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Abstract 
The current shift towards increased intensification and specialization of European agricultural 

systems may lead to short-term yield benefits, but poses a threat to maintaining yield, soil health 

and economic stability in the long-term. Diverse cropping systems are expected to increase soil 

health and maintain yield, even under adverse climate conditions. Crop rotation is an example of 

such a diverse cropping system, which has been widely used all over Europe for centuries. Yet, 

there is a lack of studies on the spatial and temporal variability of crop rotational diversity (CRD) 

across Europe. Past research has predominantly been carried out in the United States and Asia, 

and has focused on comparing monoculture to a crop rotation system, with different levels of 

species diversity within crop rotation systems being largely overlooked. In this research, 6226 

observations from the LUCAS database are be combined with farm management data from the 

Farm Accountancy Data Network (FADN) collected over a time span of 11 years, as well as with 

climatic and socioeconomic variables. Based on this combined dataset, a large-scale analysis on 

the spatial and temporal variability of CRD in Europe was carried out, and the effect of increasing 

CRD on SOC stocks was investigated using Random Forest modelling. Current levels of CRD in 

Europe were found to be highest in Central Europe and lowest in the Alps and along the 

Mediterranean Coast. Overall, levels of CRD have been increasing between 2009-2020. The 

Random Forest model for explaining variability in CRD had a high model performance, with the 

share of arable area under organic farming, farm size and climatic factors being the most 

important predictors. The Random Forest models for explaining SOC stock changes had a low 

model performance, likely caused by high variability and noise within the LUCAS data. Soil OC and 

N content were the most important significant predictors of changes in SOC stocks. The low model 

performances and lack of established direct correlations between ΔCRD and ΔSOC means that the 

effects of varying levels of species diversity in rotational systems still remains unclear. OC data 

from LUCAS should be further refined in future research, in order to reduce noise and uncertainty 

and for clearing up what still remains unknown about the effects of CRD on SOC stocks, so that 

concrete policy and management recommendations can be made to help secure healthy soils and 

sufficient food production, even in a changing climate.  



 

iii 
 

Acknowledgements 
I would like to express my gratitude to my supervisor dr. Julian Helfenstein, and to dr. Sophie van 

Rijssel, for their valuable feedback and guidance throughout my research. I have been strongly 

inspired and motivated by their knowledge and dedication. Moreover, I am deeply grateful for my 

friends and fellow students, especially Ruben Brouwer and Kim van Etten, for thinking along and 

supporting me throughout my work, which has helped me to improve my research and reach my 

objectives. 

 

  



 

iv 
 

Table of Contents 
1. Introduction ..................................................................................................................................................................... 1 

2. Methodology .................................................................................................................................................................... 3 

2.1 Data preprocessing ............................................................................................................................................... 3 

2.2 Variability and trend in crop rotational diversity ..................................................................................... 5 

2.3 Climatic and socioeconomic variables .......................................................................................................... 6 

2.4. Combining FADN and LUCAS ............................................................................................................................ 7 

2.5 Determining changes in SOC ............................................................................................................................. 7 

2.6 Finding correlations between CRD, SOC and other factors .................................................................. 8 

2.7 Predicting CRD across Europe .......................................................................................................................... 8 

2.8 Explaining variability in SOC stock changes ............................................................................................... 9 

3. Results ............................................................................................................................................................................. 10 

3.1 Current CRD and trends across Europe ..................................................................................................... 10 

3.2 Changes in SOC across Europe ...................................................................................................................... 11 

3.3 Correlations between CRD, SOC and external variables ..................................................................... 12 

3.4 Relationships with crop types ....................................................................................................................... 14 

3.5 Model for predicting CRD ................................................................................................................................ 15 

3.6 Model for predicting changes in SOC .......................................................................................................... 17 

4. Discussion ...................................................................................................................................................................... 20 

4.1 Variability of CRD across Europe .................................................................................................................. 20 

4.2 Main factors driving SOC changes across Europe .................................................................................. 22 

4.3 Effect of CRD on changes in SOC stocks ..................................................................................................... 23 

4.4 Overcoming limitations in using LUCAS data for SOC analyses ....................................................... 23 

5. Conclusion ..................................................................................................................................................................... 25 

References .......................................................................................................................................................................... 26 

Appendix I: Intermediate Model Results ............................................................................................................... 40 

Appendix II: Use of Artificial Intelligence ............................................................................................................. 42 

 

 



 

1 
 

1. Introduction 

Over the last decades, agricultural production systems have become increasingly specialized and 

intensified (Baldwin-Kordick et al., 2022), for example through increased fertilizer use (Tilman et 

al., 2002) and the reduction of crop diversity in rotational systems (Baldwin-Kordick et al., 2022; 

Barbieri et al., 2017). Although this intensification can lead to short-term increased productivity 

(Hufnagel et al., 2020), it can impose negative long-term effects on soil health (Baldwin-Kordick 

et al., 2022; Tilman et al., 2002) and the sustainability of the cropping systems themselves 

(Hufnagel et al., 2020). In order to maintain soil health and ultimately crop yields, especially in 

light of a growing demand for food production (Tilman et al., 2011) and the threat posed by 

climate change (Ja germeyr et al., 2021; Kumar, 2016; Rezaei et al., 2023), a shift towards more 

sustainable and future-proof agricultural systems is necessary (Bowles et al., 2020; Helfenstein et 

al., 2024; Yang et al., 2024). 

 

Diversification of cropping systems is a renowned method for increasing soil health (Mortensen & 

Smith, 2020; Nunes et al., 2018; Yang et al., 2024). The use of a diverse cropping system enhances 

soil structure due to diverse root structures (Bodner et al., 2021), supports rich microbial 

communities (A. Williams et al., 2023), and mobilizes a wider range of nutrients (Smith et al., 

2023). Moreover, crop diversification reduces the risk of climate change-induced yield reduction 

(Bowles et al., 2020; Bybee-Finley et al., 2024; Isbell et al., 2017; Marini et al., 2020) and increases 

resilience against pests and diseases (Isbell et al., 2017). Crop diversity (CD) can be increased 

through a number of methods, including the implementation of cover crops, intercropping or crop 

rotation, of which the latter is a commonly used cropping system that involves cultivating a varying 

sequence of different crops, in contrast to monoculture (Boincean & Dent, 2019; Y. Liu et al., 2023). 

Crop rotation (CR) is an effective, economic (Boincean & Dent, 2019) and sustainable system for 

maintaining and improving yield and soil physical and hydraulic properties under adverse 

growing conditions (Boincean & Dent, 2019; Costa et al., 2018; Degani et al., 2019; Kluger et al., 

2022; Ouda et al., 2018).  

 

Another important benefit of CR is the potential to increase carbon sequestration in soils (Lal, 

2004a). Carbon sequestration has great potential in mitigating climate change as increasing soil 

organic carbon (SOC) stocks can significantly reduce atmospheric CO2 (Lal, 2004b; Lugato et al., 

2014). Several meta-analyses have emphasized this by finding positive effects on SOC stocks when 

shifting from a monoculture to a CR system (X. Liu et al., 2022; McDaniel et al., 2014; Schmer et al., 

2020; Zheng et al., 2023). However, it remains unclear whether these benefits keep increasing with 

increasing levels of crop rotational diversity (CRD) (Isbell et al., 2017), i.e. the species diversity 

within a CR system. It is suggested that the effect may depend on the species involved, with only 

high residue-producing crops causing a significant effect (Omay et al., 1997). Chatterjee et al., 2016 

found that only increasing CRD does not significantly increase SOC stocks. On the other hand, 

considering the strong negative correlation between bulk density and SOC (Fowler et al., 2023; 

Heuscher et al., 2005; Tsui et al., 2013), Iheshiulo et al., 2023 found that bulk density decreases 

with increasing CRD, which could be an indication that SOC stocks do in fact increase with 

increasing CRD. 

