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A B S T R A C T

Computer vision and deep neural networks offer a great potential for the automation of labor-intensive and 
repetitive monitoring tasks, including the assessment of animals in livestock farming. However, in such un
controlled environments, the application of vision-based methods faces several challenges. This includes envi
ronmental conditions such as illumination that affect the image quality, but also animal poses that hinder precise 
assessment. These challenges contribute to an inherent uncertainty associated with predictions made by neural 
networks. To enhance robustness of visual assessment systems, particularly in uncontrolled settings, this study 
proposes an approach that utilizes information from entire image sequences rather than single images. 
Considering the estimated uncertainty of individual predictions made on each image within the sequence, our 
method selectively aggregates these predictions into a final output. In our experiments, we evaluated the 
assessment performance of the proposed approach against conventional approaches on image level using a 
dataset focused on plumage condition assessment in chickens. To demonstrate the method’s general applica
bility, we additionally utilized the MARS-Attributes dataset for person age estimation. Further, we investigated 
the impact of limited image numbers on our method and explored the use of different uncertainty estimators. The 
results demonstrated that our aggregation approach outperformed the conventional image-level model in terms 
of accuracy across both datasets by up to 7.15%. It also surpassed conventional methods even when confronted 
with limited data and when utilizing alternative uncertainty metrics. This method will therefore substantially 
contribute to enhancing the robustness of visual monitoring systems, especially in uncontrolled environments.

1. Introduction

In recent years, rapid advancements in computer vision and deep 
learning technologies have increased their significance in the agricul
ture and livestock domain. Particularly for labor-intensive and repetitive 
monitoring tasks like the condition assessment of animals, there is a 
large potential for automation. While traditionally, farmers have relied 
on manual inspections of individual animals’ condition to ensure their 
health and well-being, emerging approaches aim to automate these as
sessments using cameras and advanced deep learning algorithms 
(Lamping et al., 2022).

Still, however, vision-based applications face various challenges in 
uncontrolled environments such as farms. Unpredictable factors such as 
varying illumination, occlusions, and the dynamic motion of animals 
can significantly impact the quality of captured images. Thus, the reli
ability of assessments made by deep learning algorithms is influenced by 
these environmental factors which results in an increased uncertainty of 

the prediction. Next to this uncertain nature of the data, caused by 
environmental influences, uncertainty can also arise from the presence 
of unknown input that the model has not been trained on. This is 
particularly relevant when considering out-of-distribution data, where 
the algorithm encounters samples that differ significantly from the 
training data distribution.

While relevant in livestock farming, the issue of dealing with un
certain predictions and low-quality input is not unique to this domain. It 
extends to other agricultural applications, such as weed detection (Jeon 
et al., 2011), and even finds relevance in non-agricultural fields like 
automated driving (Arnez et al., 2020). Currently, the majority of deep 
learning models operate at the single-image level, which poses a prob
lem when the input image itself is of low quality, causing the predictions 
to be highly unreliable. This issue becomes particularly critical as many 
models lack the capability to provide an indicator or measure of the level 
of uncertainty in their predictions, leaving users unaware of the reli
ability of the provided results. Even if multiple observations of an object 

* Corresponding author.
E-mail address: christian.lamping@wur.nl (C. Lamping). 

Contents lists available at ScienceDirect

Computers and Electronics in Agriculture

journal homepage: www.elsevier.com/locate/compag

https://doi.org/10.1016/j.compag.2025.110182
Received 20 February 2024; Received in revised form 22 October 2024; Accepted 23 February 2025  

Computers and Electronics in Agriculture 234 (2025) 110182 

Available online 22 March 2025 
0168-1699/© 2025 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license ( http://creativecommons.org/licenses/by/4.0/ ). 

https://orcid.org/0000-0002-3652-9075
https://orcid.org/0000-0002-3652-9075
mailto:christian.lamping@wur.nl
www.sciencedirect.com/science/journal/01681699
https://www.elsevier.com/locate/compag
https://doi.org/10.1016/j.compag.2025.110182
https://doi.org/10.1016/j.compag.2025.110182
http://crossmark.crossref.org/dialog/?doi=10.1016/j.compag.2025.110182&domain=pdf
http://creativecommons.org/licenses/by/4.0/


or a scenario are available, for instance through a video sequence, it is 
not possible to select the most reliable one without knowledge of the 
individual prediction uncertainties.

To address this issue, this work focuses on the development of an 
uncertainty-aware approach for reliable object assessment from image 
sequences. Instead of providing an end-to-end trained solution for the 
assessment of sequences, our method leverages the capabilities of deep 
learning models operating at the image level. It selectively incorporates 
the information derived from multiple images within a sequence to 
enhance the accuracy of assessments. By adopting this approach, we aim 
to create a framework that is able to utilize the strength of task-specific 
standard models while simultaneously exploiting the additional context 
provided by multiple images. To achieve this, we integrate measures of 
uncertainty into the image-level predictions, enabling us to carefully 
select and combine the most reliable predictions for a comprehensive 
assessment.

To summarize, our main contributions are as follows: 

– We propose a novel method that selectively incorporates predictions 
from multiple images within a sequence, considering the uncertainty 
of individual predictions. This method is designed to extend the ca
pabilities of pre-trained convolutional neural networks operating at 
the image level.

– We propose an appearance-based clustering method for image se
quences to identify and group detections providing relevant infor
mation for visual assessment tasks.

– We demonstrate the general applicability of our method by evalu
ating it on a dataset from the agricultural domain for the task of 
plumage condition assessment in chickens, as well as on the MARS- 
Attributes dataset for person age estimation.

– We evaluate the impact of limited data and alternative uncertainty 
estimators for use in our method, ensuring robust and reliable per
formance under varying conditions.

1.1. Related work

Our approach for robust object assessment utilizes multiple pre
dictions of a standard neural network made on the individual images of a 
sequence and integrates them into a final assessment prediction. This 
methodology is grounded on two essential concepts: Firstly, the esti
mation of uncertainty for each individual prediction to determine the 
particular relevance for the final assessment, and secondly, the inte
gration of those predictions obtained from multiple views within the 
sequence. In both domains, namely, the uncertainty estimation in deep 
learning and the field of multi-view assessment, considerable research 
efforts have been made over the past years.

1.1.1. Uncertainty estimation in deep learning
Deep learning approaches have shown great success for various 

computer vision task such as image classification, object detection, or 
segmentation. However, these models can provide unreliable pre
dictions due to inherent randomness in the data, noisy inputs or un
certainty in the model parameters. Especially in safety–critical 
applications, the costs of false predictions are high. Therefore, quanti
fying the uncertainty of a model’s prediction has become a crucial aspect 
of deep learning. Moreover, uncertainty can arise from various sources, 
which makes it essential to distinguish between different types. Two 
types of uncertainty are commonly distinguished; aleatoric and 
epistemic uncertainty (Kiureghian and Ditlevsen, 2009).

Aleatoric uncertainty captures the uncertainty caused by the 
intrinsic randomness of an observation, such as sensor noise or ambi
guities in the input data. As it is a property of the data, this type of 
uncertainty cannot be reduced even with more training data. Aleatoric 
uncertainty can further be categorized as homoscedastic uncertainty, 
which is constant for all inputs, or heteroscedastic uncertainty, with the 

latter being particularly relevant for computer vision applications 
(Kendall and Gal, 2017).

Epistemic uncertainty, also known as model uncertainty, refers to 
uncertainty caused by insufficient capabilities of the deep learning 
model (Molchanov et al., 2020). The extent of this uncertainty can be 
mitigated by enhancing the quality of the model, increasing training 
data or refining data analysis techniques. Understanding the presence 
and magnitude of epistemic uncertainty is crucial in determining the 
model’s limitations, especially when presented with inputs that are 
dissimilar to the training data.

