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ARTICLE INFO ABSTRACT

Handling Editor: Mingzhou Jin While livestock play a vital role in supporting livelihoods of many people in Africa, they are also a major source
of greenhouse gas (GHG) emissions. An increasing African population coupled with growing demand for live-

Keywords: stock products means that there is an urgent need to implement cost-effective Climate Smart Agriculture (CSA)

Carbon footprint practices that reduce emissions from livestock systems. The objective of this research was to assess the effect of

Eos: szfe.:ctlve implementing CSA practices on milk yields and GHG emission intensities (EI) from three dairy production system
as rica

Intensification types (no-graze, semi-intensive, and extensive) in Kenya. The research applied marginal abatement cost curves

Milk (MACC) as a novel methodology in the livestock sector in low and middle-income countries, to assess of the

Trade-off economic costs and trade-offs for the use of CSA practices in each of the dairy production systems. The research
was conducted on 666 dairy farms in four counties in Kenya. Data from a farm survey and participatory
workshops were used to categorise farms into production systems, estimate carbon emissions using the Agrecalc
(Agricultural Resource Efficiency Calculator) tool, assess the effects of the use of CSA practices on milk yields and
GHG EI, estimate the costs of implementing CSA practices, and develop the MACCs. Addressing the limited
existing in situ experimental evidence available, especially related to livestock production, our results showed
that common CSA practices enhance milk yields and reduce GHG EI in dairy production systems. Moreover, the
novel nuanced insights indicated that these benefits were not equally experienced by all production systems,
with only clear statistical effects observed in extensive production systems. In these systems, farms using five or
more CSA practices saw a 44 % increase in milk production and a 25 % reduction in GHG EI compared to farms
not using any CSA practices. The MACCs revealed that the costs associated with the implementation of the CSA
practices were higher for extensive production systems, but increased milk production meant that the net in-
creases in value production were higher for extensive production systems. This indicates that upfront investment
costs are important barriers to the use of CSA practices. Our results provide strong evidence that rural devel-
opment projects are likely to be more successful when targeting farm types and using a “toolbox” approach.
Moreover, the results demonstrate the importance for the establishment of policy and financing mechanisms to
facilitate financing and decreasing the perceived risks involved in investing in CSA practices.

1. Introduction 2021; Weiler et al., 2014). However, livestock are also a main source of
greenhouse gas (GHG) emissions in most African countries, contributing

Livestock play a vital role in supporting the livelihoods of many on average between 23 and 33 % of anthropogenic GHG emissions (FAO
people in Africa by providing income, food, nutrition, draft power, and Statistics Division, 2023; JRC European Commission, 2021). Enteric
manure for crop fertilization (Adesogan et al., 2020; Balehegn et al., methane (CHy), produced during digestion of feed by ruminant livestock
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accounts for between 46 and 60 % of total GHG emissions for livestock
production, while CH4 from manure management accounts for between
12 and 41 % of total CH4 emissions in most countries (Chadwick et al.,
2011; Ungerfeld et al., 2022). Nitrous oxide (N20) from livestock
excreta deposited while grazing, applied as fertilizer, or from manure
management accounts for the remaining GHG emissions from livestock
(accounting for around 36 %) (JRC European Commission, 2021).

Demand for livestock products in Africa, particularly dairy, is ex-
pected to increase significantly over the coming decades due to popu-
lation and income growth in African countries (Henchion et al., 2021).
The continent-wide demand for meat and milk is expected to increase
between 261 and 399 % by 2050 compared to 2010 levels (FAO, 2017a).
As a country, Kenya is highly representative of these continental-wide
trends. Its dairy herd is around 4 million head of dairy cattle (the
third largest in East Africa) and has the highest per capita milk con-
sumption in Africa. Similar to the continental trends, demand for milk in
Kenya is expected to increase by 38 % by 2050 compared to production
in 2019 (Enahoro et al., 2018). Meeting this increasing demand for dairy
products in African dairy systems will result in increased animal GHG
emissions, however, if demand can be met by increases in animal pro-
ductivity rather than increases in herd sized, GHG EI should reduce and
thus slow down the increase in absolute emissions due to increased
production (Ericksen and Crane, 2018).

In response to these challenges, the Kenyan government has
committed to ambitious targets both in terms of milk production and
reducing GHG emissions from livestock as part of its National Livestock
Policy (2019), Agriculture Sector Transformation and Growth Strategy
2019-2029, National Dairy Master Plan, and Nationally Determined
Contributions (NDCs) to climate change mitigation under the 2015 Paris
Agreement (Ministry of Agriculture, Livestock, Fisheries and Irrigation,
2010; Ministry of Agriculture, Livestock, Fisheries and Irrigation, 2019a;
2019b; Ministry of Environment and Forestry, 2020). Among the targets,
the 2010 Dairy Master Plan stipulates an increase in total milk pro-
duction by 150 % by 2030, while the Nationally Determined Contribu-
tions to the 2015 Paris Agreement requires a reduction in total GHG
emissions by 32 % by 2030 compared to what would be expected
without mitigation measures (business as usual - BAU). The National
Climate Change Action Plan (NCCAP) 2018-2022 further specifies that
the agriculture sector should reduce CO2e by 7.1 % compared to BAU by
2030 (Ministry of Environment and Forestry, 2018). To meet these
goals, Kenya has begun mainstreaming and encouraging relevant prac-
tices through programs such as the Kenya Climate Smart Agriculture
Project (www.kcsap.go.ke).

As a result, there is an urgent need to implement cost-effective
Climate Smart Agriculture (CSA) practices that can increase milk pro-
ductivity and reduce GHG emissions from dairy systems in Africa. CSA
practices aim to achieve the “triple wins” of minimizing GHG emissions,
increasing livestock productivity, and adapting systems to future climate
change (Anuga et al., 2020; FAO, 2017b). While absolute GHG emissions
from dairy systems are expected to increase due to increased demand
and production in Africa, such increases could be restricted through CSA
practices that reduce the GHG emission intensity (EI) of milk production
(Ndung’'u et al., 2022). This approach can improve the efficiency of milk
production, enhance profitability, and improve a farm’s adaptation to
climate change (Gerber et al., 2011).

