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Abstract 

Crop rotations play a fundamental role in effective agricultural management. They enhance soil 

fertility, reduce pests and diseases and ultimately improve crop yield. This thesis is a deep dive 

into seven-year crop rotation patterns across Dutch agricultural fields, utilizing data from the 

national field parcel dataset. The thesis is split into two distinct approaches. The first objective 

is to recognize, characterize and spatially map crop rotation patterns at both a national and 

regional scale. The second objective utilizes this knowledge as a foundation for evaluating the 

performance of a newly developed transformer-encoder model, which has been trained to 

predict future crops using the national field parcel dataset. The model is intended to form the 

basis of a future AI-driven decision support system, enabling the simulation of the impact that 

policy change could have on agricultural practices, such as the influence of nitrogen regulations 

on the use of cover crops in farming systems.  

18 major distinct crop rotation patterns were revealed using hierarchical clustering. This 

clustering method was done using a Hamming distance matrix as input, which quantified 

similarity between all sequences, allowing the clustering process to reveal distinct patterns in 

crop rotation practices. Through spatial analysis, the identified major crop rotation clusters were 

examined in relation to key variables such as: soil texture, crop diversity and the use of cover 

crops. Providing insights into the underlying factors influencing crop rotation patterns as well 

as the effect of these patterns on the agricultural landscape.  

Upon validating the crop rotation patterns, a transformer-encoder model was developed. This 

deep learning approach has been trained to learn and recognize crop rotation patterns, enabling 

the prediction of likely crop choices for the following season based solely on previously 

cultivated crops. The model achieves a top-3 prediction accuracy exceeding 80%. Its 

performance was evaluated against three, non-machine learning predicting approaches, by 

using the Kullback-Leibler divergence. Measuring the divergence from the reference 

distribution and predicted distributions. The model outperformed two of these approaches and 

demonstrated the potential to surpass the third. The results show that the model can predict 

across varying sequence lengths and rare crop sequences, highlighting its robustness compared 

to the alternative predictive methods.  

Keywords: Crop rotation, Hamming distance, Hierarchical clustering, KL-divergence 

Transformer-encoder, AI-driven decision support system 
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1 Introduction  

Effective implementation of agricultural policies plays a critical role in the balancing act that 

farmers face between food production, environmental sustainability and economic viability 

(Lankoski & Thiem, 2020). However, implementing such policies is far from straightforward. 

An intriguing example of this is the implementation of cover crops in the Dutch farming system, 

which has been driven by the European Union’s push to improve water quality across Europe. 

Cover crops or “catch crops”, are plants grown between main crop cycles. Next to improving 

soil health and structure, preventing erosion, increasing the amount of organic matter and their 

role as green manure crops, they play a significant role in role in tackling environmental issues, 

particularly in reducing nitrogen leaching (Kaspar & Singer, 2011). Nitrogen leaching occurs 

when excess nitrogen is washed away by rainfall into the local water system. Which happens 

when there is no main crop on the field that can take up this nitrogen. This leads to water 

pollution, harming aquatic ecosystems and human water supplies (Liu et al., 2024). Cover crops 

retain this excess nitrogen in their roots and biomass, effectively “catching” the nitrogen before 

it is lost. The European Nitrates Directive (European Union, 1991) was adopted in the nineties 

to reduce water pollution caused by nitrogen leaching from agricultural practices. Setting a 

threshold at 50 mg/L of nitrate in surface waters. In the Netherlands first Nitrates Action 

Programme regulated manure management and promoted crop rotation, as well as encouraging 

the use of cover crops to reduce nitrogen leaching. These measures were revised in 2004 and 

led to the obligation to plant a cover crop after the cultivation of maize on sandy soils 

(Ministerie van Landbouw, Natuur en Voedselkwaliteit,  2005). After the review of the 

implementation of these directives in 2010, the European commission concluded that some 

regions were still facing high nitrate levels in ground- and surface water. Resulting in the 

adaption of a new Dutch nitrate plan in 2014 (Ministerie van Landbouw, Natuur en 

Voedselkwaliteit, 2014), with cover crops becoming one of the central features. Farmers could 

get more subsidy through their sustainability score if they planted cover crops, with a specific 

focus on regions that appeared to be prone to nitrogen leaching. In 2015 the European court 

ruled that the Netherlands did not comply with the nitrate directive. The court required the 

Dutch government to take immediate action to reduce the nitrate levels in the water systems, 

this resulted in the 6th Nitrate Action Programme (Ministerie van Landbouw, Natuur en 

Voedselkwaliteit, 2017). Mandating the use of covers by October 1st in nitrogen-leaching 

sensitive areas. Non-compliance with this planting deadline resulted in a reduction in the 

amount of manure allowed per hectare, providing a significant financial incentive for farmers 

to adopt cover cropping practices. In 2022, these regulations became even stricter, with further 

reduction in allowable manure application for failure to implement the required cover crops, as 

the Netherlands continued to exceed the to meet the 50 mg/L concentration limit (Ministerie 

van Landbouw, Natuur en Voedselkwaliteit, 2021).  

This example highlights the importance of properly implementing agriculture policies. 

Predicting the effects of policy changes could lead to more effective policymaking, helping to 

avoid the frequent alteration of regulations, as happened with the nitrogen case. However, 

predicting policy outcomes is challenging due to the dynamic nature of agricultural systems, 

where farmer decision-making processes are far from uniform. And are dependent on a wide 

range of variables. Without accurate modelling, forecasting, and thorough analysis of existing 

policies, policymakers risk implementing measures that fail to achieve their intended outcomes.  
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1.1 Data science 

As the availability of data on farming farm practices continues to grow, large-scale data analysis 

becomes increasingly feasible. In agriculture, and especially in the Netherlands, the government 

gathers field parcel data covering the history of every field in the country. These datasets offer 

opportunities to apply data analysis techniques to better understand current farming practices, 

such as crop rotation and cover crop use. By tracking the cultivation per field over time and 

across regions, the identification of trends and patterns becomes possible. Which in turn can be 

used to explore correlations with policy changes.  

In the context of crop rotation analysis, Stein and Steinmann (2018) propose a crop sequence 

typology that emphasizes both functional and structural diversity within crop rotations. Such a 

sequence typology can be applied to spatial data to identify regional trends in space as well as 

over time, as showed by Ballot et al. (2023). After simplifying the crop sequences by 

considering crop groups like cereals, corn or root crops instead of individual species, they 

managed to identify 8 different crop rotations over space and time. This was done using a 

hierarchical clustering method as a data science approach, they found 8 clear crop rotations and 

their distribution on a European scale.  

In a different field of science, sequences are compared using edit distances. These distances are 

computed by counting the minimum amount of changes need to go from one sequence to the 

other. Like for example the soft edit distance for genetic sequence analysis, which makes it 

easier to cluster using variable-length sequences (Ofitserov et al., 2019). Or the Hamming 

distance (Hamming, 1950), which counts the number of substitutions between two sequences. 

For example, this method is used in comparing DNA sequences (Al Kindhi et al., 2017).  

Referring back to the crop sequence typology of Stein and Steinmann, it would be a novelty to 

use language processing techniques to compare cropping sequences. It would also be an 

interesting to use such an edit distance matrix as input in the hierarchical clustering of crop 

rotation patterns, as this is a data science approach yet to be explored. 

1.2 Machine learning 

When analysing extensive datasets in data science, machine methods should nowadays be 

considered due to their ability to recognize and learn complex patterns on a large scale. These 

models, and in particular the deep learning models, have the potential to identify underlying 

relationships between variables, enabling predictive analytic and uncovering hidden 

dependencies (LeCun et al, 2015).  

On well-established machine learning approach is he Recurrent Neural Network (RNN), which 

is particularly effective for tasks involving temporal dependencies such as time forecasting. 

However traditional RNNs suffer from limitations, including vanishing gradients and difficulty 

in capturing long-range dependencies (Bengio et al, 1994). 

A more recent and highly efficient deep learning approach is the transformer model (Vaswani 

et al, 2017), which replaces recurrence with a self-attention mechanism. This allows the model 

to process entire sequences simultaneously rather than sequentially, making it more scalable 

and effective for capturing long-range dependencies. These transformers have achieved state-

of-the-at results in various fields, including natural language processing and time-series 

prediction (Wen et al, 2022). 
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In the agricultural domain, RNNs have been applied to classify crops using satellite imagery 

(Ndikumana et al, 2018), and transformers have been developed to enhance crop yield 

predictions (Bi et al, 2023). However, the use of deep learning techniques, particularly the use 

of transformers-based models, to predict crop rotations based on historical sequences remains 

largely unexplored. Applying such a model to predict farmers’ decision-making and simulate 

crop rotation patterns would thus address a technological gap. 

1.3 Aim and research questions. 

This thesis aims to explore the potential of predicting farmers’ decision-making using a dataset 

detailing previous crop cultivation per parcel. The first objective is to analyse existing crop 

rotation patterns and their response to cover crop policies through a data-driven approach. 

Additionally, it explores the application of emerging machine learning techniques to simulate 

aspects of the farmers’ decision-making. Creating a foundation for a model that policymakers 

could use to simulate the effect of policy changes.  