Several approaches for the estimation of both aleatoric and epistemic 
uncertainty have been developed. For example, (Kendall and Gal, 2017) 
proposed a Bayesian deep learning framework for quantification of 
uncertainty. Heteroscedastic aleatoric uncertainty was modeled as the 
variance of the Gaussian likelihood model and learned directly from the 
data through maximum likelihood training. By using a modified loss 
function, the neural network was encouraged to predict a higher vari
ance for erroneous predictions. For estimation of epistemic uncertainty, 
Monte-Carlo dropout was utilized during inference as a variational 
Bayesian approximation. In general, Bayesian neural networks (BNNs) 
are a popular approach for the estimation of uncertainty. They treat 
weight parameters of a neural network as random variables with a prior 
distribution instead of assuming deterministic parameters. Bayesian 
inference then allows quantifying the uncertainty, which is associated to 
the model predictions by computing a posterior distribution over these 
variables (Gal and Ghahramani, 2015; Postels et al., 2019).

Other methods for estimating uncertainty include ensemble methods 
(Lakshminarayanan et al., 2016; Gawlikowski et al., 2021), evidential 
approaches (Charpentier et al., 2020; Sensoy et al., 2018; Amini et al.) 
and test-time augmentation methods (Molchanov et al., 2020). 
Ensemble methods refer to the training of multiple models and 
combining their outputs, while evidential approaches aim to provide a 
full probability distribution over the outputs. Test-time augmentation 
involves applying transformations to the input data to obtain multiple 
predictions and estimate uncertainty.

Overall, these techniques aim to quantify both aleatoric and 
epistemic uncertainty and have been applied on a variety of computer 
vision task. As uncertainty quantification allows the numerical com
parison of neural network predictions, it provides a useful basis for the 
aggregation of multiple predictions on a sequence of images.

1.1.2. Multi-view assessment
Deep learning methods for vision-based classification or regression 

typically rely on single-image inputs and may not capture the 
complexity of real-world scenes that often have multiple perspectives or 
views. To address this limitation, several approaches have been devel
oped, which can integrate information from different views to make 
predictions. It is worth noticing that the term “view” in this context does 
not necessarily imply different perspectives of looking at a scene or 
object. Rather, it can refer to different modalities, angles, or represen
tations that are unique and informative. Regarding the assessment of an 
object based on a sequence of images, different options to incorporate 
information from multiple views can be distinguished:

One option involves the selection of a single, representative image 
from the sequence, commonly referred to as key frame extraction. Such a 
key frame usually corresponds to a frame which has a high visual quality 
but also summarizes the content of the given images. In traditional ap
proaches, key frames were often determined through boundary-based 
techniques, which simply select the first or middle frame of a 
sequence (Boreczky, 1996), or through quality estimation methods 
applied to each image (Lu et al., 2015). Alternatively, frames with least 
differences from other frames were selected using a variety of similarity 
measures (Zhuang et al., 1998; Sadiq et al., 2020). Recent approaches 
mostly used content-based strategies, in which visual features of each 
frame were extracted and analyzed to determine most relevant frames. 
For example, deep convolutional neural networks were utilized to learn 
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those features and to estimate the importance of a frame within a 
sequence (Nahian et al., 2017; Ren et al., 2020).

Another option involves the aggregation of information from mul
tiple views or images instead of selecting a single view or image. One 
popular technique is multi-view learning, which trains a neural network 
using distinct viewpoints of the same data to learn a combined repre
sentation that encompasses the information from those viewpoints. A 
wide range of supervised and unsupervised approaches, such as multi- 
view clustering (Chen et al., 2022), multi-view representation learning 
(Tian et al., 2019; Bachman et al., 2019; Wang et al., 2021), and multi- 
view classification (Kendall and Gal, 2017; Seeland and Mäder, 2021; 
Kiela et al., 2018) have been proposed in the field of multi-view 
learning. Recent studies further incorporated the estimation of uncer
tainty for each view into multi-view learning approaches. For example, 
(Han et al., 2021; Han et al., 2022) dynamically integrated multiple 
modalities at an evidence level to ensure the reliability and robustness of 
a classification task in the presence of noisy and out-of-distribution data. 
These methods were designed as an end-to-end trainable framework and 
aimed for decision explainability by providing the uncertainty learned 
for each view.

Instead of developing a model that is capable to process multi-modal 
inputs, other studies utilized late fusion, which involves the combination 
of multiple predictions of a deep learning model on different represen
tations of the same scene or object into a single prediction. Alternatively, 
multiple models can be trained on each view to then combine their 
predictions using the late fusion technique. In (Wang et al., 2022), the 
authors presented fusion-based approaches for anomaly detection, 
including fusion-based multi-view solutions that merge data embed
dings obtained from various modalities into a joint embedding which is 
then used for anomaly detection. Here, it was shown that simple aver
aging could serve as a robust baseline for the fusion of multiple views. 
Other approaches adopted more sophisticated late fusion strategies that 
considered certainty of the different views for fusion. For example, 
(Liong et al., 2020) introduced a method for LiDAR semantic segmen
tation that fuses information from multiple projection-based networks 
through late fusion. In this approach, the disagreements between class 
predictions were considered as a measure of uncertainty. Then, fusion of 
multiple individual network predictions was performed using an extra 
network to refine the results. Similarly in (Morvant et al., 2014), di
versity of different classifier predictions was taken into account for late 
fusion. Fusion approaches were also developed in (Zhou et al., 2022) 
and (Zhou et al., 2024), where information from different branches of a 
network architecture were fused to improve or refine the final model 
output. In (Tian et al., 2019), various uncertainty measures were 
considered. This work proposed an uncertainty-aware fusion approach 
for effectively fusing inputs from an arbitrary set of modalities or net
works. With each measure capturing a different aspect of uncertainty, 
uncertain outputs of the different modalities were integrated into a final 
prediction for semantic segmentation. These late fusion methods 
combine multiple predictions and partially integrated uncertainty 
measures which provides decision explainability for the final prediction. 
However, multi-view fusion in most approaches referred to multi-modal 
representations of a static image and did not take into account the 
temporal component of the views. This introduces additional complex
ities, including variations in the number of images to be considered for 
predictions or shifts in perspectives across individual views.

Another approach for the integration of multiple views are models 
using attention mechanisms which selectively focus on specific views of 
the input that are deemed to be most relevant for a given task. These 
models are popular for their effectiveness in handling sequential data. 
Consequently, despite their application on multi-modal data (Tian et al., 
2020; Wei et al., 2020; He et al., 2021; Chen et al., 2020), they are 
frequently utilized for data including a temporal component such as 
video sequences to prioritize individual frames of the sequence (Li et al., 
2020; Chen et al., 2019; Pei et al., 2016; Peng et al., 2017). For instance, 
attention mechanisms have been incorporated into CNNs in order to 

recognize facial expressions from image sequences (Li et al., 2020) or for 
classification of pedestrian attributes from surveillance camera videos 
(Chen et al., 2019). Study (Pei et al., 2016) combines the concepts of 
attention models and gated recurrent networks for the classification of 
noisy image sequences. This approach encouraged the interpretability of 
predictions as it utilized temporal attention weights to indicate the 
significance of each time step in a given sequence. In (Heo et al., 2018), 
aleatoric uncertainty was introduced to the attention mechanism so that 
attention was predicted with a lower variance if the model was confident 
about the contribution of a certain feature. In case of uncertain contri
bution, the variance of the prediction was higher. However, this was 
applied on classification on time-series data of medical records rather 
than on images or image sequences.

In summary, while multi-modal approaches have encompassed a 
variety of methods for multi-view assessment, the existing work on 
image sequences reveals two severe limitations: 

1. End-to-end trained models as they are frequently used in multi-view 
learning often suffer from a poor explainability. For most of these 
models, it is hard to understand why they make a particular pre
diction for a sequence, or why they prioritize a certain view within 
the sequence.

2. Attention-based and other multi-view models developed for the 
purpose of image sequence assessment require training on sequential 
data. Consequently, a substantial volume of annotated training data 
in the form of image sequences is essential for each assessment task 
to be trained. These datasets are relatively scarce in comparison to 
datasets composed of single images. For instance, widely-used 
datasets like ImageNet (Deng et al., 2009), often leveraged for pre- 
training primarily consist of single images. Similarly, the majority 
of task-specific convolutional neural networks are trained on single 
images, posing challenges when adapting them for complete 
sequences.

This study addresses these issues by presenting an approach that 
integrates multiple predictions of standard, image-level-neural networks 
into a final assessment taking into account the uncertainty of each in
dividual prediction. Thus, we aim to enhance decision interpretability 
and establish a method applicable across a wide range of tasks, as 
detailed in the subsequent sections.