While CSA practices have been widely promoted to reduce emissions
from dairy and other livestock systems, little is known about their effect
on animal productivity, GHG emissions and relative cost effectiveness at
farm level (Anuga et al.,, 2020). Marginal abatement cost curves
(MACCs) assess the trade-offs of mitigation measures (e.g., CSA prac-
tices) by examining their economic costs and GHG mitigation potential
(e.g., Fellmann et al., 2021; Schmidt et al., 2021). However, as far as the
authors are aware, only one MACC has been conducted for dairy pro-
duction systems in low- and middle-income countries (LMICs) to assess
the trade-offs involved in the use of CSA practices in Latin America
(Duffy et al., 2021). Additionally, many of the existing MACC
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assessments are based on expert opinion and literature values (Jones
et al., 2015), whereas only a few MACC studies have been based on
in-situ, empirical data collection (Duffy et al., 2021). In-situ studies can
provide a more accurate representation of the true costs and effective-
ness of adopting CSA practices for mitigation by farmers.

The current research was undertaken under the auspices of the Kenya
Climate Smart Agriculture Project (KCSAP) led by the Kenyan Ministry
of Agriculture, Livestock, Fisheries and Cooperatives, and funded by the
World Bank. The overall goal of the KCSAP project is, “to increase
agricultural productivity and build resilience to climate change risks in
the targeted smallholder farming and pastoral communities in Kenya,
and in the event of an eligible crisis or emergency, to provide immediate
and effective response”. To help achieve this goal, the KCSAP project is
upscaling CSA practices by supporting smallholder farmers to use
various CSA practices. It also aims to better understand the effect of CSA
use on GHG EIs (i.e. GHG emission per product).

In this regard, the objective of this research was to assess the effect of
implementing CSA practices on milk yields and GHG EIs from three
dairy production system types (no-graze, semi-intensive, and extensive)
in Kenya. In addition, the research aimed to develop MACCs using data
collected in-situ in order to assess of the economic costs and trade-offs for
the use of CSA practices in these dairy production systems. We
hypothesised that the use of CSA practices would both increase yields
and decrease GHG EIs. Furthermore, we hypothesised that these effects
would be different for the different production systems, with the
extensive dairy production systems benefiting more compared to semi-
intensive and no-graze systems from the use of CSA practices. We also
hypothesised that the potential return on investment would be greater
than the costs related to the implementation of CSA practices, leading to
potential net increases in income.

2. Materials and methods
2.1. Study sites

The research was conducted on smallholder dairy farms in four
counties in Kenya: Baringo, Bomet, Kericho, and Laikipia (Fig. 1). These
counties have diverse agro-climatic conditions (Table 1) but are gener-
ally representative of mixed dairy farms in highland regions of Kenya
(Bebe et al., 2003). Farms were selected from 4 to 6 wards in each county
for conducting surveys, depending on logistical constraints. The
counties and wards were selected because they were areas where
farmers were supported by the KCSAP to use CSA practices.

Typically, smallholder dairy farms in Kenya are characterised by
small farm sizes (<2 ha) and strong integration between crop and live-
stock components of the system where milk production may not be the
primary production activity. Such integration of different farming ac-
tivities can increase resilience to climate change. These farms are also
usually low input and often receive minimal investment, leading to
relatively low milk productivity (<4 L fat and protein corrected milk
(FPCM) cow ! day’1 or <1460 L FPCM cow ! year’1 in many cases)
(Ndung'u et al., 2022). However, there is considerable heterogeneity
within each site depending on altitude and microclimate, soils, and
vegetation types (Staal et al., 2005; Thorpe et al., 2000; World Bank and
CIAT, 2015). Generally, dairy farms can be categorised into three main
production systems in Kenya: extensive, semi-intensive, and no-graze.
The current study adopts the same definition of these production sys-
tems as outlined in the Inventory of GHG emissions from dairy cattle in
Kenya (1995)-2017 (Ministry of Agriculture, Livestock, Fisheries and
Irrigation, 2020). Extensive production systems were characterised as
farms where the dairy cows were fed for at least 70 % of the time
through grazing practices throughout the year. No-graze production
systems were characterised as farms where the dairy cows were fed for at
least 70 % of the time through no-grazing practices throughout the year.
All other farms were characterised as belonging to the semi-intensive
production system.


http://www.kcsap.go.ke
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Fig. 1. Map of the counties where the research took place in Kenya. 1) Baringo,
2) Bomet, 3) Kericho, 4) Laikipia.

Table 1
Agro-climatic conditions of counties and sample numbers by district and pro-
duction system.

Characteristics/ Baringo Bomet Kericho Laikipia
production system
type”
Climatic conditions Semi-arid Sub-humid Sub-humid Semi-
arid
Annual precipitation Highland areas: 1000-1400  1400-2100  400-750
(mm year™ 1) 1000-1500 low
land areas: 600
Temperature (°C) 10-35 16-24 10-29 16-26
Elevation (average 1383 2016 2034 1861
masl)
Extensive production 100 72 65 60
systems surveyed
(number farms)
Semi-intensive 52 51 79 84

production
systems surveyed
(number farms)

No-graze production 28 16 19 40
systems surveyed
(number farms)

Total farms surveyed 180 139 163 184
(number farms)

2 Figures sourced from County Government of Baringo (2018); County Gov-
ernment of Bomet (2018); County Government of Kericho (2018); County
Government of Laikipia (2018). masl = metres above sea level.

