predictions
from multiple images within a sequence, considering the uncertainty
of individual predictions. This method is designed to extend the ca-
pabilities of pre-trained convolutional neural networks operating at
the image level.

— We propose an appearance-based clustering method for image se-
quences to identify and group detections providing relevant infor-
mation for visual assessment tasks.

— We demonstrate the general applicability of our method by evalu-
ating it on a dataset from the agricultural domain for the task of
plumage condition assessment in chickens, as well as on the MARS-
Attributes dataset for person age estimation.

— We evaluate the impact of limited data and alternative uncertainty
estimators for use in our method, ensuring robust and reliable per-
formance under varying conditions.

1.1. Related work

Our approach for robust object assessment utilizes multiple pre-
dictions of a standard neural network made on the individual images of a
sequence and integrates them into a final assessment prediction. This
methodology is grounded on two essential concepts: Firstly, the esti-
mation of uncertainty for each individual prediction to determine the
particular relevance for the final assessment, and secondly, the inte-
gration of those predictions obtained from multiple views within the
sequence. In both domains, namely, the uncertainty estimation in deep
learning and the field of multi-view assessment, considerable research
efforts have been made over the past years.

1.1.1. Uncertainty estimation in deep learning

Deep learning approaches have shown great success for various
computer vision task such as image classification, object detection, or
segmentation. However, these models can provide unreliable pre-
dictions due to inherent randomness in the data, noisy inputs or un-
certainty in the model parameters. Especially in safety—critical
applications, the costs of false predictions are high. Therefore, quanti-
fying the uncertainty of a model’s prediction has become a crucial aspect
of deep learning. Moreover, uncertainty can arise from various sources,
which makes it essential to distinguish between different types. Two
types of uncertainty are commonly distinguished; aleatoric and
epistemic uncertainty (Kiureghian and Ditlevsen, 2009).

Aleatoric uncertainty captures the uncertainty caused by the
intrinsic randomness of an observation, such as sensor noise or ambi-
guities in the input data. As it is a property of the data, this type of
uncertainty cannot be reduced even with more training data. Aleatoric
uncertainty can further be categorized as homoscedastic uncertainty,
which is constant for all inputs, or heteroscedastic uncertainty, with the
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latter being particularly relevant for computer vision applications
(Kendall and Gal, 2017).

Epistemic uncertainty, also known as model uncertainty, refers to
uncertainty caused by insufficient capabilities of the deep learning
model (Molchanov et al., 2020). The extent of this uncertainty can be
mitigated by enhancing the quality of the model, increasing training
data or refining data analysis techniques. Understanding the presence
and magnitude of epistemic uncertainty is crucial in determining the
model’s limitations, especially when presented with inputs that are
dissimilar to the training data.

Several approaches for the estimation of both aleatoric and epistemic
uncertainty have been developed. For example, (Kendall and Gal, 2017)
proposed a Bayesian deep learning framework for quantification of
uncertainty. Heteroscedastic aleatoric uncertainty was modeled as the
variance of the Gaussian likelihood model and learned directly from the
data through maximum likelihood training. By using a modified loss
function, the neural network was encouraged to predict a higher vari-
ance for erroneous predictions. For estimation of epistemic uncertainty,
Monte-Carlo dropout was utilized during inference as a variational
Bayesian approximation. In general, Bayesian neural networks (BNNs)
are a popular approach for the estimation of uncertainty. They treat
weight parameters of a neural network as random variables with a prior
distribution instead of assuming deterministic parameters. Bayesian
inference then allows quantifying the uncertainty, which is associated to
the model predictions by computing a posterior distribution over these
variables (Gal and Ghahramani, 2015; Postels et al., 2019).

Other methods for estimating uncertainty include ensemble methods
(Lakshminarayanan et al., 2016; Gawlikowski et al., 2021), evidential
approaches (Charpentier et al., 2020; Sensoy et al., 2018; Amini et al.)
and test-time augmentation methods (Molchanov et al, 2020).
Ensemble methods refer to the training of multiple models and
combining their outputs, while evidential approaches aim to provide a
full probability distribution over the outputs. Test-time augmentation
involves applying transformations to the input data to obtain multiple
predictions and estimate uncertainty.

Overall, these techniques aim to quantify both aleatoric and
epistemic uncertainty and have been applied on a variety of computer
vision task. As uncertainty quantification allows the numerical com-
parison of neural network predictions, it provides a useful basis for the
aggregation of multiple predictions on a sequence of images.

1.1.2. Multi-view assessment

Deep learning methods for vision-based classification or regression
typically rely on single-image inputs and may not capture the
complexity of real-world scenes that often have multiple perspectives or
views. To address this limitation, several approaches have been devel-
oped, which can integrate information from different views to make
predictions. It is worth noticing that the term “view” in this context does
not necessarily imply different perspectives of looking at a scene or
object. Rather, it can refer to different modalities, angles, or represen-
tations that are unique and informative. Regarding the assessment of an
object based on a sequence of images, different options to incorporate
information from multiple views can be distinguished:

One option involves the selection of a single, representative image
from the sequence, commonly referred to as key frame extraction. Such a
key frame usually corresponds to a frame which has a high visual quality
but also summarizes the content of the given images. In traditional ap-
proaches, key frames were often determined through boundary-based
techniques, which simply select the first or middle frame of a
sequence (Boreczky, 1996), or through quality estimation methods
applied to each image (Lu et al., 2015). Alternatively, frames with least
differences from other frames were selected using a variety of similarity
measures (Zhuang et al., 1998; Sadiq et al., 2020). Recent approaches
mostly used content-based strategies, in which visual features of each
frame were extracted and analyzed to determine most relevant frames.
For example, deep convolutional neural networks were utilized to learn
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those features and to estimate the importance of a frame within a
sequence (Nahian et al., 2017; Ren et al., 2020).

Another option involves the aggregation of information from mul-
tiple views or images instead of selecting a single view or image. One
popular technique is multi-view learning, which trains a neural network
using distinct viewpoints of the same data to learn a combined repre-
sentation that encompasses the information from those viewpoints. A
wide range of supervised and unsupervised approaches, such as multi-
view clustering (Chen et al., 2022), multi-view representation learning
(Tian et al., 2019; Bachman et al., 2019; Wang et al., 2021), and multi-
view classification (Kendall and Gal, 2017; Seeland and Mader, 2021;
Kiela et al., 2018) have been proposed in the field of multi-view
learning. Recent studies further incorporated the estimation of uncer-
tainty for each view into multi-view learning approaches. For example,
(Han et al., 2021; Han et al., 2022) dynamically integrated multiple
modalities at an evidence level to ensure the reliability and robustness of
a classification task in the presence of noisy and out-of-distribution data.
These methods were designed as an end-to-end trainable framework and
aimed for decision explainability by providing the uncertainty learned
for each view.

