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ABSTRACT
Scientific advice for fisheries management rarely takes into account how fishers react to regulations, which can lead to unex-
pected results and unrealistic expectations of the effectiveness of the management measures. Short-term decisions about when 
and where to fish are one of the greatest sources of uncertainty in predicting management outcomes. Several models have been 
developed to predict how fishers allocate effort in space and time, including mechanistic methods such as gravity and dynamic 
state variable models, and statistical methods such as random utility and Markov models. These have been individually used 
to predict effort allocation for various fisheries, but there is no comparative synthesis of their structure and characteristics. We 
demonstrate strong theoretical links between utility and choice in gravity, random utility, Markov and dynamic state variable 
models. Using an advanced event-based simulation framework, we find that mechanistic models bias effort allocation to certain 
areas when applying commonly used strong assumptions about drivers of effort allocation; and conversely, statistical models 
accurately predict the distribution of fishing effort under business as usual. However, predictive performance degrades with 
previously unobserved dynamics, such as a spatial closure. Mechanistic models were less suited to general application under 
business as usual but provide a useful framework for testing hypotheses about a fishery system in response to policy change. 
Comparison of simple model formulations yielded significant insight into the characteristics of the models and how they could 
be used to evaluate alternative management approaches for mixed fisheries.

1   |   Fleet Dynamics Modelling

It is widely accepted that successful fisheries management re-
quires understanding the human elements that determine how 
fishers, individually and collectively, react to varying fishing op-
portunities and regulations (Hilborn 2007; Fulton et al. 2011; Van 
Putten et al. 2012). Fishers' behavioural reactions can be broadly 
divided into short-term, such as decisions about when and where 

to fish (Holland and Sutinen  2000; Rijnsdorp et  al.  2011) or 
changes in fishing practices such as discarding certain sizes or 
species of fish (Gillis et al. 1995; Batsleer et al. 2016); or longer-
term, such as investing or divesting in vessels, new fishing gear 
or technology (Hilborn and Walters 1992; Nøstbakken et al. 2011; 
Eigaard et al. 2014). Together, these ‘fleet dynamics’ have a major 
effect on the exploitation of fish stocks and the economic per-
formance of fishers. Although fleet dynamics are acknowledged 
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to be of importance and some elements are well studied (e.g., 
Salas and Gaertner  2004; Pelletier and Mahévas  2005; Branch 
et  al.  2006; Van Putten et  al.  2012), progress in incorporating 
them into operational management decision support tools such 
as Management Strategy Evaluation (MSE; Butterworth and 
Punt 1999) has been limited. This is due to the difficulty of pre-
dicting human behaviour and the lack of suitable models avail-
able on an appropriate scale (Andersen et al. 2010).

1.1   |   Location Choice Models for Fisheries

Fishers' decisions regarding when and where to fish are usually 
modelled as an extension of the discrete choice problem in eco-
nomics, with fishers being seen as actors who strive to maximise 
their utility through their choice of location (McFadden 1973). 
This utility includes both monetary and non-monetary objec-
tives (Hess et  al.  2018; Holland and Sutinen  2000; Marchal, 
Lallemand, et al. 2009; Girardin et al. 2017). Other models have 
been developed to explain why observed choices differ from 
the utility maximisation theory, including bounded rationality. 
These lead to suboptimal decisions playing a major role in the 
pursuit of what are known as ‘satisficing’ objectives for individ-
uals, where the goal is not to achieve the best possible outcome 
but to meet some minimum requirement for profit or other moti-
vation (Holland 2008; Robinson and Pascoe 1997).

Analogous to utility maximisation models in economics, models 
from ecological literature suggest that fishers behave like pred-
ators, using optimal prey foraging strategies to maximise their 
fitness (Gillis 2003; Marchal et al. 2007; Bertrand et al. 2007). 
Examples of such models include Ideal Free Distribution (IFD), 
where predator density is based on prey density (Fretwell and 
Lucas  1969), and Central Place Foraging (CPF), where preda-
tors search for prey from a central point and then return (e.g., to 
feed young or nest; Frid et al. 2016). In the context of fisheries, 
these models have been extended to take into account uncertain 
knowledge about resource distribution (Abernethy et al. 2007), 
competition (Gillis et  al.  1993; Poos, Quirijns, et  al.  2010; 
Rijnsdorp et  al.  2022), information sharing (Gaertner and 
Dreyfus-Leon 2004) and risk sensitivity (Dowling et al. 2015). 
As utility and fitness are complex concepts, most modelling 
studies use proxies to define them. These proxies are often mon-
etary, such as expected revenues and costs of visiting areas, but 
more complex proxies are possible, such as those that include 
whether locations have been visited previously.

Location choice models can be broadly divided into two cate-
gories: mechanistic and statistical. Mechanistic models attempt 
to explain the relationship between the components of a sys-
tem so that the entire system is the result of these connections. 
Statistical models, on the other hand, assume a categorical dis-
tribution (Agresti 2006), with the parameters of the distribution 
being determined by covariates. These parameters are then esti-
mated using either maximum likelihood or Bayesian inference.

1.1.1   |   Mechanistic Models

Mechanistic models are derived from first principles and gener-
ally conditioned or tuned so that parameter values describe the 

observed dynamics (Cuddington et al. 2013). In the literature, 
we have identified ideal free distribution, central place foraging, 
gravity models and dynamic state variable models (DSVMs) as 
process-driven mechanistic approaches to predicting location 
choice. However, as gravity models can be formulated to re-
semble both IFD and CPF, we focus only on gravity models for 
comparison. Similarly, we exclude models that require detailed 
case-specific conditioning, such as the individual-based model 
of Bastardie et al. (2014) because they are less suited to general 
application in an MSE framework and share similar features to 
the gravity model approach.

1.1.1.1   |   Ideal Free Distribution and Central Place For-
aging.  The concept of ideal free distribution and central place 
foraging is based on the idea that individuals strive to maximise 
their fitness by using food patches in the most effective way pos-
sible (Fretwell and Lucas 1969). For IFD, it is assumed that there 
is no travel cost when moving between feeding sites and that 
predators distribute proportionally to the density of prey, equal-
ising density across the area through predation pressure. In 
contrast, CPF assumes that predators are based at a single point 
and repeatedly exploit the same patches that are optimal in 
terms of travel cost and reward. In fisheries literature, IFD has 
received more attention than CPF; CPF is considered a suitable 
framework mainly for recreational or artisanal small-scale fish-
eries that leave and return from the same place, lasting a sin-
gle day (Frid et al. 2016). It may be less applicable to large-scale 
commercial fisheries that exploit numerous distant areas before 
returning to port (Frid et al. 2016).

1.1.1.2   |   Gravity Model.  The fundamental concept 
of gravity models is that the movement of goods and services 
(Isard 1954) or people (Duddy 1932) can be represented by a mea-
sure of attraction and an inverse relationship to distance. Com-
monly used in social sciences, a gravity model was first applied 
to fisheries by Caddy (1975). In that study, the attractiveness of a 
fishing ground was modelled as proportional to the observed 
catch rates in the area, measured in terms of weight or value 
of catch.