The counties vary in terms of agro-climatic conditions, but rainfall
distribution and seasonality were similar. All counties have a bimodal
rainfall distribution, and seasonality typical of Kenyan highland regions,
where the primary rainy season is from April to June, with a secondary
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rainy season between October and November. There is a warm dry
season from December to March and a cool dry season that typically
extends from June to September. Agro-climatic conditions by district are
presented in Table 1 along with the number of farms surveyed in the
research by production system.

2.2. Survey design

The surveys were conducted between October 24 and December 15,
2022, following a series of pilot field tests. Around 100 farms that
benefited directly from support from the KCSAP project, and 100 farms
that had not received direct support from the project were selected for
survey in each county. It should be noted that even farms that did not
receive direct support from KCSAP often reported using one or multiple
CSA practices. The survey was adapted from Wilkes et al. (2019) -
https://cgspace.cgiar.org/handle/10568/105737, see supplementary
material). It consisted of a mixture of a recall survey questionnaire on
livestock management practices (herd composition, milk production and
milk sales, feeding, dairy management practices), and a limited number
of direct physical measurements (i.e. heart girth of dairy cows, milk
yields, feed and feeding management following ILRI’'s Manual 24
(Goopy and Gakige, 2019). The surveys also asked whether farmers used
any CSA practices promoted by KCSAP. These CSA practices are listed in
Table 2 and were grouped by theme. The surveys were conducted by
trained enumerators on the farms and were recorded using the Open
Data Kit (ODK), an online, open-source mobile data collection platform.
Quality control was ensured by limiting the nature and magnitude of
options for responses to survey questions, and survey results were
checked periodically for major issues with the data collection process.

In addition to the survey, animal diets were recorded, and samples of
the most common feeds were collected from a subsample of farms at
each site. At the county scale, we obtained feed samples from at least six
farms in each ward. This resulted in a total of 36 samples per county for
the most representative feed types in Baringo, Bomet, and Kericho; and
four wards were surveyed in Laikipia (24 samples per feed type). Sub-
sequently, feed samples were transported to ILRI’s Mazingira Centre for
analysis of feed composition. Dry matter was determined by drying the
samples at 105 °C in an oven (Genlab oven, model SDO/425/TDIG, UK)
for 24 h while ash was determined by combustion in a muffle furnace
(Nabertherm GmbH, Germany) at 550 °C for 6 h according to the
methods of the Association of Official Analytical Chemists (Latimer,
2023). Fibre content (NDF and ADF) were analysed by the methods of
Van Soest et al. (1991) using an Ankom 200 fibre analyser, model

Table 2
List of climate smart agricultural practices assessed with examples of the specific
techniques used.

CSA practices Examples of innovations

Improved cattle Use of Improved cattle breeds, artificial insemination (AI)

breeds use services; breeding improvements
Feed processing Chaff cutter; improved machinery for feed processing
equipment

Fodder improvement Improved fodder; fodder establishment; fodder
improvement

Feeds preservation; hay; silage making

Use of dairy concentrates; own farm feed formulations;
other feed formulations

East Coast Fever vaccination

Fertilizer use

Improved pasture; legumes mixed with Kikuyu grass;
improved pasture management; pasture establishment and
management

Use of stovers/crop residues

Feed preservation
Feed supplements

Vaccinations

Fertilizer use
Improved pasture

Feeding of by-

products

Water harvesting Water harvesting (equipment and infrastructure)

Stall feeding and Semi-zero grazing unit; Zero grazing unit; Improved
housing housing; Improved dairy unit; Dairy unit improvement

Milk marketing Milk marketing through cooperative membership
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A2001, USA. Nitrogen content was determined with an organic
elemental analyser (Vario Max, model vario SOLID Sampler, Germany),
while gross energy (GE) was determined according to the methods by
Harris (1970) using a bomb calorimeter (Parr 6200, model A1290DDEE,
UK). These variables were used to calculate dry matter digestibility
(DMD) according to the equation below (Oddy et al., 1983).

DMD g/100 g DM = 83.58 — 0.824 * ADF g/100 g DM + 2.626 * N g/100 g
DM

The proportional contribution of each feed item to the diet was
calculated to create feed baskets for each livestock category per
household per season. For cut and carry feedstuffs, the amount fed was
recorded using the quantities reported by the farmer and converted to
kilograms using conversion tables found in literature (Lukuyu et al.,
2012). Fresh forages and concentrate samples were collected and ana-
lysed for DM content. For the contribution of pasture grazing to the diet,
the area available per animal category per season was recorded to es-
timate pasture biomass production.

The dataset originally included 815 farms, but farms that did not
report milk yield or did not provide detail on feed and feed management
were removed, as well as any outliers. This resulted in a total of 666
farms across the four counties. All research and data collection activities
were approved by the International Livestock Research Institute’s
Institutional Animal Care and Use Committee (IACUC) and Institutional
Research Ethics Committee (IREC).

2.3. GHG emission estimations and the agrecalc tool

Survey data were used to calculate farm carbon footprints, namely
total emission emissions and Els, using Agrecalc (Agricultural Resource
Efficiency Calculator). Agrecalc was developed by Scotland’s Rural
College and has been found to be amongst the best-performing carbon
accounting tools based on its transparency, methodology and allocation
(Sykes et al., 2017). The tool complies with LCA guidelines defined by
ISO 14044 and PAS 2050standards. All livestock enteric CH4 and N,O
emissions from excreta deposited on grazing land use IPCC (2019) Tier 2
country-specific calculations. IPCC (2019) Tier 2 methods which ac-
count for dietary characteristics and climate are employed for CH4 and
N2O emissions from manure management. Direct N2O emissions from
organic and inorganic fertilisers also follow IPCC Tier 2 guidelines. It is
important to note that Agrecalc employs UK Tier 2 country-specific
emission factors, although the majority of these are comparable with
Kenyan emission factors. Nitrous oxide emissions are likely the only
notable difference between the UK and Kenyan GHG Inventories.
However, due to their relatively small contribution to total emissions,
this discrepancy is likely to have a minor impact overall. Moreover, this
paper does not present absolute emissions but rather compares emis-
sions between different production systems and the number of CSA
practices they have adopted. Therefore, any differences in emission
factors would not impact the results.