CD: Crop Diversity 

CR: Crop Rotation 

CRD: Crop Rotational Diversity 
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In many regions of Europe, CR is embedded in traditional farming practice (Kollas et al., 2015; 

Kutsch et al., 2010). However, most research on the effects of CR is focused on North America, 

Africa and Asia, with only 4% of European case studies involved in several meta-analyses 

(Iheshiulo et al., 2023; Li et al., 2024; McDaniel et al., 2014; Zheng et al., 2023). This shows that 

there is still a shortage of European studies. Recently, research has been conducted on the spatial 

distribution of absolute CD (Machefer et al., 2024; Merlos & Hijmans, 2020), i.e. the number of 

species within a unit of area, and dominant crop sequences in rotation in Europe (Ballot et al., 

2023). However, there is still a knowledge gap about the current trend and spatial variability in 

the diversity of crops in rotational systems. In addition, as indicated by Smith et al., 2023, most 

research on CRD is based on small-scale experiments or focuses on only comparing monoculture 

to a CR system, i.e. not on different levels of rotational diversity.  

 

CD in Europe is threatened by the ongoing trend of agricultural specialization and intensification, 

as crops are increasingly grown in shorter rotations or even in monocultures (Costa et al., 2018; 

Marini et al., 2020; Stein & Steinmann, 2018). This trend has been described by Helfenstein et al., 

2024 as a shift towards a productivist pathway characterized by high-intensity, low-diversity 

farming. Another threat to CD in Europe is caused by the dropping number of farmers in Europe, 

resulting in a relative increase in farm sizes (Piet, 2016). As CD in general is previously found to 

be negatively correlated with farm size (Machefer et al., 2024; Ricciardi et al., 2021), this suggests 

decreasing levels of CD. Accordingly, CRD may also be decreasing, under the assumption that in 

areas with a high CD, high CRD is found as well. On the contrary, increasing awareness among 

farmers about the benefits of diverse agricultural systems, such as increased soil health and lower 

fertilizer and pesticide requirements, incentivizes farmers to invest into the implementation of 

such systems (Olesen et al., 2011). This may compensate for CD loss from the shift towards more 

productivism, or possibly even outweigh this trend.  

 

In this study, the knowledge gap about the spatial and temporal variability of CRD in Europe and 

the effects on SOC stocks will be addressed. The spatial and temporal trends of CRD in Europe over 

the last 15 years will be determined by using data from the Farm Accountancy Data Network 

(FADN) collected by the European Commission (European Commission, 2024). This will be done 

on a NUTS2-region scale, which closely resembles provincial area units. Furthermore, these 

results will be combined with data on a number of soil properties from the LUCAS Soil database 

(Orgiazzi et al., 2018), climate data (Beck et al., 2023; Fick & Hijmans, 2017; Zomer et al., 2022) 

and socioeconomic variables (Debonne et al., 2022; European Commission, 2019; Kruse et al., 

2022; T. G. Williams et al., 2024). Random Forest models will be made that allow the exploration 

of possible relationships between CRD and soil, topography, farm management climate and 

socioeconomics, and how different levels of CRD affect SOC stocks on a European level. It is 

hypothesized that in Europe, CRD will be highest in regions dominated by small and low-intensity 

farms, with an overall decreasing trend due to the general shift of agricultural systems towards 

higher intensity farming and increased specialization. Moreover, it is expected that increasing CRD 

will have positive effects on enhancing SOC stocks, which the effect stagnating a certain level of 

diversity. Mapping the current levels and the trend in CRD across Europe, uncovering what 

variables relate most strongly to the spatial distribution of CRD levels, and identifying the effect 

on SOC stocks, offers insight in how the sustainability of agricultural systems in Europe can be 

improved. 
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2. Methodology 

Before the data analysis of this research could advance, farm and soil data were preprocessed so 

that they could easily be implemented in the analysis. A large part of the preprocessing involved 

the collection of the farm management data from the FADN database. Important to note is that due 

to the privacy-sensitive nature of the FADN database, all data collection from the FADN database 

was carried out by dr. Julian Helfenstein. After the farm management data was collected, some last 

preprocessing steps were carried out to harmonize NUTS2 region codes to all be in the 2021 

format (Eurostat, 2022b). The main analysis of this study can be divided into three sections. The 

first part of the methodology was devoted to the mapping of the current CRD and trend across 

Europe. Next, CRD and ΔSOC were further analyzed by creating Random Forest models based on 

soil, farm management, climate and socio-economic variables. Figure 1 shows a flowchart which 

highlights the main steps of the research. 

2.1 Data preprocessing 

To protect farmers' privacy, farm-level data from the FADN was aggregated by NUTS2 region, 

altitude class, and crop type. A single prediction of farm management indicators was generated 

for each unique combination of these factors. This prediction is based on all farms in that same 

NUTS2 region and altitude class, which cultivated the same crop. Management indicators were 

predicted using weighted medians and standard deviations, in order to increase the aggregations’ 

resemblance to reality as much as possible. The weights were determined for each farm by taking 

into account both the share of the cultivated crop within the total area of the farm, and the share 

of the cultivated area of the crop, relative to the total area in the NUTS2 region on which this crop 

is cultivated (Eq. 1): 

Figure 1: Schematic overview of the methodology 
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𝑤𝑖 = 𝑠𝑞𝑟𝑡(
𝑎𝑟𝑒𝑎𝑖

𝑈𝐴𝐴𝑖
 ∗

𝑎𝑟𝑒𝑎𝑖

𝑡𝑜𝑡𝑎𝑙 𝑎𝑟𝑒𝑎
)  (Eq. 1) 

 

where wi is the weight of each farm, areai is the area on which the crop is cultivated on the farm 

and UAAi is the total utilized agricultural area of the farm. Total area is the sum of all areas on 

which the crop is cultivated in the region (= ∑areai). For analyzing the effects of the shares of 

different crops in rotation, the same crop categories used in Ballot et al., 2023 are used in this 

study (cereals, fodder legumes, maize, pulses, rapeseed, root crops, sunflower & ley (temporary 

grassland)), with the addition of industrial crops and vegetables. Different farm management 

indicators have been collected and derived from the FADN database: mineral fertilizer use,  

livestock density, area fraction under organic farming, crop intensity and two crop (rotational) 

diversity indicators: Richness and the Gini-Simpson Index. 

 

Richness (R) was calculated as the weighted median number of arable crops per specified area, 

while CRD was determined using the Gini-Simpson Index (GSI). Unlike richness, which only counts 

the number of crops in rotation, GSI also considers crop abundance and distribution, providing a 

more accurate measure of true diversity. In short, the Gini-Simpson index is a widely used measure 

for approximating species diversity (Guiasu & Guiasu, 2012) by calculating the probability that 

two crops chosen at random are not part of the same species. GSI is also used in e.g. the FAO 

agroecology performance assessment tool (FAO, 2019). It was specifically chosen to use the GSI 

instead of the standard Simpson index, because the GSI represents the complimentary proportion 

of the standard Simpson index, thus putting the emphasis on diversity rather than uniformity. In 

this study, GSI is used to measure crop diversity in rotational systems, where a higher GSI signifies 

greater CRD. In essence, GSI is calculated as one minus the weighted mean of the proportional 

abundances of each crop, where the proportional abundances themselves simultaneously act as 

the weights (Eq. 2): 

 

𝐺𝑆𝐼 =  1 − ∑ 𝑝𝑖
2𝑅

𝑖=1   (Eq. 2) 

 

where R is richness, i.e. the total number of crops cultivated in the specified region, and pi is the 

proportional abundance of each crop.  

 

Mineral N, P, K fertilizers are calculated in kg ha-1. Livestock density is calculated as the number of 

standard livestock units per ha. Standard livestock units are determined based on the feed 

requirement as compared to that of one adult cow (Eurostat, 2024). Organic farming is calculated 

as the crop-specific share of area under arable organic cultivation in the given region, thus equal 

to a probability.  