The basic assumptions of a fisheries gravity model are that catch 
rates are known precisely and there are no travel costs to get to 
each fishing area; thus, the density of vessels will equalise the 
catch rates across areas by allocating more effort to areas with 
higher catch rates. Predictions of effort allocation are based on 
the expected catch in each spatial area and season, similar to the 
idea of IFD (Fretwell and Lucas 1969). However, since fisheries 
often deviate from IFD (Gillis 2003), the gravity model is often 
adjusted to take into account other factors such as bias towards 
areas of high abundance (e.g., Walters et al. 1993), adjusting for 
travel costs (Caddy and Carocci  1999) and prices of different 
species (Hilborn and Walters 1987), taking into account infor-
mation exchange between fishers (Allen and McGlade  1986) 
or tradition (Marchal et  al.  2013). Gravity models have been 
used in MSE routines (e.g., Walters and Bonfil 1999; Mahévas 
and Pelletier 2004), although the accuracy of the predictions is 
rarely tested.

1.1.1.3   |   Dynamic State Variable Model.  Dynamic state 
variable models (Clark and Mangel  2000) specify that actors 
are maximisers of a defined utility. The options are evaluated in 
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terms of their contribution to the overall utility, and the choice 
with the highest marginal utility is chosen. Individuals' deci-
sions, influenced by long-term and short-term factors such 
as costs, quotas or any other restrictions such as fines (Poos, 
Bogaards, et al. 2010; Alzorriz et al. 2018) determine the amount 
of effort allocated to each area. It is dynamic in the sense that 
it keeps track of the ‘state’ of an individual and that the opti-
mal choice depends on this state. In fisheries, this state can be, 
for example, the total cumulative catch, profit, bycatch or any 
other factors over time. The results of choices in DSVM such as 
the catch in a time step can be random variables, so that individ-
uals will gradually differ in state, even when making the same 
choices. Therefore, the optimisation depends on the actions in 
the previous time steps. Optimisation is achieved recursively 
through backward iteration, which may be computationally chal-
lenging if there are a large number of variables, as the number 
of potential states increases exponentially, known as the curse 
of dimensionality (Bellman 1987). DSVMs also generally have a 
forward-step algorithm that simulates the trajectory of individ-
uals using Monte Carlo simulation. In this forward simulation, 
the choices are modelled for a set of errors in decision-making 
which can be introduced so that a distribution of choices over 
options are modelled given an individual state, rather than only 
the optimal solution (Dowling et al. 2012).

The DSVM approach has the unique advantage of being able 
to take into account short-term decisions about location choice 
(including staying in port) given long-term constraints (Babcock 
and Pikitch 2000). For example, it has been used to predict loca-
tion choice given quota limits and discarding practices in mixed 
fisheries (Gillis et al. 1995; Poos, Bogaards, et al. 2010; Batsleer 
et al. 2016), as well as the response of fishers to a marine pro-
tected area (Dowling et al. 2012), allowing the models to provide 
a detailed understanding of the potential response of fishers to 
developing or new policies.

1.1.2   |   Statistical Models

Commonly applied statistical models for location choice include 
random utility and Markov models.

1.1.2.1   |   Random Utility Model.  Random utility mod-
els (RUMs) are a discrete choice modelling approach derived 
from micro-economic theory on individuals making decisions 
among competing options (McFadden 1973). A central tenet is 
that an individual seeks to choose the option that maximises 
their utility, with attractiveness defined by a combination 
of deterministic explanatory variables and a random compo-
nent (McFadden  1973). RUMs can have case-specific compo-
nents (variable constant between choices, e.g., time of year) 
and choice-specific components (variable differs between 
choices, e.g., expected catch rate). RUMs have been applied 
in various ways to consumer choice and marketing (Boxall 
and Adamowicz 2002), transport planning (De La Barra 1989) 
and labour market analysis (Maier and Fischer  1985), as well 
as to the allocation of fishing effort (Hutton et  al.  2004; Tidd 
et al. 2012; Hynes et al. 2016). They can take a number of differ-
ent forms, with the key property that choice is conditional on all 
the choices available to the actor (hence, also being known as 
conditional logit models).

RUMs are the primary method by which location choice has 
been evaluated and predicted in the past with numerous exam-
ples (see Girardin et al. 2017, for a review). A potential limitation 
is the need to comply with the assumption of Independence of 
Irrelevant Alternatives (IIA) where removing a choice or area 
should not affect the relative probabilities for the other choices. 
This is particularly relevant for spatial discrete choice models, as 
two areas may be substitutable due to their similar catch com-
positions or other characteristics, meaning that removing one 
option increases the probability of choosing the other relative to 
the other options available. However, it is possible to relax this 
assumption by using a nested logit (Wilen et al. 2002; Campbell 
and Hand 1999) that ensures independence between choices, or 
a mixed logit model, which treats variation between individuals 
as a probability distribution (Tidd et al. 2012).

1.1.2.2   |   Markov Model.  A Markov or semi-Markov 
model focuses on the transition probabilities between different 
states, with the probability of a transition between one state 
and another (including sojourns where actors stay in the same 
state) only dependent on the current state and not on any pre-
vious states (Howard 1971). The difference between a Markov 
and a semi-Markov is the presence of holding times in the lat-
ter, with time spent in a state separately estimable (Kingman 
and Howard 1972). Importantly, the dynamics can be described 
by the departing state transition, so there is an explicit link 
between current and future activity.

There are a few examples of the use of Markov models within the 
fisheries literature, but these have mainly been applied to un-
derstand the state of vessel activity to distinguish fishing from 
other activities (Vermard et al. 2010; Peel and Good 2011; Joo 
et al. 2013), with the notable exception of Venables et al. (2009) 
and Dichmont et al. (2008) where the location choice was mod-
elled in the Australian northern prawn fishery.

1.2   |   A Need for Synthesis

Management Strategy Evaluation (MSE), the evaluation of man-
agement strategies using simulation, has become the primary 
tool to support management decisions due to the explicit recog-
nition of uncertainty in the outcomes when simulating complex 
fisheries-ecological systems (Butterworth and Punt  1999; Kell 
et al. 2006; De Oliveira et al. 2009; Punt et al. 2016). MSEs are 
now widely and routinely applied around the world to provide 
fisheries management advice (Goethel et al. 2019) but are gener-
ally applied on a stock-by-stock basis, with the interdependence 
between stocks resulting from biological and technical interac-
tions ignored (e.g., Needle 2008). This results in suboptimal out-
comes where, in the case of technical interactions, catches above 
the intended level can result from bycatch in fisheries targeting 
other stocks (Ulrich et al. 2017).

Because species differ in their spatial distribution, location 
choice by fishers has a direct impact on the composition of catch, 
which in turn affects management outcomes in a multi-stock 
fishery (Ono et  al.  2018). The extension of MSEs to explicitly 
take account of how fishers respond to changing abundances 
and quotas of multiple species that are caught together is there-
fore necessary to improve management approaches for mixed 
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fisheries. Although MSEs have started to incorporate fleet dy-
namics (see Table  1) including inter alia through effort allo-
cation among métiers assuming economic optimisation (Hoff 
et  al.  2010) or representation of fleet dynamics in simulation 
frameworks with simplified biological representation (e.g., Salz 
et al. 2011), there has been limited application in management 
advice.