IPCC (2019) Tier 1 emission factors (EFs) are utilised for crop resi-
dues and indirect N»O emissions related to volatilisation and leaching.
Emission estimates for energy usage were calculated using EFs from
DEFRA (2012). Emission factors from (Marinussen et al., 2012) were
employed for embedded fertiliser emissions, and values from the Dutch
Feedprint database (Vellinga et al., 2013) were utilised for purchased
feed.

Agrecalc calculates standardised emission estimates in units of car-
bon dioxide equivalents (CO2e) using global warming potential over 100
years (GWP1¢p) from the fourth assessment report (IPCC, 2019). Results
are expressed as both total emissions per farm and GHG emissions per
unit of product (kg COze kg~ of fat and protein corrected milk (FPCM)).

In cases where data were not collected from the survey or where any
data were missing, recently published data or standardised estimates
were used in their place. For example, milk yields were provided in litres
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per day, however, emissions are calculated on a yearly basis in Agrecalc
in kg FPCM cow ™! day™!. Therefore, a conventional 305-day lactation
length was assumed to estimate annual milk yields (Kok et al., 2016;
Kopec et al., 2020). Similarly, FPCM was standardised to 4 % fat and 3.3
% true protein in line with other recently published Kenyan studies
(Ndung’u et al., 2022).

The Agrecalc tool estimates GHG emission for the dairy cattle sys-
tems using indirect methods as per the IPCC guidelines (IPCC, 2019).
Indirect methods rely on proxy variables to estimate daily feed intake
and enteric CH4 emissions. The daily feed intake (GE, gross energy) is
estimated by the summation of different energy requirements. Estimated
daily feed intake is then multiplied by a CHy4 conversion factor (Ym) to
calculate CH4 emissions, as with direct emissions estimates.

The proxy variables used to determine energy requirements included
in the survey were: liveweight, feed and feeding management and milk
yield. As described in Section 2.2, liveweight measurements and certain
data for feed and feeding management were recorded based on physical
measurements taken at the farms, while the other proxy variables were
estimated from farmer recall using survey questionnaires.

2.4. Statistical analyses

To assess the effect of the number of CSA practices on daily milk yield
and GHG EIs, the number of CSA practices used per farm was trans-
formed into a categorical variable in order to enhance sample numbers
per group and generate a roughly even distribution of samples
(Table S1). To achieve this, the number of CSA practices used by each
farm was categorised into the following groups: 0, 1-2, 3-4, and >5 CSA
practices. Multiple linear regression models were used to test for an
association between the number of CSA practices and daily milk yield
and GHG EIs. To account for the effects of socio-economic and agro-
ecological factors on milk yield and GHG EIs, we included “county” in
our regression models as a covariate. A post-hoc least significant dif-
ference test was applied to indicate which number of CSA practices
categories differed from each other at the 5 % level of probability.

Multiple linear regression models were also used to test for an as-
sociation between each individual CSA practice deemed as potentially
beneficial by production system, daily milk yield, and GHG EI. Given
high correlations in the use of some CSA practices, these CSA practices
were grouped together and one CSA practice per group was included in
the linear regression analyses as a proxy for all variables in the group. As
such, Feed preservation and Feed supplements were removed with Stall
feeding and housing acting as the proxy variable; and Milk marketing and
Water harvesting were removed, with Fertiliser use being used as the
proxy variable. Vaccines was removed due to the minimal use of this CSA
practices among all production systems (Fig. S2). For extensive pro-
duction systems, the individual CSA practices included in the multiple
linear regression models were Improved cattle breeds use, Fertiliser use,
Improved pasture, and By-products-feeding. For semi-intensive production
systems, the CSA practices included in the multiple linear regression
models were Improved cattle breeds use, Fertiliser-use, Improved pasture,
By-products feeding, Feed processing, Fodder improvement, and Stall feeding
and housing. For no-graze production systems the CSA practices included
in the multiple linear regression models were Improved cattle breeds use,
Feed processing, Fodder improvement, Fertiliser use, and Stall feeding and
housing.

Due to skewness in data, both daily milk yield and GHG EIs were
transformed using the log function. The estimated marginal means
presented in the results have been back-transformed in order to provide
results that are comparable to results from the scientific literature. All
analyses were carried out within the RStudio environment version
2022.12.0 Build 353 for R (version 4.2.1) using the ade4 (Dray and
Dufour, 2007), agricolae (Mendiburu and Yaseen, 2020), dplyr
(Wickham et al., 2018), ggplot2 (Wickham, 2009), and emmeans (Searle
et al., 2023) packages.
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2.5. Costing and marginal abatement cost curves

To calculate the costs of implementation of the CSA practices, three
workshops were held in three of the four counties surveyed, Baringo,
Bomet, and Kericho in early February 2023. Around 30 farmers attended
each workshop. At the workshops, farmers were asked to discuss and
estimate the costs of implementation of each of the CSA practices
including the use of labour, cost of the equipment and infrastructure,
and the cost of applying the CSA practice (e.g., fuel use).

Using the average prices reported in the workshops, feed-related CSA
practices were adjusted per production system based on the feed basket
composition reported in the survey outlined in Section 2.2. Long-term
infrastructure investments (e.g., stall infrastructure, water harvesting
infrastructure) were annualised for a period of 15 years; land-use
changes (e.g., improved fodder establishment, improved pasture estab-
lishment) were annualised for a period of 10 years; and the purchase or
use of Improved cattle breeds were amortised over the average number
of lactation periods of a dairy cow’s life per production system according
to the data reported in the survey outlined in Section 2.2. Cost estimates
were then calculated per litre of milk production by dividing the annual
cost estimates per dairy cow by the average annual milk production of a
dairy cow in each production system for farms not using any CSA
practices, as reported in the survey outlined in Section 2.2.