 

The calculations of the crop intensity index (CI) were based on the C input of each crop category 

involved in the rotations. High crop intensities were assigned to regions with an abundance of 

crops having a low soil C input and or a high soil disturbance during planting, cultivation and or 

harvest (Engel et al., 2017; Novelli et al., 2017). More specifically, vegetables, maize and root crops 

were given a high CI; cereals, pulses sunflower and industrial crops a moderate CI; and fodder 

legumes and ley a low CI. 
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Although the FADN database does not contain any direct data on tillage, tillage was still deemed 

relevant for this study as it is often found that tillage impacts SOC stocks (Haddaway et al., 2017; 

Nunes et al., 2020). Tillage data (from 2016) was acquired from Eurostat (Eurostat, 2020). The 

data contains the areas of conventional, conservation, and zero tillage for each NUTS2 region, farm 

size category, and farm type combination. Tillage intensity (TI) was calculated as the area fraction 

under conventional tillage plus the area under conservation tillage times a factor of 0.2 (Eq. 3). 

No-tillage is not included in the equation, as the TI of no-tillage is 0 by definition.  

 

𝑇𝐼 =  𝑓𝑐𝑜𝑛𝑣𝑒𝑛𝑡𝑖𝑜𝑛𝑎𝑙 + 0.2 ∗ 𝑓𝑐𝑜𝑛𝑠𝑒𝑟𝑣𝑎𝑡𝑖𝑜𝑛 (Eq. 3) 

 

Therefore, a value of 100 indicates only conventional tillage being practiced in the specified area, 

whereas 0 indicates only no-tillage.  

 

After gathering the farm management data, the LUCAS datasets were prepared for further analysis. 

The column structure of the  LUCAS datasets was harmonized, and NUTS2 region codes were 

updated to all be in the 2021 format, in three steps. First, NUTS2 regions of which only the code 

had changed, were simply renamed. Points located in NUTS2 regions which were split up or 

merged, got assigned an updated NUTS2 region based on their NUTS3 codes. Lastly, points located 

in NUTS2 regions of which the geometry was heavily changed, were assigned a new NUTS2 region 

code by matching the 2021 region code based on overlaying a NUTS2 shapefile over the specified 

points. Points with an invalid land cover (LC) class, were removed, as matching these points with 

the FADN data would be impossible in a later stage. NUTS2 codes present in the provided FADN 

dataset were also harmonized with the updated LUCAS datasets.  

 

2.2 Variability and trend in crop rotational diversity 

For assessing current CRD across Europe, the weighted mean GSI for the most recent year (2020) 

was determined for each country and NUTS2 region and mapped using the ggplot2 R package 

(Wickham, 2016). For the NUTS2 level data, the years 2018, 2019 and 2020 were aggregated 

under the assumption that the GSI did not change significantly between these years, in order to 

have sufficient data available for as many NUTS2 regions as possible.  

 

The trend in CRD (absolute change in GSI in % per year) was calculated for each country and 

NUTS2 region based on linear regression from the yearly aggregations of weighted mean GSI. The 

standard deviations were calculated and the p-values were derived from t-tests within the context 

of a linear regression model with α = 0.05. For NUTS2 regions that were split at some point in time, 

the GSI of the combined NUTS2-region was used for each of the breakaway regions, in order to still 

be able to determine a trend for these regions. For three NUTS2 regions (HR02, HR05 & HR06), 

only data from 2015 and 2020 was available, therefore t-tests were not applicable to assess 

significance for the trends in CRD for these regions, as these require at least three data points. To 

solve this issue, a z-test was carried out following Eq. 4, after which the p-values were determined 

using the pnorm() command in R.  

 

𝑍 =
µ̅1−µ̅2

√
𝜎1

2

𝑛1
+

𝜎2
2

𝑛2

  (Eq. 4) 
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Where Z is the z-statistic, µ̅ the weighted mean GSI, σ the standard deviation and n the sample size 

for each of both years. An assumption that must be made for using z-tests is that the data is 

normally distributed, with a minimum suggested sample size of n=30-50 (Pocock, 2006). Given 

the large mean sample size of n = 438 and following the central limit theorem, the required 

assumption is made that the data for these three NUTS2 regions is normally distributed. 

 

To determine the effect size, i.e. how much of the variation of CRD is attributable to differences in 

countries and NUTS2 regions, the η2-statistic was calculated. The η2-statistic can be calculated 

using ANOVA, under the assumption that the data is normally distributed and that variances are 

equal. Normality of the data is assumed given the median sample sizes of countries and NUTS2 

regions to be 243 and 1397, respectively. However, it was found through a Levene’s test that the 

variances between countries and NUTS2 regions are unequal, therefore an ANOVA was not 

considered suitable (Kim & Cribbie, 2018). For this reason, a Kruskal-Wallis test was used instead 

for calculating the effect sizes. As only one mean GSI and a standard deviation was available for 

each area, performing a Kruskal-Wallis test using only these means would strongly underestimate 

the spatial variation. Therefore, based on a normal distribution and using the standard deviations, 

100 random simulations of the mean GSI were carried out for each NUTS2-region and country. 

The Kruskal-Wallis test was then done based on these simulated values. The η2-statistic was 

subsequently calculated according to Eq. 5 (Tomczak & Tomczak, 2014). 

 

𝜂2 =  
𝐻−𝑘+1

𝑛−𝑘
  (Eq. 5) 

 

Where H is the Kruskal-Wallis test statistic, k the number of groups (areas) and n the total number 

of (simulated) values. Suggested interpretations for η2 are: 0.01-0.06 (small effect), 0.06-0.14 

(moderate effect) and ≥0.14 (large effect) (Kassambara, 2023). 

 

2.3 Climatic and socioeconomic variables 

For allowing further in-depth analysis of the variation of CRD and variation of changes in SOC 

stocks across Europe, different climate and socioeconomic data that was considered to potentially 

be relevant, was gathered. Climate may impact levels of CRD due to differences in water availability 

and varying lengths of growing seasons, where longer growing seasons allow for longer and more 

diverse rotation schemes. Policy incentives and favorable economic conditions may cause farmers 

to implement higher levels of CRD (Bowles et al., 2020; Mortensen & Smith, 2020). Climate data 

was extracted from GeoTIFFs based on the point locations in LUCAS 2018. Climatic variables 

include annual mean precipitation and temperature (Fick & Hijmans, 2017), annual mean 

potential evapotranspiration and aridity index (AI) (Zomer et al., 2022), and Ko ppen climate 

classifications (Beck et al., 2023). The coordinate system used throughout the entire research is 

WGS84 (EPSG:4326). Socioeconomic variables were added to the master dataset based on either 

NUTS2 regions or countries, depending on the level of detail of the socioeconomic data. 

Socioeconomic variables used in this study are subsidy intensity, population density and GDP per 

capita (T. G. Williams et al., 2024), Regional Competitiveness Index (RCI) (European Commission, 

2019), economic farm size typology  (EFS) and age ratio (ratio old farmers (>55) to young farmers 

(<35)) (Debonne et al., 2022) and Environmental Policy Stringency (EPS) (Kruse et al., 2022).  
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2.4. Combining FADN and LUCAS 

Due to issues with the standard elevation data in LUCAS, new elevation data was extracted using 

get_elev_point() from the elevatr R package (Hollister et al., 2023). From the newly extracted 

elevation data, each datapoint was assigned an altitude class matching the altitude classes in the 

farm management data (1 = <300 m, 2 = 300-600 m, 3 = 600< m). To make sure only agricultural 

land is included in the analysis, all data with a non-agricultural land use class (≠ land use class 

U111 or U112) was removed. Also, all datapoints with a non-arable (permanent) crop land cover 

(LC) class were omitted. This included all points with permanent grassland not used in rotation 

(Costa et al., 2018; Eurostat, 2022a).  

