
Geo-information Science and Remote Sensing

Thesis Report GIRS-2025-08

EVALUATING DEEP FEATURES FROM PRE-TRAINED
TIME-SERIES DEEP LEARNING MODEL FOR PIXEL-
LEVEL TREE SPECIES CLASSIFICATION ON FOREST
INVENTORY
Takayuki Ishikawa

Fe
br

ua
ry

27
,2

02
5



Evaluating Deep Features from Pre-trained Time-Series Deep
Learning Model for Pixel-level Tree Species Classification on Forest

Inventory

Takayuki Ishikawa

Registration number 1372351

Supervisors:

Marc Russwurm
Carmelo Bonannella

A thesis submitted in partial fulfilment of the degree of Master of Science
at Wageningen University and Research Centre,

The Netherlands.

February 27, 2025
Wageningen, The Netherlands

Thesis code number: GRS-80436
MSc Thesis report: GIRS-2025-08
Wageningen University and Research Centre
Laboratory of Geo-Information Science and Remote Sensing



Contents

1 Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
3 Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

3.1 Study area . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
3.2 National Forest Inventory (NFI) data . . . . . . . . . . . . . . . . . . . . . 8
3.3 Francini data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
3.4 Non-labeled data for pre-training . . . . . . . . . . . . . . . . . . . . . . . 9
3.5 Ground data overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
3.6 Satellite data sources . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
3.7 Data collection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
3.8 Data preprocessing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

4 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
4.1 Deep learning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
4.2 Classic machine learning with Random Forest (RF) (RQ1) . . . . . . . . . . 18
4.3 Model validation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

5 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
6 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
7 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
8 Use of generative AI statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
9 Acknowledgments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
10 Appendix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

10.1 Content of the zip file . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
10.2 Additional results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

3



Contents

List of Abbreviations

BA Basal Area

DW Dynamic World

ERA5 European Centre for Medium-Range Weather Forecasts Re Analysis v5

GEE Google Earth Engine

FAO Food and Agriculture Organization

FRA Forest Resource Assessment

GHG Greenhouse Gas

GRD Ground Range Detected

MAE Masked Auto Encoder

MLP Multi Layer Perceptron

NDVI Normalized Difference Vegetation Index

NFI National Forest Inventory

RF Random Forest

RS Remote Sensing

SAR Synthetic-Aperture Radar

SITS Satellite Image Time Series

S1 Sentinel-1

S2 Sentinel-2

SRTM Shuttle Radar Topography Mission

Presto Pretrained Remote Sensing Transformer

4



1. ABSTRACT

1 Abstract

Forests play a vital role in mitigating climate change and providing essential ecosystem services such
as carbon sequestration. National Forest Inventory (NFI)s serve as the primary source of forest infor-
mation, providing crucial tree species distribution data for carbon storage estimation and biodiversity
assessments. However, maintaining these inventories requires labor-intensive on-site campaigns by
forestry experts to identify and document tree species. Remote sensing approaches, particularly when
combined with machine learning, offer opportunities to update NFIs more frequently and at larger
scales. While the use of Satellite Image Time Series (SITS) has proven effective for distinguishing tree
species through seasonal canopy reflectance patterns, current approaches rely primarily on Random
Forest (RF) classifiers with hand-designed features and phenology-based metrics.

Recent advances in Artificial Intelligence (AI) through deep neural networks offer a complementary
strategy, using learned features from annotated data in an end-to-end fashion. However, while these
approaches show superior results compared to traditional methods, they typically require large anno-
tated datasets and substantial computational resources for training—requirements that are particularly
challenging for NFIs. Pre-trained deep learning models address these limitations by leveraging unla-
beled data through self-supervised pre-training and are freely available for use. For example, Masked
Auto Encoder (MAE) enables networks to learn meaningful features by reconstructing masked in-
put time series without requiring ground-truth annotations. These pre-trained models can then be
efficiently fine-tuned with smaller labeled datasets for specific classification tasks.

