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Abstract

The current shift towards increased intensification and specialization of European agricultural
systems may lead to short-term yield benefits, but poses a threat to maintaining yield, soil health
and economic stability in the long-term. Diverse cropping systems are expected to increase soil
health and maintain yield, even under adverse climate conditions. Crop rotation is an example of
such a diverse cropping system, which has been widely used all over Europe for centuries. Yet,
there is a lack of studies on the spatial and temporal variability of crop rotational diversity (CRD)
across Europe. Past research has predominantly been carried out in the United States and Asia,
and has focused on comparing monoculture to a crop rotation system, with different levels of
species diversity within crop rotation systems being largely overlooked. In this research, 6226
observations from the LUCAS database are be combined with farm management data from the
Farm Accountancy Data Network (FADN) collected over a time span of 11 years, as well as with
climatic and socioeconomic variables. Based on this combined dataset, a large-scale analysis on
the spatial and temporal variability of CRD in Europe was carried out, and the effect of increasing
CRD on SOC stocks was investigated using Random Forest modelling. Current levels of CRD in
Europe were found to be highest in Central Europe and lowest in the Alps and along the
Mediterranean Coast. Overall, levels of CRD have been increasing between 2009-2020. The
Random Forest model for explaining variability in CRD had a high model performance, with the
share of arable area under organic farming, farm size and climatic factors being the most
important predictors. The Random Forest models for explaining SOC stock changes had a low
model performance, likely caused by high variability and noise within the LUCAS data. Soil OC and
N content were the most important significant predictors of changes in SOC stocks. The low model
performances and lack of established direct correlations between ACRD and ASOC means that the
effects of varying levels of species diversity in rotational systems still remains unclear. OC data
from LUCAS should be further refined in future research, in order to reduce noise and uncertainty
and for clearing up what still remains unknown about the effects of CRD on SOC stocks, so that
concrete policy and management recommendations can be made to help secure healthy soils and
sufficient food production, even in a changing climate.
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1. Introduction

CD: Crop Diversity
CR: Crop Rotation
CRD: Crop Rotational Diversity

Over the last decades, agricultural production systems have become increasingly specialized and
intensified (Baldwin-Kordick et al., 2022), for example through increased fertilizer use (Tilman et
al,, 2002) and the reduction of crop diversity in rotational systems (Baldwin-Kordick et al., 2022;
Barbieri et al., 2017). Although this intensification can lead to short-term increased productivity
(Hufnagel et al., 2020), it can impose negative long-term effects on soil health (Baldwin-Kordick
et al, 2022; Tilman et al., 2002) and the sustainability of the cropping systems themselves
(Hufnagel et al., 2020). In order to maintain soil health and ultimately crop yields, especially in
light of a growing demand for food production (Tilman et al, 2011) and the threat posed by
climate change (Jagermeyr et al., 2021; Kumar, 2016; Rezaei et al., 2023), a shift towards more
sustainable and future-proof agricultural systems is necessary (Bowles et al., 2020; Helfenstein et
al,, 2024; Yang et al., 2024).

Diversification of cropping systems is a renowned method for increasing soil health (Mortensen &
Smith, 2020; Nunes et al,, 2018; Yang et al., 2024). The use of a diverse cropping system enhances
soil structure due to diverse root structures (Bodner et al, 2021), supports rich microbial
communities (A. Williams et al., 2023), and mobilizes a wider range of nutrients (Smith et al,,
2023). Moreover, crop diversification reduces the risk of climate change-induced yield reduction
(Bowles et al.,, 2020; Bybee-Finley et al., 2024; Isbell et al., 2017; Marini et al,, 2020) and increases
resilience against pests and diseases (Isbell et al.,, 2017). Crop diversity (CD) can be increased
through a number of methods, including the implementation of cover crops, intercropping or crop
rotation, of which the latter is a commonly used cropping system that involves cultivating a varying
sequence of different crops, in contrast to monoculture (Boincean & Dent, 2019; Y. Liu et al., 2023).
Crop rotation (CR) is an effective, economic (Boincean & Dent, 2019) and sustainable system for
maintaining and improving yield and soil physical and hydraulic properties under adverse
growing conditions (Boincean & Dent, 2019; Costa et al.,, 2018; Degani et al., 2019; Kluger et al,,
2022; Ouda et al,, 2018).

Another important benefit of CR is the potential to increase carbon sequestration in soils (Lal,
2004a). Carbon sequestration has great potential in mitigating climate change as increasing soil
organic carbon (SOC) stocks can significantly reduce atmospheric CO; (Lal, 2004b; Lugato et al,,
2014). Several meta-analyses have emphasized this by finding positive effects on SOC stocks when
shifting from a monoculture to a CR system (X. Liu etal., 2022; McDaniel et al., 2014; Schmer et al,,
2020; Zhengetal., 2023). However, it remains unclear whether these benefits keep increasing with
increasing levels of crop rotational diversity (CRD) (Isbell et al., 2017), i.e. the species diversity
within a CR system. It is suggested that the effect may depend on the species involved, with only
high residue-producing crops causing a significant effect (Omay etal., 1997). Chatterjee etal., 2016
found that only increasing CRD does not significantly increase SOC stocks. On the other hand,
considering the strong negative correlation between bulk density and SOC (Fowler et al., 2023;
Heuscher et al., 2005; Tsui et al.,, 2013), Theshiulo et al., 2023 found that bulk density decreases
with increasing CRD, which could be an indication that SOC stocks do in fact increase with
increasing CRD.



In many regions of Europe, CR is embedded in traditional farming practice (Kollas et al., 2015;
Kutsch et al,, 2010). However, most research on the effects of CR is focused on North America,
Africa and Asia, with only 4% of European case studies involved in several meta-analyses
(Iheshiulo et al., 2023; Li et al., 2024; McDaniel et al., 2014; Zheng et al., 2023). This shows that
there is still a shortage of European studies. Recently, research has been conducted on the spatial
distribution of absolute CD (Machefer et al., 2024; Merlos & Hijmans, 2020), i.e. the number of
species within a unit of area, and dominant crop sequences in rotation in Europe (Ballot et al,,
2023). However, there is still a knowledge gap about the current trend and spatial variability in
the diversity of crops in rotational systems. In addition, as indicated by Smith et al., 2023, most
research on CRD is based on small-scale experiments or focuses on only comparing monoculture
to a CR system, i.e. not on different levels of rotational diversity.

CD in Europe is threatened by the ongoing trend of agricultural specialization and intensification,
as crops are increasingly grown in shorter rotations or even in monocultures (Costa et al., 2018;
Marini et al., 2020; Stein & Steinmann, 2018). This trend has been described by Helfenstein et al.,
2024 as a shift towards a productivist pathway characterized by high-intensity, low-diversity
farming. Another threat to CD in Europe is caused by the dropping number of farmers in Europe,
resulting in a relative increase in farm sizes (Piet, 2016). As CD in general is previously found to
be negatively correlated with farm size (Machefer et al., 2024; Ricciardi et al., 2021), this suggests
decreasing levels of CD. Accordingly, CRD may also be decreasing, under the assumption that in
areas with a high CD, high CRD is found as well. On the contrary, increasing awareness among
farmers about the benefits of diverse agricultural systems, such as increased soil health and lower
fertilizer and pesticide requirements, incentivizes farmers to invest into the implementation of
such systems (Olesen et al., 2011). This may compensate for CD loss from the shift towards more
productivism, or possibly even outweigh this trend.