 

The linking of the FADN data with the LUCAS data was conducted in 3 steps. First, based on exact 

matches of NUTS2 region, LC class and altitude class between LUCAS and FADN datapoints, FADN 

data was added to the LUCAS points to generate one large combined dataset. The FADN data 

included fertilizer use, livestock units, share of organic farms and share of crop categories involved 

in rotations. 92.7% of LUCAS points had a matching NUTS2 region, LC class and altitude class with 

a FADN datapoint, meaning that only 7.3% of LUCAS points could not be allocated any farm 

management data from the FADN. In the second step, the remaining points that did not have an 

exact match were addressed, and the process was iterated. However, this time altitude class was 

ignored, thus only a matching NUTS2-region and LC class was required to successfully match FADN 

data to the LUCAS points. Only 3.9% of LUCAS points still could not be allocated any FADN data 

after this step.  The last step to address the remaining datapoints without any match with the FADN 

data, was to look for the nearest point with the same LC class within the same country, and then 

copy that FADN data. In other words, the remaining datapoints got the  FADN data allocated from 

the nearest point within the same country with the same LC class. Only 1.6% of LUCAS datapoints 

could not be matched with any FADN data after all three steps, so these were removed. A total of 

6226 LUCAS datapoints were successfully matched with FADN data.  

 

2.5 Determining changes in SOC 

In order to calculate changes in SOC stocks, revisited points in 2009/2012 and 2018 were first 

identified based on reoccurring point IDs. Next, the trend in SOC in was calculated by taking the 

difference between 2009/2012 and 2018 and converting this to an absolute change per year, 

similar to De Rosa et al., 2024 (Eq. 6): 

 

𝛥𝑆𝑂𝐶 (𝑔 𝐶 𝑘𝑔−1𝑦−1) =  
𝑆𝑂𝐶2−𝑆𝑂𝐶1

𝑡2−𝑡1
  (Eq. 6) 

 

where SOC1 and SOC2 are the SOC contents in g C kg-1 in the first year t1 and last year t2. The fact 

that OC measurements in Bulgaria and Romania were done in 2012 instead of 2009, was taken 

into account. The relative change in SOC (ΔSOCrel) was also calculated, according to Eq. 7. 

 

𝛥𝑆𝑂𝐶𝑟𝑒𝑙  (% 𝑦−1) =  [(
𝑆𝑂𝐶𝑓

𝑆𝑂𝐶𝑖𝑛
)

1

𝑡
− 1] ∗ 100 (Eq. 7) 
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Where SOCin and SOCf are the initial and final SOC contents in g C kg-1, and t is the time period in 

years (6 years for Bulgaria and Romania, 9 years in all other cases). In order to increase the 

reliability of the used data, points were removed from the dataset when their SOC content, ΔSOC 

or ΔSOCrel did not comply to a set of requirements:  

(1) To limit the potential effects induced by heavy peat soils, points with an SOC content of over 

160 g C kg-1 were removed, as done in a similar study by De Rosa et al., 2024. (27 points removed) 

(2) Points with a ΔSOCrel beyond -50 and 100 % across the entire time period were also removed 

as these were considered to be nonsensical. These limits correspond with relative changes of less 

than -7.4 or more than 8.0 % year-1 over a 9-year period. (324 points removed) 

(3) Points with a ΔSOC beyond -3 to 3 g C kg-1 y-1 were removed after De Rosa et al., 2024 found 

approximately this range after they carried out a quality control on the LUCAS data to identify 

locations with extreme SOC changes unrelated to agricultural practices. (11 points removed) 

 

5334 of 8996 total revisited points had a non-permanent agricultural land use. Of these points, 

362 did not comply with all 3 requirements, leaving 4972 points with ΔSOC and ΔSOCrel that 

comply to the specified requirements. The information on changes in SOC formed the basis of a 

new dataset to which FADN data was added following the previously elaborated three-step 

matching technique. This dataset therefore does contain datapoints without matched FADN data, 

but does not contain datapoints that are either not revisited or do not have a ΔSOC and ΔSOCrel 

complying to the specified requirements. Climate and socioeconomic data was also added. 

Whereas the master dataset with 6226 points, all having successful matches with FADN data as 

explained in section 2.4, is used for the random forest model for CRD (section 2.7) , this second 

dataset with 4972 points is used for the analyses in sections 2.6 And 2.8. The calculated ΔSOC and 

ΔSOCrel was mapped, and the effect size (η2) of countries on the variance in SOC was determined 

with a method similar to section 2.2, however in this case simulating datapoints was not necessary. 

 

2.6 Finding correlations between CRD, SOC and other factors 

A correlogram with all relevant variables, including current CRD, ΔCRD, ΔSOC and ΔSOCrel was 

made using the corrplot R package (Wei & Simko, 2024), and by using Spearman’s rank correlation 

coefficients (ρ). Spearman’s rank correlation coefficients were deemed more suitable than 

Pearson’s correlation coefficients, as these are more robust and take into account non-linear 

relationships. The direct relationship between ΔSOC and ΔCRD was analyzed through the 

calculation of Spearman’s ρ. For analyzing potential correlations between the share of crop type 

involved, current CRD, ΔCRD, ΔSOC and ΔSOCrel, Spearman’s ρ, as well as the statistical 

significances (α = 0.05), were determined. 

 

2.7 Predicting CRD across Europe 

A random forest model was made to investigate which variables are most important in predicting 

CRD, i.e. are likely to be the biggest contributing factors to differences in CRD across Europe. As 

random forest analyses cannot be conducted with NA values in the dataset, this was resolved by 

imputing missing values using the missForest R package (Stekhoven & Bu hlmann, 2012), with 100 

decision trees. To limit the uncertainty of the imputed values, 3 variables (Ox_Al, Ox_Fe & CaCO3) 

were not included in the random forest analysis due to a very high number of NAs. The random 

forest model was built using the rfPermute R package. This extends the random forest by 
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incorporating statistical significance testing for variable importance through permutation testing. 

Therefore, it allows the determination of which variables in the model are not only strongly 

contributing to the model’s predictive performance, but also assesses which variables are 

statistically significant, i.e. an indicator of whether the importance is reliably above random noise. 

The model was made using the master dataset with imputed NA values and 500 decision trees. 

Individual effects of variables on the prediction of CRD were evaluated through partial 

dependance plots (PDPs), which were made for the 8 variables with the highest importance 

(%IncMSE) using the pdp R package (Greenwell, 2017). 

 

2.8 Explaining variability in SOC stock changes 

With the aim of assessing which variables have the largest impact on changes in SOC, and assessing 

whether CRD has a significant impact, two random forest models were made: one for ΔSOC and 

one for ΔSOCrel. In order to build the random forest models for ΔSOC and ΔSOCrel, missing values 

for variables other than ΔSOC and ΔSOCrel were again first imputed using missForest() with 100 

decision trees, after removing Ox_Al, Ox_Fe & CaCO3 due to the very high number of NAs. The 

random forest models were then made using rfPermute() and 500 decision trees. Lastly, individual 

effects of variables in the models were again analyzed through partial dependance plots. It should 

be noted that the models have been altered and refined numerous times during the research, with 

not all steps and requirements being implemented initially. Therefore, it was only after many 

refinements that the final models were made.  
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3. Results 

3.1 Current CRD and trends across Europe 

The calculated current weighted mean GSI for each NUTS2 region (averages from 2018-2020) is 

depicted in Figure 2a. The overall lowest GSI was calculated for Crete (EL43, 0.017 ± 0.14) and the 

highest for Bratislava (SK01, 0.781 ± 0.18). Generally, we find low CRDs along the Mediterranean 

coast, the Alps, Ireland and northern Scandinavia, whereas we find high CRDs in Central Europe 

(predominantly east Germany, the Czech Republic and the (north) eastern regions of Slovakia and 

Hungary). The calculated effect sizes (η2) from the Kruskal-Wallis tests for the NUTS2 region-level 

data and country-level data indicate that 32.8% of the variance in GSI is explained by the difference 

in NUTS2 regions, while 22.6% of the variance in GSI is explained by the difference in countries. 

The trend in GSI in percent change per year (2009-2020) is depicted in Figure 2b. NUTS2 regions 

with an insignificant trend are colored in as having no trend (0%). The most significantly negative 

trend is found Crete (EL43, -3.14 ± 1.37 % year-1) and  the most positive trend is seen in Castile 

and Leo n (ES41, 2.94 ± 0.79 % year-1). Generally, positive trends are found mainly in Italy, the 

Netherlands and northern inland Spain. Only few NUTS2 regions have a significant negative trend, 

mainly Crete and northern Croatia. Considering Europe as a whole, we see a generally increasing 

trend of CRD over 2009-2020.  