In this work, we investigate two key research questions: "To what extent do deep features extracted
from a fine-tuned pre-trained model improve tree species classification accuracy in NFIs compared to
traditional harmonic and medoid seasonal composite predictors?" and "What is the effect of domain-
specific second-stage pre-training on tree species classification accuracy?" We evaluate these questions
using three datasets: the Dutch NFI data (an unbalanced set of 1,479 pure species plots grouped into
seven species classes), the Dutch NFI data (an unbalanced set of 1,462 pure species plots with thirteen
species classes) and the Francini dataset (a balanced set of 13,790 pure species plots with seven
classes). We extracted time-series data from Sentinel-1 (S1), Sentinel-2 (S2) and European Centre
for Medium-Range Weather Forecasts Re Analysis v5 (ERA5) satellites data (January-December
2020) and Shuttle Radar Topography Mission (SRTM) data using Google Earth Engine. Comparing
deep features from the fine-tuned Pretrained Remote Sensing Transformer (Presto) model against
the current state-of-the-art approach using the same RF classifier framework, we found that Presto-
derived features substantially outperformed traditional hand-crafted harmonic and seasonal medoid
features. Interestingly, additional pre-training on unlabeled Dutch forest time series data did not yield
further accuracy improvements.

Our experiments demonstrate that fine-tuning pre-trained deep learning foundation models offers a
cost-efficient approach for large-scale tree species classification in NFIs, despite the limited benefits
of second-stage pre-training. By leveraging openly available satellite data and pre-trained models,
this approach significantly improves classification accuracy compared to traditional methods and can
effectively complement existing forest inventory processes. The results highlight the potential of pre-
trained deep learning models for enhancing the efficiency and scale of forest monitoring applications.

5



Contents

2 Introduction

Forests play a significant role in mitigating climate change, adopting disaster prevention strategies, and
providing ecosystem services, including sequestering carbon dioxide (CO2), providing wood materials,
and serving as a source of biodiversity (Tomppo et al., 2010; FAO, 2020; Francini et al., 2024).
Tree species diversity improves productivity of materials and resistance to natural disturbance (Jactel
et al., 2017). Therefore, monitoring and tracking records of forests including spatial distribution of
tree species are necessary for a sustainable forest management.

National Forest Inventory (NFI)s are the primary source of information for various purposes such as
sustainable forest management, industry investment planning, biodiversity monitoring, and Greenhouse
Gas (GHG) accounting (Tomppo et al., 2010; Bonannella, 2024). The Paris Agreement also requires
the submission of a national carbon inventory, including carbon removals and reductions from forest
lands (UNFCCC, 2015). Spatial tree species distribution information plays an important role in NFIs
for various applications such as carbon storage estimation, forest management, and biodiversity as-
sessments (Hermosilla et al., 2022; Blickensdörfer et al., 2024). Additionally, detailed tree species
information is essential for national reports to the Forest Resource Assessment (FRA) of the Food
and Agriculture Organization (FAO) and Forest Europe (M. Schelhaas et al., 2014).

One of the key challenges in managing forest inventory is frequency and scale. Traditional inventory
methods are based on sample-based field measurements conducted every 5 to 10 years (Tomppo et
al., 2010). Current climate change and land-use changes due to economic growth cannot be captured
in a timely manner using these traditional methods (Bonannella, 2024).

Remote sensing helps improve and update NFIs (Francini et al., 2024; Hermosilla et al., 2022).
Satellite sensors capture information about Earth every few days to several weeks, allowing us to
monitor Earth’s condition more frequently and extensively, even in remote areas. However, the global
coverage and complex data volumes in remote sensing make human visual interpretation impractical
for large-scale analysis.

Machine learning techniques have achieved significant improvements in Earth observations, including
tree species classification, particularly when using multiple timestamps of images over large areas
(Blickensdörfer et al., 2024; Francini et al., 2024; Hermosilla et al., 2022). The RF algorithm is one
of the most popular machine learning algorithms for tree species classification due to its robustness,
interpretability, and ability to handle high-dimensional data (Breiman, 2001). However, RF models
require well-designed input features engineering, and this selection of appropriate features is crucial
for model performance (Heaton, 2016). These choices depend on domain knowledge and target area
characteristics such as climate and tree species variety, and often fail to include all necessary features
(Ahlswede et al., 2022).