Instead of developing a model that is capable to process multi-modal
inputs, other studies utilized late fusion, which involves the combination
of multiple predictions of a deep learning model on different represen-
tations of the same scene or object into a single prediction. Alternatively,
multiple models can be trained on each view to then combine their
predictions using the late fusion technique. In (Wang et al., 2022), the
authors presented fusion-based approaches for anomaly detection,
including fusion-based multi-view solutions that merge data embed-
dings obtained from various modalities into a joint embedding which is
then used for anomaly detection. Here, it was shown that simple aver-
aging could serve as a robust baseline for the fusion of multiple views.
Other approaches adopted more sophisticated late fusion strategies that
considered certainty of the different views for fusion. For example,
(Liong et al., 2020) introduced a method for LiDAR semantic segmen-
tation that fuses information from multiple projection-based networks
through late fusion. In this approach, the disagreements between class
predictions were considered as a measure of uncertainty. Then, fusion of
multiple individual network predictions was performed using an extra
network to refine the results. Similarly in (Morvant et al., 2014), di-
versity of different classifier predictions was taken into account for late
fusion. Fusion approaches were also developed in (Zhou et al., 2022)
and (Zhou et al., 2024), where information from different branches of a
network architecture were fused to improve or refine the final model
output. In (Tian et al., 2019), various uncertainty measures were
considered. This work proposed an uncertainty-aware fusion approach
for effectively fusing inputs from an arbitrary set of modalities or net-
works. With each measure capturing a different aspect of uncertainty,
uncertain outputs of the different modalities were integrated into a final
prediction for semantic segmentation. These late fusion methods
combine multiple predictions and partially integrated uncertainty
measures which provides decision explainability for the final prediction.
However, multi-view fusion in most approaches referred to multi-modal
representations of a static image and did not take into account the
temporal component of the views. This introduces additional complex-
ities, including variations in the number of images to be considered for
predictions or shifts in perspectives across individual views.

Another approach for the integration of multiple views are models
using attention mechanisms which selectively focus on specific views of
the input that are deemed to be most relevant for a given task. These
models are popular for their effectiveness in handling sequential data.
Consequently, despite their application on multi-modal data (Tian et al.,
2020; Wei et al., 2020; He et al., 2021; Chen et al., 2020), they are
frequently utilized for data including a temporal component such as
video sequences to prioritize individual frames of the sequence (Li et al.,
2020; Chen et al., 2019; Pei et al., 2016; Peng et al., 2017). For instance,
attention mechanisms have been incorporated into CNNs in order to
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recognize facial expressions from image sequences (Li et al., 2020) or for
classification of pedestrian attributes from surveillance camera videos
(Chen et al., 2019). Study (Pei et al., 2016) combines the concepts of
attention models and gated recurrent networks for the classification of
noisy image sequences. This approach encouraged the interpretability of
predictions as it utilized temporal attention weights to indicate the
significance of each time step in a given sequence. In (Heo et al., 2018),
aleatoric uncertainty was introduced to the attention mechanism so that
attention was predicted with a lower variance if the model was confident
about the contribution of a certain feature. In case of uncertain contri-
bution, the variance of the prediction was higher. However, this was
applied on classification on time-series data of medical records rather
than on images or image sequences.

In summary, while multi-modal approaches have encompassed a
variety of methods for multi-view assessment, the existing work on
image sequences reveals two severe limitations:

1. End-to-end trained models as they are frequently used in multi-view
learning often suffer from a poor explainability. For most of these
models, it is hard to understand why they make a particular pre-
diction for a sequence, or why they prioritize a certain view within
the sequence.

2. Attention-based and other multi-view models developed for the
purpose of image sequence assessment require training on sequential
data. Consequently, a substantial volume of annotated training data
in the form of image sequences is essential for each assessment task
to be trained. These datasets are relatively scarce in comparison to
datasets composed of single images. For instance, widely-used
datasets like ImageNet (Deng et al., 2009), often leveraged for pre-
training primarily consist of single images. Similarly, the majority
of task-specific convolutional neural networks are trained on single
images, posing challenges when adapting them for complete
sequences.

This study addresses these issues by presenting an approach that
integrates multiple predictions of standard, image-level-neural networks
into a final assessment taking into account the uncertainty of each in-
dividual prediction. Thus, we aim to enhance decision interpretability
and establish a method applicable across a wide range of tasks, as
detailed in the subsequent sections.

2. Method: Uncertainty-aware multi-view assessment

As most neural networks traditionally operate on image-level, their
predictions are based on the information provided from a single view. To
enhance the robustness of pre-trained convolutional neural networks for
object assessment, our method extends the assessment process to
encompass entire sequences of images, rather than individual frames.
Notably, our approach is not limited to objects, but also refers to the
assessment of animals or persons, collectively denoted as ’identities’
hereafter. For each identity, the method selectively incorporates pre-
dictions from multiple images within a video sequence, while consid-
ering the uncertainty associated with each individual prediction. This
uncertainty-aware multi-view assessment leads to a final assessment
prediction for the identity of interest.

Applying a detection-and-assessment model that operates on image
level to a sequence of images initially leads to a list of unrelated pre-
dictions. First, these predictions must be matched to their corresponding
identities. In this work, this alignment was accomplished by using
ground-truth identity information. The detections of one identity within
consecutive frames are visually very similar, therefore containing
similar information. Nevertheless, some detections may be dissimilar to
others, for example if the object of interest moves or the viewpoint
changes exposing a different part of the identity. As a result, multiple
views of an identity might emerge from a sequence, where each view
adds new information, but where some views could be more relevant
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than others.

An intuitive method for obtaining an optimal assessment from a
sequence could be to select the most certain assessment. However, the
most certain assessment is not necessarily the best assessment. For
instance, assessments made from different viewpoints can be contra-
dictory to each other if a certain view reveals relevant features of an
identity affecting the assessment, while those features are not visible in
another view. An example is the assessment of a chicken’s plumage. If a
damage remains hidden from a particular perspective, assessments
made from that viewpoint may be certain about the plumage’s intact-
ness. However, if the chicken changes its position, thereby revealing the
previously concealed damage, the initial assessment is found to be
incorrect. Therefore, some views could be more important than others in
facilitating a holistic assessment of the target, as they provide essential
information necessary for the final classification. To consider this for the
assessment of an identity and to distinguish between different views, it is
required to know which detections are similar and which provide new
information before utilizing them for a final assessment. While pre-
defined features such as the pose of a person or an animal might serve as
a valid metric for distinguishing between views in certain use cases, this
approach is limited to those features and not capable to dynamically
consider other factors that influence the information content of a
detection, such as occlusions. Instead, we propose the clustering of de-
tections by their appearance to identify distinct views within the
sequence. Fig. 1 provides a visual representation of the intended clus-
tering procedure for this method when applied to a sequence capturing
the movement of a chicken.

Our approach first processes each image from the sequence and
generates detections and assessment predictions together with uncer-
tainty estimates for each identity as presented in Section 2.1. Subse-
quently, an appearance-based clustering method is used to group all
visually similar detections together and separate dissimilar ones
(Section 2.2). Finally, the predictions per cluster are aggregated to
derive an assessment prediction and associated uncertainty for each
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cluster, which is then used to generate a final prediction for each identity
(Section 2.3). An overview of the complete method is provided in Fig. 2.

2.1. Detection and assessment network

For the uncertainty-aware aggregation of multiple image pre-
dictions, first an uncertainty assessment method is required. As outlined
in Chapter 1, there are various approaches to estimate uncertainty in
neural network predictions such as end-to-end solutions (Kendall and
Gal, 2017; Postels et al., 2019) and inference sampling approaches
(Kendall and Gal, 2017; Molchanov et al., 2020; Gal and Ghahramani,
2015), which allows the Bayesian interpretation of standard architec-
tures without the need to retrain the model.

In this study, we employed ChickenNet (Lamping et al., 2022), a
convolutional neural network for object detection, segmentation and
quality assessment, which included the prediction of multiple types of
uncertainties of a regression output without requiring ground-truth
uncertainty labels during training (Lamping et al., 2023). ChickenNet
was developed by extending the Mask R-CNN architecture (He et al.,
2017) with an additional regression output for the purpose of plumage
condition assessment in chickens. It detects and segments object in-
stances from single images, while predicting an assessment score for
each instance. To estimate both data- and model-related uncertainty of
the regression output, the model integrates estimators for aleatoric and
epistemic uncertainty into its architecture. While primarily developed
for plumage condition assessment, the model was designed to predict
uncertainties for regression-based predictions in general object-
detection tasks.