Table 1 shows crop richness, current weighted mean GSI, the trend in GSI and the associated p-

value for each country. As crop richness is closely related to CRD, lower crop richness is generally 

found in countries with also a low GSI. The country with the lowest GSI is Malta (0.17 ± 0.18) and 

the country with the highest GSI is the Czech Republic (0.759 ± 0.20). Only 10 out of 28 countries 

have had a significant trend in GSI over the years 2009-2018. Portugal has had the most negative 

trend (-0.41 ± 0.37 % year-1), yet it was found to be statistically insignificant (p > 0.05). 

Considering only significant trends,  no country has a negative trend in CRD. France has the 

smallest significant trend (0.14 ± 0.08 % year-1), whereas Spain has the highest trend (1.48 ± 0.51 % 

year-1).  

Figure 2: a) Current CRD across Europe (average 2018-2020) in GSI, b) Trend in CRD across Europe (2009-2020) in % change in GSI per year 



 

11 
 

 

3.2 Changes in SOC across Europe 

  

Figure 3: a) map of ΔSOC across Europe (2009/2012-2018), b) map of ΔSOCrel across Europe (2009/2012-2018) 

Table 1: Crop richness, current weighted mean GSI, the trend (% year-1) in GSI and the associated p-value for each country. Asterisks 
indicate statistical significance: * p < 0.05, ** p < 0.01, *** p < 0.001 
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Figures 3a and 3b show the map of Europe with the locations of all used datapoints with the 

observed ΔSOC and ΔSOCrel from 2009/2012 to 2018 in g C kg-1 y-1 and % y-1, respectively. Mean 

ΔSOC is 0.03 ± 0.50 g C kg-1 y-1 and mean ΔSOCrel is 0.20 ± 2.72 % y-1 compared to the initial value. 

ΔSOC and ΔSOCrel do not show any clear spatial patterns, indicating that changes in SOC stocks are 

very much dependent on local factors. The only area with large scale increasing ΔSOC and ΔSOCrel 

is northeastern Italy. The calculated effect sizes (η2) are 0.014 and 0.012 for ΔSOC and ΔSOCrel, 

respectively, which points to there being no large spatial patterns that differ between countries. 

 

3.3 Correlations between CRD, SOC and external variables 

Figure 4 shows a scatterplot of 

the absolute change in SOC 

against the absolute change in 

GSI per year for each of the 

datapoints. The spread in ΔSOC 

appears to be larger than the 

spread in ΔGSI. With a 

Spearman’s ρ of -0.02 (p = 

0.1037), no direct correlation 

between trends in CRD and SOC 

stocks is found. Some vertical 

lines appear due to a high 

number of points in the same 

area (e.g. points in NUTS2-region 

ES41 where barley is cultivated) 

being assigned the same ΔGSI in 

the matching process, but having 

different ΔSOC.  

 

Figure 5 shows the correlogram with the Spearman’s ρ of all variables taken into account in the 

analyses. From the correlogram can be derived that current CRD has a high correlation with 

median arable area, and a negative correlation with the fraction under organic farming and tillage 

intensity. This indicates that generally, higher CRD is found in areas with large farm sizes, a low 

fraction under organic farming and a low tillage intensity. The correlations of ΔCRD with climatic 

factors are showing higher positive trends in areas with arid and warm climates. Moreover, ΔCRD 

is positively correlated to age ratio and negatively correlated to EPS, indicating that the ΔCRD is 

higher in areas with aging farmer populations and a low environmental policy stringency. ΔSOC 

and ΔSOCrel show very few strong correlations with other variables. ΔSOC and ΔSOCrel is however 

positively correlated to OC and N, which is a sign that soils which are high in OC and N also facilitate 

higher ΔSOC and ΔSOCrel.  

 

From the correlation matrix can also be deduced that socioeconomic indicators such as EPS and 

RCI are generally correlated with higher precipitation, lower potential ET0, lower temperatures 

and lower elevation. Similar correlations are found for livestock intensity. Correlations of CRD, 

ΔCRD, ΔSOC and ΔSOCrel with shares of crop types involved in rotation will be laid out in more 

detail in section 3.4. 

Figure 4: Absolute change in SOC versus absolute change in GSI 
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Figure 5: Correlogram including all variables used in the analyses. 
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3.4 Relationships with crop types 

In order to check whether certain crop 

types are most often found in diverse 

rotations, and which crop types have 

the most positive effect on SOC stocks 

when included in a rotation the 

Spearman’s ρ of correlations between 

current CRD (GSI), ΔCRD (ΔGSI), ΔSOC 

and ΔSOCrel, and shares of crop types 

involved in rotation are shown in Table 

2. The asterisks indicate significance 

levels, with more stars indicating a 

lower p-value and thus a higher 

significance.  

 

Current CRD is most positively 

significantly related to root crops, 

pulses and rapeseed, indicating that 

these crops are most likely to be found 

in more diverse rotations. ΔCRD is 

most positively significantly related to 

pulses, and negatively to rapeseed and maize, showing that the ΔCRD is most strongly increasing 

in areas with many pulses being cultivated, and decreasing in areas with a large share of maize 

and/or rapeseed being cultivated. Although they can be considered confounding factors, ΔSOC and 

ΔSOCrel generally appear to be less strongly correlated to crop type, but there are still some 

statistically significant relationships. Both ΔSOC and ΔSOCrel are most negative in areas with a high 

share of cereals and root crops, and most positive in areas with a high share of fodder legumes, 

maize and sunflower. Although it was hypothesized, no statistically significant relation with ley 

(temporary grassland) is found. 

  

Table 2: Spearman’s ρ of correlations between current CRD, ΔCRD, 
ΔSOC and ΔSOCrel, and shares of crop types involved in rotation. 
Asterisks indicate significance: * p < 0.05, ** p < 0.01, *** p < 0.001 
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3.5 Model for predicting CRD 

The 6226 datapoints used for the 

Random Forest model for predicting and 

explaining variability in CRD are shown 

in Figure 6. The spatial spread in used 

datapoints shows an overall large 

spread across Europe, although there 

are a number of regions that either have 

a large concentration of datapoints, or 

completely lack any datapoints. The 

highest  concentrations of points is 

found in central Spain, France, Poland 

and the Czech Republic. The Alps, the 

Spanish, French and Greek 

Mediterranean coasts, western Ireland 

and northern Scandinavia have very few 

to no datapoints.  

 

Figure 7 shows the relative importance 

of each variable in the Random Forest 

model for CRD. Bars of significant 

variables (p < 0.05) are colored in. The 

overall R2 of the model is 0.731 (RMSE = 

0.028, ME = 0.00024, mean nodes = 

4028). The fraction of arable land under 

organic cultivation is the most 

important variable, leading to a 57.5 % 

increase in mean squared error 

(%IncMSE) of the model if this variable 

is removed. Median area is the second 

most important predictor, followed by 

mean annual temperature, mean annual 

precipitation and elevation. Overall, the 

most important categories of predictors 

of CRD are farm management, climate 

and socioeconomics, respectively. Soil 

does not appear to play any significant 

role in predicting variation in CRD.  Figure 7: Relative importance of variables in the RF model for CRD. 
Bars without a fill indicate that this variable did not contribute 
significantly 

Figure 6: Locations of datapoints used for the RF model for 
predicting/explaining variability in CRD 
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Figure 8 shows the partial dependence plots of the 8 most important predictors of CRD in the 

model. It is important to note that Random Forest models do not necessarily express causality, 

even though the partial dependence plots indicate the effect of the explanatory variables in the 

predicted variable. The fact that an explanatory variable may show a certain effect on the predicted 

variable could also be caused due to the opposite: the predicted variable affecting the explanatory 

variable, thus showing a certain correlation in the data.  