In this study, the knowledge gap about the spatial and temporal variability of CRD in Europe and
the effects on SOC stocks will be addressed. The spatial and temporal trends of CRD in Europe over
the last 15 years will be determined by using data from the Farm Accountancy Data Network
(FADN) collected by the European Commission (European Commission, 2024). This will be done
on a NUTS2-region scale, which closely resembles provincial area units. Furthermore, these
results will be combined with data on a number of soil properties from the LUCAS Soil database
(Orgiazzi et al., 2018), climate data (Beck et al., 2023; Fick & Hijmans, 2017; Zomer et al., 2022)
and socioeconomic variables (Debonne et al.,, 2022; European Commission, 2019; Kruse et al,,
2022; T. G. Williams et al., 2024). Random Forest models will be made that allow the exploration
of possible relationships between CRD and soil, topography, farm management climate and
socioeconomics, and how different levels of CRD affect SOC stocks on a European level. It is
hypothesized that in Europe, CRD will be highest in regions dominated by small and low-intensity
farms, with an overall decreasing trend due to the general shift of agricultural systems towards
higher intensity farming and increased specialization. Moreover, it is expected that increasing CRD
will have positive effects on enhancing SOC stocks, which the effect stagnating a certain level of
diversity. Mapping the current levels and the trend in CRD across Europe, uncovering what
variables relate most strongly to the spatial distribution of CRD levels, and identifying the effect
on SOC stocks, offers insight in how the sustainability of agricultural systems in Europe can be
improved.



2. Methodology

Before the data analysis of this research could advance, farm and soil data were preprocessed so
that they could easily be implemented in the analysis. A large part of the preprocessing involved
the collection of the farm management data from the FADN database. Important to note is that due
to the privacy-sensitive nature of the FADN database, all data collection from the FADN database
was carried out by dr. Julian Helfenstein. After the farm management data was collected, some last
preprocessing steps were carried out to harmonize NUTS2 region codes to all be in the 2021
format (Eurostat, 2022b). The main analysis of this study can be divided into three sections. The
first part of the methodology was devoted to the mapping of the current CRD and trend across
Europe. Next, CRD and ASOC were further analyzed by creating Random Forest models based on
soil, farm management, climate and socio-economic variables. Figure 1 shows a flowchart which
highlights the main steps of the research.
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Figure 1: Schematic overview of the methodology

2.1 Data preprocessing

To protect farmers' privacy, farm-level data from the FADN was aggregated by NUTS2 region,
altitude class, and crop type. A single prediction of farm management indicators was generated
for each unique combination of these factors. This prediction is based on all farms in that same
NUTS2 region and altitude class, which cultivated the same crop. Management indicators were
predicted using weighted medians and standard deviations, in order to increase the aggregations’
resemblance to reality as much as possible. The weights were determined for each farm by taking
into account both the share of the cultivated crop within the total area of the farm, and the share
of the cultivated area of the crop, relative to the total area in the NUTS2 region on which this crop
is cultivated (Eq. 1):



area; area;
w; = sqrt( * )
UAA; total area

(Eq. 1)

where w; is the weight of each farm, areaq; is the area on which the crop is cultivated on the farm
and UAA; is the total utilized agricultural area of the farm. Total area is the sum of all areas on
which the crop is cultivated in the region (= Y.area;). For analyzing the effects of the shares of
different crops in rotation, the same crop categories used in Ballot et al., 2023 are used in this
study (cereals, fodder legumes, maize, pulses, rapeseed, root crops, sunflower & ley (temporary
grassland)), with the addition of industrial crops and vegetables. Different farm management
indicators have been collected and derived from the FADN database: mineral fertilizer use,
livestock density, area fraction under organic farming, crop intensity and two crop (rotational)
diversity indicators: Richness and the Gini-Simpson Index.

Richness (R) was calculated as the weighted median number of arable crops per specified area,
while CRD was determined using the Gini-Simpson Index (GSI). Unlike richness, which only counts
the number of crops in rotation, GSI also considers crop abundance and distribution, providing a
more accurate measure of true diversity. In short, the Gini-Simpson index is a widely used measure
for approximating species diversity (Guiasu & Guiasu, 2012) by calculating the probability that
two crops chosen at random are not part of the same species. GSI is also used in e.g. the FAO
agroecology performance assessment tool (FAO, 2019). It was specifically chosen to use the GSI
instead of the standard Simpson index, because the GSI represents the complimentary proportion
of the standard Simpson index, thus putting the emphasis on diversity rather than uniformity. In
this study, GSI is used to measure crop diversity in rotational systems, where a higher GSI signifies
greater CRD. In essence, GSI is calculated as one minus the weighted mean of the proportional
abundances of each crop, where the proportional abundances themselves simultaneously act as
the weights (Eq. 2):

GSI = 1-YR p? (Eq. 2)

where R is richness, i.e. the total number of crops cultivated in the specified region, and p; is the
proportional abundance of each crop.

Mineral N, P, K fertilizers are calculated in kg ha-1. Livestock density is calculated as the number of
standard livestock units per ha. Standard livestock units are determined based on the feed
requirement as compared to that of one adult cow (Eurostat, 2024). Organic farming is calculated
as the crop-specific share of area under arable organic cultivation in the given region, thus equal
to a probability.

The calculations of the crop intensity index (CI) were based on the C input of each crop category
involved in the rotations. High crop intensities were assigned to regions with an abundance of
crops having a low soil C input and or a high soil disturbance during planting, cultivation and or
harvest (Engel etal., 2017; Novelli et al., 2017). More specifically, vegetables, maize and root crops
were given a high CI; cereals, pulses sunflower and industrial crops a moderate CI; and fodder
legumes and ley a low CL.



Although the FADN database does not contain any direct data on tillage, tillage was still deemed
relevant for this study as it is often found that tillage impacts SOC stocks (Haddaway et al., 2017;
Nunes et al,, 2020). Tillage data (from 2016) was acquired from Eurostat (Eurostat, 2020). The
data contains the areas of conventional, conservation, and zero tillage for each NUTS2 region, farm
size category, and farm type combination. Tillage intensity (TI) was calculated as the area fraction
under conventional tillage plus the area under conservation tillage times a factor of 0.2 (Eq. 3).
No-tillage is not included in the equation, as the TI of no-tillage is 0 by definition.

TI = fconventional + 0.2 * fconservation (Eq- 3)

Therefore, a value of 100 indicates only conventional tillage being practiced in the specified area,
whereas 0 indicates only no-tillage.

After gathering the farm management data, the LUCAS datasets were prepared for further analysis.
The column structure of the LUCAS datasets was harmonized, and NUTS2 region codes were
updated to all be in the 2021 format, in three steps. First, NUTS2 regions of which only the code
had changed, were simply renamed. Points located in NUTS2 regions which were split up or
merged, got assigned an updated NUTS2 region based on their NUTS3 codes. Lastly, points located
in NUTS2 regions of which the geometry was heavily changed, were assigned a new NUTS2 region
code by matching the 2021 region code based on overlaying a NUTS2 shapefile over the specified
points. Points with an invalid land cover (LC) class, were removed, as matching these points with
the FADN data would be impossible in a later stage. NUTS2 codes present in the provided FADN
dataset were also harmonized with the updated LUCAS datasets.

2.2 Variability and trend in crop rotational diversity

For assessing current CRD across Europe, the weighted mean GSI for the most recent year (2020)
was determined for each country and NUTS2 region and mapped using the ggplot2 R package
(Wickham, 2016). For the NUTS2 level data, the years 2018, 2019 and 2020 were aggregated
under the assumption that the GSI did not change significantly between these years, in order to
have sufficient data available for as many NUTS2 regions as possible.