For the prediction of aleatoric uncertainty together with the
regression score, a modified loss function was implemented following
the approach of (Kendall and Gal, 2017). Instead of only predicting a
single regression output yi"*, the presented model simultaneously
predicts a measure of aleatoric uncertainty, given by the variance ¢?.
With yi“" denoting the ground-truth regression score and N denoting

IR

View cluster 1

View cluster 2

View cluster 3

No plumage damage

No plumage damage

Plumage damage

Identity assessment:

Plumage damage

Fig. 1. Intended procedure for identifying distinct viewpoints from a sequence of detection through clustering. For the given example of a moving chicken, the three
cluster represent views from the right, rear, and left sides of the animal. While view clusters 1 and 2 do not exhibit any plumage damages in the chicken, such
damages are revealed in the third cluster, impacting the overall assessment of the chicken (identity).



C. Lamping et al.

Image
sequence

Computers and Electronics in Agriculture 234 (2025) 110182

i - | | |
X Appearance | I Intra-cluster | i Inter-cluster ,
I
l : base(! | : comparison : | comparison ,
| 1 |
( ) Detection || CIIUSterl\ng [ A r p——C T L \ :
T ! g |4 e Uncertainty— ——p | ! |
—» | Assessment |, —» e - I < | Cluster : "
U :t inty | | Uncertainty|' \ Threshold N’ X 1| assessment | |
ncertainty | ! | 0 | \
. | + — .
< | [ | P | ! l
;‘5‘ ;)eteitlont | %0 ! Asses+sment : ’Uncer<taim§ Yes : Cluster : !
—> | Assessment |, —» —> i
z + § l |\ | Threshold—p ) | Umcertainty | !
o Uncertainty |, Z ! Uncertainty| No , | :
= ! | 1
n ' — | ~ . P2 | |
E ‘:)ete_f_uont | r : Asses:ment : Uince,:aintyi’: : g !
—» |Assessmen —> —> | o
é Unce:ta’n : g ; Uncertainty I L Threshold»,? X I I = :
2 L ! - : : 0 : Cluster : = ;
w . i - | p 7 «
z Detection | = : Assessment || {pcertainty—o . | assessment | | z !
< —> Assesiment —» @ — ar I Thre<shold X I - :—P - —>» | Final assessment
ol 2 '|Uncertainty|' - ' Cluster | < !
= Uncertainty | b | | No | 17 I
g Detection | - ! A ¢l . Yes ! MBEETRINEY | = |
|3 ri : = 1 [ESBSESSINENT) | [Uncertainty— ——p | I Q |
£ |—»|Assessment | —»| & |—p i l < | ! |
o + | « ! eyl Threshold —» X | ' |
= Uncertainty | - | No i : :
= ! ! I ) , I I '
Detection | i Assessment | iJncer<taint§ L Cluster ! |
—» | Assessment | —p —’I + I . I assessment |—> I
+ I T | Threshold —> X | & \ I
— Uncertainty|' \___/  ||unce ME —  No ; \ :
I | Cluster I |
e eeanesstesssssesssesstesstesesssesstessisesseesstesstasenttenstanaan | | uncertainty : !
i Detections Clusters e S e ! o= __

1 CIEEC

Fig. 2. Generic pipeline of the developed method for image sequence assessment, consisting of a detection and assessment network for the assessment on instance-
level, followed by appearance-based clustering of the individual detections. Subsequently, assessments within a cluster are evaluated to obtain a single assessment for
each cluster. Those are then compared with each other, leading to a final assessment.

the number of samples, the loss function is defined as:

Ascore) 2 1

1 N core
score = N Z ys 2 + 5612 (1)
i=1 1

With this, aleatoric uncertainty was learned directly from the data
during model training, aiming to give a sense of the model’s predictive
error. The first term of the function encourages the model to minimize
the predictive error, while predicting a high variance also reduces the
contribution of this term to the overall loss. As the second term penalizes
large variances, the present loss function instructs the network to predict
higher variance for uncertain predictions and lower variance for correct
ones.

Calibrated uncertainty predictions are needed for the comparison of
uncertainties among multiple assessments as well as the thresholding of
uncertainty values using a fixed threshold. Intuitively, the predicted
uncertainty of a regression output should match the difference between
the prediction and the ground-truth value. As there is no ground-truth
uncertainty for training the aleatoric uncertainty of a prediction, cali-
bration of the uncertainty estimation cannot be guaranteed by solely
using the loss function shown in Equation (1). Therefore, following the
approach of (Di Feng et al., 2019), in the present study, we additionally
devised a simple calibration term which was incorporated into the total
loss of ChickenNet by adding it to Lgcor. This term forces oiz to align with
the predictive error, resulting in a calibrated score loss, defined as:

ul ys core — /\50076)2 ]- core /\s:nre 2
Lscore calib — N 2:1: +26 + }0- J/s - ) | (2)

Aligning the aleatoric uncertainty prediction to the predictive error
allows setting an interpretable threshold to filter uncertain predictions.

In addition to aleatoric uncertainty, ChickenNet provides an esti-
mation of epistemic uncertainty for the regression output by applying
the Monte-Carlo Dropout method (Gal and Ghahramani, 2015). During
inference, multiple forward passes with varying dropout patterns are
performed to approximate the distribution of the output predictions and
estimate the epistemic uncertainty of the model. Previous experiments
showed that both estimation methods, the adapted loss function as well
as the Monte-Carlo Dropout method, were able to capture the uncer-
tainty in plumage condition assessments with a strong positive corre-
lation between the predicted uncertainty and the predictive error of the
model’s regression output (Lamping et al., 2023). In the present work,
we primarily focused on aleatoric uncertainty, which relates to uncer-
tainty in the image data, making it more intuitive for human interpre-
tation of the results. Nevertheless, we also conducted an experiment that
explored the utilization of epistemic uncertainty as an alternative metric
for assessing individual instance predictions.

Our approach utilizes the ChickenNet architecture to process each
image within the sequence and facilitate the shift from the image level to
the detection level. Applied on a sequence, it outputs all individual
detections from that sequence together with their associated assessment
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scores and uncertainties. Assigned to their corresponding identity, these
individual detections serve as the basis for the subsequent stages of our
approach.

2.2. Appearance-based detection clustering

To group detections that provide similar information and distinguish
them from dissimilar ones, we employed an appearance-based clustering
approach. This allows considering the perspective or level of informa-
tion each detection offers before integrating them into a final assess-
ment. The clustering first requires a latent representation of the different
detections, described in the following, which is then used to cluster
observations in that latent space.

2.2.1. Appearance representation

To form meaningful clusters of detections from an image sequence,
detections within a cluster should be more similar than detections be-
tween clusters. Representing the visual appearance of the detections as
embeddings in a lower-dimensional feature space allows to efficiently
measure the similarity between the detections using a distance metric.
Thus, the quality of the clusters heavily depends on the representation
used for clustering. To identify detections that provide new information
for assessment, we propose clustering based on their appearance to
capture similarities or dissimilarities. To this end, we computed an
appearance descriptor of each detection. The descriptor was obtained
from a shallow CNN, as presented in (Wojke and Bewley, 2018), that had
been trained to construct feature embeddings from detections. It pro-
vides a method for learning embeddings from images such that they
maximize inter-class cosine similarity and minimize intra-class cosine
similarity, meaning that the cosine similarity between two embeddings
corresponding to images of the same class are likely to be closer than two
embeddings corresponding to different classes. This has been shown to
be very effective for representation learning, e.g. in the context of person
re-identification (Wojke et al., 2017).