The partial dependence plots highlight the negative correlation of the organic fraction as an 

isolated variable with CRD. In contrast, median arable area corresponds positively to the 

magnitude of CRD. Climatic/topographic variables except AI and elevation have a strongly non-

linear impact, showing optimum values. The optimum values for mean annual temperature, mean 

annual precipitation and annual mean potential evapotranspiration are approximately 10°C, 600 

mm y-1 and 1000 mm y-1, respectively. CRD decreases with increasing elevation and AI. Subsidy 

intensity also has an optimum value leading to the highest predicted CRD, namely ~0.15. 

 

Figure 8: Partial dependence plots of the 8 most important variables in the RF model for CRD 
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3.6 Model for predicting changes in SOC 

Both Random Forest models for predicting changes in SOC have a low R2, indicating poor model 

performance. The model for ΔSOC has an R2 of 0.099 (RMSE = 0.198, ME = -0.004, mean nodes = 

3373) and the model for ΔSOCrel an R2 of 0.111 (RMSE = 1.071, ME = 0.002, mean nodes = 3369). 

Figures 9a and 9b show the relative importance of variables in the Random Forest model for ΔSOC 

and ΔSOCrel, respectively. Overall, initial OC and N are the most important variables in the model, 

and contribute significantly in both models. The model for ΔSOCrel has considerably more 

significantly contributing variables than the model for ΔSOC, regardless of having similar R2. Soil 

factors generally show the largest importance in predicting ΔSOC and ΔSOCrel, followed by climate, 

management and socioeconomics equally, and lastly crop types. Although not all having a high 

relative importance all socioeconomic variables showed a significant contribution to the model. 

Countries (NUTS_0) appear to have a remarkably large importance in predicting SOC changes, 

meaning that the predictions are somewhat country-dependent, even though the effect sizes of 

countries on the variation in ΔSOC and ΔSOCrel was found to be very small in section 3.2. CRD is 

the 10th most important predictor in the model for ΔSOCrel, and is a significant contributor. It is 

also the most important management predictor in this model. 

After the permutations which generated the relative importances with significances, two new 

Random Forest models were made for both ΔSOC and ΔSOCrel  with (1) the five least important 

variables removed and (2) all unsignificant variables removed, in an attempt to increase model 

performance. However, model performance could not be notably improved, thus the final models 

remained unchanged. It is very important to note that due to the low model performance of 

predicting ΔSOC and ΔSOCrel, and the observed high sensitivity of partial dependences to small 

changes to the model (underscored by intermediate model results in Appendix I), interpretations 

from the partial dependence plots from both models can only be made with proper caution and 

high uncertainty. The partial dependence plots of the 8 most important variables, except NUTS_0, 

Figure 9: a) Relative importance of variables in the RF model for ΔSOC, b) Relative importance of variables in the RF model for ΔSOCrel. Bars without a 
fill indicate that this variable did not contribute significantly 
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ranked by %IncMSE of the Random Forest models for ΔSOC and ΔSOCrel are shown in Figures 10 

and 11, respectively. As stated in section 3.5, the partial dependence plots do not necessarily show 

causality, but rather the relationship between the explanatory and the predicted variable within 

the context of the entire model.  

 

For the model for ΔSOC, only OC and N contribute significantly. There is a strong positive 

relationship between OC and ΔSOC up to an OC content of approximately 50 g kg-1, after which the 

line flattens. This indicates that according to the Random Forest model, soils which are high in OC 

may also have the largest positive SOC sequestration rate. There appears to be a strong negative 

relationship with N, which is contradictory to the positive relationship that has previously been 

found in the correlation matrix. Although unsignificant, AI and elevation appear to cause lower or 

negative ΔSOC at their extremes. Either very high or low mean annual precipitation relates to the 

most positive ΔSOC. pH and K-fertilization show positive and negative relationships with ΔSOC, 

respectively. K-content has a clear optimum of approximately 500 mg kg-1. 

 

The 8 most important predictors in the model for ΔSOCrel were all significant. The relationships of 

OC, N, AI, pH and K-content are similar to the model for ΔSOC. The relationship of precipitation 

with ΔSOCrel differs from that of ΔSOC in the sense that it does not have a high peak at large annual 

mean precipitation, indicating a largely negative relationship between precipitation and ΔSOC . 

Mean annual temperature does show an effect similar to that of precipitation in the model for 

ΔSOC, as it appears that either low or high temperatures relate to the highest ΔSOCrel. The 

relationship between mean annual potential evapotranspiration and ΔSOCrel is largely positive, 

with the line flattening at an ET0 of approximately 1200 mm y-1. The partial dependence plot of 

CRD for the model for ΔSOCrel is shown in Figure 12. The relationship of CRD to ΔSOCrel appears to 

be such that either a very low or a very high CRD relates to the highest ΔSOCrel.   

Figure 10: Partial dependence plots of the 8 most important variables in the RF model for ΔSOC 
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Figure 11: Partial dependence plot of CRD in the RF 
model for ΔSOCrel 

Figure 12: Partial dependence plots of the 8 most important variables in the RF model for ΔSOCrel 
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4. Discussion 

4.1 Variability of CRD across Europe 

According to the data derived from the FADN, CRD is currently highest in central Europe, 

particularly in eastern Germany, the Czech Republic and Slovakia. CRD is the lowest in the Alps, 

along the Mediterranean coast, Ireland and northern Scandinavia. This does not align with the 

hypothesis that the highest diversities would be in regions dominated by low-intensity farms. 

Comparing to a study by Debonne et al., 2022, in which farm intensities on a NUTS2-scale were 

determined, the regions with the highest CRD found in this study are dominated by medium-

intensity farms, and the regions with the lowest CRD are dominated by low-intensity farms. The 

results also contradict Cutforth et al., 2001, who found that diversity is generally lowest on highly 

productive and relatively flat land. Similarly, Merlos & Hijmans, 2020 found that CRD is lowest for 

common crops, which are usually grown on extensive and highly productive farms. This would 

suggest that larger farms generally engage in less diverse rotation systems. It is however 

important to consider that levels of CRD depend on the applied scale (Machefer et al., 2024; Merlos 

& Hijmans, 2020). As CRD is calculated in this study at the farm level and subsequently averaged 

for NUTS2 regions, with favoring bigger farms by using weights depending on farm size, it does 

not necessarily reflect the crop diversity at the landscape scale. At the same time, if the 

aggregations would not have been based on farm-level data, the levels of diversity would likely 

have been higher than farm-level diversity, as on a large-scale, the diversity between farms is often 

larger than the diversity within them (Merlos & Hijmans, 2020). As the scales used by Cutforth et 

al., 2001 and Merlos & Hijmans, 2020 closely resemble farm-level diversities, comparison to these 

studies is appropriate. The same holds true for Ricciardi et al., 2021 found based on a meta-

analysis that overall, smaller farms have higher crop diversities, as subsistence farmers cultivate a 

greater diversity of crops to meet nutritional needs. However, Ricciardi et al., 2021 also 

acknowledges that larger farms have more capacity to diversify their cropping systems. Apart 

from maintaining soil and plant health, this can lead to improved income stability, as economic 

risks are mitigated (Parré et al., 2024; Ricciardi et al., 2021). This may explain the strong positive 

relationship between median arable area (farm size) and CRD in Europe that has been found in 

this study. Taking into account the findings of a small but generally increasing trend in CRD across 

Europe, this may suggest that the general megatrend of increasing productivism (Debonne et al., 

2022) is outpaced by the efforts of farmers to mitigate economic risks by diversifying their crops. 

At the same time, the positive correlation between farmer age ratio and the trend in CRD does 

pose a potential risk to the still currently increasing trend of higher diversities across Europe, as 

this is possibly indicates that CRD is decreasing among young farmers. 