To estimate the cost of implementation of CSA practices per numeric
category of CSA practices implemented (i.e., per use of 1-2 CSA prac-
tices, 3-4 CSA practices, and 5 or more CSA practices), the average
number of CSA practices used per production system per numeric
category of CSA practices was calculated. The proportion of use of each
CSA practice used by farms in each of these groups was then calculated.
These proportions were then used to calculate overall costs by multi-
plying the CSA implementation costs by the proportion of farms using
that CSA practice, and then by the average number of CSA practices used
by farms in that numeric category of CSA practices used for each pro-
duction system.

Marginal abatement cost curves for each production system by the
number of CSA practices used were developed both when accounting for
the expected value production increases in milk yield and when these
increases were not included to better present the required investment
costs and the returns on investment. The value production increases in
milk yield were calculated based on the statistical analyses outlined in
Section 2.5 per numeric category of CSA practices implemented and per
production system and the average milk sale prices reported in the
farmer workshops.

3. Results
3.1. Dairy production systems and the use of CSA techniques

The composition of cattle herds differed by production system, as
shown in Table 3. No-graze systems had a much lower percentage of

Table 3

Cattle herd composition and average milk yield by production system. Mean
number of heads is presented by cattle type followed by the proportion ( %) of
the herd for which that cattle type accounts in parentheses.

Descriptive variable Production system

Extensive Semi-intensive No-graze
Adult males (heads) 0.19 (5) 0.12 (3) 0.00 (0)
Immature males (heads) 0.37 (9) 0.30 (8) 0.11 (3)
Cows (non-lactating - heads) 1.01 (25) 0.80 (21) 0.66 (20)
Lactating (heads) 0.96 (24) 1.13 (29) 1.20 (36)
Heifers (heads) 0.63 (16) 0.81 (21) 0.63 (19)
Calves (heads) 0.78 (20) 0.64 (16) 0.63 (19)
Pre-wean calves (heads) 0.06 (1) 0.11 (3) 0.13 (4
Total cattle (heads) 4.00 (100) 3.92 (100) 3.38 (100)
Milk yield (litres cow ™! day™) 3.7 4.9 6.3
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male cattle (3 %) compared to extensive systems (14 %) and semi-
intensive systems (11 %). On the other hand, lactating cows
comprised a greater proportion of the herd in no-graze production sys-
tems (36 %) compared to extensive production systems (24 %) or semi-
intensive production systems (29 %). Overall, no-graze production sys-
tems had fewer average heads of cattle (3.4 per farm) than extensive (4.0
per farm) or semi-intensive (3.92 per farm) production systems. Milk
production also varied among production systems, with no-graze farms
producing the highest average yield (6.25 L cow ' day 1), followed by
semi-intensive farms (4.90 L cow * day’l) and extensive farms (3.73 L
cow ! day™!). This pattern was consistent across the four surveyed
counties (Fig. S1).

Only a small proportion (6-7 %) of farms in each production system
did not use any CSA practice (Table S1, Fig. S3). While, by definition,
there were no KCSAP-supported farms that did not use any of the
CSApractices promoted by the project, it was notable that many un-
supported KCSAP farms reported using CSApractices across all produc-
tion systems (Table S1). Overall, between 31 and 39 % of farms used 1-2
CSA practices, while 25-31 % of farms used 3-4 CSA practices, and
23-34 % of farms used five or more CSA techniques. The most used CSA
practices used by farms across production systems were Improved cattle
breeds use and Fodder improvement techniques, utilised by more than 50
% of farms (Fig. S2). Feed preservation, Feed supplements, and Improved
pasture CSA techniques were also fairly commonly used (by around 20 %
or more farms). More no-graze production systems used Improved cattle
breeds (~70 %) compared to extensive production systems (~50 %).
Similarly, Feed supplements, Feed preservation, Feed processing, and Stall
feeding and housing were more commonly used by no-graze than exten-
sive production systems. On the other hand, extensive production sys-
tems were more likely to adopt Fodder improvement, Pasture improvement,
Feeding of by-products (i.e. crop residues), and Water harvesting compared
to no-graze production systems.

3.2. The effect of the number of CSA practices on milk yields and GHG
emission intensities

The multi-linear regression model for extensive dairy production
systems showed a significant association between the number of CSA
practices used by farms and milk yields at the 5 % level of probability (p
= 0.032) (Table 4). Although the least significant difference test could
not distinguish differences among farms with different numbers of CSA
techniques at the 5 % level of probability, a visual inspection of the data
coupled with the linear regression results suggests that there was a trend
whereby the more CSA practices that are used by farms, the greater the
milk yield for extensive dairy production systems (Fig. 2A).

A similar pattern was also observed for semi-intensive production
systems. The linear regression model indicated a difference among farms
using different numbers of CSA practices at the 10 % level of probability
(p =0.068) (Table 4). A visual inspection of the data suggests that farms
that used five or more CSA techniques had higher milk production than
farms using fewer or no CSA practices (Fig. 2B). The linear regression
models for no-graze dairy production systems, however, indicated no
significant relationships between the number of CSA techniques used
and milk yields (p = 0.751).

Table 4

p-value of the multi-linear regression analyses assessing the effect of the number
of Climate Smart Agriculture practices used on either milk yield or GHG emis-
sion intensities.

Production system Milk yield (p-value) GHG emission intensities (p-value)

Extensive 0.032* 0.065.
Semi-intensive 0.068. 0.157
No-graze 0.751 0.829

* Significant at the 5 % level of probability.
Significant at the 10 % level of probability.
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Fig. 2. Boxplots presenting daily milk yield by number of CSA practices used and production system across all counties (plots A = Extensive production system; B =
Semi-intensive production system; C = No-graze production system); and average GHG emission intensities by number of CSA practices used and production system
across all counties (plots D = Extensive production system; E = Semi-intensive production system; F = No-graze production system). Numbers at the top of each plot
indicate means (also indicated as white square within boxplot), while n = the number of samples, and the letters indicate results of the post-hoc least significant
difference test, with different letters indicating differences at the 5 % level of probability. Outliers outside the upper interquartile not shown, for boxplots with

outliers see Fig. S4.