In this approach, we utilized the embedding model as proposed in
(Wojke and Bewley, 2018), pre-trained on a large-scale person re-
identification dataset (Zheng et al., 2016). This embedding model was
then applied on each of the bounding box predictions given by our
detection and assessment network to obtain an appearance descriptor
for each detection. This resulted in an appearance vector of length 128
for each detection.

2.2.2. Clustering algorithm

To cluster the different samples of an individual, we applied the
mean-shift algorithm (Fukunaga and Hostetler, 1975) on the computed
vectors of all detections belonging to a single individual. Mean shift is a
non-parametric algorithm that can be used to group data points based on
their similarity in a feature space. Contrary to the popular K-Means
cluster algorithm, it does not require specifying the number of clusters in
advance. Instead, the number of clusters is determined by the algorithm
with respect to the data. This was essential for our approach, as the ideal
number of clusters in our scenario is dependent on the diversity in the
appearance of the detections. The higher the number of different per-
spectives or appearances, the higher the ideal number of clusters. As
input, the algorithm received all appearance vectors of an individual
together with the radius of the local window used to compute the mean-
shift updates. The radius of the local window, was obtained by
computing the distances between each pair of appearance vectors from
the input. The radius was then set as the median of those, introducing a
distance measure that adapts to the data rather than relying on a fixed
distance. Initially, Mean Shift clustering treats each data point as the
center of its own cluster.

As our approach utilized the appearance-based clustering for the
uncertainty-aware assessment of an identity, the prediction y; and pre-
diction uncertainty o2 of the respective detection were also assigned to
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the clusters. Thus, for each cluster ¢; = {ai, ..., ay, } with a; = {Ji,6?},
we obtained a set of assessments clustered by the similarity of their vi-
sual appearance. Examples of clustered detections for two identities
from different datasets are visualized in Fig. 3.

2.3. Cluster aggregation

The appearance-based clustering resulted in groups of detections and
their uncertainty-aware assessments. We aggregated the assessments
using a two-step approach. First, we combined the assessments within a
cluster to obtain one prediction and its corresponding uncertainty per
cluster, as further explained in Section 2.3.1. Subsequently, in the sec-
ond step, detailed in Section 2.3.2, we determined the most represen-
tative cluster while considering the uncertainty associated with each
cluster.

2.3.1. Intra-cluster comparison

Due to the shared visual characteristics among all detections in a
cluster, the assessments in one cluster rely on comparable information,
which makes the corresponding assessments more likely to be also
similar. To compute a single assessment output for each cluster, we
aimed to combine all assessments within this cluster while considering
their individual uncertainties. The inverse of this uncertainty value can
serve as a measure of the assessments relevance in determining the final
output of the cluster. However, simply choosing the assessment with the
lowest uncertainty from each cluster may result in a high sensitivity to
(false) outliers among the uncertainty predictions. To be robust to noise,
we propose a certainty-weighted mean for each cluster, where certainty
is defined as the inverse of the associated uncertainty. Weighting indi-
vidual predictions by their certainty results in predictions with high
certainty to contribute more to the output than ones with low certainty
and is expected to reduce the impact of erroneous predictions. Given a
multi-sample cluster c;, the weighted mean of cluster ¢ was defined as:

noo
TPV LI/ ©)
> iawi Gi

The uncertainty of each cluster was estimated using the variance of
the weighted mean. Considering the inverse-variance weighing, which
minimizes the variance of the mean as shown in (Meier, 1953), this is
defined as:

1
2 = 4
Tk @

The estimation of uncertainty for each weighted mean allows a
comparison of all clusters of an identity, as described in the next section.
However, this comparison can be negatively affected by clusters with
either single samples or only samples with high uncertainty. This chal-
lenge arises, for instance, if certain detections significantly differ in
appearance from the rest, such as when an object is in motion, resulting
in blurred detections and uncertain assessments. In such cases, these
assessments may be allocated to a distinct cluster characterized by its
limited number of samples and high uncertainty. To avoid those clusters,
we discarded highly uncertain assessments by setting a threshold 7 to the
uncertainty metric before computing the weighted average of a cluster.
The weight w; of a sample i was defined as w; = 0 if 62 > 7 so that a
sample was ignored in the weighted average if its uncertainty exceeded
the given threshold. By rejecting those samples, our algorithm can
classify a sequence as not assessable if >; ;w; = 0.

Considering an integer-based labeling of ground truth assessments,
as it was given in the evaluated datasets, the maximum error, which can
still result in a prediction considered as correct is 0.5. Since the uncer-
tainty prediction for an assessment was trained to match the squared
expected error between the score prediction and its ground truth, the
uncertainty threshold was accordingly set to 7 = 0.25. This procedure
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Fig. 3. Clusters resulting from our appearance-based clustering approach applied on an identity from the MARS-Attributes dataset (left) and the chicken dataset

(right). For each of the four clusters, exemplary detections are visualized.

results in an assessment prediction, Y., and uncertainty, ij , per cluster.

2.3.2. Inter-cluster comparison

After computing the assessment prediction and the corresponding
uncertainty for each cluster, these clusters need to be evaluated and
compared to each other to obtain a final assessment for each identity. To
select the optimal cluster for the final assessment, we distinguished two
cases.

The first case refers to assessments that are an unavoidable outcome
of the existence of specific indicators. An example is the presence of
plumage damages in chickens. As soon as damages are visible, the
plumage cannot be assessed as completely intact anymore. Other ex-
amples would be rotten spots for the assessment of apples or cracks in
the surface of a metal component. If an indicator is present once, the
assessment of the whole identity cannot improve with the consideration
of additional assessments. However, such a dependency on certain in-
dicators can lead to contradictory assessments, depending on the
particular perspective on an object. Suppose J different view clusters,
each having an assessment prediction 170). and an associated uncertainty
ij . While all those cluster predictions might be correct, considering the

given information, clusters containing detections in which the relevant
indicators are visible, are more important than clusters without those
indicators. For instance, different viewpoints of a single object, repre-
sented by the clusters, can reveal different visual information of the
object, leading to different assessments of the object’s condition. Clus-
ters with low uncertainty, in which defects are visible, should therefore
be preferred for the final assessment. Thus, assuming a higher assess-
ment score indicates a worse condition, the overall assessment score can
increase but not decrease with an increasing number of detections. This
prioritization of predictions affected the final assessment of an identity,
so that we formulated the cluster selection as the maximum of the cluster
predictions, weighted by their particular uncertainty. This ensures the
prioritization of higher cluster predictions if predictions are equally
certain but also ensures that high but uncertain predictions are

neglected:

~ Y.
Y=Y, k= argmax—;’ 5)

o< X

The second case refers to applications in which the assessment is not
dependent on the presence of indicators for or against a particular
assessment. Example application, in which this approach might be
chosen, are the age estimation of humans or weight estimation from
images. In this case, additional assessments from multiple perspectives
might change the outcome in both directions. Therefore, we based the
prioritization of the individual clusters only on their associated uncer-
tainty. For the final assessment of an identity, the cluster with the lowest
uncertainty was chosen. In this case the final output is defined as:

N 1
Y=Y,k =argmax— 6)