In the context of NFIs, several state-of-the-art machine learning models utilizing RF have emerged
(Hermosilla et al., 2022; Blickensdörfer et al., 2024; Francini et al., 2024). These current methods for
tree species classification rely on country-specific knowledge for input features, parameter settings,
and high-quality data. However, scaling these methods to other countries at a national level presents
challenges due to cost constraints and data availability limitations. Furthermore, deep learning models,
which generally require large datasets to enhance performance, have remained largely unexplored for
national-level tree species classification, primarily due to the limited size of available training datasets.
These constraints collectively hinder the transferability of existing methods across different regions
or countries.

Deep learning models such as transformer architectures (Vaswani et al., 2023) have been recently
introduced for forest monitoring, including tree species classification. This adoption is driven by
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2. INTRODUCTION

increasing interest in multimodal and time-series data fusion in Remote Sensing (RS), enabled by
the availability of big data and advancements in deep learning models (J. Li et al., 2022). Deep
learning models can capture complex patterns in input data and create deep features that can be
used for downstream tasks with classifiers and regressors including RF (Basu et al., 2015). While
recent studies have achieved success in regional-scale tree species classification using high-quality
labeled data, significant gaps remain in large-scale classifications (Fassnacht et al., 2016) for NFIs
due to limited labeled data availability and high computational cost for training.

Freely available pre-trained models, trained on large unlabeled datasets containing millions of pixels
or images, have emerged as powerful tools for various downstream tasks. These models can achieve
comparable or superior accuracy to traditional state-of-the-art machine learning approaches through
fine-tuning without computationally expensive pre-training (Bommasani et al., 2022). Self-supervised
learning, where models are trained without labels, has gained particular attention in RS applications
(Wang et al., 2022). Using self-supervised learning as a model backbone with fine-tuning on limited
labeled data has demonstrated significant accuracy improvements (Yu et al., 2022), particularly in
time-series analysis tasks, while requiring less inductive bias (Dosovitskiy et al., 2021). The rapid
growth of both labeled and unlabeled datasets for RS (Gorelick et al., 2017; Ahlswede et al., 2023)
has enabled the development of various pre-trained models for tasks including tree classification (Lu
et al., 2024). However, research comparing performance between fine-tuned pre-trained models and
traditional approaches for tree species classification in NFIs remains limited.

The second stage of pre-training, where pre-trained models are re-trained on domain-specific data
and/or specific tasks, has been shown to improve performance in downstream tasks such as Natural
Language Processing (Gururangan et al., 2020) and image-based object identification (Ma et al.,
2023). However, the impact of domain-specific pre-training on pixel-level tree species classification
in NFIs using unlabeled tree plot data has not been explored.

This research aims to evaluate the effectiveness of deep features from freely available fine-tuned pre-
trained models compared with existing feature engineering, and explore the impact of domain-specific
pretraining for tree species classification through two key questions:

• RQ1: To what extent do deep features extracted from the fine-tuned time-series pre-trained
model improve pixel-level tree species classification accuracy in NFIs when compared to tradi-
tional harmonic and medoid seasonal composite predictors (Francini et al., 2024)?

• RQ2: Can additional domain-specific second-stage pretraining with unlabeled forest plots data
in the Netherlands improve accuracy for pixel-level tree species classification?

The overall process flow in this study is described in figure 1.
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Figure 1: Overall process flow from data collection to model comparison.

3 Data

3.1 Study area

This study focuses on forests in the Netherlands, which were described in the annual GHG accounting
report (Arets et al., 2023). According to the latest National Forest Inventory 7, forests covered
363,801 ha in 2021, corresponding to 11% of the land use in the Netherlands (M. J. Schelhaas et al.,
2022) and comprising approximately 36.4 million 10x10m pixels.

3.2 National Forest Inventory (NFI) data

Ground truth data were collected through field measurements at 3,062 plots for the Dutch National
Forest Inventory 6 between 2012 and 2013. Each plot contained a circular area with a variable radius
(5 to 20 m) to ensure inclusion of at least 20 trees (M. J. Schelhaas et al., 2022). These plots
correspond to 1 to 16 pixels at a 10× 10m resolution.

Due to privacy considerations, the precise coordinates of the plots were obtained under a confiden-
tiality agreement with the Dutch government, with the requirement that the data be discarded after
project completion. Prior to data disposal, we utilized the plot center coordinates from the total
3,062 pixel-level data points to extract satellite data at 10x10 m pixel resolution from Google Earth
Engine (GEE) (Gorelick et al., 2017).