2. Method: Uncertainty-aware multi-view assessment

As most neural networks traditionally operate on image-level, their 
predictions are based on the information provided from a single view. To 
enhance the robustness of pre-trained convolutional neural networks for 
object assessment, our method extends the assessment process to 
encompass entire sequences of images, rather than individual frames. 
Notably, our approach is not limited to objects, but also refers to the 
assessment of animals or persons, collectively denoted as ’identities’ 
hereafter. For each identity, the method selectively incorporates pre
dictions from multiple images within a video sequence, while consid
ering the uncertainty associated with each individual prediction. This 
uncertainty-aware multi-view assessment leads to a final assessment 
prediction for the identity of interest.

Applying a detection-and-assessment model that operates on image 
level to a sequence of images initially leads to a list of unrelated pre
dictions. First, these predictions must be matched to their corresponding 
identities. In this work, this alignment was accomplished by using 
ground-truth identity information. The detections of one identity within 
consecutive frames are visually very similar, therefore containing 
similar information. Nevertheless, some detections may be dissimilar to 
others, for example if the object of interest moves or the viewpoint 
changes exposing a different part of the identity. As a result, multiple 
views of an identity might emerge from a sequence, where each view 
adds new information, but where some views could be more relevant 
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than others.
An intuitive method for obtaining an optimal assessment from a 

sequence could be to select the most certain assessment. However, the 
most certain assessment is not necessarily the best assessment. For 
instance, assessments made from different viewpoints can be contra
dictory to each other if a certain view reveals relevant features of an 
identity affecting the assessment, while those features are not visible in 
another view. An example is the assessment of a chicken’s plumage. If a 
damage remains hidden from a particular perspective, assessments 
made from that viewpoint may be certain about the plumage’s intact
ness. However, if the chicken changes its position, thereby revealing the 
previously concealed damage, the initial assessment is found to be 
incorrect. Therefore, some views could be more important than others in 
facilitating a holistic assessment of the target, as they provide essential 
information necessary for the final classification. To consider this for the 
assessment of an identity and to distinguish between different views, it is 
required to know which detections are similar and which provide new 
information before utilizing them for a final assessment. While pre
defined features such as the pose of a person or an animal might serve as 
a valid metric for distinguishing between views in certain use cases, this 
approach is limited to those features and not capable to dynamically 
consider other factors that influence the information content of a 
detection, such as occlusions. Instead, we propose the clustering of de
tections by their appearance to identify distinct views within the 
sequence. Fig. 1 provides a visual representation of the intended clus
tering procedure for this method when applied to a sequence capturing 
the movement of a chicken.

Our approach first processes each image from the sequence and 
generates detections and assessment predictions together with uncer
tainty estimates for each identity as presented in Section 2.1. Subse
quently, an appearance-based clustering method is used to group all 
visually similar detections together and separate dissimilar ones 
(Section 2.2). Finally, the predictions per cluster are aggregated to 
derive an assessment prediction and associated uncertainty for each 

cluster, which is then used to generate a final prediction for each identity 
(Section 2.3). An overview of the complete method is provided in Fig. 2.

2.1. Detection and assessment network

For the uncertainty-aware aggregation of multiple image pre
dictions, first an uncertainty assessment method is required. As outlined 
in Chapter 1, there are various approaches to estimate uncertainty in 
neural network predictions such as end-to-end solutions (Kendall and 
Gal, 2017; Postels et al., 2019) and inference sampling approaches 
(Kendall and Gal, 2017; Molchanov et al., 2020; Gal and Ghahramani, 
2015), which allows the Bayesian interpretation of standard architec
tures without the need to retrain the model.

In this study, we employed ChickenNet (Lamping et al., 2022), a 
convolutional neural network for object detection, segmentation and 
quality assessment, which included the prediction of multiple types of 
uncertainties of a regression output without requiring ground-truth 
uncertainty labels during training (Lamping et al., 2023). ChickenNet 
was developed by extending the Mask R-CNN architecture (He et al., 
2017) with an additional regression output for the purpose of plumage 
condition assessment in chickens. It detects and segments object in
stances from single images, while predicting an assessment score for 
each instance. To estimate both data- and model-related uncertainty of 
the regression output, the model integrates estimators for aleatoric and 
epistemic uncertainty into its architecture. While primarily developed 
for plumage condition assessment, the model was designed to predict 
uncertainties for regression-based predictions in general object- 
detection tasks.

For the prediction of aleatoric uncertainty together with the 
regression score, a modified loss function was implemented following 
the approach of (Kendall and Gal, 2017). Instead of only predicting a 
single regression output ŷscore

i , the presented model simultaneously 
predicts a measure of aleatoric uncertainty, given by the variance σ2

i . 
With yscore

i denoting the ground-truth regression score and N denoting 

Fig. 1. Intended procedure for identifying distinct viewpoints from a sequence of detection through clustering. For the given example of a moving chicken, the three 
cluster represent views from the right, rear, and left sides of the animal. While view clusters 1 and 2 do not exhibit any plumage damages in the chicken, such 
damages are revealed in the third cluster, impacting the overall assessment of the chicken (identity).
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the number of samples, the loss function is defined as: 

Lscore =
1
N

∑N

i=1

(
yscore

i − ŷscore
i

)2

2σ2
i

+
1
2

σ2
i (1) 

With this, aleatoric uncertainty was learned directly from the data 
during model training, aiming to give a sense of the model’s predictive 
error. The first term of the function encourages the model to minimize 
the predictive error, while predicting a high variance also reduces the 
contribution of this term to the overall loss. As the second term penalizes 
large variances, the present loss function instructs the network to predict 
higher variance for uncertain predictions and lower variance for correct 
ones.

Calibrated uncertainty predictions are needed for the comparison of 
uncertainties among multiple assessments as well as the thresholding of 
uncertainty values using a fixed threshold. Intuitively, the predicted 
uncertainty of a regression output should match the difference between 
the prediction and the ground-truth value. As there is no ground-truth 
uncertainty for training the aleatoric uncertainty of a prediction, cali
bration of the uncertainty estimation cannot be guaranteed by solely 
using the loss function shown in Equation (1). Therefore, following the 
approach of (Di Feng et al., 2019), in the present study, we additionally 
devised a simple calibration term which was incorporated into the total 
loss of ChickenNet by adding it to Lscore. This term forces σ2

i to align with 
the predictive error, resulting in a calibrated score loss, defined as: 

Lscore calib =
1
N

∑N

i=1

(
yscore

i − ŷscore
i

)2

2σ2
i

+
1
2

σ2
i +

⃒
⃒σ2

i −
(
yscore

i − ŷscore
i

)2⃒⃒ (2) 

Aligning the aleatoric uncertainty prediction to the predictive error 
allows setting an interpretable threshold to filter uncertain predictions.

In addition to aleatoric uncertainty, ChickenNet provides an esti
mation of epistemic uncertainty for the regression output by applying 
the Monte-Carlo Dropout method (Gal and Ghahramani, 2015). During 
inference, multiple forward passes with varying dropout patterns are 
performed to approximate the distribution of the output predictions and 
estimate the epistemic uncertainty of the model. Previous experiments 
showed that both estimation methods, the adapted loss function as well 
as the Monte-Carlo Dropout method, were able to capture the uncer
tainty in plumage condition assessments with a strong positive corre
lation between the predicted uncertainty and the predictive error of the 
model’s regression output (Lamping et al., 2023). In the present work, 
we primarily focused on aleatoric uncertainty, which relates to uncer
tainty in the image data, making it more intuitive for human interpre
tation of the results. Nevertheless, we also conducted an experiment that 
explored the utilization of epistemic uncertainty as an alternative metric 
for assessing individual instance predictions.

Our approach utilizes the ChickenNet architecture to process each 
image within the sequence and facilitate the shift from the image level to 
the detection level. Applied on a sequence, it outputs all individual 
detections from that sequence together with their associated assessment 

Fig. 2. Generic pipeline of the developed method for image sequence assessment, consisting of a detection and assessment network for the assessment on instance- 
level, followed by appearance-based clustering of the individual detections. Subsequently, assessments within a cluster are evaluated to obtain a single assessment for 
each cluster. Those are then compared with each other, leading to a final assessment.
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scores and uncertainties. Assigned to their corresponding identity, these 
individual detections serve as the basis for the subsequent stages of our 
approach.