The trend in CRD (absolute change in GSI in % per year) was calculated for each country and
NUTS2 region based on linear regression from the yearly aggregations of weighted mean GSI. The
standard deviations were calculated and the p-values were derived from t-tests within the context
of alinear regression model with o = 0.05. For NUTS2 regions that were split at some pointin time,
the GSI of the combined NUTS2-region was used for each of the breakaway regions, in order to still
be able to determine a trend for these regions. For three NUTS2 regions (HR02, HRO5 & HRO06),
only data from 2015 and 2020 was available, therefore t-tests were not applicable to assess
significance for the trends in CRD for these regions, as these require at least three data points. To
solve this issue, a z-test was carried out following Eq. 4, after which the p-values were determined
using the pnorm() command in R.

7=2"

f1—Hp (Eq. 4)
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Where Z is the z-statistic, [ithe weighted mean GS], o the standard deviation and n the sample size
for each of both years. An assumption that must be made for using z-tests is that the data is
normally distributed, with a minimum suggested sample size of n=30-50 (Pocock, 2006). Given
the large mean sample size of n = 438 and following the central limit theorem, the required
assumption is made that the data for these three NUTS2 regions is normally distributed.

To determine the effect size, i.e. how much of the variation of CRD is attributable to differences in
countries and NUTS2 regions, the n2-statistic was calculated. The n2-statistic can be calculated
using ANOVA, under the assumption that the data is normally distributed and that variances are
equal. Normality of the data is assumed given the median sample sizes of countries and NUTS2
regions to be 243 and 1397, respectively. However, it was found through a Levene’s test that the
variances between countries and NUTS2 regions are unequal, therefore an ANOVA was not
considered suitable (Kim & Cribbie, 2018). For this reason, a Kruskal-Wallis test was used instead
for calculating the effect sizes. As only one mean GSI and a standard deviation was available for
each area, performing a Kruskal-Wallis test using only these means would strongly underestimate
the spatial variation. Therefore, based on a normal distribution and using the standard deviations,
100 random simulations of the mean GSI were carried out for each NUTS2-region and country.
The Kruskal-Wallis test was then done based on these simulated values. The n32-statistic was
subsequently calculated according to Eq. 5 (Tomczak & Tomczak, 2014).

2 H—-k+1

n° = (Eq. 5)

n-k

Where H is the Kruskal-Wallis test statistic, k the number of groups (areas) and n the total number
of (simulated) values. Suggested interpretations for 12 are: 0.01-0.06 (small effect), 0.06-0.14
(moderate effect) and 20.14 (large effect) (Kassambara, 2023).

2.3 Climatic and socioeconomic variables

For allowing further in-depth analysis of the variation of CRD and variation of changes in SOC
stocks across Europe, different climate and socioeconomic data that was considered to potentially
be relevant, was gathered. Climate may impact levels of CRD due to differences in water availability
and varying lengths of growing seasons, where longer growing seasons allow for longer and more
diverse rotation schemes. Policy incentives and favorable economic conditions may cause farmers
to implement higher levels of CRD (Bowles et al.,, 2020; Mortensen & Smith, 2020). Climate data
was extracted from GeoTIFFs based on the point locations in LUCAS 2018. Climatic variables
include annual mean precipitation and temperature (Fick & Hijmans, 2017), annual mean
potential evapotranspiration and aridity index (Al) (Zomer et al.,, 2022), and Képpen climate
classifications (Beck et al., 2023). The coordinate system used throughout the entire research is
WGS84 (EPSG:4326). Socioeconomic variables were added to the master dataset based on either
NUTS2 regions or countries, depending on the level of detail of the socioeconomic data.
Socioeconomic variables used in this study are subsidy intensity, population density and GDP per
capita (T. G. Williams et al., 2024), Regional Competitiveness Index (RCI) (European Commission,
2019), economic farm size typology (EFS) and age ratio (ratio old farmers (>55) to young farmers
(<35)) (Debonne et al,, 2022) and Environmental Policy Stringency (EPS) (Kruse et al.,, 2022).



2.4. Combining FADN and LUCAS

Due to issues with the standard elevation data in LUCAS, new elevation data was extracted using
get_elev_point() from the elevatr R package (Hollister et al.,, 2023). From the newly extracted
elevation data, each datapoint was assigned an altitude class matching the altitude classes in the
farm management data (1 = <300 m, 2 = 300-600 m, 3 = 600< m). To make sure only agricultural
land is included in the analysis, all data with a non-agricultural land use class (# land use class
U111 or U112) was removed. Also, all datapoints with a non-arable (permanent) crop land cover
(LC) class were omitted. This included all points with permanent grassland not used in rotation
(Costa et al., 2018; Eurostat, 2022a).

The linking of the FADN data with the LUCAS data was conducted in 3 steps. First, based on exact
matches of NUTS2 region, LC class and altitude class between LUCAS and FADN datapoints, FADN
data was added to the LUCAS points to generate one large combined dataset. The FADN data
included fertilizer use, livestock units, share of organic farms and share of crop categories involved
in rotations. 92.7% of LUCAS points had a matching NUTS2 region, LC class and altitude class with
a FADN datapoint, meaning that only 7.3% of LUCAS points could not be allocated any farm
management data from the FADN. In the second step, the remaining points that did not have an
exact match were addressed, and the process was iterated. However, this time altitude class was
ignored, thus only a matching NUTS2-region and LC class was required to successfully match FADN
data to the LUCAS points. Only 3.9% of LUCAS points still could not be allocated any FADN data
after this step. The last step to address the remaining datapoints without any match with the FADN
data, was to look for the nearest point with the same LC class within the same country, and then
copy that FADN data. In other words, the remaining datapoints got the FADN data allocated from
the nearest point within the same country with the same LC class. Only 1.6% of LUCAS datapoints
could not be matched with any FADN data after all three steps, so these were removed. A total of
6226 LUCAS datapoints were successfully matched with FADN data.

2.5 Determining changes in SOC

In order to calculate changes in SOC stocks, revisited points in 2009/2012 and 2018 were first
identified based on reoccurring point IDs. Next, the trend in SOC in was calculated by taking the
difference between 2009/2012 and 2018 and converting this to an absolute change per year,
similar to De Rosa et al., 2024 (Eq. 6):

50C,—S0C,4
tr—ty

ASOC (g Ckg™ty™1) = (Eq. 6)

where SOC; and SOC; are the SOC contents in g C kg'! in the first year ¢; and last year ¢.. The fact
that OC measurements in Bulgaria and Romania were done in 2012 instead of 2009, was taken
into account. The relative change in SOC (ASOC:.) was also calculated, according to Eq. 7.

1
50Cy

ASOC,o (% y~1) = [(M)? - 1] x100  (Eq.7)



Where SOC;, and SOCs are the initial and final SOC contents in g C kg1, and ¢ is the time period in
years (6 years for Bulgaria and Romania, 9 years in all other cases). In order to increase the
reliability of the used data, points were removed from the dataset when their SOC content, ASOC
or ASOC,. did not comply to a set of requirements:

(1) To limit the potential effects induced by heavy peat soils, points with an SOC content of over
160 g C kgt were removed, as done in a similar study by De Rosa et al., 2024. (27 points removed)
(2) Points with a ASOC:. beyond -50 and 100 % across the entire time period were also removed
as these were considered to be nonsensical. These limits correspond with relative changes of less
than -7.4 or more than 8.0 % year-! over a 9-year period. (324 points removed)

(3) Points with a ASOC beyond -3 to 3 g C kg'! y'1 were removed after De Rosa et al., 2024 found
approximately this range after they carried out a quality control on the LUCAS data to identify
locations with extreme SOC changes unrelated to agricultural practices. (11 points removed)

5334 of 8996 total revisited points had a non-permanent agricultural land use. Of these points,
362 did not comply with all 3 requirements, leaving 4972 points with ASOC and ASOC,q that
comply to the specified requirements. The information on changes in SOC formed the basis of a
new dataset to which FADN data was added following the previously elaborated three-step
matching technique. This dataset therefore does contain datapoints without matched FADN data,
but does not contain datapoints that are either not revisited or do not have a ASOC and ASOC;
complying to the specified requirements. Climate and socioeconomic data was also added.
Whereas the master dataset with 6226 points, all having successful matches with FADN data as
explained in section 2.4, is used for the random forest model for CRD (section 2.7) , this second
dataset with 4972 points is used for the analyses in sections 2.6 And 2.8. The calculated ASOC and
ASOC.e was mapped, and the effect size (n2) of countries on the variance in SOC was determined
with a method similar to section 2.2, however in this case simulating datapoints was not necessary.