Accounting for short-term fleet dynamics in a general way in 
MSEs remains a challenge (Andersen et al. 2010) but is vital to 
understand the impact of the changing spatial distribution of 
fishing effort on a population (Goethel et al. 2011; Cadrin 2020; 
Dolder et al. 2020). While several different approaches to loca-
tion choice have been implemented, these have been specific 
applications for defined fisheries, and to date there have been 
no general comparisons to understand the strengths and weak-
nesses of each approach.

Understanding the structure, characteristics and predictive capa-
bility of the different location choice models will provide clarity on 
the assumptions they can introduce in a management simulation 
framework (Punt et al. 2016). This understanding provides confi-
dence in interpreting the output of simulations to compare differ-
ent management options when using one or more of the location 
choice models as an operating model in a full feedback MSE.

1.3   |   Study Aims

The purpose of the study is to review the different methods and 
approaches that have been used to forecast how fishers allocate 
fishing effort in space and time, and how these relate to underlying 
heterogeneous distributions of multiple fish stocks. We compare 
the mechanisms of the models used, their underlying structure 
and their characteristics to predict future effort allocation in re-
sponse to management change intended to protect a depleted 

stock using a simulated example. We also identify the strengths 
and weaknesses of the approaches under a plausible management 
intervention that disrupts the status quo, namely a spatial closure.

In doing so, we provide guidance on the most promising ap-
proaches for incorporation into MSEs, considering contempo-
rary goals for the evaluation of different management tools.

The approach we take is to

1.	 Evaluate the formulation, structure, implementation and 
characteristics of the different models in predicting spatial 
effort allocation in mixed fisheries.

2.	 Illustrate theory demonstrating linkages and differences in 
how utility is related to choice among the location choice 
models.

3.	 Use a simple simulated example to assess the differences, 
including the strengths and weaknesses of each of the ap-
proaches and their potential for application within an MSE 
setting.

We compare the formulation and structure of the models via (i) 
a theoretical comparison of the mathematical structure of the 
models and (ii) an agent-based simulation framework where 
fleet dynamics are emergent properties of individual actors.

2   |   Theoretical Comparison

We set out by defining a general model that seeks to predict the 
proportion of effort in each area as a basis for comparing predic-
tions from each of the model classes (the ‘choice model’).

A general choice model gives that the effort Ea,t in area a during 
time period t is a proportion of the total effort:

TABLE 1    |    Examples of location choice models in management strategy evaluations.

Model Geographical location Fishery References

RUM Baltic and Kattegat Demersal fish Ulrich et al. (2007)

North Sea Flatfish Andersen et al. (2010)

Bay of Biscay Anchovy Vermard et al. (2012)

Markov Australia Prawn Dichmont et al. (2008)

Australia Prawn Venables et al. (2009)

Gravity Torres Strait Sea cucumber Plagányi et al. (2013)

Brunei Demersal fish Walters et al. (1999)

New Zealand Hoki Marchal, Francis, et al. (2009)

Bay of Biscay Demersal Briton et al. (2020)

Australia Demersal fish Fulton et al. (2011)

English Channel Demersal fish Lehuta et al. (2015)

Australia Prawn Ives et al. (2013)

Rule-based Baltic Sea Cod Bastardie et al. (2010)

Bering Sea Demersal fish Ono et al. (2018)
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All of the methods predict pa,t and the goal is to compare them 
theoretically and practically.

First, we introduce each of the choice models and the notation 
used. Then we evaluate under which conditions each of the 
models can be formulated to produce identical predictions. The 
main results are demonstrations of equivalence.

2.1   |   Gravity Model

For a ∈ {1, … ,A}, the proportion of effort in area a from the 
gravity model is given by

where Φa,t−� is some function of utility (e.g., profit) � time 
steps ago.

2.2   |   Random Utility Model

A multinomial logit model typically models the log-odds of a 
given category relative to a baseline category. Setting area one j 
as the baseline category, log-odds based on utility per unit effort 
can be described as

This model is more formally a conditional logit model 
McFadden (1973) as the variables are choice-specific and can be 
generalised to

where Xa,t−� is a set of area-specific covariates at time t − � and 
can include any variables that contribute to the utility, such as 
cost and revenue (Girardin et al. 2017).

2.3   |   Markov Model

The Markov property states

where Yt is the state (area) at time t. Therefore, the probability 
depends only on the previous state and not those preceding the 
previous step. A transition probability matrix governs the proba-
bility of transition among the available states of a Markov model. 
For A possible areas, the transition matrix can be written

where rows denote departing state and columns destination 
state (at time t) (probabilities sum to unity across rows). Note 
that the transition probabilities are here assumed time t specific. 
A state probability (as distinct from a transition probability) 
gives the probability that a given state is occupied at a given time 
and is denoted p(m)

a,t , where

that is the probability of being in state a at time t is the sum of 
the proportions moving into area a at time t from all areas j at 
time t − 1.

2.4   |   Dynamic State Variable Model

Dynamic state variable models (DSVMs) introduce a discre-
tised utility state that affects choice. For example, profit utility 
is discretised and movements between areas (patch) would 
result in increments or decrements of the profit state. A fun-
damental difference with the statistical models that focus on 
area transitions (e.g., Markov models) is that DSVMs focus on 
utility transitions, and the optimal choice emerges from the 
calculation procedure. A simple DSVM predicts that the opti-
mal policy (set of choices) is to go to the sequence of areas that 
results in the highest utility.

After defining how utility is affected by a state � at the end 
of a period (e.g., by comparing the accumulated profit over 
that period), a value function links the maximum utility be-
tween time step t and final time step T where the expected util-
ity is

where Φa,t is the utility per unit effort of an individual going to 
area a in the time step t, and Xa

[
V
(
Φi, t + 1

)]
 the expected future 

utility over all possible states resulting from choice a.