2.2. Appearance-based detection clustering

To group detections that provide similar information and distinguish 
them from dissimilar ones, we employed an appearance-based clustering 
approach. This allows considering the perspective or level of informa
tion each detection offers before integrating them into a final assess
ment. The clustering first requires a latent representation of the different 
detections, described in the following, which is then used to cluster 
observations in that latent space.

2.2.1. Appearance representation
To form meaningful clusters of detections from an image sequence, 

detections within a cluster should be more similar than detections be
tween clusters. Representing the visual appearance of the detections as 
embeddings in a lower-dimensional feature space allows to efficiently 
measure the similarity between the detections using a distance metric. 
Thus, the quality of the clusters heavily depends on the representation 
used for clustering. To identify detections that provide new information 
for assessment, we propose clustering based on their appearance to 
capture similarities or dissimilarities. To this end, we computed an 
appearance descriptor of each detection. The descriptor was obtained 
from a shallow CNN, as presented in (Wojke and Bewley, 2018), that had 
been trained to construct feature embeddings from detections. It pro
vides a method for learning embeddings from images such that they 
maximize inter-class cosine similarity and minimize intra-class cosine 
similarity, meaning that the cosine similarity between two embeddings 
corresponding to images of the same class are likely to be closer than two 
embeddings corresponding to different classes. This has been shown to 
be very effective for representation learning, e.g. in the context of person 
re-identification (Wojke et al., 2017).

In this approach, we utilized the embedding model as proposed in 
(Wojke and Bewley, 2018), pre-trained on a large-scale person re- 
identification dataset (Zheng et al., 2016). This embedding model was 
then applied on each of the bounding box predictions given by our 
detection and assessment network to obtain an appearance descriptor 
for each detection. This resulted in an appearance vector of length 128 
for each detection.

2.2.2. Clustering algorithm
To cluster the different samples of an individual, we applied the 

mean-shift algorithm (Fukunaga and Hostetler, 1975) on the computed 
vectors of all detections belonging to a single individual. Mean shift is a 
non-parametric algorithm that can be used to group data points based on 
their similarity in a feature space. Contrary to the popular K-Means 
cluster algorithm, it does not require specifying the number of clusters in 
advance. Instead, the number of clusters is determined by the algorithm 
with respect to the data. This was essential for our approach, as the ideal 
number of clusters in our scenario is dependent on the diversity in the 
appearance of the detections. The higher the number of different per
spectives or appearances, the higher the ideal number of clusters. As 
input, the algorithm received all appearance vectors of an individual 
together with the radius of the local window used to compute the mean- 
shift updates. The radius of the local window, was obtained by 
computing the distances between each pair of appearance vectors from 
the input. The radius was then set as the median of those, introducing a 
distance measure that adapts to the data rather than relying on a fixed 
distance. Initially, Mean Shift clustering treats each data point as the 
center of its own cluster.

As our approach utilized the appearance-based clustering for the 
uncertainty-aware assessment of an identity, the prediction ŷi and pre
diction uncertainty σ2

i of the respective detection were also assigned to 

the clusters. Thus, for each cluster cj =
{
a1, ..., anj

}
with ai =

{
ŷi, σ2

i
}
,

we obtained a set of assessments clustered by the similarity of their vi
sual appearance. Examples of clustered detections for two identities 
from different datasets are visualized in Fig. 3.

2.3. Cluster aggregation

The appearance-based clustering resulted in groups of detections and 
their uncertainty-aware assessments. We aggregated the assessments 
using a two-step approach. First, we combined the assessments within a 
cluster to obtain one prediction and its corresponding uncertainty per 
cluster, as further explained in Section 2.3.1. Subsequently, in the sec
ond step, detailed in Section 2.3.2, we determined the most represen
tative cluster while considering the uncertainty associated with each 
cluster.

2.3.1. Intra-cluster comparison
Due to the shared visual characteristics among all detections in a 

cluster, the assessments in one cluster rely on comparable information, 
which makes the corresponding assessments more likely to be also 
similar. To compute a single assessment output for each cluster, we 
aimed to combine all assessments within this cluster while considering 
their individual uncertainties. The inverse of this uncertainty value can 
serve as a measure of the assessments relevance in determining the final 
output of the cluster. However, simply choosing the assessment with the 
lowest uncertainty from each cluster may result in a high sensitivity to 
(false) outliers among the uncertainty predictions. To be robust to noise, 
we propose a certainty-weighted mean for each cluster, where certainty 
is defined as the inverse of the associated uncertainty. Weighting indi
vidual predictions by their certainty results in predictions with high 
certainty to contribute more to the output than ones with low certainty 
and is expected to reduce the impact of erroneous predictions. Given a 
multi-sample cluster cj, the weighted mean of cluster c was defined as: 

Ŷcj =

∑nj
i=1wi ŷi

∑nj
i=1wi

,wi =
1
σ2

i
(3) 

The uncertainty of each cluster was estimated using the variance of 
the weighted mean. Considering the inverse-variance weighing, which 
minimizes the variance of the mean as shown in (Meier, 1953), this is 
defined as: 

Σ2
cj
=

1
∑nj

i=1
1
σ2

i

(4) 

The estimation of uncertainty for each weighted mean allows a 
comparison of all clusters of an identity, as described in the next section. 
However, this comparison can be negatively affected by clusters with 
either single samples or only samples with high uncertainty. This chal
lenge arises, for instance, if certain detections significantly differ in 
appearance from the rest, such as when an object is in motion, resulting 
in blurred detections and uncertain assessments. In such cases, these 
assessments may be allocated to a distinct cluster characterized by its 
limited number of samples and high uncertainty. To avoid those clusters, 
we discarded highly uncertain assessments by setting a threshold τ to the 
uncertainty metric before computing the weighted average of a cluster. 
The weight wi of a sample i was defined as wi = 0 if σ2

i > τ so that a 
sample was ignored in the weighted average if its uncertainty exceeded 
the given threshold. By rejecting those samples, our algorithm can 
classify a sequence as not assessable if 

∑n
i=0wi = 0.

Considering an integer-based labeling of ground truth assessments, 
as it was given in the evaluated datasets, the maximum error, which can 
still result in a prediction considered as correct is 0.5. Since the uncer
tainty prediction for an assessment was trained to match the squared 
expected error between the score prediction and its ground truth, the 
uncertainty threshold was accordingly set to τ = 0.25. This procedure 
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results in an assessment prediction, Ŷcj , and uncertainty, Σ2
cj
, per cluster.

2.3.2. Inter-cluster comparison
After computing the assessment prediction and the corresponding 

uncertainty for each cluster, these clusters need to be evaluated and 
compared to each other to obtain a final assessment for each identity. To 
select the optimal cluster for the final assessment, we distinguished two 
cases.