To reach these objectives, this thesis follows two complementary approaches. At first a data 

science-driven approach, analysing major crop rotation clusters using an edit distance matrix 

and secondly a machine learning approach, where a transformer model is trained to predict crop 

rotations auto-regressively. The model’s outputs will be compared with baseline distribution 

and validated against the established crop rotation clusters to assess its predictive capabilities.  

The research questions guiding this investigation are as follows: 

RQ 1: What is the influence of crop rotations on the presence of cover crops in the 

Netherlands? 

SRQ 1.1: To what extent do the detected clusters represent common crop rotations in 

the Netherlands?  

SRQ 1.2: How do these clusters relate to cover crop presence between 2017 and 

2023? 

SRQ 1.3: How do different regions in the Netherlands compare in terms of main crop 

rotations and cover crop use? 

RQ 2: To what extent can a transformer-encoder model be used to predict future crops, while 

solely being trained on previous crop rotations? 

Through these questions, this thesis aims to bridge the gap between data science and 

agriculture. This is done by exploring and combining known data analysis methods from other 

fields, as well as providing an innovative view of how machine learning can be leveraged to 

predict future crop rotations and ultimately assist policymaking. 
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2  Data and methods 

The research questions will be addressed through two primary approaches: a data science 

method and a machine learning method. The data science approach explores the dataset by 

applying hierarchical clustering to a subsample dataset of crop rotations in the Netherlands. The 

machine learning approach utilizes a transformer model to predict future crops based on the 

crops planted previously on a field. A general overview of both approaches is shown in the 

figure below (Figure 1). 
 

 

Figure 1: Flowchart of the methodology 

2.1 Data & study area 

For this thesis, an extensive field parcel dataset from the Dutch government, the 

“Basisregistratie Gewaspercelen (BRP)” has been used. This dataset is constructed from 

farmers' declarations, which are collected annually through self-reports. The BRP was 

requested and made available for research purposes. It comprehends data on field location, 

labelled field boundaries, soil types and planted crops per year. Initially, the dataset was 

structured as separate yearly records. To compile a single crop rotation dataset, field polygons 

were matched across years using 2023 as the reference. For each field polygon in the 2023 

dataset, the corresponding fields from previous years were identified, and the crop label was 

assigned based on the largest intersecting polygon. This compiled dataset includes all 

agricultural fields in the Netherlands from 2017 to 2023. As this research focuses on rotation 

practices between different crops, all fields which are marked as permanent or natural grass 

were excluded. To prevent problems introduced by missing farmer declarations, all parcels in 

which the main crop column was left empty for one or more years, were excluded from the 

dataset. This kept consistency in crop rotation lengths over the dataset. As the dataset was also 

pre-processed for use with satellite images, all fields with an area smaller than 0.5 hectares were 

removed, resulting in approximately 105,000 fields remaining in the dataset.  

2.2 Preprocessing sequence 

The initial step in preparing the dataset involved grouping certain crops based on their 

functional similarity; for example, different types of sugar beet within the BRP were 

consolidated into a single category. The crop groups used in this research are shown in Figure 

2, which also shows their frequency in the BRP dataset. A more specific set of crops, 26 in 

total, has been chosen compared to the ten crop groups considered by  Ballot et al. (2023), as 

one of the aims is to analyse and predict the exact crop rather than a broad crop group. The 

resulting sequences all have a length of seven crops, with each position representing a specific 

year between 2017 and 2023.  
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Figure 2: The frequency of occurrence per crop category used in this research 

2.3 Data science approach 

2.3.1 Preprocessing 

Due to computational reasons, a subsample of the full dataset was utilized for the data science 

approach. To ensure the representativeness of the subsample, two conditions were defined: 

First, each province needed to be represented by a sufficient number of fields to enable regional 

comparisons. To achieve this, the threshold was set to ensure an equal distribution of fields 

across provinces, with each province contributing to 1/12 of the dataset. Secondly, the 

distribution of the main clusters had to remain stable. Subsamples of 1200, 3000, 6000 and 

12000 fields were tested, revealing that the cluster distribution stabilized between 6000 and 

12000 fields. Consequently, a subsample of 12000 fields was selected for the data science 

approach. 

2.3.2 Hamming distance matrix 

To properly cluster crop rotation sequences, a metric to calculate the similarity between 

individual sequences is needed. Since crop types are categorical, and thus should not be 

interpreted numerically, the Hamming distance (Hamming, 1950)  was chosen. This distance 

quantifies the edit distance between two sequences. A matrix is obtained by applying it to each 

sequence, measuring the number of positions in the sequence which differ compared to all other 

sequences. Mathematically the hamming distance is calculated as follows: 
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𝑑𝐻(𝑋, 𝑌) =  ∑ 1(𝑥𝑖 ≠ 𝑦𝑖)

𝑛

𝑖=1

 

With 𝑋 = (𝑥1, 𝑥2, … , 𝑥𝑛) and 𝑌 = (𝑦1, 𝑦2, … , 𝑦𝑛) representing the sequences that are compared 

and 𝑛 being the sequence length. According to this formula, the hamming distance is the sum 

of every time  𝑥𝑖 ≠ 𝑦𝑖. A lower Hamming distance indicates a greater similarity between the 

compared sequences. For example: 

𝑑𝐻(𝑀𝑎𝑖𝑧𝑒 > 𝑅𝑦𝑒 > 𝑊ℎ𝑒𝑎𝑡, 𝑀𝑎𝑖𝑧𝑒 > 𝐺𝑟𝑎𝑠𝑠 > 𝑆𝑢𝑔𝑎𝑟 𝑏𝑒𝑒𝑡) = 2 

Indicates a higher dissimilarity then: 

𝑑𝐻(𝑀𝑎𝑖𝑧𝑒 > 𝑅𝑦𝑒 > 𝑊ℎ𝑒𝑎𝑡, 𝑀𝑎𝑖𝑧𝑒 > 𝑅𝑦𝑒 > 𝑊ℎ𝑒𝑎𝑡) = 0 

However, this traditional Hamming distance approach doesn’t account for the fact that crop 

rotations do not necessarily have to start in the same year. For example: 

𝑑𝐻(𝑊ℎ𝑒𝑎𝑡 > 𝐺𝑟𝑎𝑠𝑠 > 𝑀𝑎𝑖𝑧𝑒 > 𝑅𝑦𝑒, 𝐺𝑟𝑎𝑠𝑠 > 𝑀𝑎𝑖𝑧𝑒 > 𝑅𝑦𝑒 > 𝑊ℎ𝑒𝑎𝑡) =  4 

These sequences basically follow the same crop rotation, however when applying the hamming 

distance formula to these sequences it returns the value 4, which incorrectly suggests complete 

dissimilarity. To prevent this from happening we introduce the cyclic hamming distance: 

 
𝑑𝐻

𝑐𝑦𝑐(𝑋, 𝑌) =  min
𝑠∈{0,...,𝑛−1}

𝑑𝐻(𝑋, 𝑠ℎ𝑖𝑓𝑡(𝑌, 𝑠)) 

Where shift(Y,s) cyclically shifts the sequence Y by all s positions, without altering the order, 

before calculating the Hamming distance. The resulting minimal hamming distance is saved in 

the matrix. In the previous case this would result in: 

𝑑𝐻
𝑐𝑦𝑐(𝑊ℎ𝑒𝑎𝑡 > 𝐺𝑟𝑎𝑠𝑠 > 𝑀𝑎𝑖𝑧𝑒 > 𝑅𝑦𝑒, 𝐺𝑟𝑎𝑠𝑠 > 𝑀𝑎𝑖𝑧𝑒 > 𝑅𝑦𝑒 > 𝑊ℎ𝑒𝑎𝑡) = 

𝑑𝐻(𝑊ℎ𝑒𝑎𝑡 > 𝐺𝑟𝑎𝑠𝑠 > 𝑀𝑎𝑖𝑧𝑒 > 𝑅𝑦𝑒, 𝑠ℎ𝑖𝑓𝑡(𝐺𝑟𝑎𝑠𝑠 > 𝑀𝑎𝑖𝑧𝑒 > 𝑅𝑦𝑒 > 𝑊ℎ𝑒𝑎𝑡, 0) =  4 

𝑑𝐻(𝑊ℎ𝑒𝑎𝑡 > 𝐺𝑟𝑎𝑠𝑠 > 𝑀𝑎𝑖𝑧𝑒 > 𝑅𝑦𝑒, 𝑠ℎ𝑖𝑓𝑡(𝑊ℎ𝑒𝑎𝑡 > 𝐺𝑟𝑎𝑠𝑠 > 𝑀𝑎𝑖𝑧𝑒 > 𝑅𝑦𝑒, 1) =  0 

𝑑𝐻(𝑊ℎ𝑒𝑎𝑡 > 𝐺𝑟𝑎𝑠𝑠 > 𝑀𝑎𝑖𝑧𝑒 > 𝑅𝑦𝑒, 𝑠ℎ𝑖𝑓𝑡(𝑅𝑦𝑒 > 𝑊ℎ𝑒𝑎𝑡 > 𝐺𝑟𝑎𝑠𝑠 > 𝑀𝑎𝑖𝑧𝑒, 2) =  4 

𝑑𝐻(𝑊ℎ𝑒𝑎𝑡 > 𝐺𝑟𝑎𝑠𝑠 > 𝑀𝑎𝑖𝑧𝑒 > 𝑅𝑦𝑒, 𝑠ℎ𝑖𝑓𝑡(𝑀𝑎𝑖𝑧𝑒 > 𝑅𝑦𝑒 > 𝑊ℎ𝑒𝑎𝑡 > 𝐺𝑟𝑎𝑠𝑠, 3) =  4 

Where 0 is the lowest Hamming distance found,  correctly suggesting that both sequences are 

the same crop rotation and should thus be classified as similar.  