The original NFI data contains 19 dominant tree species classes, which we aggregated into 7 classes
to enable comparison with Francini et al., 2024. We selected plots where a single dominant species
represented more than 80% of the Basal Area (BA), which is the cross-sectional area of trees at breast
height. The Castanea spp dominant species class has no samples at this threshold. This selection
process yielded 1,479 data points for the aggregated 7 classes classification task.

In addition, we noticed that six dominant species classes have less than 10 samples, which may reduce
model performance (Kang et al., 2017), then removed these classes resulting in 1,462 samples with
13 classes for the dominant species classification task.
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3. DATA

3.3 Francini data

We also evaluated our methods using the dataset from Francini et al., 2024, which contains 13,790
data points evenly distributed across the aggregated classes (1,970 points per class). This dataset
originated from the same NFI data but was augmented with additional labeled data points through
visual interpretation of satellite imagery.

3.4 Non-labeled data for pre-training

For the second stage of pre-training, we randomly collected 1 million points coordinates (2.75% of
total forest pixels in the Netherlands) sampled from forest areas identified in the Netherlands using
the Dynamic World (DW) land classification map (Brown et al., 2022). NFI coordinates with 3,062
plots were attached to this data and total number of non-labeled data is 1,003,062 points. This data
does not have species labels, but it is used to pre-train the model.

3.5 Ground data overview

The overview of all ground data used in this study is shown in table 1.

Table 1: Overview of ground data used in this thesis.

Data Type No.
Samples

No.
Classes Notes

NFI (7 classes) 1,479 7 Aggregated to 7 classes
NFI (13 classes) 1,462 13 Classes with less than 10 samples removed
Francini data 13,790 7 Augmented with additional labeled data from NFI data
Non-labeled data 1,003,062 - Used for pre-training

In table 2, the number of samples for aggregated 7 species groups and 13 dominant species in the
NFI dataset, and for aggregated 7 species groups in Francini data is shown.

In figure 2, the distribution of the species classes in the NFI dataset, Francini dataset, and non-labeled
data is visualized.

3.6 Satellite data sources

This study implements a comprehensive multi-source RS approach that integrates satellite imagery
with environmental data to characterize forest vegetation both spatially and temporally. The primary
data sources required as model inputs comprise:

• S1 Synthetic-Aperture Radar (SAR) Ground Range Detected (GRD) Data: 6-day
revisit frequency, providing VH and VV polarizations

• S2 Multispectral Data: Top of Atmosphere Reflectance (Level 1C) with 5-10 day revisit
frequency, incorporating 10 spectral bands and Normalized Difference Vegetation Index (NDVI):

– B2-B8, B8A (blue, green, red, redE1-E4, NIR)

– B11, B12 (SWIR1, SWIR2)

9
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Table 2: Species count and grouping in NFI and Francini datasets.

Aggregated
Group

National Forest Inventory (NFI) data Francini
data
No. samples
(7 classes)

No. samples
(7 classes)

Dominant Species No. samples
≥ Basal

Area (BA)
80%

(19 classes)

No. samples
≥ BA 80%

small samples
excluded

(13 classes)

Pinus
603

Pinus sylvestris 513 513
1,970Pinus pinaster 1 –

Other Pinus 89 89

Larix 56 Larix spp 56 56 1,970

Quercus
288

Quercus robur petraea 255 255
1,970

Other Quercus 33 33

Beech 58 Fagus spp 58 58 1,970

Populus 72 Populus spp 72 72 1,970

Other
Broadleaves

242

Alnus spp 30 30

1,970

Betula spp 58 58
Fraxinus spp 40 40
Castanea spp 0 –
Carpinus spp 3 –
Abies spp 2 –
Robinia pseudoacacia 7 –
Other broadleaved 102 102

DarkConifer
160

Pseudotsuga menziesii 90 90
1,970Picea spp 66 66

Other conifers 4 –

Total 1,479 1,479 1,462 13,790
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3. DATA

Figure 2: Top left: 13 dominant species distribution in NFI data. Top right: Aggregated 7 species
groups distribution in NFI data. Bottom left: Aggregated 7 species groups distribution in
Francini data. Bottom right: Forest plots distribution in non-labeled data.
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– NDVI computed during preprocessing