The first case refers to assessments that are an unavoidable outcome 
of the existence of specific indicators. An example is the presence of 
plumage damages in chickens. As soon as damages are visible, the 
plumage cannot be assessed as completely intact anymore. Other ex
amples would be rotten spots for the assessment of apples or cracks in 
the surface of a metal component. If an indicator is present once, the 
assessment of the whole identity cannot improve with the consideration 
of additional assessments. However, such a dependency on certain in
dicators can lead to contradictory assessments, depending on the 
particular perspective on an object. Suppose J different view clusters, 
each having an assessment prediction Ŷcj and an associated uncertainty 
Σ2

cj
. While all those cluster predictions might be correct, considering the 

given information, clusters containing detections in which the relevant 
indicators are visible, are more important than clusters without those 
indicators. For instance, different viewpoints of a single object, repre
sented by the clusters, can reveal different visual information of the 
object, leading to different assessments of the object’s condition. Clus
ters with low uncertainty, in which defects are visible, should therefore 
be preferred for the final assessment. Thus, assuming a higher assess
ment score indicates a worse condition, the overall assessment score can 
increase but not decrease with an increasing number of detections. This 
prioritization of predictions affected the final assessment of an identity, 
so that we formulated the cluster selection as the maximum of the cluster 
predictions, weighted by their particular uncertainty. This ensures the 
prioritization of higher cluster predictions if predictions are equally 
certain but also ensures that high but uncertain predictions are 

neglected: 

Y = Ŷck , k = argmax
0<j<J

Ŷcj

Σ2
cj

(5) 

The second case refers to applications in which the assessment is not 
dependent on the presence of indicators for or against a particular 
assessment. Example application, in which this approach might be 
chosen, are the age estimation of humans or weight estimation from 
images. In this case, additional assessments from multiple perspectives 
might change the outcome in both directions. Therefore, we based the 
prioritization of the individual clusters only on their associated uncer
tainty. For the final assessment of an identity, the cluster with the lowest 
uncertainty was chosen. In this case the final output is defined as: 

Y = Ŷck , k = argmax
0<j<J

1
Σ2

cj

(6) 

2.4. Experiments

Experiments were conducted with the objective to compare the 
performance of our proposed method with standard instance-level ap
proaches and to investigate the strength and weaknesses of our 
approach. To this end, experiment 1, as outlined in Section 2.4.2, 
focused the direct comparison with the standard implementation of 
ChickenNet. Following that, experiment 2, detailed in Section 2.4.3, 
evaluated the effect of different input quantities on our approach. While 
the first two experiments considered the aleatoric uncertainty prediction 
of the assessment network for weighting the predictions, the third 
investigated the alternative use of epistemic uncertainty as presented in 
Section 2.4.4. This aimed to determine the effectiveness of our method 
across various uncertainty metrics that may differ depending on the 
specific use cases. Approaches were compared on two different datasets 
for visual assessment tasks, one in the domain of plumage condition 
assessment in laying hens and one for human age estimation.

Fig. 3. Clusters resulting from our appearance-based clustering approach applied on an identity from the MARS-Attributes dataset (left) and the chicken dataset 
(right). For each of the four clusters, exemplary detections are visualized.
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2.4.1. Data and annotations
Our approach addresses a general method for robust multi-view 

assessment from image sequences. The chicken dataset on which the 
present work was focused, includes image sequences of one or multiple 
chickens, labeled with bounding boxes, segmentation masks and scores 
for the condition of the plumage (Lamping et al., 2022). In order to 
investigate the general applicability on visual assessment tasks, our 
experiments were not limited to the small-scale chicken dataset, but also 
extended to the MARS-Attributes dataset (Chen et al., 2019), a dataset, 
which can be utilized for human age estimation from surveillance 
camera sequences. While both datasets were from different domains, 
they share a similar structure. Ground-truth labels for plumage condi
tion scores and ages were given per identity, meaning each label cor
responds to either a chicken or a person. For chickens, scores from 0 to 2 
were annotated, with a score of 0 indicating perfect plumage condition, 
plumages with minor damages were given a score of 1 and heavily 
damaged plumages received a score of two. In the MARS-Attributes 
dataset, age attributes ranged from 0 to 3, indicating children, teen
ager, adults and elderly people.

Further, both datasets comprise an id label for each identity. These 
ids were needed to assign individual detections to the corresponding 
person or chicken, respectively. It’s worth noting that the chicken 
dataset contains one or more identities per image, whereas the MARS- 
Attributes dataset contains only one identity per image. For each iden
tity, both datasets include one or more tracklets, which represent a 
sequence of instances, as shown in Fig. 4.

An instance denotes a detection of an identity at a certain timestep of 
the sequence.

The detection-and-assessment model was trained on image level, 
separately for each dataset. For the chicken dataset, the training data 
consists of 1888 images with 5057 chicken instances, obtained from 
video sequences recorded in a commercial laying hen farm following the 
procedure described in (Lamping et al., 2022). For the MARS-Attributes 
dataset, the training data includes 509,914 images with one instance 
each. Using the respective network weights of each dataset, our method 
was tested utilizing the image sequences from the test data of both 
datasets. The chicken dataset comprised 35 identities and tracklets, 
totaling 5133 instances. The test data of the MARS-Attributes dataset 
consists of 634 identities, captured in 8058 tracklets with 509,990 in
stances in total. Here, images without a ground truth label were ignored.

2.4.2. Experiment 1 − comparison to standard ChickenNet
In the first experiment, we compared the performance of our pro

posed approach to the predictions generated by the conventional 

ChickenNet model. While ChickenNet originally predicts a score on 
instance-level, our method leverages the aggregation of multiple indi
vidual assessments of a sequence to obtain a final prediction as described 
in Section 2.3. However, the level on which these assessments are 
aggregated for a final assessment can be varied. The sequential structure 
of the present datasets allows a prediction at each timestep of a tracklet, 
considering all previous assessments upon this timestep, but also enables 
a single prediction for each tracklet or for each identity by aggregating 
all assessments from the respective tracklet or identity. To compare our 
method with assessment on instance level, we distinguished between 
these alternative aggregation levels. This resulted in a comparison of 
four different evaluation approaches for our method:

2.4.2.1. Instance level, Aggregation per Tracklet. Predictions of our 
method were evaluated on instance level. Each prediction Yid,t,k for an 
identity id at a time step k of a tracklet t considered all previous pre
dictions on this identity from tracklet t, starting from k = 0.

2.4.2.2. Instance level, Aggregation per Identity. Predictions of our 
method were evaluated on instance level. Each prediction Yid,t,k for an 
identity id at a time step k of a tracklet t considered all previous pre
dictions on this identity from all previous tracklets.

2.4.2.3. Tracklet level. Predictions were evaluated on tracklet level. Our 
method was applied on all instances of a tracklet, so that per tracklet and 
identity, a single prediction Yid,t was given.

2.4.2.4. Identity level. Predictions were evaluated on identity level. Our 
method was applied on all instances and all tracklets of an identity, so 
that per identity a single prediction Yid was given. As the chicken 
datasets contained a single tracklet per identity, the identity level was 
equal to the tracklet level for this dataset.

Fig. 5 visualizes the different evaluation approaches using an iden
tity from the MARS-Attributes dataset as example.

Evaluating approaches for object detection and assessments at the 
instance level means to verify whether the predicted values of each 
instance match the corresponding ground truth. As we additionally 
evaluated our method on tracklet and on identity level, we also obtained 
single predictions per tracklet and per identity, which were then 
compared to their corresponding ground truth values. For the present 
datasets, ages and plumage condition scores were represented by 
discrete numerical labels. Therefore, a prediction was considered cor
rect, if the predicted value fell within the range associated with the 
corresponding class. Thus, the accuracy denoted the proportion of 

Fig. 4. Structure of the MARS-Attributes dataset (left) and chicken dataset (right). Per identity, the MARS-Attributes contains multiple tracklets, while the chicken 
dataset consists of a single tracklet per identity.
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correct predictions among the total number of samples. Additionally, we 
analyzed the mean squared error (MSE) for each prediction. Again, it is 
worth noting that in this experiment, predictions were obtained per 
instance, per tracklet and per identity as shown in Fig. 5.

2.4.3. Experiment 2 − effects of data quantity
Conventional instance-level approaches do not harness the advan

tages of image sequences, as they treat each frame within a sequence 
independently. However, given a sufficient number of images per 
identity and recordings captured from multiple perspectives, it could be 
expected that a simple average of all available predictions from an 
instance-level model would also result in an accurate assessment of an 
identity − without the need for a selective approach as we presented it in 

this study. Therefore, this experiment compared our method to a simple 
averaging approach on both datasets.

For the chicken dataset, which consists of a single tracklet per 
identity and includes instances of chickens captured in different poses, 
we expected that averaging the assessments across all instances would 
result in an increased assessment accuracy compared to the standard 
ChickenNet as the number of considered instances increases. The MARS 
dataset consists of multiple tracklets where instances within each 
tracklet show a high similarity in terms of perspective and pose of the 
person while the perspective differs between the tracklets. Therefore, 
our expectation was that the accuracy resulting from averaging would 
increase with the inclusion of a greater number of tracklets, while the 
number of instances per tracklet would have a relatively minor impact.