2.3.3 Hierarchical clustering 

We now have a matrix which quantifies the diversity in crop rotations, to analyse and group 

these patterns agglomerative hierarchical clustering (Jain & Dubes, 1988) will be introduced 

below. This recursive merging process works as follows: 

1. First, each data point in the Hamming distance matrix is initialized as its cluster. 

 

2. Then a pairwise distance matrix D is computed, where the distance. 𝐷𝑖𝑗 Represent the 

dissimilarity between clusters. 𝐶𝑖 and 𝐶𝑗.  

Mathematically this distance between two clusters 𝐶𝑖 and 𝐶𝑗 Is computed as: 
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𝐷(𝐶𝑖, 𝐶𝑗) =  
1

|𝐶𝑖||𝐶𝑗|
∑ ∑ 𝑑𝐻

𝑐𝑦𝑐(𝑋, 𝑌)

𝑦∈𝐶𝑗𝑥∈𝐶𝑖

 

Where |𝐶𝑖||𝐶𝑗| represents the size of clusters 𝐶𝑖 and 𝐶𝑗, by dividing by |𝐶𝑖||𝐶𝑗| The 

formula ensures that the distance measure remains independent of cluster size, making 

it possible to compare across different pairs of clusters.  

3. Then the closest clusters are merged, in our case it will merge every sequence that is the 

same and thus have a hamming distance of 0 between all sequences. This merging 

process is encoded as follows in a linkage matrix: 

𝑍 =  [𝑖   𝑗   𝑑𝑖𝑗   𝑛𝑖𝑗] 

Were 𝑖 and 𝑗 are the merged clusters, 𝑑𝑖𝑗 Is the distance between them and 𝑛𝑖𝑗 Is the 

number of original points in the new cluster.  

 

4. This process is repeated using the newly merged clusters as input, and continues until 

the set threshold of 3 is met: 

𝐷(𝐶𝑖, 𝐶𝑗) > 3 

  

This prevents clusters from being formed with a linkage distance greater than 3, a number 

chosen to balance similarity within clusters while avoiding excessive fragmentation of clusters 

and thus crop rotations.  

To visualize the concept of hierarchical clustering and the influence of the chosen threshold, a 

dendrogram was constructed. Figure 3 shows an example of 30 random crop sequences, 

clustered using a Hamming distance matrix. The dendrogram shows that setting the threshold 

at 0, returns 18 clusters out of 30 sequences, as some sequences are identical to each other. 

While the threshold at 3 will result in 8 clusters.  

 

Figure 3: An example of clustering using a dendrogram, showing the importance of 

setting the right threshold 
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2.3.4 Cluster analysis 

Each sequence was assigned to a specific cluster, enabling a wide range of analyses on 

relationships between common crop rotations, soil types, regions, crop diversity, and cover crop 

usage. Each cluster was visually inspected, described, and given a distinct name. To spatially 

compare these variables, NUTS 3 regions, were employed. These regions are part of the 

Nomenclature of Territorial Units for Statistics (NUTS), a system used by the EU for regional 

classification, where the NUTS 3 represent small regions within a country. Next the comparing 

these regions a visual comparison of the results and the 12 provinces of the Netherlands was 

executed. Crop diversity has been measured by categorizing fields into three levels: simple, 

moderate and diverse. Fields have been classified as simple if, between 2017 and 2023, less 

than three unique main crops have been cultivated. Moderate fields had exactly three unique 

crops, and diverse fields saw more than three unique crops over these seven years. This diversity 

metric serves as an indicator of the prevalence and extent of crop rotation practices across 

different provinces. 

2.4 Machine learning approach 

2.4.1 Preprocessing 

Since most farmers cultivate multiple fields, there is a risk of data leakage between the training 

and validation datasets. This could occur if farmers apply similar crop rotation practices across 

different fields, leading to a potential overlap of practices between both datasets. To minimize 

spatial autocorrelation, a gridded data split has been executed. Firstly, the Netherlands was 

divided into 5x5 km grid cells. Under the assumption that most farmers cultivate fields that are 

in close proximity to each other, this assigns most of the fields that are owned by a single farmer 

to the same grid cell. These grid cells were then used to split the dataset into training, validation 

and test sets following a 70/15/15 ratio.  

2.4.2 Transformer model 

A Transformer Encoder (Vaswani et al., 2017) is implemented and adjusted, a schematic 

overview of this model is illustrated in Figure 4. Paragraph 2.4.3 will further expand on the key 

components of the model’s architecture. 
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2.4.3 Model architecture 

2.4.3.1 Embedding layer 

The embedding layer is the initial layer 

of the transformer model architecture. 

This layer converts discrete input 

tokens, crop-type classes in this case, 

into continuous vector representations. 

Each crop type is assigned a unique 

vector representation, which is updated 

at each forward pass, as the model 

captures the semantic relationships 

between different crop types.  

2.4.3.2 Learnable Classification 

(CLS)  tokens 

The second layer introduced in the 

transformer model regulates the 

addition of learnable CLS tokens, 

which are added at the end of each 

sequence. In the crop rotation model, 

two distinct CLS tokens are utilized: 

one for predicting the main crop and 

another for predicting the presence of 

cover crops. Although predicting cover 

crop presence is beyond the scope of 

this thesis, its implementation 

facilitates future research on cover 

crop modelling. 

CLS tokens are appended at the end of 

each input sequence and initialized as 

learnable parameters. During training, 

the model updates these tokens to 

aggregate contextual information from 

the entire sequence through its self-

attention mechanisms (2.4.3.4) 

After passing the CLS token through 

all layers of the transformer, the final 

hidden state is used as output to predict 

the following crop. By passing the CLS 

token through a fully connected layer, 

it is transformed into a vector of 

prediction probabilities for each crop 

class.  

  

Figure 4: The transformer-encoder model 

architecture. 
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2.4.3.3 Positional encoding 

Since a traditional transformer model does not inherently consider the order of sequences during 

training, positional encoding has been introduced to capture the temporal dependencies of crop 

rotation sequences. This has been achieved by using sinusoidal positional encoding, which 

operates as follows: 

𝑃𝐸(𝑝𝑜𝑠,2𝑖) = sin (
𝑝𝑜𝑠

1000
2𝑖

𝑑𝑚𝑜𝑑𝑒𝑙

) 

𝑃𝐸(𝑝𝑜𝑠,2𝑖+1) = cos (
𝑝𝑜𝑠

1000
2𝑖

𝑑𝑚𝑜𝑑𝑒𝑙

) 

With 𝑃𝐸(𝑝𝑜𝑠,2𝑖) representing the positional encoding for even indexes, each index being 

represented by 𝑝𝑜𝑠,  and 𝑃𝐸(𝑝𝑜𝑠,2𝑖+1) representing the positional encoding for uneven indexes. 

𝑑𝑚𝑜𝑑𝑒𝑙 is the total embedding dimension and 1000
2𝑖

𝑑𝑚𝑜𝑑𝑒𝑙 Is the scaling factor.  

2.4.3.4 Attention mechanism 

One of the key components of the transformer architecture is the multi-head-self-attention 

mechanism. It enables the model to learn temporal patterns and contextual information between 

consecutive crops within the crop rotation sequences. Self-attention computes per element 

within the sequence the importance relative to all other elements. With 𝑋 = (𝑥1, 𝑥2, … , 𝑥𝑛) 

representing the input sequence, as introduced by Vaswani, the attention scores are computed 

as follows: 

First, each element is projected into three vectors: Query (Q), Key (K) and Value (V), using 

learned weight matrices: 

𝑄 = 𝑋𝑊𝑄 , 𝐾 = 𝑋𝑊𝐾 , 𝑉 = 𝑋𝑊𝑉    

Where 𝑊𝑄 , 𝑊𝐾 and 𝑊𝑉 represent the weight matrices for the query, key and value. The matrix 

of outputs is then computed using: 

𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛(𝑄, 𝐾, 𝑉) = 𝑆𝑜𝑓𝑡𝑚𝑎𝑥 (
𝑄𝐾𝑇

√𝑑𝐾

) 𝑉 

Where 𝑑𝐾 is the dimensionality of K, introduced as a scaling factor to maintain stable gradients. 

To enhance the model’s ability to learn different aspects of the given crop rotation sequence, 

the multi-head-self-attention mechanism is introduced. This extends the single attention layer 

by employing multiple attention heads in parallel.  