In a simple DSVM, the option that maximises the highest future 
utility is chosen, which means that a DSVM has the explicit as-
sumption that utility of a choice depends on the expected state 
change that results from that choice; hence, this model cannot 
generally be equated with the other models. Equivalence can 
only occur where choice at a given time step has no impact on 
future choices, with the utility contribution arising from state 
change being zero, and the decisions at each time step being 
effectively independent. This would negate the purpose of de-
veloping a DSVM approach. To ensure that predictions have 
the same proportions as statistical models, the distribution of 
vessels between utility states multiplied by the optimal transi-
tion matrix among utility states and summed by area must be 

(1)Ea,t = pa,tEt

(2)p
(g)
a,t =

Φa,t−�∑A
j=1Φj,t−�

(3)�a,t = ln

⎛⎜⎜⎜⎝

Φa,t−�∑A
j=1 Φj,t−�

Φ1,t−�∑A
j=1 Φj,t−�

⎞⎟⎟⎟⎠
= ln

�
Φa,t−�

Φ1,t−�

�

(4)p(r)a,t
�
Xa,t−� � �

�
=

e�Xa,t−�

∑A
j=1 e

�Xj,t−�

(5)

P
(
Yt = yt|Yt−1 = yt−1, … ,Y0 = y0

)
= P

(
Yt = yt|Yt−1 = yt−1

)
,

(6)(t) =

⎡⎢⎢⎢⎢⎢⎣

�1,1(t)

�2,1(t)

⋮

�A,1(t)

�1,2(t)

�2,2(t)

⋮

�A,2(t)

⋯

⋯

⋱

⋯

�1,A(t)

�2,A(t)

⋮

�A,A(t)

⎤⎥⎥⎥⎥⎥⎦

,

(7)p(m)

a,t =

A∑
j=1

p(m)

j,t−1
�j,a(t),

(8)U(�, t) =max
a

(
Φa,t + U

(
Va[�], t + 1

))
,
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equal to that of the statistical model, as suggested by (Reimer 
et  al.  2019). Errors-in-decision-making can be introduced, in 
which choices are not assumed to be optimal, but proportional 
to the expected utility. To achieve this, Dowling et al. (2012) in-
troduced a tuning parameter which determines how optimally 
decisions are made by actors. The tuning parameter was such 
that where U* is the optimal choice, the actual choice was

and the distribution of choices determined by

where the utility is time independent (i.e., without any long-term 
constraints), the predictions can be equated to the gravity model, 
where the gravity is treated as a multinomial so that there is a σ 
per area in Equation (10), being

where utility is treated narrowly as profit Ua,t = Φa,t the pre-
dicted proportions from the gravity model (Equation  2) and 
DSVM are equal.

2.5   |   Equating Utility in Choice Models

Conditional on the utility, we demonstrate that the link be-
tween utility and choice can be equivalent across all models. 
The choice from DSVMs, following the formulation in Dowling 
et al. (2012), is

where U∗
t =maxi∈A

(
Ui,t

)
. If we let σ = 1, then

If we let the utility of location a be Ua,t = Xa,t−��, then

Therefore, the link between utility and choice in a DSVM fol-
lowing Dowling et al. (2012) can be equated to the link between 
utility and choice in a RUM with Φa,t−� = eXa,t−� �. Further, a 
choice utility in a RUM is

can be equated to choice in a gravity model.

If in a Markov model the transition probabilities did not depend 
on �i,a(t) = �a(t) ⋅ ∀ i. The transition matrix would be written

If �a(t) ∝ eXa,t−� �, then the link between utility and choice in a 
Markov model can also be equated to the link between utility 
and choice in the other models

3   |   Agent-Based Simulation Study

To evaluate the characteristics of the four location choice mod-
elling frameworks, we performed an agent-based simulation 
study. Each location choice model was fitted to simulated data 
generated by an event-based mixed fishery simulation tool 
based on individual vessels, MixFishSim (Dolder et al. 2020). A 
summary of the simulation is provided here, and full simulation 
details are provided in the Data S1.

Briefly, four species with different spatiotemporal population 
demographics were simulated. Each population had a different 
time-homogeneous habitat preference and thermal tolerance 
but a common spatially varying temperature field, along with 
diffusive (random but according to habitat preference) and di-
rective movement (towards spawning locations at certain times 
of year), which operated on a weekly time step. The popula-
tions were replenished by recruitment (new fish entering the 
population), which was a function of population size. Natural 
and fishing mortality were included using a spatially explicit 

(9)Δa,t = U∗
t − Ua,t,

(10)p(d)a,t =
e−Δa,t∕�

∑A
a=1 e

−Δa,t∕�
,

(11)�a,t =
Ua,t −max

(
Ua=1…A,t

)

log
(

Ua,t

Ua=1,t

) ,

(12)p(d)a,t =
e−(U

∗
t −Ua,t)∕�

∑A
i=1 e

−(U∗
t −Ui,t)∕�

,

(13)p(d)a,t =
e−(U

∗
t −Ua,t)

∑A
i=1 e

−(U∗
t −Ui,t)

(14)=
eU

∗
t e−(U

∗
t −Ua,t)

∑A
i=1 e

U∗
t e−(U

∗
t −Ui,t)

(15)=
eUa,t

∑A
i=1 e

Ui,t

(16)=
eXa,t−� �∑A
i=1 e

Xi,t−� �

(17)= p(r)a,t.

(18)p(r)a,t =
eXa,t−� �∑A
i=1 e

Xi,t−� �

(19)=
Φa,t−�∑A
i=1Φi,t−�

(20)= p
(g)
a,t ,

(21)(t) =

⎡⎢⎢⎢⎢⎢⎣

�1(t)

�1(t)

⋮

�1(t)

�2(t)

�2(t)

⋮

�2(t)

⋯

⋯

⋱

⋯

�A(t)

�A(t)

⋮

�A(t)

⎤⎥⎥⎥⎥⎥⎦

,

(22)�a(t) =
eXa,t−� �∑A
i=1 e

Xi,t−� �

(23)=
Φa,t−�∑A
i=1Φi,t−�

(24)= p
(g)
a,t = p(r)a,t = p(d)a,t .
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two-stage Deriso-Schnute delay difference model (Deriso 1980; 
Schnute 1985).

Each fish population was calibrated to represent a species 
found in a typical mixed fishery. The first population mimicked 
a low value but widely distributed roundfish, such as whiting 
(Merlangius merlangus), whereas population 2 was a more 
densely and locally distributed roundfish of medium value but 
high abundance, such as cod (Gadus morhua). Population 3 was 
established as a patchily distributed medium-value species such 
as haddock (Melanogrammus aeglefinus), whereas population 4 
was a densely populated high-value species having lower overall 
biomass (e.g., Nephrops norvegicus).

Fishing was simulated with individual vessels with an 
exploration-exploit strategy, where fishing was characterised 
by (i) a period of exploration through a correlated random walk 
to explore unknown fish distributions and (ii) a period of estab-
lished fishery dynamics where fishing location choice is based on 
expected revenue and costs of moving between fishing grounds 
known to the individual. It is important to highlight that vessel 
decisions are made individually in a micro-economic manner, 
with location choice across all vessels being an emergent prop-
erty. The outcome is individually generated patterns, with data 
typically available to researchers (i.e., vessel logbook data).

Five 20-vessel fleets were defined with different species catch 
preferences for each fleet. The simulation was run for 29 years to 
establish the fishery before spatial closures were introduced in 
year 30 and then ran for a further 20 years (50 years in total). No 
quotas or other restrictions are put in place, and effort is fixed 
each year at the same level for each vessel. Spatial closures were 
designed to minimise fishing mortality on a population by clos-
ing the areas with the highest catch rates for this species.

Simulated logbook data were clustered to define fishing grounds 
with consistent catch compositions to define a choice set (Dolder 
et al. 2020; Branch et al. 2005) before we fitted two variants of 
the gravity model, a dynamic state variable model, two variants 
of random utility models and a Markov model. As a null model, 
we included predictions where the effort share remained un-
changed from previous years.

The formulation of each of these models (Table 2) is briefly sum-
marised in the following, and the notation is collected in Table 3.