Ckr 2
0<j<J ¢

2.4. Experiments

Experiments were conducted with the objective to compare the
performance of our proposed method with standard instance-level ap-
proaches and to investigate the strength and weaknesses of our
approach. To this end, experiment 1, as outlined in Section 2.4.2,
focused the direct comparison with the standard implementation of
ChickenNet. Following that, experiment 2, detailed in Section 2.4.3,
evaluated the effect of different input quantities on our approach. While
the first two experiments considered the aleatoric uncertainty prediction
of the assessment network for weighting the predictions, the third
investigated the alternative use of epistemic uncertainty as presented in
Section 2.4.4. This aimed to determine the effectiveness of our method
across various uncertainty metrics that may differ depending on the
specific use cases. Approaches were compared on two different datasets
for visual assessment tasks, one in the domain of plumage condition
assessment in laying hens and one for human age estimation.
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2.4.1. Data and annotations

Our approach addresses a general method for robust multi-view
assessment from image sequences. The chicken dataset on which the
present work was focused, includes image sequences of one or multiple
chickens, labeled with bounding boxes, segmentation masks and scores
for the condition of the plumage (Lamping et al., 2022). In order to
investigate the general applicability on visual assessment tasks, our
experiments were not limited to the small-scale chicken dataset, but also
extended to the MARS-Attributes dataset (Chen et al., 2019), a dataset,
which can be utilized for human age estimation from surveillance
camera sequences. While both datasets were from different domains,
they share a similar structure. Ground-truth labels for plumage condi-
tion scores and ages were given per identity, meaning each label cor-
responds to either a chicken or a person. For chickens, scores from 0 to 2
were annotated, with a score of 0 indicating perfect plumage condition,
plumages with minor damages were given a score of 1 and heavily
damaged plumages received a score of two. In the MARS-Attributes
dataset, age attributes ranged from O to 3, indicating children, teen-
ager, adults and elderly people.

Further, both datasets comprise an id label for each identity. These
ids were needed to assign individual detections to the corresponding
person or chicken, respectively. It’s worth noting that the chicken
dataset contains one or more identities per image, whereas the MARS-
Attributes dataset contains only one identity per image. For each iden-
tity, both datasets include one or more tracklets, which represent a
sequence of instances, as shown in Fig. 4.

An instance denotes a detection of an identity at a certain timestep of
the sequence.

The detection-and-assessment model was trained on image level,
separately for each dataset. For the chicken dataset, the training data
consists of 1888 images with 5057 chicken instances, obtained from
video sequences recorded in a commercial laying hen farm following the
procedure described in (Lamping et al., 2022). For the MARS-Attributes
dataset, the training data includes 509,914 images with one instance
each. Using the respective network weights of each dataset, our method
was tested utilizing the image sequences from the test data of both
datasets. The chicken dataset comprised 35 identities and tracklets,
totaling 5133 instances. The test data of the MARS-Attributes dataset
consists of 634 identities, captured in 8058 tracklets with 509,990 in-
stances in total. Here, images without a ground truth label were ignored.

2.4.2. Experiment 1 — comparison to standard ChickenNet
In the first experiment, we compared the performance of our pro-
posed approach to the predictions generated by the conventional
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ChickenNet model. While ChickenNet originally predicts a score on
instance-level, our method leverages the aggregation of multiple indi-
vidual assessments of a sequence to obtain a final prediction as described
in Section 2.3. However, the level on which these assessments are
aggregated for a final assessment can be varied. The sequential structure
of the present datasets allows a prediction at each timestep of a tracklet,
considering all previous assessments upon this timestep, but also enables
a single prediction for each tracklet or for each identity by aggregating
all assessments from the respective tracklet or identity. To compare our
method with assessment on instance level, we distinguished between
these alternative aggregation levels. This resulted in a comparison of
four different evaluation approaches for our method:

2.4.2.1. Instance level, Aggregation per Tracklet. Predictions of our
method were evaluated on instance level. Each prediction Y4, for an
identity id at a time step k of a tracklet t considered all previous pre-
dictions on this identity from tracklet t, starting from k = 0.

2.4.2.2. Instance level, Aggregation per Identity. Predictions of our
method were evaluated on instance level. Each prediction Y4.x for an
identity id at a time step k of a tracklet t considered all previous pre-
dictions on this identity from all previous tracklets.

2.4.2.3. Tracklet level. Predictions were evaluated on tracklet level. Our
method was applied on all instances of a tracklet, so that per tracklet and
identity, a single prediction Y;4, was given.

2.4.2.4. Identity level. Predictions were evaluated on identity level. Our
method was applied on all instances and all tracklets of an identity, so
that per identity a single prediction Yj; was given. As the chicken
datasets contained a single tracklet per identity, the identity level was
equal to the tracklet level for this dataset.

Fig. 5 visualizes the different evaluation approaches using an iden-
tity from the MARS-Attributes dataset as example.

Evaluating approaches for object detection and assessments at the
instance level means to verify whether the predicted values of each
instance match the corresponding ground truth. As we additionally
evaluated our method on tracklet and on identity level, we also obtained
single predictions per tracklet and per identity, which were then
compared to their corresponding ground truth values. For the present
datasets, ages and plumage condition scores were represented by
discrete numerical labels. Therefore, a prediction was considered cor-
rect, if the predicted value fell within the range associated with the
corresponding class. Thus, the accuracy denoted the proportion of

Fig. 4. Structure of the MARS-Attributes dataset (left) and chicken dataset (right). Per identity, the MARS-Attributes contains multiple tracklets, while the chicken

dataset consists of a single tracklet per identity.
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Fig. 5. Evaluation approaches on instance-, tracklet-, and identity-level. Instance-level approaches result in a prediction for each instance and can be obtained by
either aggregating all instances of a tracklet or all instances of an identity. Tracklet-level approaches result in one prediction per tracklet considering all instances of a
tracklet. Identity-level approaches result in one prediction per identity, considering all instances of an identity. The given example illustrates and identity consisting

of two tracklets and six instances per tracklet.

correct predictions among the total number of samples. Additionally, we
analyzed the mean squared error (MSE) for each prediction. Again, it is
worth noting that in this experiment, predictions were obtained per
instance, per tracklet and per identity as shown in Fig. 5.

2.4.3. Experiment 2 — effects of data quantity

Conventional instance-level approaches do not harness the advan-
tages of image sequences, as they treat each frame within a sequence
independently. However, given a sufficient number of images per
identity and recordings captured from multiple perspectives, it could be
expected that a simple average of all available predictions from an
instance-level model would also result in an accurate assessment of an
identity — without the need for a selective approach as we presented it in

this study. Therefore, this experiment compared our method to a simple
averaging approach on both datasets.

For the chicken dataset, which consists of a single tracklet per
identity and includes instances of chickens captured in different poses,
we expected that averaging the assessments across all instances would
result in an increased assessment accuracy compared to the standard
ChickenNet as the number of considered instances increases. The MARS
dataset consists of multiple tracklets where instances within each
tracklet show a high similarity in terms of perspective and pose of the
person while the perspective differs between the tracklets. Therefore,
our expectation was that the accuracy resulting from averaging would
increase with the inclusion of a greater number of tracklets, while the
number of instances per tracklet would have a relatively minor impact.



C. Lamping et al.

In contrast to the averaging approach, our method presented in this
study considers the uncertainty of individual assessments to prioritize
the most relevant predictions for a final assessment. This aims to enable
precise assessments from sequences, even in cases where multiple pre-
dictions within a sequence may be incorrect. Thus, we expected higher
accuracy levels when confronted with limited data compared to con-
ventional averaging techniques.

To evaluate this hypothesis, we investigated the advantages of our
method on limited data. We manipulated the number of instances per
tracklet and the number of tracklets per identity in both datasets to
compare the performance of our method in different scenarios. We
varied the range of instances per tracklet between 3 and 20. Addition-
ally, for the tracklets per identity in the MARS-Attributes dataset, we
considered a range of values, including 1, 2, 5, 10, 30, 50, 80, and 100.
The chicken dataset remained limited to a single tracklet per identity.
The obtained predictions were then compared to simple averages of all
predictions per tracklet and to averages of all predictions per identity.