 

Although not fully aligning with the distribution of organic farms across Europe mapped by 

(Debonne et al., 2022), the Random Forest analysis for predicting and explaining the variability of 

CRD has shown a strong negative relationship with the fraction under organic cultivation. This is 

not in agreement with Barbieri et al., 2017, who found that organic systems usually have greater 

CRD, as due to the limits of fertilizer use in organic systems, organic farmers are forced to adopt 

alternative methods for pest control and nutrient management. However, Chongtham et al., 2017 

found that the main factor affecting the choice of organic farmers which crops to grow, is market 

price and demand. As organic farming can entail high production costs with relatively low yields, 

organic farmers may specialize in only one or a few crops, to maintain economic viability. 
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Therefore, organic farmers may be more specialized in one crop when compared to conventional 

farmers. Another plausible explanation for why a negative correlation between CRD and organic 

farming is found, is that the prevalence of organic farms tends to be larger in marginal regions, e.g. 

mountainous areas or unfavorable climates (Helfenstein et al., 2024; Willer et al., 2024), where 

CRD is generally lower because of arable farming being less suitable. Examining this more properly 

would require comparing CRD of organic versus inorganic farms in the same region, which is not 

possible with the available aggregated data. 

 

The climatic optima for the highest CRD that resulted from the Random Forest models align with 

the lowest CRDs being found in regions with the largest climatic extremes. This indicates that 

climate is  a factor that can limit the level of CRD that can be practiced. In regions with challenging 

or extreme climates, the range of crops which can be cultivated is more narrow (Golla, 2021), e.g. 

due to high levels of soil degradation (Melesse, 2007) and an unfavorable water balance. Also, in 

dry climates, extended periods of fallow or the cultivation of forage crops for livestock may be 

necessary (Gorooei et al., 2023), which limits the number of different crops which can be included 

in rotation systems. The length of the growing season also impacts to which extend CR systems 

can be diversified, because of greater flexibility and time for sequential cropping. 

 

Subsidy intensity appears to be the most important socioeconomic variable incorporated in this 

research for explaining variability in CRD. The partial dependence of subsidy intensity on the 

Random Forest model shows that CRD increases strongly with increasing subsidy intensity, up to 

a certain point after which it slightly decreases and stabilizes. Without, or with low subsidies, 

farmers may not have the economic ability to adapt more diverse crop rotation systems, as 

changing or diversification of crop rotation systems usually requires economic investments 

(Santos & Gomes, 2022). These investments  can include the acquisition of new seeds, modifying 

farming equipment and accessing new markets. When subsidies increase, farmers may be more 

incentivized to diversify their cropping systems. However, high subsidy levels may also be 

associated with stricter regulations or conditions that push farmers toward specific cropping 

patterns, reducing flexibility in farmers’ choices between different systems (Shrestha et al., 2020; 

Theriault & Smale, 2021).  

 

The results in section 3.4 have shown discrepancies between crops which are found to be most 

commonly cultivated in diverse rotational systems versus crops which are increasingly grown in 

diverse systems. Crops which are found to be most commonly in diverse systems are pulses, 

rapeseed, root crops and sunflowers, whereas positive trends are mainly found for areas with a 

high share of pulses and cereals in rotation, and negative trends are found mainly for maize 

rapeseed and root crops. Ballot et al., 2023 identified the main crop sequence patterns across 

Europe, and shows that rotational schemes of these four crop types in combination with cereals 

are found where in general, high CRDs were found as well. The reason that cereals did not correlate 

with higher CRD is because cereals are also commonly grown in monocultures. However, the 

significant positive trend in CRD in areas with a high share of cereals grown may indicate that 

rotations with cereals are getting increasingly diversified, or that cereals are less commonly grown 

in monocultures.  
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4.2 Main factors driving SOC changes across Europe 

Although the Random Forest models for ΔSOC and ΔSOCrel had a similar model performance and 

similar variable importances, the model for ΔSOCrel had much more significantly contributing 

variables than the model for ΔSOC. This is likely explained by the smaller variance of ΔSOCrel values 

due to the stricter limits for points to be removed  for ΔSOCrel than for ΔSOC. Due to the ΔSOCrel 

having a smaller spread, it means there is less overall variation in the data that is unrelated to 

predictor variables. This can make it easier for the permutation process to detect significant 

relationships, because noise has been reduced. 

 

Both absolute and relative changes in SOC were found to have strongly local variations, indicating 

that large-scale differences are insignificant. De Rosa et al., 2024 found that humid and cold 

climates better facilitate SOC stock growth, which potentially explains why climate was found to 

be an important predictor of changes in SOC in the RF models. However, the poor model 

performance implies that interpreting partial dependences of isolated model parameters should 

be done with caution. The RF models showed a strong and significant feature importance for OC 

and N, indicating that initial OC and N content are important variables for predicting SOC stock 

changes. The findings that soil and climate factors are most important in regulating SOC stock 

changes aligns with research by Edlinger et al., 2023. 

 

Variables excluded from the RF models were soil texture (sand, silt and clay fractions) and Fe/Al-

oxalate content (due to a high number of NAs). It is recommended that future research includes 

these variables, as these influence SOC stabilization and thus may be important in predicting SOC 

stock changes (Ichinose et al., 2025; Van De Vreken et al., 2016). Possibly, models could be made 

with a subset of the data, to overcome the issue of a high number of NAs.   

 

Previous research has shown that grassland has a bigger potential of carbon sequestration than 

cropland (Conant et al., 2001; De Rosa et al., 2024), substantiating the hypothesis that points with 

a larger share of ley involved in rotation also show relatively larger increases in SOC stocks. 

However, no significant correlation between ley and changes in SOC stocks was found in this 

research. Previous research also found that incorporating (fodder) legumes in rotation 

contributes to increasing SOC (Ouda et al., 2018; Yang et al., 2024). Although a significant positive 

relationship with ΔSOC and ΔSOCrel was found, it is only very small. Sunflower showed the largest 

positive correlation with ΔSOC and ΔSOCrel, in disagreement with (Bowman et al., 2000), who 

found that cultivating sunflower leads to depletion of SOC due to the requirement of tillage. 

Simultaneously, sunflowers are relatively high residue producing crops, because the residues are 

neither used as feed for livestock nor suitable for use as fuel due to a low energy value per unit 

mass (Babu et al., 2014). Given that crop residue retention is one of the most promising methods 

for enhancing agricultural SOC stocks (Fu et al., 2021; Karlen et al., 2019), this might explain why 

sunflowers were found to enhance SOC levels in this study. 
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4.3 Effect of CRD on changes in SOC stocks 

Although previous research has found from small-scale field experiments that increasing CRD is 

beneficial to soil health and increasing SOC stocks (Chahal et al., 2021; Maiga et al., 2019; Schmer 

et al., 2020), this effect was not found in this study. Directly plotting SOC changes against changes 

in CRD lead to a low and insignificant correlation, although it should be taken into account that 

the random effect of variability between different soil types and climates is not accounted for. Even 

though CRD contributed significantly as an explanatory variable in the Random Forest model for 

ΔSOCrel, the poor model performance did not allow for interpreting relationships with a high level 

of certainty. The partial dependence of CRD in the model for ΔSOCrel showed the exact opposite 

relationship than what was hypothesized, namely that ΔSOCrel is highest for either very low or very 

high CRD. The disagreement with literature, low model performance and considerably small 

variable importance in the model makes this result an insufficient basis to draw any conclusions. 

 

No evidence to support the hypothesis that increasing CRD would, until a certain level, increase 

SOC stocks on a European level could therefore be found. There is a high likelihood that the reason 

for the lack of a relationship being found is due to the quality of the OC measurements in the LUCAS 

database. The high variability between years, together with the large potential measurement 

errors compared to the expected changes, likely caused a large amount of noise that the Random 

Forest models were unable to effectively distinguish from true patterns in the data. 

 

4.4 Overcoming limitations in using LUCAS data for SOC analyses  

Using the 3-step matching technique for adding FADN farm management data to the LUCAS 

database worked successfully in almost all cases. For LUCAS points that could not be allocated any 

farm management data, this meant that not enough data from farms cultivating the crop specified 

in the LUCAS data within the same country was available. Given that 99.4% of LUCAS points could 

be allocated FADN data within the first data matching step, and under the assumption that farm 

management indicators are rather consistent for the same crop, in the same altitude class, in the 

same NUTS2-region, it is expected that this is a reliable method to combine farm management 

data from the FADN to the LUCAS database. However, in order to fully assess the accuracy, it may 

be necessary to make a comparison with management observations from a variety of farms on 

which LUCAS samples are taken. Direct farm-level data (in contrast to aggregations) from the 

FADN database cannot be used for this, since information on the exact locations of the farms is not 

available due to privacy-sensitivity.  

