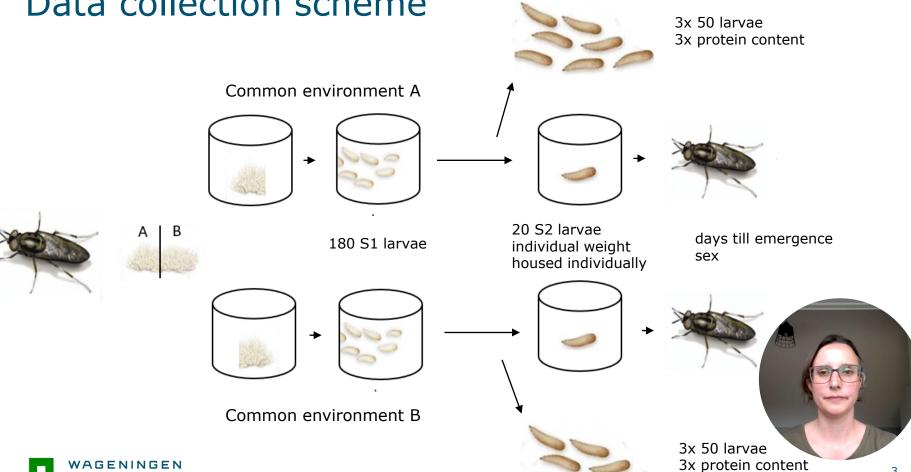
Genetic parameters for larval body weight, development time and protein content in Hermetia illucens

Aniek Bouwman, Aulia Nurul Saputri, Jeroen van Schelt, Jovano Erris Nugroho

Background

- Upscale BSF production for aqua or animal feed
- Body weight is simple and heritable trait
- Composition of the product important
 - Difficult to measure
- Selection for production traits may have trade-offs

Estimate genetic parameters for body weight, protein content, development time in Indonesian strain of BSF



Data collection scheme

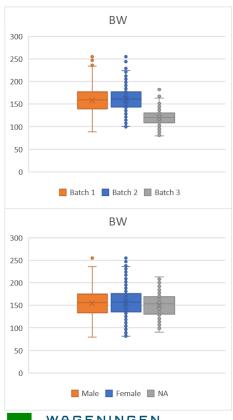
Protein data

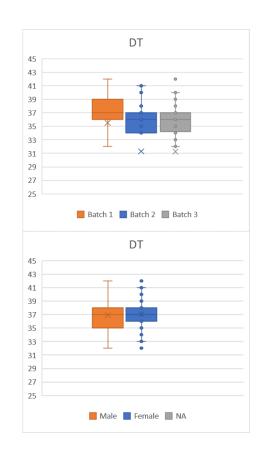
- Same 50 families
- From each FamEnv collected 3x50 larvae
- Protein measured on combined sample of 50 larvae
- Kjeldahl method

- 6 records per family; 3 per Family Environment
- Full sibs of BW+DT individuals

Data collected

- 50 families; 40 larvae per family
- Each family split in 2 environments; 20 larvae per environment
- Done in 2 batches (2 days apart) + reserve families


	n	Measure on	#fam	mean	min	max
BW (mg)	2000	Individual	50	154.7	79.0	255.0
DT (d)	1791	Individual	50	37	32	42
Protein content	296	50 larvae	50	43.07	32.96	52.61





Batch and sex effects

ANOVA

 $y \sim batch + sex + Fam + Envir$

BW	BW	DT	Protein	
Batch	< 2e-16	<2e-16	<2e-16	***
Sex	0.159	0.199	NA	
Fam	< 2e-16	1.95 ^e -07	<2 ^e -16	***
ENVIR	< 2e-16	3.38 ^e -10	2.94 ^e -13	***

Genetic analysis

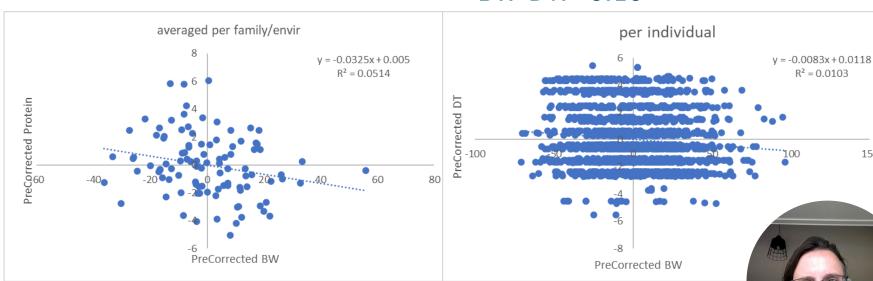
- Linear mixed model to estimate variance components
- Y = mu + sex + batch + **family** + **environment** + e

- Full sib family structure: genetic variance is 2x family variance
- h² = genetic variance/total variance
- $c^2 = common environmental variance/total variance$

Genetic parameters

	h ²	C ²	σ_{fam}^2	σ_c^2	σ_e^2
BW	0.20 (0.11)	0.25 (0.05)	68 (38)	163 (37)	432 (14)
DT	0.00 (0.00)	0.09 (0.02)	0.00 (0.00)	0.37 (0.09)	4.03 (0.14)
Protein	0.94 (0.18)	0.27 (0.07)	2.94 (0.87)	1.71 (0.45)	1.60 (0.16)

Relation BW with protein and DT

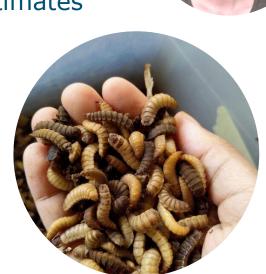

Phenotypic correlation:

■ BW-Protein: -0.23

 $R^2 = 0.0103$

150

BW-DT: -0.10



Conclusion

Good opportunities for selection on body weight

Individual protein measures would improve estimates and enhance breeding opportunities

Phenotyping for breeding is a challenge!