3.1   |   Model Formulations

3.1.1   |   Past Effort Share (‘PastShare’)

As a null model (superscript p), we include predictions where the 
proportion of effort ppa,t in area a at time t is

where pa is the average proportion of effort in the area previ-
ously, calculated as the sum of the effort in an area over 3 years 
divided by the sum of the total effort in all areas over the same 
period.

3.1.2   |   Gravity Model (‘Gravity’)

We defined a gravity model (g) such that the proportion of effort 
p
g
a,t in area a at time t is given by

where Φa is the average profit for the preceding 3 years in area a, 
where \ for a given year is defined as

comprised of the sum of the landings L in tonnes for the area 
a at time t and species s multiplied by the price πs per tonne 
minus fuel cost f per unit of effort, multiplied by effort Ea,t. This 
effort, in turn, is influenced by the distance travelled Da,t. β is 
a tuning parameter which relates the influence of profit to the 
allocation of effort, where β = 0 results in effort being allocated 
equally across all areas, and β = 1 results in effort being allo-
cated almost entirely to the area with the highest profit. In our 
case, β was estimated as the best-fitted model, with a Dirichlet 
error distribution.

3.1.3   |   Gravity and Past Effort Share Combination 
(GravityCombo)

An alternative formulation of a gravity model was included, 
where 80% of the effort allocation was determined by the pre-
vious effort (tradition or inertia) and 20% by the gravity model 
(economic opportunism) after Marchal et al. (2013). The 80/20 
split has been chosen for illustrative purposes, though the value 
could be tuned to best fit the data. This gravity–tradition combi-
nation model (superscripted c) is given by

(25)p
p
a,t = pa

(26)p
g
a,t =

e�Φa

∑A
a=1 e

�Φa

,

(27)Φa,t =

S∑
s=1

La,t,s�s − Ea,tf

(28)pca,t = � ∙ p
p
a,t + (1 − �) ∙ p

g
a,t,

TABLE 2    |    Model name and description.

Code Description

Mechanistic models

PastShare Null model, effort share is 
the same as in the past

Gravity Gravity model

GravityCombo 80% of PastShare and 
20% gravity model

DSVM Dynamic state variable model

Statistical models

Markov Markov transition model

RUM Random utility model

RUMRparam Reparameterised 
random utility model
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with α = 0.8 controlling the proportional weighting of 
each model.

3.1.4   |   Dynamic State Variable Model (‘DSVM’)

Here, we define our utility function so that there is no effect of 
the individual state on the annual utility. We thus set the effect 
of a state on utility at the end of a year to zero for all possible 
states. This is a case where, for example, there are no individual 
quotas that affect choices over multiple time steps:

The value function is calculated recursively, back in time, link-
ing the maximum revenue between year t and end T where the 
expected net revenue is

where the Фa,t is the exponent of the expected profit in a time 
step, calculated using a probability distribution function for the 
landings, so that

where λa (ls, t) is the probability of landing l tonnes of species s 
defined as a discretized normal distribution with mean μs,a,t and 
standard deviation σs,a,t and π the price for species s. Фi (a, t), the 
Ф contribution from choice a at time t.

The tuning parameter σ that links the choice probability to the 
expected utility was set by optimising the root-mean-squared-
error fit to the simulated observational data during the fitting 
period for each set of predictions. Because any state-dependent 
effect on utility was removed from the model, the choice proba-
bility became a pure function of the expected short-term profit 
with a time step. For estimation, we used the R implementation 
of a DSVM developed by Alzorriz et al. (2018).

3.1.5   |   Random Utility Model (‘RUM’)

Here, we defined a case- and choice-specific multinomial logit 
RUM (superscript r) where

and the multinomial distribution at time t given by

where na,t is the number of vessels choosing area a at time t, and 
nt is the total number of vessels at time t. The r superscript has 
been dropped for simplicity.

The choice-specific covariates Za,t comprised the profit 
from fishing at that location during the corresponding pe-
riod in the data years, whereas the case-specific covari-
ates included a month effect to capture season in the choice 
probabilities.

The fitting of the model was performed in the R software library 
mlogit (Liao 2011).

3.1.6   |   Reparameterised Random Utility Model 
(‘RUMReparam’)

An alternative RUM was also included, where we reformulated 
the choice-specific covariate data as the log-ratio of revenue and 
costs relative to area A. This reparameterisation reflected theoreti-
cal results from the analytical analysis (see Results). Except for co-
variates, the model formulation was the same as in Equation (32).

(29)U(�,T) = 0 for all�.

(30)U(�, t) =max
a

(
Φa,t + U

(
Va[�], t + 1

))
,

(31)Φa,t =

(
S∑
s=1

�a
(
ls, t

)
∙ �s

)
− Ea,t ∙ f

(32)pra,t =
e�a∙Xt+�∙Za,t

1 + e�a∙Xt+�∙Za,t

(33)
nt !

n1,t ! ⋯ nA,t !
p
n1,t
1,t

⋯ p
nA,t
A,t
,

TABLE 3    |    Model notation, including the interpretation of the 
symbols and units where relevant.

Notation Meaning Index Units

a Area a = 1…A = 9

y Year y = 1…Y = 50

t Time t = 1…T = 12

s Species s = 1…S = 4

L Landings tonnes

π Price … tonnes−1

Ф Utility

D Distance … km

f Fuel cost per 
unit of effort

… h−1

E Effort hour

λa (ls, t) Probability of 
landings l tonnes 

of species s

[0,1]

βa Coefficients 
for area a

1 … ∞

Xt Covariates at time 
t for β coefficients

1 … ∞

γ Coefficients for 
individual

1 … ∞

Za,t Covariates for 
γ coefficients

1 … ∞

n Number of 
observations

1…N Tow

p Proportion of effort [0,1]

z Past state z = 1…Z = 9

βz,a Coefficients for 
state z and area a

1 … ∞

Xt Covariates at time t 1 … ∞
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3.1.7   |   Markov Model (‘Markov’)

In the Markov model the proportion of effort in area a at time t 
is the sum of the transitioned proportions of effort from areas z 
(departing area) at time t − 1:

where the transition probabilities are given by the logit function:

where we allowed seasonal changes in the model by including a 
month effect in addition to profit in the state being transitioned 
to in the vector Xt. We estimate transition matrices between each 
of the states of a Markov model (m), which were time inhomo-
geneous to capture seasonal dynamics. Additional covariates can 
be incorporated when estimating the Markov transition matri-
ces (Davie 2013), but we focussed on a simple formulation for 
comparison.

The fitting of the Markov model was carried out in the R soft-
ware library nnet (Venables and Ripley 2002).

3.2   |   Model Fitting and Predictions

The formulation of each of the models was deliberately kept sim-
ple to facilitate cross-model comparison with the same data and 
variables. Each model was provided with the same data and co-
variates for model fitting and predictions. The covariates chosen 
included a seasonal effect (monthly) and past profit in a location. 
Inference on location choice was based on previous observations, 
profit when fishing during the observations, and how the model 
fits only the data. However, while the statistical models (RUM, 
Markov) are fit to the individual fishing event data, it is neces-
sary for the mechanistic models (Gravity, DSVM) to be calibrated 
with the monthly mean of the data; in the case of the DSVM, this 
also includes the standard deviation of the profits.