 

Apart from the assumptions that have to be made in order to match FADN data to LUCAS, another 

factor that limits the usability is the data quality of LUCAS itself. The main principle of LUCAS is to 

build a harmonized large-scale dataset in which measurements are done through identical 

methods, even though they are carried out by a large number of different surveyors. However, an 

extensive LUCAS data evaluation carried out by Hiederer, 2020 showed that although most 

parameters are generally sufficiently reliable for large-scale analysis, discrepancies are found 

between e.g. the limits of detection of the laboratory analysis and file formats in which data was 

reported. Hiederer, 2020 particularly casts a doubt about the reliability of the 2012 survey which 

was carried out in Romania and Bulgaria. It is also underscored that OC data has remarkable 

extremes on both ends (i.e. it is heavy-tailed), and large variability between repeated samples. This 
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was also observed in this research, and indicates that there is considerable variance in changes of 

SOC stocks.  

 

In order to account for unrealistic changes, the removal of points with a ΔSOC or ΔSOCrel of -3 to 3 

g C kg-1 y-1 or beyond -50 – 100% across the entire time period, respectively, likely decreased the 

amount of noise in the dataset. However, these limits may still have been too broad. Reijneveld et 

al., 2009 quantified SOC stocks and changes in the Netherlands over 20 years, and found that SOC 

stocks in arable land changed approximately 0.08 g kg-1 y-1 with a standard error of 0.02 g kg-1 y-1. 

In heavy peat soils, which are prone to high levels of SOC degradation, they hardly found any 

decreases of more than -2 g kg-1 y-1. Important to note is that these peat soils were used as 

permanent grassland. The findings of Reijneveld et al., 2009 underscore that yearly changes in SOC 

are small, especially compared to the measurement error. This increases the measurement 

uncertainty (De Rosa et al., 2024).  Beillouin et al., 2023 found after a global meta-analysis that 

exclusively agricultural land management can cause relative changes of SOC stocks between 

approximately -25 – 100% (after removing an extreme outlier). More extreme changes are 

therefore suggested to always be at least in part due to extreme changes such soil transportation 

or land use change, which are factors which the Random Forest models in this study do not account 

for.  

 

To further reduce noise and increase the reliability of the data, future research may need to 

consider including more strict limitations on points to be included in the analysis. To limit the risk 

of exclusion of reliable points that coincidentally happen to be outliers, and to limit the risk of the 

dataset being severely thinned out, comparisons could also be made to e.g. bulk density (Iheshiulo 

et al., 2023; Ouda et al., 2018) and nitrogen content (Bi et al., 2023; Manzoni & Cotrufo, 2024) to 

check for unrealistic OC values, as these variables are strongly related to OC. This may also be 

applied to the analysis of SOC stocks in general, where changes in bulk density and N can 

potentially function as auxiliary data to more accurately estimate changes in SOC stocks.  

 

It is however is not only sampling and laboratory analysis that create a level of uncertainty, but 

also in-field observations. For example, to ensure that only cropland was included in the analysis, 

all LUCAS points with a permanent grassland land cover class were removed. Yet, it is plausible 

that temporary grasslands (ley) may have occasionally have been misclassified as permanent 

grassland, as grasslands being in place for a duration of 5 years still must be classified as ley 

(Nevens & Reheul, 2003; Upcott et al., 2023), while the duration the grassland has been in place 

can be difficult to estimate in-field. Remote sensing may be a usable tool in assessing the duration 

grasslands have been in place (Andreatta et al., 2022; Yin et al., 2018), which may be 

recommendable for deciphering temporary from permanent grasslands for future LUCAS surveys, 

in contrast to in-field observations. 
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5. Conclusion 

In this study, a large-scale analysis on the spatial and temporal variability of CRD in Europe was 

carried out, and the effect of increasing CRD on SOC stocks was investigated. Data from the LUCAS 

and FADN databases was successfully combined, with 98.4% of LUCAS datapoints being allocated 

farm management data. From the FADN data, it was found that current levels of CRD in Europe are 

highest in Central Europe and lowest in the Alps and along the Mediterranean Coast. Levels of CRD 

have been largely increasing between 2009-2020, showing an increasing trend across Europe. The 

increasing trend suggests that that the general megatrend of increasing intensification and 

specialization is outpaced by farmers’ efforts to mitigate economic risks and improve 

sustainability by diversifying their cropping systems. The Random Forest model for explaining 

variability in CRD had a high model performance, with the most important predictors being the 

share of arable area under organic farming,  farm size and various climatic factors. In contrast, the 

Random Forest models for explaining SOC stock changes had a low model performance, likely 

caused by high variability and noise within the OC measurements in LUCAS. Soil OC and N content 

were the found to be most important significant predictors, suggesting a high likeliness that the 

capacity to increase SOC stocks is largely dependent on the initial OC and N content. The low model 

performances and lack of direct correlations between ΔCRD and ΔSOC that could be established 

means that the effects of varying levels of species diversity in rotational systems on SOC stocks 

still remains unclear. In future research, OC data in the LUCAS database should be further refined 

in order to reduce noise and uncertainty. This will further facilitate clearing up what still remains 

unknown about the effects of CRD on SOC stocks, so that concrete policy and management 

recommendations can be made to help secure healthy soils and sufficient food production, even 

in a changing climate.  
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Appendix I: Intermediate Model Results 

Figures 13a and 13b show the relative importance plots of intermediate results of the Random 

Forest models for ΔSOC and ΔSOCrel, respectively. It should be noted that the models and their 

input data requirements have changed numerous times during the research, and that these models 

were the last intermediate versions before they were finalized. The plots did not yet have the 

improved variable labelling and categorical coloring. Also, these models were not permuted due 

to time limitations, so variable significance was not yet assessed. The main differences of these 

models compared to the final models, is that they did not have points with a ΔSOCrel beyond -50 

and 100 % across the entire time period removed yet, and also soil OC content was not included 

as an explanatory variable. The R2 of the models was 0.15 and 0.07, respectively. RMSE and ME 

were not computed for these models. 

 

When comparing these models to the final models used in this study, some clear and large changes 

can be observed. Where e.g. N, NUTS_0 and aridity index remained some of the most important 

variables in the final models, variables such as EC and share of root crops (for ΔSOCrel) have much 

less variable importance in the final models. Overall, the variable importances of the highlighted 

intermediate model for ΔSOCrel changed most strongly by far, which can be explained by only 

points with extreme ΔSOCrel values being removed in the final models. Figures 13a and 13b  show 

the partial dependence plots of the 12 most important variables of the intermediate Random 

Forest models for ΔSOC and ΔSOCrel, respectively. It can be clearly noted that where some variables’ 

partial dependences are similar to the final models (e.g. precipitation and K), some partial 

dependences are very different or even inverse (e.g. N, pH and rot (CRD)). Apart from some 

variables’ partial dependence differing strongly to those of the final models, there are also major 

differences between these models, for example for elevation, aridity index and subsidy intensity. 

The large differences between the intermediate and final results underscore the very high 

sensitivity of the models to (minor) changes in input data.  

Figure 13: a) Relative importance of variables in an intermediate RF model for ΔSOC, b) Relative importance of variables in an intermediate RF model 
for ΔSOCrel.  
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Figure 14: a) Partial dependence plots of the 12 most important variables in the RF model for ΔSOCrel and 
ΔSOCrel 
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Appendix II: Use of Artificial Intelligence 

Artificial Intelligence (AI) has been used as an aide in writing code, solving issues in R and 

occasionally finding papers based on prompts that specifically defined the target. Any code or 

other information provided by AI has been carefully checked. AI has not been used for generating 

any written text in this thesis. The author declares that the use of AI has been within the guidelines 

set by Wageningen University and the Soil Geography & Landscape group. 