The linear regression results indicated that the number of CSA
practices used by extensive production systems was associated with
GHG EIs at the 10 % level of probability (p = 0.065) (Table 4). While the
least significant difference test found no significant difference at the 5 %
level of probability, visual inspection of the data suggested that the more
CSA practices a farm used, the lower the GHG emission intensities
(Fig. 2D). The linear regression results found no statistical association
between the number of CSA techniques used by farms and GHG EI for
semi-intensive or no-graze production systems (p = 0.157 and 0.829
respectively — Table 4, Fig. 2E and F). When assessing total farm GHG
emissions by the number of CSA practices, no statistical pattern was
observable at the 10 % level of probability (p = 0.193 for extensive
systems; p = 0.403 for semi-intensive systems; and p = 0.681 for no
graze systems).

The multiple linear regression models assessing the effects of indi-
vidual CSA practices on milk yields and GHG EI revealed a significant
effect for Improved pasture on milk yields at the 1 % level of probability
(p = 0.009) and GHG EI at the 10 % level of probability (p = 0.052) for
extensive production systems. As would be expected with the use of
Improved pasture, milk yields were seen to increase, while GHG EI were
seen to decrease (Tables S2 and S3).

For semi-intensive systems, Improved cattle breeds use and Fertiliser use
displayed significant effects on milk yields at the 5 % (p = 0.01) and 10
% (p = 0.07) level of probability respectively. While the effect on milk
yields from the use of Improved cattle breeds was positive, the effect
from fertiliser use was negative (Table S4). Fodder improvement dis-
played a significant effect on GHG EI for semi-intensive systems at the 10
% level of probability (p = 0.08). As expected, the relationship was
negative suggesting a decrease in GHG EI with the use of improved
fodder (Table S5).

Fodder improvement also displayed a significant effect on milk yields
in no-graze production systems at the 10 % level of probability (p =
0.06), however this relationship was negative, indicating a reduction in
milk yields with the use of improved fodder (Table S6). Improved cattle
breeds use was the only CSA practice in no graze systems that displayed a

significant effect on GHG EI (p = 0.002). As expected, the use of this CSA
practice had a negative association with GHG EI (Table S7).

3.3. Marginal abatement costs for the use CSA practices

The costs associated with implementing different CSA practices
varied by production system, with the CSA practices generally being
cheaper per litre of milk produced in no-graze production systems, fol-
lowed by semi-intensive production systems. CSA practices were usually
most expensive for extensive production systems, except for Fodder
improvement because this accounted for a much smaller proportion of the
feed basket in these systems (Table 5 — see Table S8 for an overview of
the input costs and assumptions used to calculate costs of CSA practices

Table 5
Estimated annual cost of implementation of different CSA practices by produc-
tion system per litre of milk produced.

CSA practice Production system

Semi-intensive
(USD $ litre

Extensive (USD $
litre milk 1)

No-graze (USD
$ litre milk’l)

milk )
Feed supplements 0.19 0.14 0.10
Stall infrastructure 0.04 0.03 0.02
and housing
Water harvesting 0.03 0.02 0.01
Feed processing 0.08 0.10 0.07
Feeding of by- 0.06 0.02 0.01
products
Milk marketing 0.00 0.00 0.00
Improved cattle 0.14 0.09 0.06
breeds use
Fertiliser use 0.01 0.01 0.01
Improved pasture 0.04 0.02 0.02
Fodder 0.02 0.03 0.05
improvement
Feed preservation 0.01 0.01 0.01
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per litre of milk). Among the most expensive CSA techniques per litre of
milk were Feed supplements, Feed processing and Improved cattle breeds use.
However, despite their relatively higher costs, these practices were also
among those most commonly used (Fig. 52).

When assessing the cost of the number of CSA techniques used and
the GHG ElIs abatement potential, it is evident that the cost of the
implementation of CSA practices per litre of milk produced is much
higher for extensive systems compared to semi-intensive or no-graze
systems. However, the potential for GHG EI abatement is also much
greater for extensive systems (Fig. 3A, B, and 3C).

When integrating the potential benefits of using CSA practices (milk
yield value-production increases) in the cost calculations, the MACCs
change dramatically (Fig. 3D, E, and 3F). Importantly, the net costs
decrease most under the extensive production systems, with these farms
generating more value through the implementation of CSA practices
than it costs implementing them. According to these calculations, the
use of five or more CSA techniques is most cost-effective, not only
generating greater overall value, but also providing the greatest GHG EI
reductions. In the semi-intensive and the no-graze production systems,
net costs for the implementation of CSA practices meant farms could
have to pay more to implement 1-4 CSA practices than they would
generate in enhanced value production. However, when implementing
five or more CSA techniques, then farms would generate more value
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through milk production than it costs to implement the CSA practices.
4. Discussion

4.1. CSA practices enhance milk yields and GHG emission intensities
abatement potential

Our findings provide evidence that the use of CSA practices by dairy
farms in Kenya can increase milk yields and reduce GHG EI (Table 4 and
Fig. 2). Furthermore, while we found no evidence that overall farm-level
GHG emissions decreased with the number of CSA practices used, which
is more likely to be dependent on herd size, our results suggest that the
more CSA practices used, the higher the milk yields and the greater the
GHG EI abatement potential. This is an important novel finding as
limited in situ experimental evidence exists assessing the potential of
CSA practices to reduce GHG emissions, especially those related to
livestock production such as improved livestock breeds and feed (Anuga
et al., 2020). Notwithstanding the paucity of experimental evidence in
this area, the results corroborate the few other studies that have found
important gains in milk yield and GHG EI mitigation potential with the
use of common CSA practices (Abhilash et al., 2021; Gerber et al., 2011;
Paul et al., 2020; Thornton and Herrero, 2010).