2.4.4. Experiment 3 — alternative uncertainty quantification

To test the hypothesis, we substituted the aleatoric uncertainty
estimation with the epistemic uncertainty estimation derived from
ChickenNet and evaluated it on both datasets, analogous to the experi-
ment described in Section 2.4.2.

3. Results

The results are presented in the order of the experiments. First, the
comparison of our method with instance-level assessments is demon-
strated. Subsequently, the impact of data quantities on our method, as
well as the outcomes derived from our method utilizing epistemic un-
certainty, are presented.

3.1. Comparison to instance-level assessment

The first experiment aimed to compare our method to a standard
approach for visual assessments on instance level. Four alternative ag-
gregation approaches were evaluated and compared to instance level
assessment, which does not aggregate any information. Table 1 presents
the accuracies obtained from the different aggregations for both, the
chicken and the MARS-Attributes dataset.

Results showed that, on both datasets, all four aggregation ap-
proaches increased the assessment accuracy and decreased the mean
squared error compared to the baseline model. For both, the chicken and
MARS-Attributes dataset, best performance was obtained when pre-
dictions were aggregated on identity-level, resulting in a single assess-
ment per identity. For the chicken dataset, this approach yielded an
accuracy of 88.57 % and a mean squared error (MSE) of 0.1. In com-
parison, the baseline model achieved an accuracy of 85.40 % and an

Table 1

Accuracies and MSE for the assessment predictions obtained from our method as
well as the baseline model on the chicken and MARS-Attribute dataset. Metrics
were evaluated using five different evaluation approaches on instance, tracklet
or identity level.

Aggregation Method Chicken dataset MARS-Attributes

dataset
Accuracy MSE  Accuracy MSE
(%) (%)
Instance level, Baseline (No 85.40 0.18 76.42 0.20
aggregation)
Instance level, Aggregation per 87.44 0.17 82.38 0.17
Tracklet
Instance level, Aggregation per 87.44 0.17 81.84 0.16
Identity
Tracklet level 88.57 0.10  82.09 0.17
Identity level 88.57 0.10 83.57 0.14
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MSE of 0.18 for the chicken dataset. Similarly, for the MARS-Attributes
dataset, identity-level aggregation resulted in an accuracy of 83.57 %
and an MSE of 0.14, while the baseline achieved an accuracy of 76.42 %
and an MSE of 0.20.

Furthermore, results indicated that employing our method for
instance-wise prediction on the chicken dataset increased accuracy to
87.44 %, with an MSE of 0.17. For the MARS-Attributes dataset, the
performance at the instance level, particularly when aggregated per
tracklet, was almost on par with the tracklet-level performance. The
difference in accuracy between instance-level with an aggregation per
tracklet and tracklet level was only 0.27 % and 0.73 % between instance-
level with an aggregation per identity and identity level.

Fig. 6 illustrates examples showcasing the underlying principle of
our method using three tracklets from the chicken dataset. The figure
provides an instance-wise comparison between the predicted plumage
scores of the baseline model and the predictions obtained from our
approach, using aggregated information of the entire tracklet. The key
observation is that our method was able to select correct predictions
from a sequence of predictions, even though false predictions were made
by the baseline model on several instances of the tracklet. This was
particularly observable for the second tracklet as our method success-
fully maintained accurate predictions for all instances, despite the
baseline model producing three false predictions among the tracklet.
Conversely, in the example of tracklet 3, our method ignored those false
predictions that were based on blurred instances, even though these
were constituting the majority of the tracklet with only two out of seven
correct predictions from the baseline model.

Our method employs a selective approach, meaning it does not
necessarily consider all available predictions of a sequence. Instead, it
selects predictions based on their individual predictive uncertainty. If
this uncertainty associated with a particular instance exceeds the given
threshold, this assessment is rejected and not considered for further
processing. In case that all instances of a tracklet or identity surpass the
uncertainty threshold, the entire entity is rejected and not assessed.
Therefore, the number of assessed tracklets and identities might differ
from the overall numbers in the dataset. Table 2 presents the number of
tracklets, and identities rejected by our method compared to the original
numbers for both datasets.

In the given table, the number of original tracklets and original
identities pertains to those that consist of at least one detection from the
baseline model. It is worth noting that four tracklets within the MARS
datasets did not contain any detections, resulting in a discrepancy of
8058 tracklets compared to 8062 tracklets in the original ground-truth
dataset. Results showed that with the defined uncertainty threshold of
0.25, our method provided assessments for all identities and tracklets
assessed by the baseline model within the chicken dataset. In the MARS-
Attributes dataset, 13.84 % of the tracklets were rejected, while 99.84 %
of the identities were still assessed.

Overall, it was shown that our method was able to increase the ac-
curacy for tracklet- and identity assessment while proving valid assess-
ments for almost all identities of the dataset. However, it was also
demonstrated that the approach did not increase instance-level accu-
racies for all tested data. Results of further analyses, exploring the im-
pacts of diverse data structures are presented in the following.

3.2. Effects of data quantity

In this experiment, we evaluated the performance of our method on a
limited amount of data and compared it to the performance of the
baseline model as well as simple averaging methods. Fig. 7 visualizes the
accuracies for the different evaluation approaches presented in Section
2.4.2 across a range of instances from 3 to 20 for the chicken dataset.
Additionally, it shows the accuracies obtained by averaging all instance
predictions of the baseline model per identity or per tracklet, consid-
ering the specific number of instances. Fig. 8 illustrates those accuracies
obtained for the MARS-Attributes dataset. It presents the accuracies for
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Tracklet 1

Baseline 12%) 1.34 1.48 1.82 1.93 177 1.69
Ours 1.23 1.25 1.27 1.42 1.93 1.93 1.93
Tracklet 2

Baseline 1.81 1.59 1. 10

Baseline 0 74 0.15 0.03 0.21 0.54
Ours 0.90 0.90 0.90 0.87 0.62 | 0.58 0.58
Tracklet 3

1.69

1.14

Ours | 1.81 | 1.81 | 1.81 |

1.19 |

1.26

correct prediction false prediction

Fig. 6. Instance-wise assessment score predictions of the standard ChickenNet (baseline) model compared to assessments provided by our method for consecutive
instances from three tracklets of the chicken dataset. Colours indicate whether the predicted score was correct or not. A correct prediction in the final frame of a

tracklet implies a correct assessment of the entire tracklet.

Table 2
Number of original tracklets and identities for the chicken and MARS-Attributes
dataset, compared to the number of tracklets and identities rejected by our
method.

Chicken dataset MARS-Attributes dataset

Original Tracklets 35 8058

Rejected Tracklets 0 (0 %) 1116 (13.84 %)
Original Identities 35 634

Rejected Identities 0 (0 %) 1 (0.16 %)

instances ranging from 3 to 20 per tracklet, but also for 1-100 tracklets
per identity.

Results showed that all aggregation approaches based on our method
outperformed the baseline model and averaging approaches for both
datasets, even with a limited number of considered instances per iden-
tity. Solely for the case in which less than five instances were available
for an entire identity of the chicken dataset, averaging of all instance
predictions resulted in a higher accuracy. Further, experiments on the
chicken dataset revealed an increase in the accuracies of our method
with an increasing baseline accuracy, while the accuracy of the aver-
aging approach remained constant beyond 10 considered instances. This
indicates the correct selection of relevant instances from the total
available instances. In contrast to the MARS-dataset, the chicken dataset
includes a single tracklet per identity, thus number of instances per
tracklet is equivalent to the total number of instances per identity. This
might explain the initial increase in accuracy of our method with and
increasing number of instances per tracklet which was not observed for
the MARS-Attributes dataset.