𝑀𝑢𝑙𝑡𝑖𝐻𝑒𝑎𝑑(𝑄, 𝐾, 𝑉) = 𝐶𝑜𝑛𝑐𝑎𝑡(ℎ𝑒𝑎𝑑1, ℎ𝑒𝑎𝑑2, … , ℎ𝑒𝑎𝑑ℎ)𝑊𝑂 

Where each head 𝑖 is computed through:  

ℎ𝑒𝑎𝑑𝑖 = 𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛(𝑄𝑊𝑖
𝑄, 𝑄𝑊𝑖

𝐾, 𝑄𝑊𝑖
𝑉) 

These functions ℎ represent the number of attention heads, and 𝑊𝑖
𝑄 , 𝑊𝑖

𝐾 , 𝑊𝑖
𝑉  𝑎𝑛𝑑 𝑊𝑂 

represent the weights matrices for each head. 
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2.4.4 Model training 

2.4.4.1 Augmentation 

The following preprocessing step introduces variable sequence lengths as a form of random 

data augmentation. Figure 5 explains how augmentation is applied to each sequence. First, three 

random lengths between 3 and 7 are chosen per individual sequence. Then, the original 

sequence is truncated for those 3 lengths, starting at a random index. Next to tripling the size of 

the dataset, the process of incorporating variable sequence lengths improves the ability of the 

model to learn more about the complexity and diversity of crop rotation patterns. Augmenting 

the data simulates the dynamic nature of farming practices, where fields may be managed by 

different farmers introducing different rotation practices over time.  

2.4.4.2 Class weighting & loss function 

As the dataset is imbalanced, due to common crops like maize and sugar beets occurring far 

more frequently than some less common crops, balanced weighting is applied to prevent the 

model from overpredicting on major crop classes. The weighting will skew the bias more 

towards minority classes. These weights are computed as follows:  

𝑤𝑖 =  
𝑛

𝑛𝑖  ∙  𝐶
 

With 𝑤𝑖 representing the weight of class 𝑖. 𝑛 representing the total number of crops planted 

over the dataset, and 𝑛𝑖 being the total number of crops of class 𝑖 planted. 𝐶 represents the 

number of crop classes in the dataset.  

These weights are applied within the loss function, which in the case of this multi-class 

classification problem is the Cross-Entropy-Loss function, which combines the SoftMax 

activation and negative log-likelihood loss: 

𝐿 =  − ∑ 𝑤𝑖𝑦𝑖 𝑙𝑜𝑔(𝑦̂𝑖) 

𝐶

𝑖=1

 

Where 𝐿 is the total loss of a single sample, 𝐶 is the number of classes, 𝑤𝑖 is the weight of the 

class 𝑖. 𝑦𝑖 is the true label for class I and is one-hot encoded, so 𝑦𝑖 = 1 for the correct class and 

0 otherwise. 𝑦̂𝑖 is the predicted probability of class 𝑖 according to the output of the SoftMax 

function.  

Figure 5: Augmenting the dataset by introducing variable sequence 

length 
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2.5 Model analysis 

2.5.1 Model evaluation 

The model is trained on a trial-and-error approach, where hyperparameters affecting model 

complexity, training duration and learning dynamics were systematically adjusted. The training 

objective was to minimize validation losses while achieving relatively high evaluation 

performances. In addition to these training metrics, the model was tested & evaluated using 

three approaches: a quantitative comparison of output distribution across three sequence groups 

and variable length, a qualitative assessment of the output for individual model predictions, and 

an assessment of the model’s ability to reconstruct clusters from scratch.  

2.5.1.1 Computing equal distribution (ED), crop distribution (CD) & reference distribution 

(RD) 

To derive meaningful insight from the output distribution(s), four methods were used to 

construct comparative baseline distributions. The equal distribution (ED) represents the most 

basic distribution and assumes no prior knowledge of agricultural practices by using a uniform 

distribution. The crop distribution (CD) is based on the frequency of each crop class within the 

dataset. This baseline incorporates knowledge of common crop occurrences in the Netherlands, 

however it does not account for crop rotation patterns. The references (RD) correspond to the 

distribution of the true labels, reflecting the actual distribution which the model is aimed to 

predict. As an example, the RD, ED & CD of the next crop in the sequence sugar beets – winter 

wheat – potatoes – winter wheat is illustrated in Figure 6 

 

Figure 6: An example of RD, ED & CD. 

2.5.1.2 Computing the lookup distribution (LD) 

The lookup-based distribution (LD), is a data-based approach to approximate crop prediction. 

It operates as an extensive lookup table, scanning  the entire 2017-2023 field database, 

abbreviated with 𝛼, to look for sequences similar to the input. The computation of LD begins 

with a sequence of at least two years. Initially, the first crop in the input sequences 𝑆𝑖 is 

removed, effectively shifting the sequences one year back in time. This is needed as the concept 

of LD is based upon the idea that less information is available, as it looks back in time: 
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𝑆𝑖
′ = (𝑆𝑖[2]𝑆𝑖[3], … , 𝑆𝑖[n]) 

Thus, 𝑆𝑖
′ represent the sequences obtained after removing the first crop 𝑆𝑖[1]. In practice, this 

will look like this: 

𝑆𝑖 =  𝑊ℎ𝑒𝑎𝑡, 𝐺𝑟𝑎𝑠𝑠, 𝑀𝑎𝑖𝑧𝑒, 𝑅𝑦𝑒  

𝑆𝑖
′ = 𝐺𝑟𝑎𝑠𝑠, 𝑀𝑎𝑖𝑧𝑒, 𝑅𝑦𝑒 

The next step involves searching within the full sequence dataset, 𝛼, for sequences that exactly 

match the first 𝑛 crops 𝑆𝑖
′. This set of matching sequences 𝛿𝑆𝑖

′  , is computed as follows: 

𝛿𝑆𝑖
′ =  {𝑆𝑗|𝑆𝑗 ∈ 𝛼, 𝑆𝑗[1: 𝑛] = 𝑆𝑖

′[1: 𝑛]} 

Here, 𝑛 represents the length of 𝑆𝑖
′, meaning that 𝑆𝑗[1: 𝑛] refers to the first 𝑛 crops of any 

sequence in dataset 𝛼. For example, searching 𝑆𝑖
′ in dataset 𝛼 could return: 

𝛿𝑆𝑖
′ = (𝐺𝑟𝑎𝑠𝑠, 𝑀𝑎𝑖𝑧𝑒, 𝑅𝑦𝑒, 𝑀𝑎𝑖𝑧𝑒), (𝐺𝑟𝑎𝑠𝑠, 𝑀𝑎𝑖𝑧𝑒, 𝑅𝑦𝑒, 𝑀𝑎𝑖𝑧𝑒), 

(𝐺𝑟𝑎𝑠𝑠, 𝑀𝑎𝑖𝑧𝑒, 𝑅𝑦𝑒, 𝐵𝑎𝑟𝑙𝑒𝑦), (𝐺𝑟𝑎𝑠𝑠, 𝑀𝑎𝑖𝑧𝑒, 𝑅𝑦𝑒, 𝑅𝑦𝑒), (𝐺𝑟𝑎𝑠𝑠, 𝑀𝑎𝑖𝑧𝑒, 𝑅𝑦𝑒, 𝑅𝑦𝑒), 

(𝐺𝑟𝑎𝑠𝑠, 𝑀𝑎𝑖𝑧𝑒, 𝑅𝑦𝑒, 𝐺𝑟𝑎𝑠𝑠), (𝐺𝑟𝑎𝑠𝑠, 𝑀𝑎𝑖𝑧𝑒, 𝑅𝑦𝑒, 𝐺𝑟𝑎𝑠𝑠), (𝐺𝑟𝑎𝑠𝑠, 𝑀𝑎𝑖𝑧𝑒, 𝑅𝑦𝑒, 𝐺𝑟𝑎𝑠𝑠) 

The selected set of sequences, 𝛿𝑆𝑖
′ , is then used to investigate the statistical likelihood of farmers 

continuing a crop rotation that exactly matches 𝑆𝑖
′.  

In this study, 26 crop classes are considered, each assigned a numerical identifier ranging from 

0 to 25, denoted by 𝑘. The term 𝑐𝑟𝑜𝑝𝑛+1
𝑘  represents the occurrence 𝑘-the crop, where 𝑘 ∈

{0,1, … ,25}, in the (𝑛 + 1)-th position across all sequences 𝛿𝑆𝑖
′  . The LD distribution can then 

be computed as follows: 

𝐿𝐷(𝑐𝑟𝑜𝑝𝑛+1 = 𝑘 |  𝛿𝑆𝑖
′) =  

𝑐𝑜𝑢𝑛𝑡𝑘

| 𝛿𝑆𝑖
′|

    𝑓𝑜𝑟 𝑒𝑎𝑐ℎ 𝑘 ∈ {0,1, … ,25} 

Where 𝑐𝑜𝑢𝑛𝑡𝑘 represents the number of sequences in  𝛿𝑆𝑖
′  where the (𝑛 + 1)-th crop is 𝑘.  