Each of the models was fitted on a rolling basis to 3-year data 
on observed fishing locations for a single fleet, with predictions 
made for the following 2 years. This approach was deliberately 
taken to mimic a short-term forecast procedure carried out as 
part of an operating model in a management strategy evalua-
tion. The predictions were made over 10 years spanning prior 
to the closure implementation through several years after the 
closure implementation, with the first predicted year being year 
23 (training on years 20–22) and the last predicted year being 
year 39 (training on years 36–38). We chose to compare the pro-
portion of effort in each area because the total effort required is 
subject to other factors such as quota availability and the man-
agement regime.

The characteristics of each of the models are summarised 
in Table  4. Full code for fitting, predictions and model 
output is provided at https://​github.​com/​pdold​er/​Fleet​Dynam​
ics_​code.

3.3   |   Simulation Results and Model Performance 
Evaluation

The locations identified for the choice models, their profit-per-
unit effort and the number of realised tows are summarised in 
Figure 1. It can be seen that the effort allocations to each métier 
broadly follows the profit per tow, though this can vary by métier 
and by month.

Model performance characteristics were assessed in three ways:

1.	 Forecast residual diagnostics: Comparison of the pairwise 
difference between the observed and predicted proportions 
in each area and month.

2.	 Root-mean-squared error deviation of the predictions: 
RMSE =

�
1

n

∑n
i=1

�
Oi−Pi

�2, where Oi is the observed pro-
portion for an area in a given month and Pi is the predicted 
proportion.

3.	 Spearman's rank correlation coefficient of the proportions: 
� =

cov(rgO ,rgP)
�rgO

,�rgP
 where cov

(
rgO, rgP

)
 and �rgO , �rgP the covari-

ance and standard deviation of the ranked observed and 
predicted proportions, respectively.

Statistical models generally showed less systematic bias in the 
forecast residuals than mechanistic models (Figure 2). Forecast 
residuals showed no inter-monthly correlations before or after 
the closure for the Markov, RUM or the reparameterised RUM, 
with the exception of the ‘OTH’ area (Figure 2). The Gravity and 
DSVM both consistently overpredict effort in some areas and un-
derpredict in others (Figure 2).

Before the implementation of the spatial closure (< year 30), 
PastShare was the best prediction of the future effort allocation 
(RMSE = 0.282%), but this was not the case immediately following 
the closure (year = 30), where the re-parametrised RUM outper-
formed the other models (RMSE = 3.03%, Figure  3, Table  5) in-
cluding PastShare (RMSE = 3.66%). Of the other models PastShare, 
Gravity-Tradition and Markov performed broadly similarly to each 
other, with the RUM, Gravity and DSVM performing the worst 
(Figure 3). After a couple of years of closure, the prediction accu-
racy increased for most models except gravity and DSVM models, 
with the DSVM having a steadily decreasing accuracy after a few 
years (Figure  3). Over time, the PastShare model gradually re-
establishes itself as having the best predictive accuracy (Figure 3).

Spearman correlation coefficients (ρ) show the strength of the 
relationship of individual predictions with the simulated obser-
vations of the models for the same area and month (Figure  4). 
Before the closure, PastShare (ρ = 0.998) was the best predictor of 
the future share of fishing effort, with GravityCombo (ρ = 0.993) 
and reparameterised RUM (ρ = 0.984) being the models that per-
formed best. The Markov (ρ = 0.951) and the RUM (ρ = 0.895) also 
performed well. This generally remains true during and after the 
closure, with the reparameterised RUM performing best, both 
during (ρ = 0.963) and after closure (ρ = 0.985).

It is notable that during the closure the mechanistic models per-
formed no worse (and in some cases better) than before the clo-
sure. The gravity model increased the accuracy before (ρ = 0.508) 

(34)pma,t =

A∑
z=1

pmz,t−1p
m
z,a,t

(35)pmz,a,t =
e�z,aXt

1 + e�z,aXt
,
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FIGURE 1    |    Spatial location of métier (top panel) and profit per métier (±2 × σ) per year in bars, and average tows per year in lines: before, during 
and after the spatial closures implemented in C_1 and C_2 (bottom panels).
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FIGURE 2    |     Legend on next page.
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to during (ρ = 0.669) and then decreased slightly after the clo-
sure (ρ = 0.581). The DSVM showed a similar pattern (ρ = 0.391 
before, 0.615 during and 0.545 after), although for these models 
there were a number of predictions that were very different from 
the observations, with over or underestimated values (Figure 4). 
All statistical models performed worse during the closure than 
before and after, though still better than the mechanistic models 
in absolute terms for the model predictions. The performance of 
the Markov model degraded the least during closure (ρ = 0.951 
compared to 0.937).

4   |   Discussion

We compared four different types of location choice models, 
trying to develop a basis for understanding the similarities and 
differences among the commonly applied models.

4.1   |   Theoretical comparison

We found that equivalent links between utility and choice could 
be derived for a gravity model and a random utility model under 
the condition that the covariate used in the multinomial model 
used to fit the RUM was the log of the ratio of utility between 
two areas. Where utility was defined as profit per unit effort only 
this resulted in predictions generated in line with the Ideal Free 
Distribution theory and is consistent with previous analyses that 
showed the structural similarities between the two classes of 
models and that model specification determines the difference 
between the two (Anas 1983; Sheppard 1978). It is rarely the case 
that relative profit between areas fished is the only driver of ef-
fort allocation; tradition is one predictor that is often found to 
be significant when fitting RUMs to data (Girardin et al. 2017). 
Tradition, along with a number of variables, can be incorporated 
into gravity models through the utility component, appropriately 
weighted. If the weighting is estimated from past data through 
calibration or estimation, it provides a conceptually similar 
model to a RUM that can achieve similar predictions. The ad-
vantage of specifying a gravity model in this way is that the 
model will better fit past observations of dynamics in the fishery. 
However, it limits flexibility with the model to respond to chang-
ing system dynamics, as tradition or ‘inertia’ is a concept that 
likely reflects many other past endogenous drivers rather than 
an explicitly stated dynamic. Therefore, it would be better that 
these drivers were explicitly included to provide the mechanistic 
representation required to improve future predictions.

Extending the theoretical comparison, we found that the link 
between utility and choice in the gravity and Markov models 
showed equivalence when the Markov transitions were the 
same irrespective of the starting area, and the probabilities of 
transition were determined by the relative utility of the differ-
ent areas. This provides the ability to use similarly configured 
models to test for the presence of a Markovian property or if the 

decisions are independent of the departing area by demonstrat-
ing if the Markov model outperforms a similarly configured 
gravity model.