The widespread use of some CSA practices across all the farms
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Fig. 3. Marginal abatement cost curves for the use of different numbers of CSA practices by production system across all counties. Plots A, B, and C present cost of
implementation of CSA techniques when return on investment (additional milk production value) is not included. Plots D, E, and F present cost of implementation of
CSA techniques when including additional milk production value derived from the use of CSA practices. Vertical (cost) and horizontal (GHG emissions intensities)
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surveyed irrespective of direct participation in the project (Table S1)
suggests that the use of these practices is relatively common in the study
sites. It is not possible with the current data to assess whether this wider
use of CSA practices in the broader community is a result of spill-over
effects from the project, or whether the use of CSA practices was com-
mon before the project began. It is also important to note that while the
results in the current research do not reveal a pattern in the proportional
effect of using additional CSA practices, we would expect diminishing
effects with increasing number of CSA practices used as it would be
expected that by reducing yield gaps (through the use of CSA practices),
proportional gains for each additional CSA practice would decrease.
This pattern of diminishing effect was indeed found in a study assessing
the effects of the use of CSA practices on crop yields in Pakistan where
yields tended not to increase after farmers used at least four CSA prac-
tices (Sardar et al., 2021). The reason why the pattern of diminishing
effect is not observed in our study is likely due to the inadequate number
of samples (farms) in the different groups of CSA practices used, and
especially the smaller number of farms that used higher numbers of CSA
practices (Fig. S1).

Another important finding from the current research is that the
positive effect of CSA practices on milk yields and GHG EI were not
apparent in all dairy production systems. Specifically, the beneficial
effects of the use of CSA practices appear to be most evident in extensive
production systems, less evident in semi-intensive production systems,
and imperceptible in no-graze systems (Fig. 2, Table 4). It is possible that
this finding is an artefact of the smaller number of farms surveyed with
no graze systems (n = 103), and especially using no CSA practices in no
graze systems (n = 6, Table S1), making it more difficult to observe
statistical patterns. Another reason could be that extensive systems had
lower milk production overall. Therefore, the same increase in milk
production (eg, 1 1) will have a bigger effect, as the percentage increase
in milk yield and reduction in GHG emission intensity will be greater.

However, it could also be a result of the effect of diminishing returns,
whereby proportional increases in milk yields and GHG EI abatement
potential are more difficult to achieve the closer to the potential yields
they become. Furthermore, no graze production systems may already be
using a number of CSA farming practices not recorded by our farm
survey which will likely decrease the effect of the use of additional CSA
practices (as mentioned previously). As outlined in Gerber et al. (2011),
GHG emissions per kg FPCM rarely decrease below 1.5-2.0 kg CO2e per
kg FPCM (similar to the levels observed in no-graze production systems
in our research), irrespective of any increase in milk yields.

4.2. Upfront investment costs as potential barrier to lower GHG emission
intensities and more profitable dairy production

Similar to the finding that the use of CSA practices were associated
with greater GHG EI abatement potentials and increases in milk yields in
extensive production systems compared to the other production systems,
costs for the use of CSA practices in these production systems were also
found to be higher (Table 5 and Fig. 3A, B and 3C). For example, while it
cost farms around USD $0.25 L to use five or more CSA techniques in
no-graze production systems, the cost of using five or more CSA tech-
niques in extensive production systems was around 36 % more expen-
sive at around USD $0.34 L. This is at least partly due to the fact that
milk yields for extensive production systems are much lower than for
semi-intensive or no-graze production systems (Fig. 2 and S1) thus
heightening the proportional costs for the implementation of CSA
practices. Notwithstanding these findings, it is also apparent that when
net benefits are factored into the cost calculations, the use of CSA
practices are comparatively much cheaper for extensive production
systems than semi-intensive or no-graze production systems (Fig. 3D, E,
and 3F). Indeed, the use of CSA practices provides net income increases
for extensive production systems irrespective of how many CSA prac-
tices were used. This compares with semi-intensive and no-graze pro-
duction systems where only the use of five or more CSA techniques
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resulted in enhanced value production.

This finding is important as it suggests that despite the net financial
benefits for extensive farms, it is likely that the higher upfront costs
constitute an important barrier to the greater use of CSA practices in
extensive production systems (production systems that are also likely to
be the least resource endowed), diminishing the likelihood for GHG
emission mitigation in these farming systems. A number of studies have
shown that not only are upfront investment costs important barriers to
the use of CSA practices (Branca et al., 2021; Jones et al., 2013; Kha-
tri-Chhetri et al., 2017), but the least resource-endowed farms are also
more risk averse and less likely to experiment and begin using new CSA
innovations (Kassa and Abdi, 2022; Ngoma et al., 2018). This reinforces
the argument that despite the potential benefits of CSA practices,
important structural barriers need to be resolved such as improved ac-
cess to finance and markets for smallholders before such technologies
will be more widely used (Bhattacharyya et al., 2020; Descheemaeker
et al., 2016).

4.3. Marginal abatement cost curves in low and middle income countries

The use of MACCs to assess the trade-offs involved in the use of GHG
mitigation measures such as CSA practices is a novel methodological
approach in the livestock production sector in low- and middle-income
countries. To the authors knowledge, only one other such study has been
published in the scientific literature before (Duffy et al., 2021). More-
over, most MACC assessments undertaken in high income countries in
the livestock sector rely on expert opinion and literature values (Jones
et al., 2015). The current study has extended these studies by applying
the MACCs both in a developing context in Kenya and by basing the
analyses on data collected in situ. In doing so, the data and results
presented in the current study are likely to more accurately represent the
true costs and benefits for the use of CSA practices by smallholder
farmers in Kenya.