In our example LD would be the distribution along the 4th position in the selected sequences in 

𝛿𝑆𝑖
′:  

𝐿𝐷(𝑐𝑟𝑜𝑝𝑛+1 = 𝑘 |  𝛿𝑆𝑖
′) = (0.375, 0.250, 0.250, 0.125, 0.000 … 0.000) 

Thus, in the example, LD predicts a 37.5% chance that the next crop in 𝑆𝑖 will be grass, 

followed by maize and rye at 25% each, and barley at 12.5% The remaining 22 crops will not 

be planted (0%) according to LD. 
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2.5.2 Comparing the influence of length and frequency on the predicted 

distribution 

First, the model’s output will be compared over different sequence length and frequency groups, 

to spot trends over the entire dataset. For this broader evaluation of the model, the Kullback-

Leibler (KL) divergence is used as a comparison metric. This measure is introduced by 

Kullback and Leibler (1951) and quantifies the difference between the predicted probability 

distribution of the next crop in the rotation and the actual probability distribution. The KL-

divergence indicates how the predicted distribution Q deviates from the true distribution P and 

is computed as follows: 

𝐷𝐾𝐿(𝑃||𝑄) =  ∑ 𝑃(𝑖) log
𝑃(𝑖)

𝑄(𝑖)
𝑖

 

Where 𝑃(𝑖) is the true distribution, 𝑄(𝑖) is the approximated distribution. The more the 

𝐷𝐾𝐿(𝑃||𝑄) value deviates from 0 the bigger the model's predicted distribution deviates from 

the ground truth. In Figure 7, two KL divergences are visualized. The left distribution exhibits 

similar probability values for both P and Q, resulting in a relatively low KL divergence 

(0.0002). In contrast, the right distribution shows greater dissimilarity between P and Q, leading 

to a higher KL divergence of 0.5558. 

To contextualize the divergence values between the model’s output distribution (TD) and the 

actual distribution (RD), the divergences between the RD and the three baseline distributions, 

as introduced in section 2.5.1, are also computed. To generate an insight into the effect of how 

often a crop rotation is applied, three frequency groups are introduced based on the test set: 

common (over 250 occurrences), uncommon (between 50 and 249 occurrences), and rare 

(between 10 and 49 occurrences). The input will be of variable sequence lengths, creating the 

possibility of investigating the effect of different lengths.  

 

Figure 7: An example comparison of two probability distributions and the computed 

KL-divergence, showing that a similar distribution results in a lower  KL-divergence. 
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2.5.3 Investigating the prediction performance of individual sequences 

For the qualitative analysis, two sequences were selected for comparison. These sequences were 

chosen based on the results of the broader comparison introduced in the previous paragraph and 

should give insight into how TD as well as ED/CD/LD handle the comparison of a single 

sequence. The output distribution of the model (TD) for these sequences was compared against 

1) the actual distribution (RD) and 2) the weighted crop class distribution (CD). Additionally, 

the KL-divergence, as explained in 2.5.2, was computed between RD & TD as well as between 

RD & CD, to quantify the differences between these distributions.  

2.5.4 Reconstructing sequences 

The final model evaluation measure used is sequence reconstruction. In this approach, the 

model is provided with a single initial crop from a random sequence in the dataset. The model 

then predicts the top three most probable second crops, which are subsequently used to generate 

three possible third crops. This process is repeated iteratively until a sequence length of 7 is 

reached, resulting in a total of  36 = 729 possible reconstructed sequences per input crop. The 

evaluation assesses whether the original sequences are eventually present within those 729 

sequences. This procedure has been conducted for a total of 1000 randomly selected sequences.  

For example, we examine whether the common sequence of seven years of continuous maize 

cultivation can be reconstructed. The model first receives maize as the initial input and then 

predicts the next crop, returning the top three probabilities: 
. 

𝑇𝑜𝑝3 (𝑚𝑎𝑖𝑧𝑒) > 𝑚𝑎𝑖𝑧𝑒, 𝑠𝑢𝑔𝑎𝑟 𝑏𝑒𝑒𝑡, 𝑔𝑟𝑎𝑠𝑠  

Then, these predictions are iteratively used as input, leading to: 

𝑇𝑜𝑝3 (𝑚𝑎𝑖𝑧𝑒 − 𝑚𝑎𝑖𝑧𝑒) > 𝑚𝑎𝑖𝑧𝑒, 𝑔𝑟𝑎𝑠𝑠, 𝑝𝑜𝑡𝑎𝑡𝑜𝑒𝑠 

𝑇𝑜𝑝3 (𝑚𝑎𝑖𝑧𝑒 − 𝑠𝑢𝑔𝑎𝑟 𝑏𝑒𝑒𝑡) > 𝑤𝑖𝑛𝑡𝑒𝑟 𝑤ℎ𝑒𝑎𝑡, 𝑝𝑜𝑡𝑎𝑡𝑜𝑒𝑠, 𝑚𝑎𝑖𝑧𝑒 

𝑇𝑜𝑝3 (𝑚𝑎𝑖𝑧𝑒 − 𝑔𝑟𝑎𝑠𝑠) > 𝑔𝑟𝑎𝑠𝑠, 𝑚𝑎𝑖𝑧𝑒, 𝑝𝑜𝑡𝑎𝑡𝑜𝑒𝑠 

This process continues until a sequence of length 7 is constructed. Subsequently, all generated 

sequences are evaluated to determine whether the original sequence, in this case, a maize 

monoculture, has been accurately reconstructed. 
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3 Results 

3.1 Clustering 

This section presents the results of the hierarchical clustering of the sample dataset. Next to 

dividing this dataset into clusters, it aims to examine the relationship between crop rotation, 

cover crop choices and regional influences in the Netherlands. First, the identified major crop 

rotation clusters will be compared to common farming practices. Then, the clusters will be 

compared in terms of cover crop usage between 2017 and 2023. Finally, spatial relationships 

will be outlined and linked to clusters, soil texture and cover crop usage. 

3.1.1 Detecting & describing main crop rotation clusters 

Over 400 clusters were identified in the subsample dataset using hierarchical clustering. To 

focus on the most common crop rotations, a minimum cluster size threshold of 50 fields was 

applied, corresponding to approximately 830 fields across the full dataset. The resulting 

distribution of these clusters is shown in Figure 8. Clusters that do not meet the set threshold 

are categorized as “other” and are not considered a major crop rotation in this thesis. A detailed 

list of all 18 major clusters found, including their assigned cluster numbers, names and 

descriptions, can be found in Table 1.  

A notable finding is the variation in cluster sizes among the major crop rotations. The largest 

identified cluster, cluster 44, is described as a maize monoculture cluster. This cluster mainly 

includes sequences where maize has been cultivated almost continuously for the past seven 

years, which is a common practice in dairy-dominated areas in the Netherlands (Velthof et al., 

2020). This regional influence will be further explored in paragraph 3.1.3. Next to maize, grass 

is a common fodder crop for dairy farmers (Schils et al., 2002), clusters 56, 185 & 186 reflect 

this practice as these rotations alternate dominant grass with common crops like maize and 

potatoes.  

Another common crop rotation strategy involves alternating potato cultivation every three to 

four years to mitigate the risk of plant diseases (Johnson & Dung, 2010). This rotation is 

exemplified in clusters 265 & 266, where potatoes, sugar beets and winter wheat follow a 

mostly structured rotation. Clusters 324 & 336 employ a similar rotation strategy, replacing 

winter wheat with maize.  

         

                     

         

                  

                          

                         

                         

                          

                  

                  

                     

                     

                 

                        

                                           

                          

                                             

           

                                           

                 

                     

 
  
 
  
 
  
  
 
 
  
  
 
  
  

                                                       

Figure 8: Major crop rotation cluster distribution 
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Table 1: Major cluster numbers, names and descriptions 

Cluster Name Description 

8 Rye-based rotation Cluster with dominantly rye sown. Sometimes alternated with other 

cereals, like winter wheat, triticale or summer barley. 

44 Maize monoculture A cluster consisting of a full maize monoculture, occasionally a 

deviation of 1 crop over 7 years. 

56 Maize-grass rotation A cluster of fields with a maize-grass rotation, where maize and grass 

both have been cultivated at least twice over 7 years. 

185 Mixed grass-potatoes-maize 

rotation 

A cluster where predominantly grass and potato are cultivated, but 

rotated inconsistently and often alternated with different crops. 

186 Stable grass-potatoes rotation Cluster with a consistent rotation between grass and once in the 3-4 

years potatoes. At times grass is swapped out for maize. 

197  Grass-winter wheat rotation Cluster where grass and winter wheat rotate over the 7 years. 

238  Maize-winter wheat rotation Cluster where maize and winter wheat alternate each other 

inconsistently. Occasionally another crop pops up once. 

265  Unstructured sugar beet-winter 

wheat–potatoes rotation 

Cluster with a diverse rotation pattern of sugar beet, winter wheat and 

potatoes. Where all three crops are present in similar proportions. 

266 Structured sugar beet-winter 

wheat-potatoes rotation 

Cluster with a structured rotation pattern of sugar beet, winter wheat 

followed by potatoes. 

267 Potatoes-winter wheat rotation Cluster where winter wheat and potatoes predominantly rotate. 

269 Structured sugar beet-potatoes-

winter wheat rotation 

Cluster with a structured rotation pattern of sugar beet, potatoes 

followed by winter wheat. 

275 Winter wheat monoculture Cluster with a dominant cultivation of winter wheat. On all fields, 

winter wheat occurs at least 5 times. 

324  Sugar beet-potatoes-maize 

rotation 

Cluster with a structured rotation pattern of sugar beet, potatoes 

followed by maize. Occasionally completed with a cereal like winter 

barley or winter wheat. 

336  Sugar beet-maize-potatoes 

rotation 

Cluster with a structured rotation pattern of sugar beets, maize 

followed by potatoes. 

355  Potatoes dominant rotation Cluster where potatoes at cultivated at least 3-4 times, commonly 

rotated with winter wheat and/or sugar beets, with occasional inclusion 

of another crop. 