2.6 Finding correlations between CRD, SOC and other factors

A correlogram with all relevant variables, including current CRD, ACRD, ASOC and ASOC. was
made using the corrplot R package (Wei & Simko, 2024), and by using Spearman’s rank correlation
coefficients (p). Spearman’s rank correlation coefficients were deemed more suitable than
Pearson’s correlation coefficients, as these are more robust and take into account non-linear
relationships. The direct relationship between ASOC and ACRD was analyzed through the
calculation of Spearman'’s p. For analyzing potential correlations between the share of crop type
involved, current CRD, ACRD, ASOC and ASOC., Spearman’s p, as well as the statistical
significances (a = 0.05), were determined.

2.7 Predicting CRD across Europe

A random forest model was made to investigate which variables are most important in predicting
CRD, i.e. are likely to be the biggest contributing factors to differences in CRD across Europe. As
random forest analyses cannot be conducted with NA values in the dataset, this was resolved by
imputing missing values using the missForest R package (Stekhoven & Biihlmann, 2012}, with 100
decision trees. To limit the uncertainty of the imputed values, 3 variables (0x_Al, Ox_Fe & CaCO3)
were not included in the random forest analysis due to a very high number of NAs. The random
forest model was built using the rfPermute R package. This extends the random forest by
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incorporating statistical significance testing for variable importance through permutation testing.
Therefore, it allows the determination of which variables in the model are not only strongly
contributing to the model’s predictive performance, but also assesses which variables are
statistically significant, i.e. an indicator of whether the importance is reliably above random noise.
The model was made using the master dataset with imputed NA values and 500 decision trees.
Individual effects of variables on the prediction of CRD were evaluated through partial
dependance plots (PDPs), which were made for the 8 variables with the highest importance
(%IncMSE) using the pdp R package (Greenwell, 2017).

2.8 Explaining variability in SOC stock changes

With the aim of assessing which variables have the largest impact on changes in SOC, and assessing
whether CRD has a significant impact, two random forest models were made: one for ASOC and
one for ASOCrel. In order to build the random forest models for ASOC and ASOC,.;, missing values
for variables other than ASOC and ASOC,. were again first imputed using missForest() with 100
decision trees, after removing 0x_Al, Ox_Fe & CaCOz due to the very high number of NAs. The
random forest models were then made using rfPermute() and 500 decision trees. Lastly, individual
effects of variables in the models were again analyzed through partial dependance plots. It should
be noted that the models have been altered and refined numerous times during the research, with
not all steps and requirements being implemented initially. Therefore, it was only after many
refinements that the final models were made.



60N

3. Results

3.1 Current CRD and trends across Europe

The calculated current weighted mean GSI for each NUTS2 region (averages from 2018-2020) is
depicted in Figure 2a. The overall lowest GSI was calculated for Crete (EL43, 0.017 + 0.14) and the
highest for Bratislava (SK01, 0.781 + 0.18). Generally, we find low CRDs along the Mediterranean
coast, the Alps, Ireland and northern Scandinavia, whereas we find high CRDs in Central Europe
(predominantly east Germany, the Czech Republic and the (north) eastern regions of Slovakia and
Hungary). The calculated effect sizes (12) from the Kruskal-Wallis tests for the NUTS2 region-level
data and country-level data indicate that 32.8% of the variance in GSI is explained by the difference
in NUTS2 regions, while 22.6% of the variance in GSI is explained by the difference in countries.
The trend in GSI in percent change per year (2009-2020) is depicted in Figure 2b. NUTS2 regions
with an insignificant trend are colored in as having no trend (0%). The most significantly negative
trend is found Crete (EL43, -3.14 + 1.37 % yearl) and the most positive trend is seen in Castile
and Leodn (ES41, 2.94 = 0.79 % year-!). Generally, positive trends are found mainly in Italy, the
Netherlands and northern inland Spain. Only few NUTS2 regions have a significant negative trend,
mainly Crete and northern Croatia. Considering Europe as a whole, we see a generally increasing
trend of CRD over 2009-2020.
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Figure 2: a) Current CRD across Europe (average 2018-2020) in GSI, b) Trend in CRD across Europe (2009-2020) in % change in GSI per year

Table 1 shows crop richness, current weighted mean GSI, the trend in GSI and the associated p-
value for each country. As crop richness is closely related to CRD, lower crop richness is generally
found in countries with also a low GSI. The country with the lowest GSI is Malta (0.17 + 0.18) and
the country with the highest GSI is the Czech Republic (0.759 + 0.20). Only 10 out of 28 countries
have had a significant trend in GSI over the years 2009-2018. Portugal has had the most negative
trend (-0.41 + 0.37 % year!), yet it was found to be statistically insignificant (p > 0.05).
Considering only significant trends, no country has a negative trend in CRD. France has the

smallest significant trend (0.14 + 0.08 % year-1), whereas Spain has the highest trend (1.48 + 0.51 %

year-1).
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Table 1: Crop richness, current weighted mean GSI, the trend (% year-1) in GSI and the associated p-value for each country. Asterisks
indicate statistical significance: * p < 0.05, **p < 0.01, ***p < 0.001

Country Richness (+o)

AUT

BEL

BGR

DEU

DNK

ESP

EST

FIN

FRA

GBR

GRC

HRV

3.962 £ 1.305

3.529 + 1.284

4.309 = 1.463

1.657 £ 0.704

5.348 £ 1.656

3.949 £ 1.168

2.688 + 0.952

2469 = 1.08

4.098 + 1.336

2.293 + 0912

3.595 £ 1.354

2.984 + 1.108

2975 + 1.172

4.05 = 1.265

GSI (+0)
0.698 + 0.219
0.61 + 0.261

0.663 + 0.254
0.352 + 0.241
0.759 + 0.202
0.698 + 0.219
0.633 + 0.204
0.518 + 0.292
0701 + 0.265
0467 + 0.249
0.625 + 0.277
0.573 + 0.291
0.479 + 0.257

0.663 = 0.242

0.35 £0.36

0.08 £ 0.19

0.04 £ 0.49

1.03 £ 046

0.21 £ 01

-0.01 £ 0.15

0.57 £ 0.41

1.48 £ 0.58

0.75 £0.25

0.01 £ 0.31

0.14 £ 0.08

0.37 £0.22

0.75 £ 0.34

-0.07 £ 0.52

Trend (%/y) (+0) P-value

0.118

0.44

0.872

0.0157"

0.016 ™"

0.871

0.053

0.011*

0.007 **

0.953

0.032~

0.033 "

0.016 ™"

0.814

Country Richness (+0o)

HUN

IRL

ITA

LTuU

LUX

LVA

MLT

NLD

POL

PRT

ROU

SVK

SVN

SWE

3.2 Changes in SOC across Europe

ASOC (gClkgly)
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4.604 = 1.457