This is an important development at a time that the government of
Kenya is aiming to mainstream CSA practices in livestock production
having committed to ambitious targets both in terms of milk production
and GHG emissions reductions from livestock (Ministry of Agriculture,
Livestock, Fisheries and Irrigation, 2010; Ministry of Agriculture, Live-
stock, Fisheries and Irrigation, 2019a; 2019b; Ministry of Environment
and Forestry, 2020). In this regard MACC assessments are important
tools to translate scientific information into information that is practi-
cable by policy-makers, helping inform policies that facilitate farm-level
mitigation strategies (Eory et al., 2018; Glenk et al., 2014; Jones et al.,
2015).

While the results presented in this study pertain to a relatively small
area in central-eastern Kenya, the farming systems types identified in the
research are typical examples in the sub-humid and semi-arid regions of
East Africa (Ministry of Agriculture, Livestock, Fisheries and Irrigation,
2020). As such it is likely that the results are generalisable to a larger
geographical region within Kenya, East Africa and potentially more
broadly. More importantly however, this case study provides a potential
cost-effective template for the application of MACC to inform GHG
mitigation policies at different scales and in different geographies. Such
modelling approaches, as noted above can be extremely powerful tools
for translating scientific data into practicable policy recommendations.
Moreover, such analyses can fit into broader policy-making frameworks
and processes that aim to upscale CSA practices (Selbonne et al., 2022).

4.4. Policy implications

Our results suggest that targeting extensive farm production systems
may be one of the most effective and efficient ways of increasing milk
production and reducing GHG EI in the locations studied. This does not
mean changing extensive production systems into intensive production
systems, but working with farmers to explore the use of appropriate
technologies for their particular contexts and production systems. As
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articulated in Hammond et al. (2020) and Hyland et al. (2016), the
targeting of farm types according to their specific opportunities and
constraints enhances the likelihood of success for rural development
projects.

The multiple linear regressions assessing the effects of individual
CSA practices did not clearly show which CSA practices were more or
less effective in increasing milk yields and decreasing GHG EI for which
farm production types in the current study. Indeed, in some instances the
results revealed unexpected findings that suggested that some CSA
practices were associated with lower milk yields (i.e., the use of fertil-
isers in semi-intensive systems and improved fodder in the no graze
systems) (Tables S2-S7). It is likely that this is a result of the experi-
mental design where farms used multiple CSA practices at the same
time, making it difficult to tease out precise impacts of individual CSA
practices on milk yields and GHG EI. Nevertheless, the individual CSA
practices that displayed significant positive associations with milk yields
and negative associations with GHG EI such as the use of Improved cattle
breeds and feeding practices (improved pasture and fodder), align with
other studies in the region (Bateki et al., 2020; Ndung'u et al., 2022;
Wilkes et al., 2020). Further research in this regard is recommended as
currently there is a lack of deep understanding in terms of the costs and
benefits, and synergies and trade-offs, of different CSA options in
different types of farming systems (Thornton et al., 2018).

Notwithstanding these constraints in our data, it is still apparent that
the CSA practices are used by different production systems to different
degrees (Fig. S2). For example, no-graze production system farms were
more likely to use practices such as improved feed preservation, feed
supplements, and feed processing, while extensive production systems
were more likely to use improved pasture and by-products feeding
techniques. This is important as it confirms that different CSA practices
will be suitable for different types of farms and production systems even
within the same geographical contexts. We therefore concur with
Notenbaert et al. (2017) that a “toolbox approach” may be one of the
most effective ways to work with farms to explore the potential benefits
of CSA practices as opposed to approaches where single technocratic
solutions are promoted.

These results also shed light onto potential policy mechanisms for
enhancing the likelihood that farmers begin to use more CSA practices.
As found in this research and others, upfront investment costs present
one of the largest barriers to the use of certain CSA practices
(Bhattacharyya et al., 2020; Steenwerth et al., 2014). As such, policy
mechanisms should specifically aim to facilitate financing for upfront
investment costs and decrease the perceived risks involved in investing
in CSA practices (Engel and Muller, 2016; Lipper et al., 2018; Volenzo
Elijah et al., 2021).

Examples where such mechanisms have been successful in a number
of contexts include conditional or unconditional microcredits related to
the use of CSA practices, smallholder carbon market projects, small-
holder livestock and crop insurance, and payment for ecosystem services
schemes (Alix-Garcia et al., 2015; Engel and Muller, 2016; Gauvin et al.,
2010; Lee, 2017; Meinzen-Dick et al., 2014; Ogunyiola et al., 2022).
However, while there is growing interest in facilitating access to finance
for smallholder farmers to support low-emission agricultural intensifi-
cation, little is understood about how to deploy climate finance effec-
tively and equitably in order to stimulate large scale use of CSA practices
(Odhong’ et al., 2019). Similar to VolenzoElijah et al. (2021), we
therefore argue that further research on the characteristics of cashflows
associated with costs of CSA practice use is undertaken, along with a
detailed exploration of suitable financing mechanisms given small-
holders’ constraints to access finance.

5. Conclusion
Our results provide further empirical evidence that common CSA

practices enhance milk yields and reduce GHG EI in dairy production
systems in Kenya. However, these benefits were not equally experienced
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by the different production systems, with a clear statistical effect, where
the use of more CSA practices were associated with greater milk yields
and GHG EI savings, only apparent in the extensive production systems.
It is likely that the limited impacts of CSA practices in the more intensive
dairy production systems is a result of the fact that these systems are
already producing milk yields closer to their maximum potential yields.
Importantly, we found that the cost for employing the CSA practices was
higher for extensive production systems, although when factoring in the
benefits of using CSA techniques the net increases in value production
were also highest for these systems. This suggests that upfront invest-
ment costs are important barriers to the use of CSA practices. We argue
that our results provide strong evidence that the targeting of farms and
the use of “toolbox” approaches to rural development projects are likely
to be more successful than the promotion of a single technocratic solu-
tion. Furthermore, for CSA practices to be used more widely, our results
suggest that policy and financing mechanisms need to be established to
facilitate financing and to decrease the perceived risks involved in
investing in CSA practices.
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