361 Barley-potatoes-sugar beet 

rotation 

Cluster with a structured rotation pattern of barley, and potatoes 

followed by sugar beets. Interestingly, this rotation often includes two 

consecutive years of potatoes before continuing with sugar beets. 

364 Barley-sugar beet rotation Cluster with barley as the dominant crop, mostly followed by sugar 

beets, with potatoes incorporated into the rotation once every 7 years 

371 Potatoes-sugar beet-barley 

rotation 

Cluster with a high frequency of potatoes rotated with sugar beets and 

summer barley. 



- 23 - 

 

 

 

 

3.1.2 The influence of clusters on the use of cover crops 

Figure 9 illustrates the distribution of cover crop frequency, and shows how the majority of the 

fields within the dataset have practised the use of cover crops in the 2017-2023 period. The 

frequency of cover crop usage differs strongly when comparing major clusters (Figure 10). 

For example, in the dominant cluster 44, representing maize monoculture, the frequency of 

cover crops is relatively high. A similar effect can be observed in cluster 238, which is also 

dominated by maize cultivation.  

In contrast to the “maize” clusters, grass-dominated clusters (56, 185 & 186) are characterized 

by a lower frequency of cover crop usage. This can be explained by the fact that grass is 

cultivated throughout winter time, reducing the necessity for cover crops. Another interesting 

exception in the overall distribution is cluster 8, representing fields of rye monoculture. Since 

rye is a winter crop, and thus sown in autumn, there is no need for a cover crop during the winter 

period.  

 

Figure 9: Distribution of cover crop frequency over the total area in the sample 

dataset. The fractions represent the number of cover crop declared over the 7-year 

period. 

 

Figure 10: Cover crop usage frequency per major crop rotation cluster 
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3.1.3 Mapping spatial relations between major clusters and cover crops 

Investigating the spatial relationship between clusters, soil composition emerges as a key factor 

influencing agricultural practices. Figure 13c shows the soil texture across the Netherlands, 

illustrating that the northern and western provinces are predominantly characterized by loamy 

soils, whereas the eastern and southern regions are primarily composed of sandy-loamy soils. 

With the exception of southern Limburg, which is classified as a silt-loam area.  

Figure 11 compares the provinces by crop diversity, showing there is quite a difference in 

cropping diversity between the provinces. One such correlation between soil texture and crop 

diversity can be observed. Provinces with predominantly loamy soils, such as Flevoland and 

Zeeland, exhibit a higher-than-average crop diversity. In contrast, Overijssel, Noord-Brabant 

and Gelderland, the sandy-loam soils, demonstrate a less diverse cropping pattern. An 

interesting exception is Utrecht, a predominantly clayey province, which records the lowest 

crop diversity. Figure 13b highlights this spatially. 

 

Figure 11: Main crop diversity in the percentage of the BRP per province 

In Figure 13d-e-f the dominant cluster for each region is depicted, revealing a strong overlap 

between the soil texture shown in Figure 13c and the dominant clusters. The eastern and western 

regions, characterized by sandy loam soil textures, are predominantly represented by cluster 44, 

which corresponds to the maize monoculture (Table 1). The second most prevalent cluster in 

these areas is cluster 56, associated with the maize-grass rotation. An analysis of the third most 

dominant rotations in these areas reveals a more diverse pattern, through these clusters often 

involve rotations in which grass or maize are frequent crops.  

The loamy soils in Flevoland, Zeeland & Noord-Holland are primarily dominated by cluster 

266, which represents a crop rotation of sugar beets, potatoes and winter wheat. Similarly, in 

the fertile silt-loamy soils of southern Limburg, this same crop rotation is prevalent. In contrast, 

the northeastern part of the Netherlands, with its sandy soils, exhibits a distinct pattern on the 

cluster map. In this area cluster 371, which is characterized by a high frequency of potatoes in 

its rotation, is dominant.  
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A closer examination of cover crop frequencies per province reveals a clear influence of soil 

textures. The sandy regions, such as Noord-Brabant, Overijssel and Limburg, show a relatively 

high cover crop usage in Figure 12. As discussed in section 3.1.2, a strong relationship exists 

between clusters where maize is rotated frequently and the use of cover crops. A comparison 

between provinces with higher cover crop frequencies and regions dominated by maize clusters 

underlines this relationship. 

  

Figure 12: Cover crop usage, in the period 2017 to 2023, in hectares per province 

Another interesting spatial relationship is the distribution of the most common cover crop per 

region, depicted in Figure 13g-h-i. The distinction between sandy-loam and loam areas is once 

again evident. In the western regions, leaf radish emerges as the most dominant cover crop, 

while in the eastern regions, the “other green manures” class prevails.  

 

 

 

  

 
  
 
  
 

 
  
 
 
  
 
 

  
  
  
 
 
 
  
 
 
 

 
 
  
 
  
 
 
 

 
  
 
  
 
 
 

 
  
 
 
  
  
 
 
 

 
 
 
  
  
  
 
 
 
 

 
 
 
  
  
 
  
 
 
 

 
 
 
  
  
  
 

 
  
 
  
 

 
 
 
  
 
 

 
 
  
  
 
  
 
 
 

         

   

   

   

   

   

   

 
  
 
 
  
  
 
  
  
 
 
  
  
 
  
 
  
 
 
 
  
  
  

                    

                        



- 26 - 

 

 

 

 

 

Figure 13: A collection of maps that show: Provinces (a), Crop diversity by provinces 

(b), Dominant soil texture by region (c), the top 3 most frequent major crop rotation 

clusters by region (d, e & f) and the top 3 most frequent cover crop types per region (g, 

h & i). 
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3.2 Transformer model evaluation 

This paragraph shows the results of the second approach: machine learning. It will explore the 

potential of using the transformer model to predict future crops. To address the overarching 

research question – To what extent can a transformer-encoder model be used to predict future 

crops, while solely being trained on previous crop rotations? – this subchapter has been 

structured around three sub-results, each targeting a different aspect of evaluating the model: 

1) showing how the model compares in terms of top-1 & top-3 accuracies, 2) showing how the 

model compares in prediction distribution, for the full dataset (quantitively) and 3) by zooming 

in on single sequences (qualitatively) by analysing its ability to reconstruct sequences using 

only a single crop as input. 

3.2.1 Training results 

After extensive trial-and-error 

testing, the optimum model size 

was identified as relatively small, 

consisting of 4 attention heads and 

2 layers. During training the 

validation loss was closely 

monitored, and saved at its lowest 

value. As shown in Figure 14, this 

optimum was reached after 

approximately 5 hours of training. 

Figure 15 depicts the test metrics, including top-1 and top-3 accuracy, demonstrating consistent 

performance of the model (TD). Additionally, for comparative purposes, the test was evaluated 

using LD, CD, and ED metrics. RD is not included, as it is inherently accurate (100%) due to 

it being the true label. Figure 15 also shows that the transformer model outperforms both CD 

as well as ED, although it struggles to match the accuracy achieved by the LD. A notable trend 

observed is the variation in accuracy based on sequence length. The model performs best with 

a sequence length of 5, with minimal performance difference observed across other lengths. 

Interestingly, the LD outperforms the TD by a larger difference on longer sequences, while for 

shorter sequences this difference is much smaller.  

 

Figure 15: Top-1 and top-3 test accuracies compared over different sequence lengths 

and different prediction strategies. 

            

                         

   

   

   

   

   

   

 
  
 
  
  

              

  

  

  

  

            

                         

              

  

  

  

  

Figure 14: Training log of the validation loss for the 

final model 
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3.2.2 Model comparison across length and frequency 

The KL-divergence was computed between the four comparative distributions and the reference 

distribution (RD), after splitting the dataset into three distinctive frequency groups: common, 

uncommon, and rare. The results are depicted in Figure 16, which shows the distribution of KL-

divergence values. Comparing the distributions of KL-divergences in boxplots shows how 

consistent the approaches compare to each other, in both median values as well as outliers, a 

smaller box implies a more consistent prediction accuracy than a bigger box. A key observation 

is the difference in predictive performance across the frequency groups, whereas the common 

and uncommon groups handle relatively lower KL-values, with CD/LD/TD mostly lower than 

five, the rare frequencies show an interquartile range (IQR) above 10 for these distributions. 

For the common sequences, TD consistently underperforms compared to LD, and to a lesser 

extent also to CD. Looking at the uncommon divergences, it can be seen that CD & LD are 

susceptible to a generous amount of outliers, compared to only a few within TD. The rare 

sequence, TD demonstrates a more stable distribution of KL-values than LD and CD, as 

indicated by a smaller IQR. Although LD achieves a better mean score, it exhibits a wider 

spread in its distribution, sometimes even predicting close to random guessing (ED).  

  

Figure 16: An overall comparison of KL-divergences values between different 

prediction strategies 

As shown in Figure 15, the testing accuracies vary across sequence lengths, with particularly 

pronounced differences in the LD approach. Figure 17 presents the KL-divergence values 

grouped by input sequence length, with sequences of two crops displayed at the top, followed 

by sequences of three, four, five and six crops at the bottom. A key observation is that, in 

general, when sequence length increases, the KL divergence of LD decreases, whereas the 

predictive performance of TD remains relatively stable across the sequence lengths. For rare 

sequences, LD exhibits a large interquartile range, and for shorter rare sequences it is even 

outperformed by both TD and CD. 
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Figure 17: A comparison between distributions of  KL-divergences at different 

sequence lengths and frequency groups 
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3.2.3 Prediction performance of individual sequences 

To further examine the differences in prediction performance, a qualitative analysis has been 

conducted on individual sequences. Figure 18 illustrates an example of a rare sequence with 

length 3. In this case, the transformer-based approach (TD) correctly predicts potatoes as the 

next crop, whereas the LD approach significantly misclassifies the sequence, predicting either 

summer barley or sugar beets. Notably, TD assigns a relatively low probability to maize, the 

most commonly cultivated crop, as indicated by the CD approach.  