2.05 = 0.656

2.935 + 1.166

3.745 + 1.262

3.412 + 0.987

2.982 = 1.083

1.662 + 0.498

2.817 £ 1.039

3.462 + 1.192

1.886 £ 0.89

3.853 = 1.189

4.895 + 1.505

3.515 = 1.304

2.86 + 1.08

GSI (£0)
0.701 + 0.261
0.463 + 0.259
0.502 + 0.278
0.604 £ 0.22
0.637 + 0.182
0.542 = 0.25
0.17 £ 0.182
0.567 + 0.284
0.633 + 0.222
0.272 + 0.239
0.65 + 0.251

0.745 + 0.205
0.615 + 0.277

0.516 = 0.267

Figure 3: a) map of ASOC across Europe (2009/2012-2018), b) map of ASOCre across Europe (2009/2012-2018)

Trend (%/y) (+0) P-value

01902

1.16 £ 0.36

0.96 = 0.56

0.24 = 0.44

0.09 £ 0.29

0.06 £ 0.29

-0.24 £ 0.21

07802

0.04 £ 0.07

-0.41 £ 037

0.27 £ 0.69

-0.09 = 0.16

-0.19 £ 0.22

0.08 = 0.45

0.119
0.006 **
0.031 "

0.302

0.543

0.659

0.085
0.003 *=

0312

0.091

0.441

0.303

0.143

0.72

AS0Cq (%)
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Figures 3a and 3b show the map of Europe with the locations of all used datapoints with the
observed ASOC and ASOC from 2009/2012 to 2018 in g C kg1 y-1 and % y-1, respectively. Mean
ASOCis 0.03 + 0.50 g C kgly! and mean ASOC;. is 0.20 £ 2.72 % y-! compared to the initial value.
ASOC and ASOC.e do not show any clear spatial patterns, indicating that changes in SOC stocks are
very much dependent on local factors. The only area with large scale increasing ASOC and ASOC:.
is northeastern Italy. The calculated effect sizes (n2) are 0.014 and 0.012 for ASOC and ASOC;e,
respectively, which points to there being no large spatial patterns that differ between countries.

3.3 Correlations between CRD, SOC and external variables

3 . Figure 4 shows a scatterplot of
the absolute change in SOC
against the absolute change in
GSI per year for each of the
datapoints. The spread in ASOC
appears to be larger than the
spread in AGSI. With a
Spearman’s p of -0.02 (p =
: : 0.1037), no direct correlation

“ : between trends in CRD and SOC
C stocks is found. Some vertical
lines appear due to a high
number of points in the same
area (e.g. points in NUTS2-region
ES41 where barley is cultivated)
L s m " being assigned the same AGSI in

AGSI 1) the matching process, but having
Figure 4: Absolute change in SOC versus absolute change in GSI different ASOC.

Figure 5 shows the correlogram with the Spearman’s p of all variables taken into account in the
analyses. From the correlogram can be derived that current CRD has a high correlation with
median arable area, and a negative correlation with the fraction under organic farming and tillage
intensity. This indicates that generally, higher CRD is found in areas with large farm sizes, a low
fraction under organic farming and a low tillage intensity. The correlations of ACRD with climatic
factors are showing higher positive trends in areas with arid and warm climates. Moreover, ACRD
is positively correlated to age ratio and negatively correlated to EPS, indicating that the ACRD is
higher in areas with aging farmer populations and a low environmental policy stringency. ASOC
and ASOC.e show very few strong correlations with other variables. ASOC and ASOC;. is however
positively correlated to OC and N, which is a sign that soils which are high in OC and N also facilitate
higher ASOC and ASOC;el.

From the correlation matrix can also be deduced that socioeconomic indicators such as EPS and
RCI are generally correlated with higher precipitation, lower potential ETo, lower temperatures
and lower elevation. Similar correlations are found for livestock intensity. Correlations of CRD,
ACRD, ASOC and ASOC.e with shares of crop types involved in rotation will be laid out in more
detail in section 3.4.
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Figure 5: Correlogram including all variables used in the analyses.
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3.4 Relationships with crop types

In order to check whether certain crop
types are most often found in diverse
rotations, and which crop types have
the most positive effect on SOC stocks
when included in a rotation the
Spearman’s p of correlations between
current CRD (GSI), ACRD (AGSI), ASOC
and ASOC.., and shares of crop types
involved in rotation are shown in Table
2. The asterisks indicate significance
levels, with more stars indicating a
lower p-value and thus a higher
significance.

Current CRD is most positively
significantly related to root crops,
pulses and rapeseed, indicating that
these crops are most likely to be found
in more diverse rotations. ACRD is
most positively significantly related to

Table 2: Spearman’s p of correlations between current CRD, ACRD,
ASOC and ASOCre, and shares of crop types involved in rotation.
Asterisks indicate significance: * p < 0.05, ** p < 0.01, ***p < 0.001

Crop Type
cereals

fodder legumes
industrial

ley

maize

pulses
rapeseed

root crops
sunflower

vegetables

PaGsi

0.02

0.094%**

-0.025

-0.057%=

0.172*=*

0.298*=*

0.365*

0.247%=

0.197%%*

-0.008

Pacs Pasoc

0.177**  -0.054**>

-0.011 0.03*

-0.02 0.002

-0.077  0.026

-0.208** 0.039*

0.334*  0.011

-0.228™* 0.005

0,123 -0.047%>

-0.044**  (.059%*

0.025 0.009

Pasocrel

-0.052%*

0.035*

0.004

0.02

0.03e*

0.009

0.003

-0.047*

0.055™*

0.01

pulses, and negatively to rapeseed and maize, showing that the ACRD is most strongly increasing
in areas with many pulses being cultivated, and decreasing in areas with a large share of maize
and/or rapeseed being cultivated. Although they can be considered confounding factors, ASOC and
ASOC,ea generally appear to be less strongly correlated to crop type, but there are still some
statistically significant relationships. Both ASOC and ASOC,. are most negative in areas with a high
share of cereals and root crops, and most positive in areas with a high share of fodder legumes,
maize and sunflower. Although it was hypothesized, no statistically significant relation with ley

(temporary grassland) is found.

14



3.5 Model for predicting CRD

The 6226 datapoints used for the
Random Forest model for predicting and
explaining variability in CRD are shown
in Figure 6. The spatial spread in used
datapoints shows an overall large
spread across Europe, although there
are a number of regions that either have
a large concentration of datapoints, or
completely lack any datapoints. The
highest concentrations of points is
found in central Spain, France, Poland
and the Czech Republic. The Alps, the
Spanish, French and Greek
Mediterranean coasts, western Ireland
and northern Scandinavia have very few
to no datapoints.

Figure 7 shows the relative importance
of each variable in the Random Forest
model for CRD. Bars of significant
variables (p < 0.05) are colored in. The
overall R? of the model is 0.731 (RMSE =
0.028, ME = 0.00024, mean nodes =
4028). The fraction of arable land under
organic cultivation is the most
important variable, leading to a 57.5 %
increase in mean squared error
(%IncMSE) of the model if this variable
is removed. Median area is the second
most important predictor, followed by
mean annual temperature, mean annual
precipitation and elevation. Overall, the
most important categories of predictors
of CRD are farm management, climate
and socioeconomics, respectively. Soil
does not appear to play any significant
role in predicting variation in CRD.
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Figure 6: Locations of datapoints used for the RF model for
predicting/explaining variability in CRD
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Figure 7: Relative importance of variables in the RF model for CRD.
Bars without a fill indicate that this variable did not contribute
significantly

15



Figure 8 shows the partial dependence plots of the 8 most important predictors of CRD in the
model. It is important to note that Random Forest models do not necessarily express causality,
even though the partial dependence plots indicate the effect of the explanatory variables in the
predicted variable. The fact that an explanatory variable may show a certain effect on the predicted
variable could also be caused due to the opposite: the predicted variable affecting the explanatory
variable, thus showing a certain correlation in the data.
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Figure 8: Partial dependence plots of the 8 most important variables in the RF model for CRD

