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 A B S T R A C T

High-resolution maps of climate and ecosystem variables are essential for supporting terrestrial carbon stocks 
and fluxes estimation, climate change mitigation, and ecosystem degradation assessment. These maps are 
usually created using remotely sensed data obtained from various types of imagery and sensors. The remote 
sensing data typically serve as covariates to deliver spatially explicit information using machine learning 
algorithms. Often the uncertainty associated with the maps is also quantified, for instance by prediction 
error variance maps or by maps of the lower and upper limits of a prediction interval. In addition, these 
products are often aggregated to regional, national, or global scales relevant to climate policy, natural 
resource inventory, and measurement, reporting, and verification (MRV) frameworks. Quantifying uncertainty 
in aggregated products is crucial as it is necessary to assess their value and evaluate whether changes and trends 
in aggregated estimates are statistically significant. However, we argue that such uncertainty is frequently 
inaccurately assessed due to the neglect of spatial correlation in map errors. This critical methodological issue 
has been overlooked in most large-scale mapping studies.
The Intergovernmental Panel on Climate Change
(IPCC, IPCC, 2022), the United Nations Sustainable Development
Goals (The United Nations, 2023), and the Paris Agreement (UNFCCC, 
2015) rely on spatial information to support policy and decision-
making processes to address climate change, biodiversity loss, and 
land degradation. This has led to the production of maps showing the 
spatial distribution of natural resources and climate-related variables 
using measurements combined with satellite imagery and modelling 
techniques (Phillips et al., 2019; Harris et al., 2021). Many of these 
maps are made at a fine spatial resolution and hence need to be 
spatially aggregated to infer the state of the environment for regions, 
countries, continents, or the entire globe. For instance, the United 
Nations Framework Convention on Climate Change (UNFCCC) (UN-
FCCC, 2023) provides detailed data on greenhouse gas emissions and 
removals, which are aggregated from fine-scale measurements and 
maps to provide a national overview. Another example is soil carbon 
accounting, where MRV platforms use digital soil mapping (Smith et al., 
2020) to map carbon stocks and where these maps must be aggregated 
from the field to the project level for carbon crediting.

Estimates of spatial averages and totals are easily obtained by aver-
aging or summing all point values of a map within the area of interest. 
In the scientific literature, we found many high-impact publications on 
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natural resources and climate-related global variables that reported the 
uncertainty of spatial averages or totals in the same way (e.g. Nahlik 
and Fennessy, 2016; Xiao et al., 2019; Harris et al., 2021); that is by 
averaging or adding standard deviations or variances. But this is wrong 
and typically leads to a gross overestimation of the uncertainty.

The uncertainty of a spatial average is much smaller than the 
average of the spatial uncertainty because errors partially cancel out 
when averaging. We illustrate this with a simple example. If we roll a 
die and hide the outcome, then you will be quite uncertain about the 
outcome. It could be any number between 1 and 6 and there is only a 
33% chance that it is between 3 and 4. Now, let us roll 100 dice and 
average their outcomes. The result still is a value between 1 and 6, but 
are you equally uncertain? No, you are not because you know that the 
average of the 100 dice will be quite close to 3.5. Your uncertainty has 
much decreased because high and low roll outcomes average out. The 
chance that the average is between 3 and 4 has dramatically increased 
to 99.7%. The more dice we average the less uncertain we are. With 
one million rolls there is a 99% probability that the average is between 
3.495 and 3.505. The bottomline is that averaging reduces uncertainty, 
which should not come as a surprise because it is conveyed in every 
statistical textbook.
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Fig. 1. Illustration of uncertainty reduction for a simulated map error of a climate or ecosystem variable in Western Africa. Two maps showing a a case with spatially correlated 
errors and b a case with uncorrelated errors. c Eight square areas over which the aggregation of uncertainty is performed, for sizes of 100, 900 2500, 8100, 32,400, 129,600, 
518,400 and 2 × 106 km2. d Average error for the eight square areas for the correlated and uncorrelated case over 1000 simulated error maps. The maps shown in a–b refer to 
one of the 1000 simulations, each of the 1000 grey lines in the left and right panels of d corresponds with one simulation.
In the dice example all rolls were statistically independent: the 
outcome of one roll did not influence that of another. But when we 
compute spatial averages the errors at neighbouring locations will often 
be positively correlated. This reduces the cancelling out effect. In other 
words, the uncertainty reduction depends on the degree of spatial de-
pendence in the map error. Unfortunately, this fact is often overlooked 
in the scientific literature; most studies that quantify uncertainty of 
spatial aggregates do not properly account for spatial correlation of pre-
diction errors. Disregarding spatial dependence of map errors in spatial 
aggregation leads to a seriously misleading estimate of uncertainty of 
the average or total.

This is illustrated with a synthetic example in Fig.  1. We simu-
lated 1000 realizations of two map errors, one with a strong spatial 
correlation and one with uncorrelated errors. The realizations with 
strong spatial correlation were obtained from 1000 sequential Gaussian 
simulations with an exponential variogram with a sill of 1, a nugget of 0 
and a distance parameter of 10 km. The values of each realization were 
then randomly shifted to obtain the realization of the uncorrelated case. 
The simulated map errors were then averaged for different window 
sizes. Fig.  1d shows that uncertainty decreases as we average over 
larger areas and that the uncertainty reduction strongly depends on the 
degree of spatial correlation. Between the aggregation for sizes 100 and 
129,600 km2, the variance of the average error from all simulations is 
reduced by 91.6% for the correlated case while it is reduced by 99.9% 
for the uncorrelated case.

Spatial dependence in map errors can be accounted for with rel-
atively simple geostatistical techniques such as block kriging — the 
theory of which was developed in the 1970s (Journel and Huijbregts, 
1976). Proper estimates of aggregate uncertainty can also be ob-
tained using Monte Carlo integration of the point support uncer-
tainty (Wadoux and Heuvelink, 2023), and can therefore be imple-
mented for any model that reports point support uncertainty (for 
example, quantile regression forests (Meinshausen, 2006)). If a prob-
ability sample of map errors within the area of interest is available, 
uncertainty of the average or total can also be obtained with design-
based statistical inference (Brus et al., 2011). The solutions are there, 
both in terms of methods and open source software implementations, 
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and there is nothing that stops the scientific community from using 
them.
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