Fig. 5. Evaluation approaches on instance-, tracklet-, and identity-level. Instance-level approaches result in a prediction for each instance and can be obtained by 
either aggregating all instances of a tracklet or all instances of an identity. Tracklet-level approaches result in one prediction per tracklet considering all instances of a 
tracklet. Identity-level approaches result in one prediction per identity, considering all instances of an identity. The given example illustrates and identity consisting 
of two tracklets and six instances per tracklet.
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In contrast to the averaging approach, our method presented in this 
study considers the uncertainty of individual assessments to prioritize 
the most relevant predictions for a final assessment. This aims to enable 
precise assessments from sequences, even in cases where multiple pre
dictions within a sequence may be incorrect. Thus, we expected higher 
accuracy levels when confronted with limited data compared to con
ventional averaging techniques.

To evaluate this hypothesis, we investigated the advantages of our 
method on limited data. We manipulated the number of instances per 
tracklet and the number of tracklets per identity in both datasets to 
compare the performance of our method in different scenarios. We 
varied the range of instances per tracklet between 3 and 20. Addition
ally, for the tracklets per identity in the MARS-Attributes dataset, we 
considered a range of values, including 1, 2, 5, 10, 30, 50, 80, and 100. 
The chicken dataset remained limited to a single tracklet per identity. 
The obtained predictions were then compared to simple averages of all 
predictions per tracklet and to averages of all predictions per identity.

2.4.4. Experiment 3 – alternative uncertainty quantification
To test the hypothesis, we substituted the aleatoric uncertainty 

estimation with the epistemic uncertainty estimation derived from 
ChickenNet and evaluated it on both datasets, analogous to the experi
ment described in Section 2.4.2.

3. Results

The results are presented in the order of the experiments. First, the 
comparison of our method with instance-level assessments is demon
strated. Subsequently, the impact of data quantities on our method, as 
well as the outcomes derived from our method utilizing epistemic un
certainty, are presented.

3.1. Comparison to instance-level assessment

The first experiment aimed to compare our method to a standard 
approach for visual assessments on instance level. Four alternative ag
gregation approaches were evaluated and compared to instance level 
assessment, which does not aggregate any information. Table 1 presents 
the accuracies obtained from the different aggregations for both, the 
chicken and the MARS-Attributes dataset.

Results showed that, on both datasets, all four aggregation ap
proaches increased the assessment accuracy and decreased the mean 
squared error compared to the baseline model. For both, the chicken and 
MARS-Attributes dataset, best performance was obtained when pre
dictions were aggregated on identity-level, resulting in a single assess
ment per identity. For the chicken dataset, this approach yielded an 
accuracy of 88.57 % and a mean squared error (MSE) of 0.1. In com
parison, the baseline model achieved an accuracy of 85.40 % and an 

MSE of 0.18 for the chicken dataset. Similarly, for the MARS-Attributes 
dataset, identity-level aggregation resulted in an accuracy of 83.57 % 
and an MSE of 0.14, while the baseline achieved an accuracy of 76.42 % 
and an MSE of 0.20.

Furthermore, results indicated that employing our method for 
instance-wise prediction on the chicken dataset increased accuracy to 
87.44 %, with an MSE of 0.17. For the MARS-Attributes dataset, the 
performance at the instance level, particularly when aggregated per 
tracklet, was almost on par with the tracklet-level performance. The 
difference in accuracy between instance-level with an aggregation per 
tracklet and tracklet level was only 0.27 % and 0.73 % between instance- 
level with an aggregation per identity and identity level.

Fig. 6 illustrates examples showcasing the underlying principle of 
our method using three tracklets from the chicken dataset. The figure 
provides an instance-wise comparison between the predicted plumage 
scores of the baseline model and the predictions obtained from our 
approach, using aggregated information of the entire tracklet. The key 
observation is that our method was able to select correct predictions 
from a sequence of predictions, even though false predictions were made 
by the baseline model on several instances of the tracklet. This was 
particularly observable for the second tracklet as our method success
fully maintained accurate predictions for all instances, despite the 
baseline model producing three false predictions among the tracklet. 
Conversely, in the example of tracklet 3, our method ignored those false 
predictions that were based on blurred instances, even though these 
were constituting the majority of the tracklet with only two out of seven 
correct predictions from the baseline model.

Our method employs a selective approach, meaning it does not 
necessarily consider all available predictions of a sequence. Instead, it 
selects predictions based on their individual predictive uncertainty. If 
this uncertainty associated with a particular instance exceeds the given 
threshold, this assessment is rejected and not considered for further 
processing. In case that all instances of a tracklet or identity surpass the 
uncertainty threshold, the entire entity is rejected and not assessed. 
Therefore, the number of assessed tracklets and identities might differ 
from the overall numbers in the dataset. Table 2 presents the number of 
tracklets, and identities rejected by our method compared to the original 
numbers for both datasets.

In the given table, the number of original tracklets and original 
identities pertains to those that consist of at least one detection from the 
baseline model. It is worth noting that four tracklets within the MARS 
datasets did not contain any detections, resulting in a discrepancy of 
8058 tracklets compared to 8062 tracklets in the original ground-truth 
dataset. Results showed that with the defined uncertainty threshold of 
0.25, our method provided assessments for all identities and tracklets 
assessed by the baseline model within the chicken dataset. In the MARS- 
Attributes dataset, 13.84 % of the tracklets were rejected, while 99.84 % 
of the identities were still assessed.

Overall, it was shown that our method was able to increase the ac
curacy for tracklet- and identity assessment while proving valid assess
ments for almost all identities of the dataset. However, it was also 
demonstrated that the approach did not increase instance-level accu
racies for all tested data. Results of further analyses, exploring the im
pacts of diverse data structures are presented in the following.

3.2. Effects of data quantity

In this experiment, we evaluated the performance of our method on a 
limited amount of data and compared it to the performance of the 
baseline model as well as simple averaging methods. Fig. 7 visualizes the 
accuracies for the different evaluation approaches presented in Section 
2.4.2 across a range of instances from 3 to 20 for the chicken dataset. 
Additionally, it shows the accuracies obtained by averaging all instance 
predictions of the baseline model per identity or per tracklet, consid
ering the specific number of instances. Fig. 8 illustrates those accuracies 
obtained for the MARS-Attributes dataset. It presents the accuracies for 

Table 1 
Accuracies and MSE for the assessment predictions obtained from our method as 
well as the baseline model on the chicken and MARS-Attribute dataset. Metrics 
were evaluated using five different evaluation approaches on instance, tracklet 
or identity level.

Aggregation Method Chicken dataset MARS-Attributes 
dataset

Accuracy 
(%)

MSE Accuracy 
(%)

MSE

Instance level, Baseline (No 
aggregation)

85.40 0.18 76.42 0.20

Instance level, Aggregation per 
Tracklet

87.44 0.17 82.38 0.17

Instance level, Aggregation per 
Identity

87.44 0.17 81.84 0.16

Tracklet level 88.57 0.10 82.09 0.17
Identity level 88.57 0.10 83.57 0.14
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instances ranging from 3 to 20 per tracklet, but also for 1–100 tracklets 
per identity.

Results showed that all aggregation approaches based on our method 
outperformed the baseline model and averaging approaches for both 
datasets, even with a limited number of considered instances per iden
tity. Solely for the case in which less than five instances were available 
for an entire identity of the chicken dataset, averaging of all instance 
predictions resulted in a higher accuracy. Further, experiments on the 
chicken dataset revealed an increase in the accuracies of our method 
with an increasing baseline accuracy, while the accuracy of the aver
aging approach remained constant beyond 10 considered instances. This 
indicates the correct selection of relevant instances from the total 
available instances. In contrast to the MARS-dataset, the chicken dataset 
includes a single tracklet per identity, thus number of instances per 
tracklet is equivalent to the total number of instances per identity. This 
might explain the initial increase in accuracy of our method with and 
increasing number of instances per tracklet which was not observed for 
the MARS-Attributes dataset.

For the MARS-Attributes dataset, the accuracies of the different ag
gregation approaches did not increase with an increasing number of 
instances per tracklet, instead tracklet-level accuracy and instance-level 
accuracy based on tracklet information slightly decreased while accu
racies of identity-based aggregations did not significantly change. 