The partial dependence plots highlight the negative correlation of the organic fraction as an
isolated variable with CRD. In contrast, median arable area corresponds positively to the
magnitude of CRD. Climatic/topographic variables except Al and elevation have a strongly non-
linear impact, showing optimum values. The optimum values for mean annual temperature, mean
annual precipitation and annual mean potential evapotranspiration are approximately 10°C, 600
mm y-! and 1000 mm y-1, respectively. CRD decreases with increasing elevation and Al. Subsidy
intensity also has an optimum value leading to the highest predicted CRD, namely ~0.15.
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3.6 Model for predicting changes in SOC

Both Random Forest models for predicting changes in SOC have a low R?, indicating poor model
performance. The model for ASOC has an R2? of 0.099 (RMSE = 0.198, ME = -0.004, mean nodes =
3373) and the model for ASOC:e; an R2 0of 0.111 (RMSE = 1.071, ME = 0.002, mean nodes = 3369).
Figures 9a and 9b show the relative importance of variables in the Random Forest model for ASOC
and ASOCe, respectively. Overall, initial OC and N are the most important variables in the model,
and contribute significantly in both models. The model for ASOC; has considerably more
significantly contributing variables than the model for ASOC, regardless of having similar R2. Soil
factors generally show the largest importance in predicting ASOC and ASOC.., followed by climate,
management and socioeconomics equally, and lastly crop types. Although not all having a high
relative importance all socioeconomic variables showed a significant contribution to the model.
Countries (NUTS_0) appear to have a remarkably large importance in predicting SOC changes,
meaning that the predictions are somewhat country-dependent, even though the effect sizes of
countries on the variation in ASOC and ASOC,q was found to be very small in section 3.2. CRD is
the 10th most important predictor in the model for ASOC.e, and is a significant contributor. It is
also the most important management predictor in this model.
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Figure 9: a) Relative importance of variables in the RF model for ASOC, b) Relative importance of variables in the RF model for ASOCre.. Bars without a
fill indicate that this variable did not contribute significantly

After the permutations which generated the relative importances with significances, two new
Random Forest models were made for both ASOC and ASOC,. with (1) the five least important
variables removed and (2) all unsignificant variables removed, in an attempt to increase model
performance. However, model performance could not be notably improved, thus the final models
remained unchanged. It is very important to note that due to the low model performance of
predicting ASOC and ASOC.e, and the observed high sensitivity of partial dependences to small
changes to the model (underscored by intermediate model results in Appendix I), interpretations
from the partial dependence plots from both models can only be made with proper caution and
high uncertainty. The partial dependence plots of the 8 most important variables, except NUTS_0,
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ranked by %IncMSE of the Random Forest models for ASOC and ASOC;. are shown in Figures 10
and 11, respectively. As stated in section 3.5, the partial dependence plots do not necessarily show
causality, but rather the relationship between the explanatory and the predicted variable within
the context of the entire model.

For the model for ASOC, only OC and N contribute significantly. There is a strong positive
relationship between OC and ASOC up to an OC content of approximately 50 g kg1, after which the
line flattens. This indicates that according to the Random Forest model, soils which are high in OC
may also have the largest positive SOC sequestration rate. There appears to be a strong negative
relationship with N, which is contradictory to the positive relationship that has previously been
found in the correlation matrix. Although unsignificant, Al and elevation appear to cause lower or
negative ASOC at their extremes. Either very high or low mean annual precipitation relates to the
most positive ASOC. pH and K-fertilization show positive and negative relationships with ASOC,
respectively. K-content has a clear optimum of approximately 500 mg kg-1.

The 8 most important predictors in the model for ASOC,.; were all significant. The relationships of
0C, N, Al pH and K-content are similar to the model for ASOC. The relationship of precipitation
with ASOC.. differs from that of ASOC in the sense that it does not have a high peak at large annual
mean precipitation, indicating a largely negative relationship between precipitation and ASOC .
Mean annual temperature does show an effect similar to that of precipitation in the model for
ASOC, as it appears that either low or high temperatures relate to the highest ASOC;.. The
relationship between mean annual potential evapotranspiration and ASOC.. is largely positive,
with the line flattening at an ET, of approximately 1200 mm y-1. The partial dependence plot of
CRD for the model for ASOC, is shown in Figure 12. The relationship of CRD to ASOC. appears to
be such that either a very low or a very high CRD relates to the highest ASOCrel.
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Figure 10: Partial dependence plots of the 8 most important variables in the RF model for ASOC
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Figure 12: Partial dependence plots of the 8 most important variables in the RF model for ASOCrei
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4. Discussion

4.1 Variability of CRD across Europe

According to the data derived from the FADN, CRD is currently highest in central Europe,
particularly in eastern Germany, the Czech Republic and Slovakia. CRD is the lowest in the Alps,
along the Mediterranean coast, Ireland and northern Scandinavia. This does not align with the
hypothesis that the highest diversities would be in regions dominated by low-intensity farms.
Comparing to a study by Debonne et al., 2022, in which farm intensities on a NUTS2-scale were
determined, the regions with the highest CRD found in this study are dominated by medium-
intensity farms, and the regions with the lowest CRD are dominated by low-intensity farms. The
results also contradict Cutforth et al., 2001, who found that diversity is generally lowest on highly
productive and relatively flat land. Similarly, Merlos & Hijmans, 2020 found that CRD is lowest for
common crops, which are usually grown on extensive and highly productive farms. This would
suggest that larger farms generally engage in less diverse rotation systems. It is however
important to consider that levels of CRD depend on the applied scale (Machefer et al., 2024; Merlos
& Hijmans, 2020). As CRD is calculated in this study at the farm level and subsequently averaged
for NUTS2 regions, with favoring bigger farms by using weights depending on farm size, it does
not necessarily reflect the crop diversity at the landscape scale. At the same time, if the
aggregations would not have been based on farm-level data, the levels of diversity would likely
have been higher than farm-level diversity, as on a large-scale, the diversity between farms is often
larger than the diversity within them (Merlos & Hijmans, 2020). As the scales used by Cutforth et
al,, 2001 and Merlos & Hijmans, 2020 closely resemble farm-level diversities, comparison to these
studies is appropriate. The same holds true for Ricciardi et al.,, 2021 found based on a meta-
analysis that overall, smaller farms have higher crop diversities, as subsistence farmers cultivate a
greater diversity of crops to meet nutritional needs. However, Ricciardi et al, 2021 also
acknowledges that larger farms have more capacity to diversify their cropping systems. Apart
from maintaining soil and plant health, this can lead to improved income stability, as economic
risks are mitigated (Parré et al., 2024; Ricciardi et al., 2021). This may explain the strong positive
relationship between median arable area (farm size) and CRD in Europe that has been found in
this study. Taking into account the findings of a small but generally increasing trend in CRD across
Europe, this may suggest that the general megatrend of increasing productivism (Debonne et al.,
2022) is outpaced by the efforts of farmers to mitigate economic risks by diversifying their crops.
At the same time, the positive correlation between farmer age ratio and the trend in CRD does
pose a potential risk to the still currently increasing trend of higher diversities across Europe, as
this is possibly indicates that CRD is decreasing among young farmers.