We found the link between utility and choice in a dynamic state 
variable model could be equated to the link between utility and 
state in a Gravity, RUM or Markov model within a single time 
step. However, DSVMs are distinct from the other classes of 
models in that a DSVM seeks to find the optimal long-term solu-
tion; in doing so, the model requires that the utility function is 
state-dependent, well defined and that relevant constraints are 
incorporated and then finds the single best set of decisions to 
maximise this utility. Some vessels may pursue suboptimal pol-
icies, and Dowling et al. (2012) and Alzorriz et al. (2018) offer 
an interesting solution with error-in-decision-making, which 
may be substitutable for a single time step to match a gravity 
model, but not with long-term constraints. Furthermore, Reimer 
et al. (2019) provide a method for exploring sub-optimality in dy-
namic state programming approaches. Another approach may 
be that defining constraints for individual vessels with heteroge-
neous conditions could lead to a spectrum of optimal solutions 
that more closely match those found with models that deal with 
heterogeneity among individuals. In this way, no single solution 
will exist for the fleet, but a set of solutions could be used as a 
probability set for the overall fleet.

4.2   |   Simulation Study

The individual-based simulation framework used (Dolder 
et  al.  2020) results in emergent fishing dynamics that are the 
aggregate effect of individuals seeking to maximise their prof-
its based on an explore-exploit strategy with uncertain knowl-
edge. An emergent feature of the simulation to which the models 
were fit was the ability to replicate the phenomenon of ‘fishing 
the line’ around a spatial closure, observed following imple-
mentation of spatial closures (Rijnsdorp et al. 2001; Armstrong 
et al. 2007; van der Lee et al. 2013). It can be seen that there is an 
increase in activity on the boundary of the closure C_1 in area 
G and that results in catch rates in the adjacent area (area G) in-
creasing (Figure 5). Therefore, while the simulation was a sim-
plified representation of reality, it captures some well-known 
features observed in real-world case studies following the im-
plementation of a spatial closure. It also highlights the limits of 
modelling spatial behaviour limited to pre-selected choice sets 
where fishing locations are often precisely defined along gradi-
ents (Rijnsdorp et al. 1998; Branch et al. 2005).

We fitted several different location choice models to the simu-
lated data to evaluate their performance characteristics under 
different fisheries management scenarios. All models were im-
plemented in a general way to allow cross-comparison, and no 
attempt was made to define the best model. All models could 
have been improved in their overall predictive capacity, but the 
simple formulation allowed us to elicit some important insights 

FIGURE 2    |    Forecast residuals (Oi − Pi) for each of the models by month for year 29 (before the closure) and year 30 (immediately after the closure) 
when fitting to data on years 26–28, where Oi is the ith observation (mean proportion across data years) and Pi the ith prediction. Blank spaces are 
where residual = 0.
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into the nature of the models and how they could be applied 
within a management strategy evaluation framework.

Although both the mechanistic and statistical models captured 
the temporal dynamics in the choice of fishing location, the 
mechanistic models were generally biased, whereas the statis-
tical models were largely unbiased in their predictions. This is 
because statistical models infer utility directly from the data, 
including unobserved drivers.

The mechanistic models specified here assume that the profit 
per unit effort is the only driver of effort allocation among the 

areas and that the distribution of this value is known a priori. It 
would be expected that statistical models performed better since 
their estimated parameters explicitly encompass utility in their 
parameterisation (McFadden  1973) and an error component 
that captures the variance in the historical data, allowing un-
explained factors to contribute to the fit of the model. The pre-
diction bias in the mechanistic models demonstrates that more 
than profit is determining effort allocation by fleets, which may 
be captured by the parameters in the statistical models. The im-
portance of past and personal knowledge of fishing locations 
can be inferred from the fact that the model where the effort 
allocation is a weighted average of predictions from the gravity 

FIGURE 3    |    The root-mean-squared error (RMSE) for each of the models predictions, 95% confidence intervals are shown in the shaded areas.
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model and the PastShare in the fisheries much better reflects the 
observed allocations.

The accuracy of the mechanistic models was affected less than 
that of the statistical models following spatial closure, suggest-
ing that they adapted better in relative terms. This may reflect 
that the mechanistic model predictions are better at dealing 
with previously unobserved situations, where the statistical 
models struggle to predict changes to the system. Cuddington 
et al. (2013) demonstrate how a good understanding of the mech-
anistic process may be able to outperform a statistical model in 
previously unobserved situations. However, due to the potential 
for bias to be introduced from misspecification, particular care 
should be taken in model calibration and consideration of bias 
adjustment (Kennedy and O'Hagan 2001). The re-parameterised 
RUM provides a useful contrast in this example, as it included 
both statistical and mechanistic properties derived from theoret-
ical linkages between the models (Equation 3).

The performance of the DSVM and gravity models degraded 
in the years after closure. This is due to an overallocation 
of effort to particular areas where biomass increases for the 
species protected by the closure, thus as that stock increases, 
more effort is allocated to these areas. The overallocation is 
likely due to the models predicting effort based on catch rates 

and relative values of each fish species, where increasingly 
the simulated vessels allocate based on their own experience 
and traditional areas they exploit, leading to the differences 
in predictions and observations. The simulated fishery dis-
tributed the fishing effort more evenly across the remain-
ing locations and to previously unexploited locations. These 
new locations were in areas where other populations were 
more abundant, suggesting a move to target these species 
(Figure 5).

The RUM and Markov model quantitatively describe the main 
drivers in location choice through a formal statistical frame-
work, which provides inference on the importance of competing 
drivers for effort allocation. However, prediction from statistical 
models beyond observed conditions must be done with care. For 
example, when a spatial closure is implemented or a quota for 
a species is significantly reduced, the relationships between the 
predictor variables may change. This is because alternatives to 
the closure area may not be independent where, for example, the 
closed area can be substituted by another area that has similar 
characteristics (e.g., similar species caught) but was less favour-
able than the closed area. This changes the utility of the new area 
once the other opportunity is closed to an individual, violating 
the independence of irrelevant alternatives (IIA) principle. While 
there have been developments in RUM applications to address 

TABLE 5    |    Summary of model comparison metrics. All Spearman's ρ values were significant at p < 0.001.

Closure period Model type Model RMSE MAE Spearman's ρ

Before Mechanistic DSVM 8.299 6.775 0.371

Gravity 7.723 5.842 0.506

GravityCombo 1.566 1.181 0.993

PastShare 0.282 0.179 0.998

Statistical Markov 2.827 1.960 0.951

RUM 2.289 1.374 0.963

RUMReparam 1.449 0.861 0.984

During Mechanistic DSVM 8.263 6.075 0.608

Gravity 7.883 5.493 0.662

GravityCombo 3.741 2.696 0.941

PastShare 3.664 2.356 0.951

Statistical Markov 3.875 2.465 0.938

RUM 3.524 2.105 0.948

RUMReparam 3.032 1.936 0.963

After Mechanistic DSVM 9.057 6.550 0.552

Gravity 7.225 5.088 0.621

GravityCombo 2.122 1.439 0.983

PastShare 1.471 0.688 0.988

Statistical Markov 2.931 1.953 0.955

RUM 2.501 1.541 0.969

RUMReparam 1.775 1.039 0.985
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the IIA problem (e.g., nested or mixed logits), the alternative 
choices must be understood prior to implementation. The strong 
influence of the past choice as an explanatory variable (Girardin 
et al. 2017) may mask the understanding of these relationships.