However, independent of the number of considered instances per 
tracklet, all accuracies obtained from our method were consistently 5–7 
% higher, compared to the baseline. Similar observations were made 
when comparing our method to traditional averaging. While averaging 
per identity and identity-level aggregation both yield a single prediction 
value per identity, the accuracies obtained from our method were 3–5 % 
higher. For tracklets, the difference between averaging and tracklet- 
level aggregation ranged between 4 % and 6 %. This demonstrates the 
advantage of our uncertainty-based weighting and clustering approach 
compared to traditional averaging, also for a limited amount of data. 
While averaging approaches performed best for higher numbers of in
stances per tracklet, this dependency was not observed for our method.

Increasing the number of considered tracklets per identity resulted in 
a decrease of the baseline accuracy for the MARS-Attributes dataset. 
This implies an increasing number of false predictions among the 
additionally considered tracklets. Thus, accuracies of tracklet-averages 
and tracklet-based aggregation approaches also decreased. Averaging 
all predictions per identity as well as employing our method for a single 
prediction per identity led to an initial drop in accuracy but then, fol
lowed by a relatively stable accuracy throughout the analysis period. 
This observation deviated from our expectation that an increasing 
number of considered tracklets would increase the accuracy obtained by 
averaging all predictions of an identity. However, our expectation of an 
increased accuracy through our method was confirmed. Similar to the 
experiment on the number of instances per tracklet, accuracies based on 
our method were 5–7 % higher than the baseline accuracy and about 
2–4 % higher than those obtained from averaging approaches. Further, 
it was shown that the difference in accuracy between identity-level ag
gregation and averaging per identity increased while the identity-level 
accuracy remained constant, and the averaging accuracy decreased. 
This implies that our method was able to prioritize the correct instance 
predictions and downgrade the false instance predictions among an 
identity. Moreover, while the influence of the baseline predictions on 
our method was evident, we found no clear difference in performance 

Fig. 6. Instance-wise assessment score predictions of the standard ChickenNet (baseline) model compared to assessments provided by our method for consecutive 
instances from three tracklets of the chicken dataset. Colours indicate whether the predicted score was correct or not. A correct prediction in the final frame of a 
tracklet implies a correct assessment of the entire tracklet.

Table 2 
Number of original tracklets and identities for the chicken and MARS-Attributes 
dataset, compared to the number of tracklets and identities rejected by our 
method.

Chicken dataset MARS-Attributes dataset

Original Tracklets 35 8058
Rejected Tracklets 0 (0 %) 1116 (13.84 %)
Original Identities 35 634
Rejected Identities 0 (0 %) 1 (0.16 %)
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impact between limited instances per tracklet and limited tracklets per 
identity.

3.3. Alternative uncertainty quantification

Using epistemic uncertainty to weight individual instance pre
dictions yielded similar results to using aleatoric uncertainty. Table 3 

Fig. 7. Assessment accuracies on the chicken dataset for varying numbers of instances per tracklet considered by our method. As the chicken dataset consists of a 
single tracklet per identity, corrections per tracklet and per identity are equal.

Fig. 8. Assessment accuracies on the MARS-Attributes dataset for varying numbers of a) instances per tracklet and b) tracklets per identity considered by our method.

C. Lamping et al.                                                                                                                                                                                                                                Computers and Electronics in Agriculture 234 (2025) 110182 

12 



and 4 present the results of the experiments on the chicken dataset and 
the MARS-Attributes dataset.

In line with the results obtained using aleatoric uncertainty, we 
observed that our method was able to surpass the baseline model in 
terms of accuracy, also when utilizing epistemic uncertainty as a metric 
for weighting instance predictions. However, it was shown that correc
tions on instance-level based on the estimated epistemic uncertainty led 
to a decreased accuracy for the chicken dataset. In combination with an 
increased accuracy on tracklet level, this implies that accurate assess
ments of a tracklet were primarily achieved in the later instances of that 
tracklet when using epistemic uncertainty. The accuracies obtained at 
the tracklet and identity levels were 88.57 %, which was equivalent to 
those achieved using aleatoric uncertainty. However, the mean squared 
error was 0.13, slightly higher than the MSE of 0.10 obtained in the 
aleatoric approach. Furthermore, similarly to the experiments with 
aleatoric uncertainty, our method successfully assessed all 35 identities/ 
tracklets in the chicken dataset without any rejections.

Experiments on the MARS-Attributes dataset revealed a slightly 
higher accuracy at the identity level and a decrease in accuracy at the 
tracklet level when compared to the assessment based on aleatoric un
certainty. However, simultaneously, the number of rejected tracklets 
decreased from 1116 to 342 and the number of rejected identities 
increased from one to two, using an uncertainty threshold of 0.25. Uti
lizing epistemic uncertainty resulted in increased accuracy across all 
types of aggregation compared to the baseline model. The highest ac
curacy achieved was 84.02 %, obtained at the identity level, surpassing 
the accuracy observed in the aleatoric uncertainty experiments.

4. Discussion

This study tackled the issue of obtaining reliable assessments from 
image sequences, originally intended for the assessment of chickens in 
challenging farm environments. However, it was shown that our 
approach is also applicable on alternative use cases focusing image se
quences assessment.

One addressed limitation, which most previously developed ap
proaches faced, was the requirement for complete sequences during 
training of the model. Instead of developing an end-to-end trainable 
model, such as (Chen et al., 2019) or (Pei et al., 2016), our approach was 
designed to leverage standard models that operate on image level. Ex
periments demonstrated that the method was able to increase the 
assessment accuracy on sequences compared to such standard models. 
This improvement was observed not only for entire sequences but also 
for a limited number of instances within a sequence and for a restricted 
number of sequences per identity.

The second limitation that this study addressed was the lack of 
explainability in the predictions of models for sequence assessment. By 
considering the uncertainty of predictions on instance-level for the 
subsequent aggregation, we not only aimed to improve the assessment, 
but also focused the transparency of decisions. Similar strategies have 

been pursued by other approaches, such as (Morvant et al., 2014) and 
(Tian et al., 2019), which utilized uncertainty measures on multiple 
modalities for refining neural network predictions. However, our 
approach deviates in two key aspects. Firstly, instead of using multiple 
modalities, we applied this methodology specifically to image sequences 
and aggregated assessments of individual instances over time. Secondly, 
before fusing the individual, weighted assessments, we applied an 
appearance-based clustering approach. This enabled the consideration 
of different viewpoints for the assessment and thus allowed a prioriti
zation of specific views.

4.1. Impact of chosen model components

The presented framework includes an assessment model, a feature 
encoder for appearance-based clustering, and an uncertainty metric to 
weigh individual predictions. These components are modular and can be 
replaced depending on the specific task, enabling the applicability of our 
method across multiple use cases and facilitating the extension of 
existing pre-trained assessment models. Thus, the choice of these indi
vidual modules significantly affects the performance of the overall 
method. Especially the assessment model is important, as it determines 
the input for all subsequent processing steps. For example, a perfectly 
accurate uncertainty estimator that indicates false assessments becomes 
redundant if all assessments are consistently inaccurate and would lead 
to low quality results. In our experiments, we primarily focused on the 
application on chicken assessment which justified the utilization of the 
ChickenNet model. While this implementation was shown to be effective 
on other data such as the MARS-Attributes dataset, it is important to 
note that the assessment performance on image level could be further 
improved for this dataset by replacing ChickenNet with an alternative 
baseline model specifically tailored for the age estimation use case. As a 
general guideline, the accuracy of assessment models with low- 
uncertainty predictions becomes increasingly critical when fewer im
ages are available per sequence. When a high number of images is 
present, inaccurate predictions can be compensated by the subsequent 
uncertainty estimation and filtering without impairing the final assess
ment output.