For the MARS-Attributes dataset, the accuracies of the different ag-
gregation approaches did not increase with an increasing number of
instances per tracklet, instead tracklet-level accuracy and instance-level
accuracy based on tracklet information slightly decreased while accu-
racies of identity-based aggregations did not significantly change.

11

However, independent of the number of considered instances per
tracklet, all accuracies obtained from our method were consistently 5-7
% higher, compared to the baseline. Similar observations were made
when comparing our method to traditional averaging. While averaging
per identity and identity-level aggregation both yield a single prediction
value per identity, the accuracies obtained from our method were 3-5 %
higher. For tracklets, the difference between averaging and tracklet-
level aggregation ranged between 4 % and 6 %. This demonstrates the
advantage of our uncertainty-based weighting and clustering approach
compared to traditional averaging, also for a limited amount of data.
While averaging approaches performed best for higher numbers of in-
stances per tracklet, this dependency was not observed for our method.

Increasing the number of considered tracklets per identity resulted in
a decrease of the baseline accuracy for the MARS-Attributes dataset.
This implies an increasing number of false predictions among the
additionally considered tracklets. Thus, accuracies of tracklet-averages
and tracklet-based aggregation approaches also decreased. Averaging
all predictions per identity as well as employing our method for a single
prediction per identity led to an initial drop in accuracy but then, fol-
lowed by a relatively stable accuracy throughout the analysis period.
This observation deviated from our expectation that an increasing
number of considered tracklets would increase the accuracy obtained by
averaging all predictions of an identity. However, our expectation of an
increased accuracy through our method was confirmed. Similar to the
experiment on the number of instances per tracklet, accuracies based on
our method were 5-7 % higher than the baseline accuracy and about
2-4 % higher than those obtained from averaging approaches. Further,
it was shown that the difference in accuracy between identity-level ag-
gregation and averaging per identity increased while the identity-level
accuracy remained constant, and the averaging accuracy decreased.
This implies that our method was able to prioritize the correct instance
predictions and downgrade the false instance predictions among an
identity. Moreover, while the influence of the baseline predictions on
our method was evident, we found no clear difference in performance
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impact between limited instances per tracklet and limited tracklets per 3.3. Alternative uncertainty quantification

identity.

Using epistemic uncertainty to weight individual instance pre-
dictions yielded similar results to using aleatoric uncertainty. Table 3
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and 4 present the results of the experiments on the chicken dataset and
the MARS-Attributes dataset.

In line with the results obtained using aleatoric uncertainty, we
observed that our method was able to surpass the baseline model in
terms of accuracy, also when utilizing epistemic uncertainty as a metric
for weighting instance predictions. However, it was shown that correc-
tions on instance-level based on the estimated epistemic uncertainty led
to a decreased accuracy for the chicken dataset. In combination with an
increased accuracy on tracklet level, this implies that accurate assess-
ments of a tracklet were primarily achieved in the later instances of that
tracklet when using epistemic uncertainty. The accuracies obtained at
the tracklet and identity levels were 88.57 %, which was equivalent to
those achieved using aleatoric uncertainty. However, the mean squared
error was 0.13, slightly higher than the MSE of 0.10 obtained in the
aleatoric approach. Furthermore, similarly to the experiments with
aleatoric uncertainty, our method successfully assessed all 35 identities/
tracklets in the chicken dataset without any rejections.

Experiments on the MARS-Attributes dataset revealed a slightly
higher accuracy at the identity level and a decrease in accuracy at the
tracklet level when compared to the assessment based on aleatoric un-
certainty. However, simultaneously, the number of rejected tracklets
decreased from 1116 to 342 and the number of rejected identities
increased from one to two, using an uncertainty threshold of 0.25. Uti-
lizing epistemic uncertainty resulted in increased accuracy across all
types of aggregation compared to the baseline model. The highest ac-
curacy achieved was 84.02 %, obtained at the identity level, surpassing
the accuracy observed in the aleatoric uncertainty experiments.

4. Discussion

This study tackled the issue of obtaining reliable assessments from
image sequences, originally intended for the assessment of chickens in
challenging farm environments. However, it was shown that our
approach is also applicable on alternative use cases focusing image se-
quences assessment.

One addressed limitation, which most previously developed ap-
proaches faced, was the requirement for complete sequences during
training of the model. Instead of developing an end-to-end trainable
model, such as (Chen et al., 2019) or (Pei et al., 2016), our approach was
designed to leverage standard models that operate on image level. Ex-
periments demonstrated that the method was able to increase the
assessment accuracy on sequences compared to such standard models.
This improvement was observed not only for entire sequences but also
for a limited number of instances within a sequence and for a restricted
number of sequences per identity.

The second limitation that this study addressed was the lack of
explainability in the predictions of models for sequence assessment. By
considering the uncertainty of predictions on instance-level for the
subsequent aggregation, we not only aimed to improve the assessment,
but also focused the transparency of decisions. Similar strategies have

Table 3
Accuracies and MSE for the assessment predictions obtained from our method
using epistemic uncertainty to weight the individual predictions.

Aggregation Method Chicken dataset MARS-Attributes

dataset
Accuracy MSE  Accuracy MSE
(%)
Instance level, Baseline (No 85.40 0.18 76.42 0.20
aggregation)
Instance level, Aggregation per 83.83 0.21 80.46 0.18
Tracklet
Instance level, Aggregation per 83.83 0.21 82.05 0.16
Identity
Tracklet level 88.57 0.13  79.78 0.18
Identity level 88.57 0.13 84.02 0.14
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Table 4

Number of original tracklets and identities for the chicken and MARS-Attributes
dataset, compared to the number of tracklets and identities rejected by our
method based on epistemic uncertainty.

Chicken dataset MARS-Attributes dataset

Original Tracklets 35 8058
Rejected Tracklets 0 (0 %) 347 (4.31 %)
Original Identities 35 634
Rejected Identities 0 (0 %) 2 (0.32 %)

been pursued by other approaches, such as (Morvant et al., 2014) and
(Tian et al., 2019), which utilized uncertainty measures on multiple
modalities for refining neural network predictions. However, our
approach deviates in two key aspects. Firstly, instead of using multiple
modalities, we applied this methodology specifically to image sequences
and aggregated assessments of individual instances over time. Secondly,
before fusing the individual, weighted assessments, we applied an
appearance-based clustering approach. This enabled the consideration
of different viewpoints for the assessment and thus allowed a prioriti-
zation of specific views.

4.1. Impact of chosen model components

The presented framework includes an assessment model, a feature
encoder for appearance-based clustering, and an uncertainty metric to
weigh individual predictions. These components are modular and can be
replaced depending on the specific task, enabling the applicability of our
method across multiple use cases and facilitating the extension of
existing pre-trained assessment models. Thus, the choice of these indi-
vidual modules significantly affects the performance of the overall
method. Especially the assessment model is important, as it determines
the input for all subsequent processing steps. For example, a perfectly
accurate uncertainty estimator that indicates false assessments becomes
redundant if all assessments are consistently inaccurate and would lead
to low quality results. In our experiments, we primarily focused on the
application on chicken assessment which justified the utilization of the
ChickenNet model. While this implementation was shown to be effective
on other data such as the MARS-Attributes dataset, it is important to
note that the assessment performance on image level could be further
improved for this dataset by replacing ChickenNet with an alternative
baseline model specifically tailored for the age estimation use case. As a
general guideline, the accuracy of assessment models with low-
uncertainty predictions becomes increasingly critical when fewer im-
ages are available per sequence. When a high number of images is
present, inaccurate predictions can be compensated by the subsequent
uncertainty estimation and filtering without impairing the final assess-
ment output.