 

Figure 18: A qualitative analysis of the input sequence potatoes - maize - summer barley 

Another example, shown in Figure 19, examines the opposite case: the most common sequence 

of six-year-long maize monoculture. While TD correctly predicts maize as the next crop, its 

prediction is relatively conservative, assigning only 40% probability to maize while distributing 

the remaining probability across a range of unlikely crops. This leads to a higher KL-divergence 

value, as the predicted distribution deviates significantly from the RD approach, which assigns 

over 80% probability to maize. In contrast, the LD approach predicts maize with nearly 90% 

certainty, resulting in a lower KL-divergence score. 

 

Figure 19: A qualitative analysis of the common sequence of a 6-year maize 

monoculture 
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3.2.4 Constructing sequences 

The reconstruction of sequences from a single input crop yielded the metrics presented in Table 

2. Among 1,000 random sequences that were used as input, the transformer model successfully 

reconstructed 396.  

Table 2: Results of reconstructing 1000 sequences 

Metric Value 

Total sequences processed 1000 

Correct predictions 396 

Incorrect predictions 604 

Accuracy (%) 39.6 
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4 Discussion 

4.1 Hierarchical clustering 

The first part of this thesis aimed to explore the use of crop rotations, and its relationship to the 

use of cover crops, in the Netherlands. The clustering analysis identified 18 major crop rotation 

patterns, which align well with the known agricultural practices in the Netherlands. For 

example, cluster 44, the largest identified cluster, represents a maize monoculture, which is a 

widely adopted farming practice in the Netherlands (Wesselink & potters, 2022). Furthermore, 

several clusters feature frequent rotations of fodder crops such as maize and grass, reinforcing 

the validity of the cluster approach in capturing real-world agriculture systems. Another notable 

finding is the presence of multiple clusters incorporating potatoes every three to four years. This 

reflects a common strategy to mitigate the risk of yield loss due to soilborne diseases like 

Phytophthora infestans, which are aggravated by continuous potato cultivation (Johnson & 

Dung, 2010).  

The results also reveal a strong relationship between soil texture and cropping diversity, as 

shown in Figures 13a & 13b. Regions with loamy soil exhibit higher crop diversity, which can 

be explained by the predominance of arable farming on these fertile soils. In contrast, regions 

with sandy loam soils, display a lower crop diversity, as they are primarily dominated by dairy 

farming, where most farmers only cultivate the fodders crops maize and grass (Aarts et al, 

1999).  

A note-worthy case is the province of Utrecht, which contains extensive low-lying clayey/peaty 

polders. These soils are stiff and harder to cultivate arable crops, leading to an agricultural 

landscape dominated by intensive dairy farming, as grass excels on these soils (Provincie 

Utrecht, 2015). Consequently, the region is characterized by rotation with a high prevalence of 

fodders crops such as grass and maize. 

The spatial distribution of the identified clusters aligns well with the soil texture map. Cluster 

44, the maize monoculture, is dominant in the sandy-loam region in the eastern and southern 

parts of the country, as well as around the province of Utrecht. The second and third- most 

dominant clusters in these areas feature high frequencies of maize and grass, underlining the 

strong presence of dairy farming. Conversely, in the loamy regions of the western Netherlands 

and Flevoland, where arable farming is more prevalent, crop rotations clusters are dominated 

by sugar beets, potatoes and cereals such as barley and wheat.  

The findings indicate that sandy-loam areas have the highest cover crop usage over the seven-

year thesis period. This trend is primarily driven by environmental policies, as sandy soils are 

highly susceptible to nitrogen leaching. Incentive programs promoting cover crop adoption 

have been in place for over two decades (Brussaard, 1992). Since 2019, regulatory enforcement 

has intensified, mandating that cover crops in maize cultivation on sandy soils be established 

before October 1st (Fan et al., 2020). One such example is maize, the dominant crop in most of 

the found clusters in these regions. This effect is underlined by (Kathage et al, 2022) who asked 

farmers in Overijssel, a province where cluster 44 is dominant, if they cultivate cover crops 

mandatory or voluntarily, 85.9% answered that they plant it because it is mandatory.  

Coming back to the province of Utrecht, the effect of nitrogen regulation (Ministerie van 

Landbouw, Natuur en Voedselkwaliteit, 2021) on cover crop adoption is particularly evident. 

Despite being dominated by clusters with a high frequency in maize cultivation, Utrecht 

exhibits relatively low cover crop usage. This discrepancy can be explained by policy 

distinctions based on soil type. While the use of cover crops after maize is mandated on sandy-
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loam soils to reduce nitrogen leaching, clayey soils, such as those in Utrecht, are less prone to 

this issue. Therefore, the use of cover crops is not as widely implemented. Interesting to point 

out is the fact that from 2024 onwards, regulations regarding cover crops and maize cultivation 

will also apply to designated clay soils classified as nutrient pollution areas (RVO, 2023), and 

thus an increase in cover use is expected in this area. 

The types of cover crops used also vary by region, cluster, and soil texture. In maize-dominated 

areas, farmers predominantly select cost-effective cover crops such as green manures, typically 

a mixture of fast-growing species approved to use as cover crops, or grasses, which serve a dual 

purpose as fodder crops. This suggests that the choice of cover crop types is primarily driven 

by regulatory requirements rather than agronomic benefits, a suggestion also made by Kathage 

et al (2022).  

In contrast, arable farming regions exhibit a different cover crop selection strategy, focusing on 

species that enhance crop rotations and improve soil fertility. This difference underscores the 

varying motivation behind choices made around cover crops across different agricultural 

landscapes, with regulatory compliance being a key driver in diary-dominated regions and 

agronomic optimization playing a more significant role in arable farming areas.  

4.2 Comparing the transformer to baseline distributions 

A comparison of testing accuracy (Figure 15) highlights the importance of sequence length in 

crop prediction when using the lookup-based (LD) approach, whereas the predictions generated 

by the transformer (TD) are less affected by sequence length. This suggests that TD offers an 

advantage by being less sensitive to the amount of input data available for a single field 

prediction, whereas LD performs significantly better when provided with a more extensive field 

history. 

To further analyse these results, sequences were categorized into three frequency-based groups: 

common, uncommon, and rare. Generally, rare sequences proved more challenging to predict. 

For common sequences, the weighted crop prediction approach (CD) outperformed the model 

(TD), indicating that these common sequences primarily consist of the most frequently 

occurring crops. However, as sequence frequency decreased, the performance gap between TD 

matched CD in median Kullback-Leibler divergence values while exhibiting a smaller 

interquartile range (IQR), indicating greater robustness to outliers. A similar, albeit less 

pronounced, trend was observed when comparing TD to LD: while the KL divergence gap 

between the distributions decreased with decreasing sequence frequency, LD still outperformed 

TD in median values. However, the bigger IQR of LD suggests that while it excels at predicting 

certain distributions, it also fails on many sequences by a large margin. For uncommon 

sequences, the effect was less pronounced, but the presence of numerous outliers suggests that 

LD effectively predicts well-known cropping patterns however struggles with less common 

rotations, a limitation which TD does not show. 

Examining the performance across different sequence lengths further supports the conclusion 

that TD remains stable across varying input lengths, unlike LD and CD. This can be attributed 

to TD’s training process, which involved recognizing patterns in both short and long sequences, 

thereby reducing its dependence on extensive input data. The frequency-based performance 

trends observed in the overall evaluation also hold across different sequence lengths, with TD 

outperforming LD specifically on short, rare sequences.  

The investigation of the prediction performance of individual sequences further reinforces the 

statement that TD handles rare sequences better than LD. TD correctly predicts the next crop 
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in the example, however, assigns a conservative probability and covers a range of small 

probabilities. A similar pattern emerges for the most common sequence in the dataset, the maize 

monoculture. While TD correctly predicts the following crop to be maize, it underestimates its 

likelihood by 40%, whereas LD rightly strongly favours Maize as the primary outcome. Unlike 

LD, TD distributes again the probabilities more broadly, assigning higher-than-expected 

probabilities to alternative fodder crops such as sorghum and grass. This conservative behaviour 

likely stems from the weighted loss function applied ring training, which was designed to 

prevent the model from overfitting to dominant crops in an imbalanced dataset. It also 

underlines the model's ability to recognize common alternatives, in this case, sorghum and 

grass, for crop rotations. 

Although brief, the final result paragraph provides an insight into the underlying reasoning of 

the model. A prediction accuracy of 39.6% may appear low at first glance; however, it 

demonstrates the model’s capacity to reconstruct sequences with only a single crop as input by 

recognizing and generating exact copies of major crop rotation sequences.  

4.3 Limitations 

4.3.1 The data science approach 

The hierarchical clustering approach in this thesis is subject to several limitations that may 

affect the representation and interpretation of the found crop rotation patterns. Firstly, the 

analysis was restricted to a sequence of the exact length of seven years, which, while 

informative, does not capture the full spectrum of crop rotation lengths used by Dutch farmers. 