For the appearance-based clustering we employed an appearance 
descriptor obtained from a shallow CNN originally designed for repre
sentation learning in the context of person re-identification (Wojke and 
Bewley, 2018). However, depending on the data at hand, our method 
allows to replace it by an alternative feature descriptor, customized for 
distinguishing between different views, tailored for the particular 
application. Here, it is worth recognizing that the structure of the pre
sent data affects the appearance-based clustering. While for tracklets in 
which the individual detections differ a lot in terms of perspective or 
appearance, such as in the chicken dataset, our method resulted in a 
higher number of clusters. In contrast, a high similarity between the 
detections of a tracklet, as we observed it in the MARS-Attributes dataset 
often led to a single cluster per tracklet. In the latter case, our method 
comes down to uncertainty-weighted averaging. Thus, in use cases 
including highly similar frames, a feature descriptor specialized to 
differentiate between perspectives is expected to improve the overall 
assessment results of the presented approach. When examining the 
application of clustering at the identity level, it became apparent that 

Table 3 
Accuracies and MSE for the assessment predictions obtained from our method 
using epistemic uncertainty to weight the individual predictions.

Aggregation Method Chicken dataset MARS-Attributes 
dataset

Accuracy 
(%)

MSE Accuracy MSE

Instance level, Baseline (No 
aggregation)

85.40 0.18 76.42 0.20

Instance level, Aggregation per 
Tracklet

83.83 0.21 80.46 0.18

Instance level, Aggregation per 
Identity

83.83 0.21 82.05 0.16

Tracklet level 88.57 0.13 79.78 0.18
Identity level 88.57 0.13 84.02 0.14

Table 4 
Number of original tracklets and identities for the chicken and MARS-Attributes 
dataset, compared to the number of tracklets and identities rejected by our 
method based on epistemic uncertainty.

Chicken dataset MARS-Attributes dataset

Original Tracklets 35 8058
Rejected Tracklets 0 (0 %) 347 (4.31 %)
Original Identities 35 634
Rejected Identities 0 (0 %) 2 (0.32 %)
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the resulting clusters often align with the individual tracklets present in 
the MARS-Attributes dataset, as illustrated in Fig. 3. However, although 
this correspondence may seem intuitive, it is not a necessary outcome. In 
our method, clustering serves the purpose of differentiating instances 
that offer additional informative value. Despite tracklets typically being 
captured from different perspectives, it does not automatically imply 
that they provide complementary information that is relevant for the age 
estimation of the detected persons.

For the quantification of uncertainty, we initially employed an esti
mation of aleatoric uncertainty given by ChickenNet to weight indi
vidual predictions. However, our experiments demonstrated a successful 
use of epistemic uncertainty as an alternative metric. Epistemic uncer
tainty estimation through Monte-Carlo dropout, as we modeled it in this 
study, further offers the opportunity to obtain an uncertainty estimation 
during inference. This allows the estimation of uncertainty on pre- 
trained models without the need for retraining the assessment model 
and makes it convenient to integrate existing standard models into our 
approach and leverage them for sequence assessment.

4.2. Aggregation methods and evaluation

Our method aggregates multiple detections obtained from a standard 
neural network for object detection aiming for reliable sequence 
assessment. However, it allows to vary the level on which predictions 
are fused into a final prediction, as explained in Section 2.4.2. In our 
experiments, we compared aggregations on tracklet and identity level 
resulting in a single prediction, but also instance-wise predictions ob
tained from aggregated information at each timestep within a sequence.

While instance-level predictions offered a direct comparison to the 
conventional ChickenNet model, it is worth noting that in this case, the 
number and order of considered detections influences the assessment. 
For example, if relevant features crucial for the assessment are observed 
in the last frame of a tracklet, leading to a correct final assessment of that 
tracklet, the instance-level accuracy would be one divided by the 
number of instances, while the tracklet-level accuracy would be one. On 
the other hand, if those relevant features are revealed in an early frame, 
resulting in an early correct assessment, instance-level accuracy would 
be increased while maintaining the same tracklet-level accuracy. This 
effect became apparent when evaluating our method’s performance on a 
varying number of instances on the chicken dataset and accounts for the 
differences in accuracy between tracklet level and corresponding 
instance level evaluations. The accuracy at the tracklet level was 
consistently higher, primarily due to tracklets for which the final pre
diction becomes correct after observing more than one instance. As more 
instances are considered, the number of false instance predictions in
creases. If all tracklets were to have their final predictions made after the 
first instance, tracklet-level and instance-level accuracy would be equal. 
Conversely, if the instance-level accuracy surpasses the tracklet-level 
accuracy, it indicates that the final tracklet prediction is incorrect 
while the individual instances of the tracklet are correctly assessed.

For both datasets, as well as both tested uncertainty metrics, results 
showed that best predictions were obtained when evaluating on identity 
level. Identity level aggregation combines and clusters all available 
detections for an identity to obtain one final prediction, thereby elimi
nating the dependency on the detection order. This characteristic also 
applies to evaluation on tracklet level and makes both evaluation ap
proaches more meaningful for assessing the performance of our method 
even though they do not allow an instance-wise comparison to the 
baseline model.

4.3. Future research

One aspect for further investigations relates to the determination of 
thresholds for the instance-level prediction uncertainty. In this study, we 
established a static threshold to filter out assessments with an expected 
error exceeding 0.5. This choice was made due to our integer-labeled 

datasets, as this value corresponds to the maximum error that can still 
lead to a correct class-prediction. Nevertheless, employing a fixed 
threshold introduces an additional parameter that requires prior speci
fication. This provides an opportunity for optimization, such as the 
integration of dynamic or learning-based approaches that adapt the 
threshold based on contextual information to provide better flexibility 
across different datasets.

Moreover, while this work provides a solid foundation for enhancing 
transparency in the assessment process through uncertainty estimation, 
it is important to acknowledge that there remains room for further 
improvement in the transparency of deep learning-based monitoring 
systems. A logical first step could involve providing more information on 
how the uncertainty estimates influence the final predictions within the 
presented approach. One indication here could be the number of as
sessments that were rejected due to high uncertainty. This is especially 
relevant if uncertain predictions are not equally distributed among the 
different assessment categories, so that an increasing rejection rate 
could lead to a change in the distribution of the assessments. Dealing 
with this could be a topic addressed by future research. Beyond the 
estimation of uncertainty, a transparent monitoring system could further 
focus on offering explainable recommendations for the users, allowing 
them to better understand and critically assess the system’s decisions.

Further work could also be dedicated to enhancing the efficiency of 
our method. Currently, all instances of a sequence are clustered each 
time a new instance is added, resulting in increased computational re
quirements as the sequence length grows. To address this issue, an 
alternative approach would involve limiting the number of considered 
instances.

Finally, a fundamental aspect to address is the aggregation of indi
vidual predictions in real-life applications, where ground-truth infor
mation is unavailable. This requires the association of individual 
predictions within a sequence. While for single-instance recordings this 
might be accomplished through the detection model itself, scenarios 
involving multiple instances necessitate the incorporation of an addi
tional tracking method to assign predictions to specific identities. 
Consequently, the selection of a robust association technique is crucial 
for the overall performance of the application.

5. Conclusion

In this study, we presented a novel approach for robust assessment 
from image sequences, specifically addressing animal monitoring under 
challenging environmental conditions. Our method focused the selective 
incorporation of information derived from multiple detections within an 
image sequence. To this end, it clusters the individual detections based 
on their appearance and accounts for uncertainty associated to the 
assessment of each detection.

In our experiments, we primarily analyzed the assessment perfor
mance of our approach in comparison to the assessments made by 
conventional models operating on instance-level. Additionally, we 
explored the impact of limited data on our method’s performance and 
evaluated alternative metrics for uncertainty estimation. Here, we 
distinguished between two dataset and three alternative aggregation 
levels to evaluate the assessment accuracy.

Results showed that our method outperformed the baseline instance- 
level approaches on both datasets when aggregating information per 
tracklet or per identity. For the chicken dataset, it was able to increase 
the accuracy from 85.40 % to 88.57 % and for the MARS-Attributes 
dataset, an improvement from 76.42 % to 83.57 % was observed. 
Moreover, we demonstrated that the advantage against the instance- 
level approaches persists when considering a limited number of track
lets per identity and instances per tracklet. Similarly, the utilization of 
epistemic uncertainty as an alternative uncertainty metric also showed 
increased accuracies on both datasets.

We conclude that the presented approach provides an effective 
method that enables the utilization of standard neural networks for the 
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purpose of animal assessment from image sequences. In combination 
with an appropriate tracking approach, it becomes a versatile tool to be 
used in a wide range of real-world monitoring applications requiring 
robust assessments.
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