Although not fully aligning with the distribution of organic farms across Europe mapped by
(Debonne et al., 2022), the Random Forest analysis for predicting and explaining the variability of
CRD has shown a strong negative relationship with the fraction under organic cultivation. This is
not in agreement with Barbieri et al,, 2017, who found that organic systems usually have greater
CRD, as due to the limits of fertilizer use in organic systems, organic farmers are forced to adopt
alternative methods for pest control and nutrient management. However, Chongtham et al., 2017
found that the main factor affecting the choice of organic farmers which crops to grow, is market
price and demand. As organic farming can entail high production costs with relatively low yields,
organic farmers may specialize in only one or a few crops, to maintain economic viability.
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Therefore, organic farmers may be more specialized in one crop when compared to conventional
farmers. Another plausible explanation for why a negative correlation between CRD and organic
farming is found, is that the prevalence of organic farms tends to be larger in marginal regions, e.g.
mountainous areas or unfavorable climates (Helfenstein et al., 2024; Willer et al., 2024), where
CRD is generally lower because of arable farming being less suitable. Examining this more properly
would require comparing CRD of organic versus inorganic farms in the same region, which is not
possible with the available aggregated data.

The climatic optima for the highest CRD that resulted from the Random Forest models align with
the lowest CRDs being found in regions with the largest climatic extremes. This indicates that
climate is a factor that can limit the level of CRD that can be practiced. In regions with challenging
or extreme climates, the range of crops which can be cultivated is more narrow (Golla, 2021), e.g.
due to high levels of soil degradation (Melesse, 2007) and an unfavorable water balance. Also, in
dry climates, extended periods of fallow or the cultivation of forage crops for livestock may be
necessary (Gorooei et al., 2023), which limits the number of different crops which can be included
in rotation systems. The length of the growing season also impacts to which extend CR systems
can be diversified, because of greater flexibility and time for sequential cropping.

Subsidy intensity appears to be the most important socioeconomic variable incorporated in this
research for explaining variability in CRD. The partial dependence of subsidy intensity on the
Random Forest model shows that CRD increases strongly with increasing subsidy intensity, up to
a certain point after which it slightly decreases and stabilizes. Without, or with low subsidies,
farmers may not have the economic ability to adapt more diverse crop rotation systems, as
changing or diversification of crop rotation systems usually requires economic investments
(Santos & Gomes, 2022). These investments can include the acquisition of new seeds, modifying
farming equipment and accessing new markets. When subsidies increase, farmers may be more
incentivized to diversify their cropping systems. However, high subsidy levels may also be
associated with stricter regulations or conditions that push farmers toward specific cropping
patterns, reducing flexibility in farmers’ choices between different systems (Shrestha et al., 2020;
Theriault & Smale, 2021).

The results in section 3.4 have shown discrepancies between crops which are found to be most
commonly cultivated in diverse rotational systems versus crops which are increasingly grown in
diverse systems. Crops which are found to be most commonly in diverse systems are pulses,
rapeseed, root crops and sunflowers, whereas positive trends are mainly found for areas with a
high share of pulses and cereals in rotation, and negative trends are found mainly for maize
rapeseed and root crops. Ballot et al., 2023 identified the main crop sequence patterns across
Europe, and shows that rotational schemes of these four crop types in combination with cereals
are found where in general, high CRDs were found as well. The reason that cereals did not correlate
with higher CRD is because cereals are also commonly grown in monocultures. However, the
significant positive trend in CRD in areas with a high share of cereals grown may indicate that
rotations with cereals are getting increasingly diversified, or that cereals are less commonly grown
in monocultures.
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4.2 Main factors driving SOC changes across Europe

Although the Random Forest models for ASOC and ASOC. had a similar model performance and
similar variable importances, the model for ASOC.s had much more significantly contributing
variables than the model for ASOC. This is likely explained by the smaller variance of ASOC,. values
due to the stricter limits for points to be removed for ASOC. than for ASOC. Due to the ASOC;e
having a smaller spread, it means there is less overall variation in the data that is unrelated to
predictor variables. This can make it easier for the permutation process to detect significant
relationships, because noise has been reduced.

Both absolute and relative changes in SOC were found to have strongly local variations, indicating
that large-scale differences are insignificant. De Rosa et al,, 2024 found that humid and cold
climates better facilitate SOC stock growth, which potentially explains why climate was found to
be an important predictor of changes in SOC in the RF models. However, the poor model
performance implies that interpreting partial dependences of isolated model parameters should
be done with caution. The RF models showed a strong and significant feature importance for OC
and N, indicating that initial OC and N content are important variables for predicting SOC stock
changes. The findings that soil and climate factors are most important in regulating SOC stock
changes aligns with research by Edlinger et al., 2023.

Variables excluded from the RF models were soil texture (sand, silt and clay fractions) and Fe/Al-
oxalate content (due to a high number of NAs). It is recommended that future research includes
these variables, as these influence SOC stabilization and thus may be important in predicting SOC
stock changes (Ichinose et al., 2025; Van De Vreken et al., 2016). Possibly, models could be made
with a subset of the data, to overcome the issue of a high number of NAs.

Previous research has shown that grassland has a bigger potential of carbon sequestration than
cropland (Conant et al., 2001; De Rosa et al., 2024), substantiating the hypothesis that points with
a larger share of ley involved in rotation also show relatively larger increases in SOC stocks.
However, no significant correlation between ley and changes in SOC stocks was found in this
research. Previous research also found that incorporating (fodder) legumes in rotation
contributes to increasing SOC (Ouda et al., 2018; Yang et al., 2024). Although a significant positive
relationship with ASOC and ASOC.. was found, it is only very small. Sunflower showed the largest
positive correlation with ASOC and ASOC,e, in disagreement with (Bowman et al., 2000), who
found that cultivating sunflower leads to depletion of SOC due to the requirement of tillage.
Simultaneously, sunflowers are relatively high residue producing crops, because the residues are
neither used as feed for livestock nor suitable for use as fuel due to a low energy value per unit
mass (Babu et al,, 2014). Given that crop residue retention is one of the most promising methods
for enhancing agricultural SOC stocks (Fu et al,, 2021; Karlen et al., 2019), this might explain why
sunflowers were found to enhance SOC levels in this study.
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4.3 Effect of CRD on changes in SOC stocks

Although previous research has found from small-scale field experiments that increasing CRD is
beneficial to soil health and increasing SOC stocks (Chahal et al., 2021; Maiga et al., 2019; Schmer
et al,, 2020), this effect was not found in this study. Directly plotting SOC changes against changes
in CRD lead to a low and insignificant correlation, although it should be taken into account that
the random effect of variability between different soil types and climates is not accounted for. Even
though CRD contributed significantly as an explanatory variable in the Random Forest model for
ASOC;e, the poor model performance did not allow for interpreting relationships with a high level
of certainty. The partial dependence of CRD in the model for ASOC.. showed the exact opposite
relationship than what was hypothesized, namely that ASOC.. is highest for either very low or very
high CRD. The disagreement with literature, low model performance and considerably small
variable importance in the model makes this result an insufficient basis to draw any conclusions.

No evidence to support the hypothesis that increasing CRD would, until a certain level, increase
SOC stocks on a European level could therefore be found. There is a high likelihood that the reason
for the lack of a relationship being found is due to the quality of the OC measurements in the LUCAS
database. The high variability between years, together with the large potential measurement
errors compared to the expected changes, likely caused a large amount of noise that the Random
Forest models were unable to effectively distinguish from true patterns in the data.

4.4 Overcoming limitations in using LUCAS data for SOC analyses

Using the 3-step matching technique for adding FADN farm management data to the LUCAS
database worked successfully in almost all cases. For LUCAS points that could not be allocated any
farm management data, this meant that not enough data from farms cultivating the crop specified
in the LUCAS data within the same country was available. Given that 99.4% of LUCAS points could
be allocated FADN data within the first data matching step, and under the assumption that farm
management indicators are rather consistent for the same crop, in the same altitude class, in the
same NUTS2-region, it is expected that this is a reliable method to combine farm management
data from the FADN to the LUCAS database. However, in order to fully assess the accuracy, it may
be necessary to make a comparison with management observations from a variety of farms on
which LUCAS samples are taken. Direct farm-level data (in contrast to aggregations) from the
FADN database cannot be used for this, since information on the exact locations of the farms is not
available due to privacy-sensitivity.