For the appearance-based clustering we employed an appearance
descriptor obtained from a shallow CNN originally designed for repre-
sentation learning in the context of person re-identification (Wojke and
Bewley, 2018). However, depending on the data at hand, our method
allows to replace it by an alternative feature descriptor, customized for
distinguishing between different views, tailored for the particular
application. Here, it is worth recognizing that the structure of the pre-
sent data affects the appearance-based clustering. While for tracklets in
which the individual detections differ a lot in terms of perspective or
appearance, such as in the chicken dataset, our method resulted in a
higher number of clusters. In contrast, a high similarity between the
detections of a tracklet, as we observed it in the MARS-Attributes dataset
often led to a single cluster per tracklet. In the latter case, our method
comes down to uncertainty-weighted averaging. Thus, in use cases
including highly similar frames, a feature descriptor specialized to
differentiate between perspectives is expected to improve the overall
assessment results of the presented approach. When examining the
application of clustering at the identity level, it became apparent that
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the resulting clusters often align with the individual tracklets present in
the MARS-Attributes dataset, as illustrated in Fig. 3. However, although
this correspondence may seem intuitive, it is not a necessary outcome. In
our method, clustering serves the purpose of differentiating instances
that offer additional informative value. Despite tracklets typically being
captured from different perspectives, it does not automatically imply
that they provide complementary information that is relevant for the age
estimation of the detected persons.

For the quantification of uncertainty, we initially employed an esti-
mation of aleatoric uncertainty given by ChickenNet to weight indi-
vidual predictions. However, our experiments demonstrated a successful
use of epistemic uncertainty as an alternative metric. Epistemic uncer-
tainty estimation through Monte-Carlo dropout, as we modeled it in this
study, further offers the opportunity to obtain an uncertainty estimation
during inference. This allows the estimation of uncertainty on pre-
trained models without the need for retraining the assessment model
and makes it convenient to integrate existing standard models into our
approach and leverage them for sequence assessment.

4.2. Aggregation methods and evaluation

Our method aggregates multiple detections obtained from a standard
neural network for object detection aiming for reliable sequence
assessment. However, it allows to vary the level on which predictions
are fused into a final prediction, as explained in Section 2.4.2. In our
experiments, we compared aggregations on tracklet and identity level
resulting in a single prediction, but also instance-wise predictions ob-
tained from aggregated information at each timestep within a sequence.

While instance-level predictions offered a direct comparison to the
conventional ChickenNet model, it is worth noting that in this case, the
number and order of considered detections influences the assessment.
For example, if relevant features crucial for the assessment are observed
in the last frame of a tracklet, leading to a correct final assessment of that
tracklet, the instance-level accuracy would be one divided by the
number of instances, while the tracklet-level accuracy would be one. On
the other hand, if those relevant features are revealed in an early frame,
resulting in an early correct assessment, instance-level accuracy would
be increased while maintaining the same tracklet-level accuracy. This
effect became apparent when evaluating our method’s performance on a
varying number of instances on the chicken dataset and accounts for the
differences in accuracy between tracklet level and corresponding
instance level evaluations. The accuracy at the tracklet level was
consistently higher, primarily due to tracklets for which the final pre-
diction becomes correct after observing more than one instance. As more
instances are considered, the number of false instance predictions in-
creases. If all tracklets were to have their final predictions made after the
first instance, tracklet-level and instance-level accuracy would be equal.
Conversely, if the instance-level accuracy surpasses the tracklet-level
accuracy, it indicates that the final tracklet prediction is incorrect
while the individual instances of the tracklet are correctly assessed.

For both datasets, as well as both tested uncertainty metrics, results
showed that best predictions were obtained when evaluating on identity
level. Identity level aggregation combines and clusters all available
detections for an identity to obtain one final prediction, thereby elimi-
nating the dependency on the detection order. This characteristic also
applies to evaluation on tracklet level and makes both evaluation ap-
proaches more meaningful for assessing the performance of our method
even though they do not allow an instance-wise comparison to the
baseline model.

4.3. Future research

One aspect for further investigations relates to the determination of
thresholds for the instance-level prediction uncertainty. In this study, we
established a static threshold to filter out assessments with an expected
error exceeding 0.5. This choice was made due to our integer-labeled
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datasets, as this value corresponds to the maximum error that can still
lead to a correct class-prediction. Nevertheless, employing a fixed
threshold introduces an additional parameter that requires prior speci-
fication. This provides an opportunity for optimization, such as the
integration of dynamic or learning-based approaches that adapt the
threshold based on contextual information to provide better flexibility
across different datasets.

Moreover, while this work provides a solid foundation for enhancing
transparency in the assessment process through uncertainty estimation,
it is important to acknowledge that there remains room for further
improvement in the transparency of deep learning-based monitoring
systems. A logical first step could involve providing more information on
how the uncertainty estimates influence the final predictions within the
presented approach. One indication here could be the number of as-
sessments that were rejected due to high uncertainty. This is especially
relevant if uncertain predictions are not equally distributed among the
different assessment categories, so that an increasing rejection rate
could lead to a change in the distribution of the assessments. Dealing
with this could be a topic addressed by future research. Beyond the
estimation of uncertainty, a transparent monitoring system could further
focus on offering explainable recommendations for the users, allowing
them to better understand and critically assess the system’s decisions.

Further work could also be dedicated to enhancing the efficiency of
our method. Currently, all instances of a sequence are clustered each
time a new instance is added, resulting in increased computational re-
quirements as the sequence length grows. To address this issue, an
alternative approach would involve limiting the number of considered
instances.

Finally, a fundamental aspect to address is the aggregation of indi-
vidual predictions in real-life applications, where ground-truth infor-
mation is unavailable. This requires the association of individual
predictions within a sequence. While for single-instance recordings this
might be accomplished through the detection model itself, scenarios
involving multiple instances necessitate the incorporation of an addi-
tional tracking method to assign predictions to specific identities.
Consequently, the selection of a robust association technique is crucial
for the overall performance of the application.

5. Conclusion

In this study, we presented a novel approach for robust assessment
from image sequences, specifically addressing animal monitoring under
challenging environmental conditions. Our method focused the selective
incorporation of information derived from multiple detections within an
image sequence. To this end, it clusters the individual detections based
on their appearance and accounts for uncertainty associated to the
assessment of each detection.

In our experiments, we primarily analyzed the assessment perfor-
mance of our approach in comparison to the assessments made by
conventional models operating on instance-level. Additionally, we
explored the impact of limited data on our method’s performance and
evaluated alternative metrics for uncertainty estimation. Here, we
distinguished between two dataset and three alternative aggregation
levels to evaluate the assessment accuracy.

Results showed that our method outperformed the baseline instance-
level approaches on both datasets when aggregating information per
tracklet or per identity. For the chicken dataset, it was able to increase
the accuracy from 85.40 % to 88.57 % and for the MARS-Attributes
dataset, an improvement from 76.42 % to 83.57 % was observed.
Moreover, we demonstrated that the advantage against the instance-
level approaches persists when considering a limited number of track-
lets per identity and instances per tracklet. Similarly, the utilization of
epistemic uncertainty as an alternative uncertainty metric also showed
increased accuracies on both datasets.

We conclude that the presented approach provides an effective
method that enables the utilization of standard neural networks for the
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purpose of animal assessment from image sequences. In combination
with an appropriate tracking approach, it becomes a versatile tool to be
used in a wide range of real-world monitoring applications requiring
robust assessments.
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