Mechanistic process-based models require strong a priori as-
sumptions about the drivers of dynamics in the fisheries, and 
if developed to characterise such satisficing and rule-based de-
cisions, the emergent dynamics may be better able to provide 

FIGURE 4    |    Spearman correlation coefficients for predicted against observed proportions for each of the models and periods. Before is year < 30, 
during is year 30, and after is year > 30.

 14672979, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/faf.12886 by W

ageningen U
niversity and R

esearch B
ibliotheek, W

iley O
nline L

ibrary on [08/04/2025]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



17 of 22

FIGURE 5    |     Legend on next page.
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insight into previously unobserved system dynamics. This ex-
plicit statement of assumptions allows for an unambiguous 
understanding of the mechanisms behind effort allocation but 
provides a challenge in describing all of the mechanisms that 
contribute to the dynamics and being able to distinguish among 
them in calibrating such models. Further, misspecified models 
run the risk of leading to biased predictions due to the over-
influence of one or more variables.

The reparameterised RUM performed better than any of the 
other statistical- or mechanistic-based models. The model com-
bines features of both in that it estimates the influence of profit 
from the fisheries relative to each other, similar to the Ideal Free 
Distribution principle in a gravity model that states effort allo-
cates according to the relative distribution of the resource. By 
estimating the influence of the relative value, the reparameter-
ised RUM does not assume a direct relationship but estimates 
the strength of this relationship in making predictions. Linking 
theoretical and statistical models provides a basis for combining 
strengths from each of the modelling approaches and highlights 
bases for inference among models.

The DSVM was applied here as a general location choice model, 
but our application did not include more detailed policy explo-
ration that models have been developed for in the past. These 
applications include exploring the response of fisheries to differ-
ent management measures in mixed fisheries, including catch 
limits (Babcock and Pikitch  2000) and catch limits in combi-
nation with discard bans (Poos, Bogaards, et al. 2010; Batsleer 
et al. 2016; Alzorriz et al. 2018). DSVMs are arguably the only 
class of model that can evaluate such detailed policies due to 
their ability to incorporate both short-term and long-term con-
straints in decisions about when and where to fish. Though the 
effect of quota availability could be incorporated in RUMs and 
Markov models, to our knowledge, this has not been considered 
to date (Girardin et al. 2017).

The predictions in our comparison are constrained by the lim-
ited definition of the fisheries in the study; activity in the ‘else-
where’ category also shows some spatial patterns likely to be 
differentiated fisheries, and as such, all the models do a much 
poorer job of predicting effort allocation (including seasonal 
distribution) in the fisheries not specifically predefined. The 
exception to this is the predictions from the PastShare model 
that capture the dynamics and scale of the effort allocated to 
the ‘elsewhere’ areas well (Figure 5). It may be that the other 
models could similarly improve their prediction accuracy if 
the fisheries in the rest of the spatial domain were better char-
acterised and could therefore be described in part by their past 
profit or other covariates. As the accuracy of predictions is not 
the goal of this paper, we did not refine the location choices 
further but highlighted the importance of accurate area 
definitions.

5   |   Conclusions

We set out to establish the theoretical and applied basis for 
comparing location choice models commonly used in fisher-
ies science. We derived the mathematical equivalence of the 
link between utility and choice in the models under specific 
circumstances, opening avenues for inference. We then used 
a simulation framework to compare and contrast predictions 
of the allocation of fishing effort following a spatial closure to 
identify characteristics of the different models. To our knowl-
edge, this is the first cross-comparison of location choice mod-
els and provides a basis for the continual development of these 
methods and the inclusion of location choice models in an 
MSE setting.

We found that while several different models for location choice 
have been proposed from different foundations, including mi-
croeconomic and ecological theory, the models were more 
similar structurally than anticipated. We could equate the link 
between utility and state in gravity, random utility, Markov and 
dynamic state variable models under certain conditions and 
found that the data, formulation and covariate parameterisa-
tion are some of the main determinants of different predictions 
from the models. This was similar to the conclusions reached 
by Anas (1983) when comparing gravity and multinominal logit 
models.

Our simulation study demonstrated the different characteristics 
of location choice models. While based on a simplified frame-
work that does not account for all the case-specific complexi-
ties that contribute to decisions about when and where to fish in 
mixed fisheries (Branch and Hilborn 2008; Forrest et al. 2020), it 
does allow us to draw some general conclusions about the char-
acteristics of the different models compared here.

Before the introduction of spatial closure, no model outper-
formed the null model (status quo effort allocation among areas) 
to predict the future share of fishing effort between fisheries. 
However, the statistical models all performed significantly 
better than the mechanistic process-based models. This was 
because the mechanistic models biased effort allocation dispro-
portionately towards particular fisheries. Following the imple-
mentation of the closure, the performance of the null model and 
the statistical model degraded, but the RUM and reparameter-
ised RUM briefly outperformed the null model, the only period 
over which this happened. The performance of the mechanistic 
models, while remaining biased, did not degrade, suggesting 
they were able to make predictions that were accurate (but bi-
ased). The reparameterised version of a RUM performed best. 
This included predictions based on the relative profit from each 
fishery, equivalent to a gravity model, but where the influence of 
profit in each area was estimated rather than assumed to follow 
an Ideal Free Distribution. This model combined aspects of a 

FIGURE 5    |    Effect of explore–exploit strategy following spatial closure. Top left figure shows the probability of a tow being based on past knowl-
edge (1 − p is the probability of exploratory tows), top right figure shows the effect of the closure on the catch rates of the adjacent area to one of the 
closure areas, bottom figure shows the change in fishing effort (number of tows per year) before and after the closures—with a red shaded area show-
ing increased effort alongside the boundary of closure C_1.
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statistical and mechanistic model in that it defined a mechanism 
but estimated the fit of the data to that mechanism.

There are advantages and disadvantages to both class of models 
explored here; statistical models are able to ‘let the data speak for 
itself’ and deal with both explained variance, for example, due to 
catch rates of different stocks and unexplained variance through 
an error term. However, when a major change is implemented, 
such as a spatial closure, some of the assumptions in the model 
may be violated, leading to extrapolation and degradation in 
performance. In this case, the inclusion of a mechanistic model 
either in combination or supplementing the statistical model 
should be considered.

Mechanistic and statistical models have different properties: 
statistical models capture dynamics well when there are no sig-
nificant management interventions, while mechanistic models 
are able to reflect emergent properties of a system that allow 
them to better adapt predictions for unobserved states. We argue 
that these differences are complementary and recommend 
that a multi-model approach should be considered and, where 
possible, features of each approach formally combined. This 
could be achieved either by formulating the model to include 
elements of statistical and mechanistic process-based dynam-
ics (Cuddington et al. 2013) as with the reparameterised RUM, 
or through an ensemble framework as a statistical meta-model 
(Spence et al. 2018). Doing so, in a fully formulated case-specific 
modelling framework, provides a robust mechanism to consider 
location choice when implementing MSEs for evaluations of 
mixed fisheries management plans.
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