Some rotations may be short or longer, and excluding these variations could have led to an 

incomplete representation of actual farming practices. 

Secondly, the clustering method employed a Hamming distance threshold of three, meaning 

that sequences that differ on more than 3 exact spots were not assigned to the same cluster. This 

threshold may have led to the misclassification of shorter, more intensive crop rotations, as even 

small variation, for example, a repetition of two years of winter wheat instead of one, would 

cause the entire sequence to be treated as significantly different. While the introduction of a 

shifted Hamming distance helps to mitigate sensitivity to exact starting years, the method still 

relies on farmers following identical crop orders. This limitation may have reduced the 

clustering approach's ability to recognize functionally similar rotations however includes minor 

variations. 

Furthermore, the dataset used for clustering was a sampled subset of the full dataset of Dutch 

agricultural fields. While this approach ensured computational efficiency, it may have led to 

the underrepresentation of small regionally specialized clusters. Some of these clusters were 

detected but categorized as “other” due to their limited cluster size, as this thesis only aimed at 

analysing major crop rotation clusters.  

4.3.2 The machine learning approach 

The primary limitations of the transformer model lie in the scope of information it is trained on, 

or more specifically, the lack thereof. The model predicts the next crop in a rotation solely based 

on historical crop sequence, yet in real-world agricultural decision-making, crop choice is 

influenced by many factors that go beyond past rotations.  

4.3.3 Missing contextual and external factors 

One significant limitation is the absence of region-specific variables such as soil type, farm 

size, and proximity to advanced agricultural industries. Soil properties influence crop 
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suitability, as some crops grow better under specific soil conditions. This influences the crop 

rotation, as shown in the clustering approach. Farm size can determine the feasibility of 

cultivating certain crops due to machinery requirements and operation constraints (Edwards, 

2017). Proximity to processing industries, for example, the ethanol plants, also plays a role in 

crop choice, as localized demand can drive specific cropping patterns (Park et al, 2019). 

Additionally, changes in land ownership can drastically alter crop rotations; for example, a field 

previously managed by a dairy farmer may transition from grass-based forage production to a 

diverse arable cropping pattern under new ownership. 

Economic and policy-related factors are also unaccounted for in the model. Seed availability 

and price fluctuations influence crop selection, as farmers adjust planting decisions in response 

to cost and expected market returns. Similarly, agricultural policies, including subsidies and 

environmental regulation, impose constraints or incentives that shape crop choices. These 

external drivers are highly dynamic and are not currently integrated into the model, limiting its 

applicability in capturing real-world decision-making processes.  

4.3.4 Data constraints and preprocessing decisions.  

The dataset itself presents limitations that may affect model performance. The exclusion of non-

declared data, for example, was an intentional preprocessing choice to simplify predictions. 

However, it could be that these non-declared fields where intentionally left fallow, which is in 

some farming systems a common crop rotation practice.  

Another limitation stems from the temporal scope of the dataset, which spans only seven years 

(2017–2023). While a larger dataset would increase computational demands, it would also 

allow the model to capture multiple crop rotation cycles for a single field, potentially improving 

long-term predictive accuracy. 

Furthermore, the model was trained only on the primary crop for each year (Crop1), ignoring 

secondary crops (Crop2) that appear in more intensive farming systems. This decision was 

made to simplify training and improve sequence learning efficiency. However, in regions where 

multiple cropping per year is common, excluding secondary crops may lead to incomplete or 

less accurate training sequences. 
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5 Conclusion and outlook 

This thesis aimed to 1) detect and analyse crop rotations in the Netherlands and their relation to 

the use of cover crops and 2) evaluate the potential of using a transformer encoder model for 

predicting future crops based on crop rotation sequences. 

5.1 Clustering 

The 18 identified major crop rotation patterns align well with known Dutch farming practices. 

Especially the largest cluster, the maize monoculture, exemplifies the widespread need for 

fodder crops in the sandy-loam region. Secondly, the common strategy to integrate potatoes in 

arable crop rotations once in three to four years has correctly been clustered.  

A strong correlation was observed between soil texture and crop diversity. Loamy soil regions 

exhibited higher crop diversity, supporting intensive arable rotations, whereas sandy-loam 

regions had lower diversity, dominated by fodder crops such as maize and grass. This pattern 

also extends to cover crop adoption, with sandy-loam areas displaying the highest cover crop 

usage. This is mostly explained by environmental policies aimed at reducing nitrogen leaching 

in these regions.  

The choice of cover crop species varied significantly by region and dominant crop rotation. In 

the sandy-loam maize-dominated areas, cover crop selection is primarily driven by compliance 

with environmental regulations rather than agronomic benefits. Conversely, arable farming 

regions showed a dominant appearance of crops that enhance crop rotations. These findings 

highlight the regulatory and agronomic motivations behind cover crop adoption across different 

agricultural landscapes.  

5.2 Transformer model 

The transformer-encoder model demonstrated that while mostly underperforming in 

comparison to the look-up approach, it can acceptably predict the next crop. The model 

particularly showed its potential to handle infrequent crop rotations, outperforming the other 

methods in scenarios with limited input data. 

Furthermore, a key finding was the stability in accuracy that the model could provide across 

different input sequence lengths. While the non-deep learning approach LD performed 

exceptionally well for common sequences, it exhibited high variability in successful predictions 

and struggled with less frequent crop rotations. The transformed model, in contrast, showed a 

consistent prediction pattern, demonstrating its adaptability to a diverse range of sequences. 

The investigation of the performance of individual sequences revealed that the model's 

underperformance is partly explained by its conservative approach in assigning a probability 

distribution. This conservative approach may create a higher KL-score, however looking at 

individual sequences this is explained by the fact that the models does not only capture the 

dominant rotations. It also recognizes plausible alternatives, reinforcing the statement that the 

model has the potential to be used to simulate farmer decisions. The model showed the ability 

to reconstruct a part of the sequences with a little input, underlining that it was able to learn 

common crop rotation patterns.  
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5.3 Limitations and future directions 

Both approaches have limitations. The clustering method, restricted to a seven-year sequence 

length, may have overlooked the extensive variation found in real-world crop rotation lengths. 

Additionally, the imposed Hamming distance threshold may have misclassified functionally 

similar rotation with minor sequence variations. Future research is advised to refine the 

clustering techniques and incorporate flexible sequence lengths. 

The primary limitation of the transformer model is its reliance on solely historical crop 

sequences, without incorporating often known regional variables, such as soil type or economic 

factors. These variables play a crucial role in farmers’ decision-making, and integrating such 

data could significantly improve model performance. To reach a fully functioning, and trustable 

AI tool to predict farmers’ decision-making, future work should incorporate these sequences.  

5.4 Final remarks 

Overall, this thesis has provided a comprehensive understanding of Dutch major crop rotations 

and their relations to several key variables like soil texture, diversity & cover crop use. The data 

science approach was successfully put to use in the creation & evaluation of a transformer-

encoder model to predict future crops. The clustering results have highlighted the strong 

influence of soil texture and environmental policies on crop rotation practices. Meanwhile, the 

transformer model demonstrated that the extensive BRP dataset on cropping history is a 

promising basis for creating a predictive tool for agricultural planning, particularly the 

prediction of less common crop rotations. Despite the mentioned limitations, this thesis marks 

a step forward in the use of a data-driven approach to better simulate and understand the effect 

of agricultural policies, paving the way for future research on decision-making AI support 

systems. 
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6 Use of generative AI statement 

AI, in the form of OpenAI’s ChatGPT, has been used as a sparring partner to 1) act as a 

coding assistant. In this role it provided debugging advice, improved code efficiency & 

generated basic code examples: 2) To check grammar & spelling and improve fluency in 

reading 
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8 Annexes 

List of research data to be submitted after examination: 

• The complete field parcel data set 

• Github, containing cod, processed datasets, graphs and figures 

8.1 Annex I: Metrics 

 Length 3 Length 4 Length 5 Length 6 Length 7 Overall 

score 

TD Top-1 

Accuracy 

0.553219 0.545121 0.581214 0.574226 0.569680 0.5646 

Top-3 

Accuracy 

0.788765 0.802767 0.819734 0.818182 0.794185 0.8047 

Top-1 LD 

Accuracy 

0.5542 0.6080 0.6682 0.7409 0.7835 0.6709 

Top-3 LD 

Accuracy 

0.8323 0.8699 0.9155 0.9478 0.9650 0.9052 

Top-1 CD 

Accuracy 

0.434297 0.432725 0.418456 0.411662 0.380807 0.4516 

Top-3 CD 

Accuracy 

0.697438 0.683454 0.675917 0.665901 0.647612 0.674076 

ED 

Accuracy 

0.038462 0.038462 0.038462 0.038462 0.038462 0.038462 

 

 Length 3 Length 4 Length 5 Length 6 Length 7 Overall 

score 

Top-1 

Precision 

0.590095 0.584220 0.619566 0.620172 0.614711 0.6046 

Top-1    F1-

score 

0.558654 0.549610 0.593628 0.591786 0.586658 0.5778 

Top-1 

Recall 

0.553219 0.545121 0.581214 0.574226 0.569680 0.5646 

 