Apart from the assumptions that have to be made in order to match FADN data to LUCAS, another
factor that limits the usability is the data quality of LUCAS itself. The main principle of LUCAS is to
build a harmonized large-scale dataset in which measurements are done through identical
methods, even though they are carried out by a large number of different surveyors. However, an
extensive LUCAS data evaluation carried out by Hiederer, 2020 showed that although most
parameters are generally sufficiently reliable for large-scale analysis, discrepancies are found
between e.g. the limits of detection of the laboratory analysis and file formats in which data was
reported. Hiederer, 2020 particularly casts a doubt about the reliability of the 2012 survey which
was carried out in Romania and Bulgaria. It is also underscored that OC data has remarkable
extremes on both ends (i.e. it is heavy-tailed), and large variability between repeated samples. This
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was also observed in this research, and indicates that there is considerable variance in changes of
SOC stocks.

In order to account for unrealistic changes, the removal of points with a ASOC or ASOC:e of -3 to 3
g Ckg1y!orbeyond -50 - 100% across the entire time period, respectively, likely decreased the
amount of noise in the dataset. However, these limits may still have been too broad. Reijneveld et
al,, 2009 quantified SOC stocks and changes in the Netherlands over 20 years, and found that SOC
stocks in arable land changed approximately 0.08 g kg1 y-1 with a standard error of 0.02 g kg1 y-1.
In heavy peat soils, which are prone to high levels of SOC degradation, they hardly found any
decreases of more than -2 g kg! yl. Important to note is that these peat soils were used as
permanent grassland. The findings of Reijneveld et al., 2009 underscore that yearly changes in SOC
are small, especially compared to the measurement error. This increases the measurement
uncertainty (De Rosa et al., 2024). Beillouin et al., 2023 found after a global meta-analysis that
exclusively agricultural land management can cause relative changes of SOC stocks between
approximately -25 - 100% (after removing an extreme outlier). More extreme changes are
therefore suggested to always be at least in part due to extreme changes such soil transportation
or land use change, which are factors which the Random Forest models in this study do not account
for.

To further reduce noise and increase the reliability of the data, future research may need to
consider including more strict limitations on points to be included in the analysis. To limit the risk
of exclusion of reliable points that coincidentally happen to be outliers, and to limit the risk of the
dataset being severely thinned out, comparisons could also be made to e.g. bulk density (Iheshiulo
etal,, 2023; Ouda et al., 2018) and nitrogen content (Bi et al., 2023; Manzoni & Cotrufo, 2024) to
check for unrealistic OC values, as these variables are strongly related to OC. This may also be
applied to the analysis of SOC stocks in general, where changes in bulk density and N can
potentially function as auxiliary data to more accurately estimate changes in SOC stocks.

It is however is not only sampling and laboratory analysis that create a level of uncertainty, but
also in-field observations. For example, to ensure that only cropland was included in the analysis,
all LUCAS points with a permanent grassland land cover class were removed. Yet, it is plausible
that temporary grasslands (ley) may have occasionally have been misclassified as permanent
grassland, as grasslands being in place for a duration of 5 years still must be classified as ley
(Nevens & Reheul, 2003; Upcott et al., 2023), while the duration the grassland has been in place
can be difficult to estimate in-field. Remote sensing may be a usable tool in assessing the duration
grasslands have been in place (Andreatta et al, 2022; Yin et al, 2018), which may be
recommendable for deciphering temporary from permanent grasslands for future LUCAS surveys,
in contrast to in-field observations.
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5. Conclusion

In this study, a large-scale analysis on the spatial and temporal variability of CRD in Europe was
carried out, and the effect of increasing CRD on SOC stocks was investigated. Data from the LUCAS
and FADN databases was successfully combined, with 98.4% of LUCAS datapoints being allocated
farm management data. From the FADN data, it was found that current levels of CRD in Europe are
highest in Central Europe and lowest in the Alps and along the Mediterranean Coast. Levels of CRD
have been largely increasing between 2009-2020, showing an increasing trend across Europe. The
increasing trend suggests that that the general megatrend of increasing intensification and
specialization is outpaced by farmers’ efforts to mitigate economic risks and improve
sustainability by diversifying their cropping systems. The Random Forest model for explaining
variability in CRD had a high model performance, with the most important predictors being the
share of arable area under organic farming, farm size and various climatic factors. In contrast, the
Random Forest models for explaining SOC stock changes had a low model performance, likely
caused by high variability and noise within the OC measurements in LUCAS. Soil OC and N content
were the found to be most important significant predictors, suggesting a high likeliness that the
capacity to increase SOC stocks is largely dependent on the initial OC and N content. The low model
performances and lack of direct correlations between ACRD and ASOC that could be established
means that the effects of varying levels of species diversity in rotational systems on SOC stocks
still remains unclear. In future research, OC data in the LUCAS database should be further refined
in order to reduce noise and uncertainty. This will further facilitate clearing up what still remains
unknown about the effects of CRD on SOC stocks, so that concrete policy and management
recommendations can be made to help secure healthy soils and sufficient food production, even
in a changing climate.
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Figure 13: a) Relative importance of variables in an intermediate RF model for ASOC, b) Relative importance of variables in an intermediate RF model

for ASOCrel

Figures 13a and 13b show the relative importance plots of intermediate results of the Random
Forest models for ASOC and ASOC.., respectively. It should be noted that the models and their
input data requirements have changed numerous times during the research, and that these models
were the last intermediate versions before they were finalized. The plots did not yet have the
improved variable labelling and categorical coloring. Also, these models were not permuted due
to time limitations, so variable significance was not yet assessed. The main differences of these
models compared to the final models, is that they did not have points with a ASOC.e beyond -50
and 100 % across the entire time period removed yet, and also soil OC content was not included
as an explanatory variable. The R2 of the models was 0.15 and 0.07, respectively. RMSE and ME
were not computed for these models.

When comparing these models to the final models used in this study, some clear and large changes
can be observed. Where e.g. N, NUTS_0 and aridity index remained some of the most important
variables in the final models, variables such as EC and share of root crops (for ASOC:.|) have much
less variable importance in the final models. Overall, the variable importances of the highlighted
intermediate model for ASOC.. changed most strongly by far, which can be explained by only
points with extreme ASOC,. values being removed in the final models. Figures 13a and 13b show
the partial dependence plots of the 12 most important variables of the intermediate Random
Forest models for ASOC and ASOC., respectively. It can be clearly noted that where some variables’
partial dependences are similar to the final models (e.g. precipitation and K), some partial
dependences are very different or even inverse (e.g. N, pH and rot (CRD)). Apart from some
variables’ partial dependence differing strongly to those of the final models, there are also major
differences between these models, for example for elevation, aridity index and subsidy intensity.
The large differences between the intermediate and final results underscore the very high
sensitivity of the models to (minor) changes in input data.
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Figure 14: a) Partial dependence plots of the 12 most important variables in the RF model for ASOCrei and
ASOCrel
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Appendix lI: Use of Artificial Intelligence

Artificial Intelligence (AI) has been used as an aide in writing code, solving issues in R and
occasionally finding papers based on prompts that specifically defined the target. Any code or
other information provided by Al has been carefully checked. Al has not been used for generating
any written text in this thesis. The author declares that the use of Al has been within the guidelines
set by Wageningen University and the Soil Geography & Landscape group.
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