Population development and distribution in Czech Republic

Aleš Vorel, Lenka Hamšíková Jana Korbelová

... beaver population increases, continuously

Fig. 5. Minimum total Eurasian beaver *Castor fiber* population estimates 1998–2020. The sources are indicated. [Colour figure can be viewed at wileyonlinelibrary.com]

Halley, Saveljev & Rosell (2021)

...beaver population increases, continuously

Fig. 2. Beaver distribution in Europe in 2020. Black = refugia where Eurasian beaver was never extinct. [Colour figure can be viewed at wileyonlinelibrary.com]

Halley, Saveljev & Rosell (2021)

Figure 2. Changes in local beaver population densities in Värmland during an 11-year period, related to time since colonization (n = 58).

Hartman (1994)

Rehabilitation of beavers in CZE

...well documented population expansion

Barták, Vorel, et al. (2013)

Territory distribution vs. grid cells presence

Aim of the study

What is happening inside of existing occupation?

Tasks of the study

I. Current distribution and abundance in CZEII. Local population dynamics

Data

Compiling all accessible occupancy data

Current distribution and abundance in CZE

Working matrix – grid cell (KFME - Kartierung der Flora Mitteleuropas)

Methods

Compiling occupancy data

1. Gathering all data resources:

- **1.** long-term monitoring programs
- 2. small local projects
- 3. public/professional data in national dBase (NDOP)

2. Separation of grid cells acc. to data quality

3. Determination of pop. density as a function of age of occupation (validated model)

4. Data processing:

applying the equitation function on all grid cells summarization of grid cells numbers

Long-term monitoring programs

Long-term monitoring programs

Methods

Public (non-profesional) data

Compiling occupancy data

- **1.** Gathering all data resources:
 - 1. long-term monitoring programs
 - 2. small local projects
 - 3. public/professional data in national dBase (NDOP)

2. Separation of grid cells acc. to data quality

Separation of grid cells acc. to data quality

Three types grid cells with different occupation knowledge

- 1. fully surveyed cells
 - we know all territories within a whole cell

2. cells surveyed in part

- only several territories are known
- 3. recognized start of occupation
 - without any info how many cells exist here

Fully surveyed cells (occupation quantified in 2019)

Cells surveyed in part

(occupation quantified during a time on a part of grid)

Methods

Recognized only start of occupation (occupation quantified during a time on a part of grid)

Methods

Compiling occupancy data

1. Gathering all data resources:

- 1. long-term monitoring programs
- 2. small local projects
- 3. public/professional data in national dBase (NDOP)
- 2. Separation of grid cells acc. to data quality

3. Determination of pop. density as a function of age of occupation (validation of model)

Determination of pop. density as a function of age of occupation

Methods

We derived population density appropriate for length of occupation

function:

population density (popdens) corresponds to the length of settlement in the cell (age)

Methods

We derived population density appropriate for length of occupation

Parameters:

- > age (length of occupation: 2020 year of first settlement)
- > computed population density
- > length of water streams in cell

RESULT:

predicted population density in the grid cell

Compiling occupancy data

1. Gathering all data resources:

- 1. long-term monitoring programs
- 2. small local projects
- 3. public/professional data in national dBase (NDOP)
- 2. Separation of grid cells acc. to data quality
- 3. Determination of pop. density as a function of age of occupation (validation of model)

4. Data processing:

applying the equitation function on all grid cells summarization of grid cells numbers

Data processing

Three types grid cells with different occupation knowledge

- 1. fully surveyed cells
 - we know all territories within a whole cell
 - -> summed existing territories per cell
- 2. cells surveyed in part
 - only several territories are known
 - -> summed existing terr. and added computed by function
- 3. recognized start of occupation
 - without any info how many cells exist here
 - -> computed by function

Current distribution in CZE in 2020

Population size in CZE

Population size in CZE

Population dynamics

Used precise field data

Used precise field data and application of KDE models

Development of the oldest subpopulations

Development of the oldest subpopulations

Cesky les (PLA/NATURA 2000 site)

What does compensate the pop. decline?

critical diet source) in territories 0.8 R 0.7 0.6 0.5 \bigcirc Prop ()0.4 0.3 0.2 0.1 0.0 10 12 2 6 8 14 0 16 Λ Occ

Decline of family size

Šimůnková & Vorel, (2016)

Proportion of dec. trees (main

Rosell, Parker, Vorel, (in prep.)

Conclusion

- beaver populations continue in expansions
- we are able to evaluate (not count!) population size
- in the oldest populations is ongoing self-regulation via:

depletion of food decrease of mean litter size

Comming soon...

Thanks for your attention

Thanks to our partners