• ERA5 Climate Data: Monthly measurements (Muñoz Sabater, 2024):

– 2m temperature (temperature of air at 2m above the surface)

– Total precipitation

• SRTM Terrain Data: static measurement (Farr et al., 2007):

– Elevation

– Slope

3.7 Data collection

Since mono-temporal data cannot adequately capture seasonal leaf phenology for tree species classi-
fication, we utilized time-series data spanning January through December 2020. This temporal range
aligns with both the Presto model requirements (Tseng et al., 2024) and previous Dutch tree species
classification research (Francini et al., 2024). For S2 data, cloud masking was performed using the
S2 cloud probability dataset (Pasquarella et al., 2023), excluding pixels with cloud cover probability
exceeding 65% (Francini et al., 2024).

Geographic coordinates were utilized both for satellite data extraction from the GEE archive and as
input features for the model. Raw time-series data was downloaded as individual CSV files for each
plot location across all datasets (NFI, Francini, and non-labeled data), ensuring direct correspondence
between remote sensing observations and ground truth measurements.

3.8 Data preprocessing

3.8.1 Monthly median value

The model requires monthly median composite values for each band in S1, S2 and ERA5. Therefore,
we calculated monthly median values for each band in S1 and S2 except monthly ERA5 data. After
getting monthly median values for S1 and S2, NDVI was calculated from S2 bands to capture
vegetation dynamics.

In figure 3, the timeseries plot of mean NDVI values for each aggregated 7 tree species classes in the
NFI dataset is shown. This plot shows difficulty in distinguishing tree species classes based on mean
NDVI values.

3.8.2 Data normalization

Data normalization follows established protocols for each data source in the model (Tseng et al.,
2024). S1 backscatter values were normalized to the [-25,25] range to standardize the input features.
S2 surface reflectance values were scaled by a factor of 10000, following standard practice. ERA5
climate data underwent unit conversion, with temperature converted to Celsius. SRTM elevation
data was scaled by 2000 and slope by 50 to bring all features into comparable numerical ranges,
which is crucial for stable model training. Precise normalization was applied to each data source as
described in table 3.

12



3. DATA

Figure 3: Mean NDVI values for each month and each aggregated tree species class in the NFI dataset.

Table 3: Data normalization parameters defined by original Presto and value ranges in our data by
source and variable type.

Data Source Band/Variable Before Range Normalization After Range

Sentinel-1 VH, VV −31 to 17 dB Shifted by +25, divided by 25 −0.24 to 1.68

Sentinel-2 All bands 10 to 15,769 Divided by 10,000 0.00 to 1.58

ERA5 monthly
Temperature 278 to 295 K Shifted by −272.15, divided by 35 0.17 to 0.66

(6 to 23 C)
Precipitation 0.008 to 0.208 m Divided by 0.03 0.27 to 6.67

SRTM
Elevation −27 to 331 m Divided by 2,000 −0.01 to 0.17
Slope 0.0 to 39.3◦ Divided by 50 0.00 to 0.79
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3.8.3 Tensor data preparation

All monthly normalized satellite data and tree species information are merged based on plot id and
month, which are stored in a single csv file. Based on this data, we prepare the several tensor data
for the Presto model input as table 4. Due to the complexity of entry points to original Presto code
which expect data coming from Google Cloud storage, we manually prepare the tensor data for the
model input.

The bands tensor data is prepared as a 3D tensor with dimensions [plot, month (12), feature]. The
feature dimension is 17 for S1, S2, ERA5 data and SRTM data. Additional tensors for latitude and
longitude coordinates (latlons), start-month index set to 0 which indicates time-series data starting
from January 2020 (month), and categorical tree species information (label) are prepared.

With regard to missing value handling and masking strategy for self-supervised pre-training in bands
tensor, the method implements two masking approaches: First, we create initial masks (mask tensor)
for missing or zero values, which are used to ignore some data during pre-training, finetuning and
feature extraction. The method applies band group-specific masking where if any value in a group
(e.g., RGB group in S2 bands) is missing, the entire group is masked. These band groups are defined
by Presto. Second, pre-training masks for self-supervised learning are generated using a Presto-
native masking strategy with a 75% mask ratio, including group bands, random timesteps, and chunk
timesteps masking strategy. This ratio is applied uniformly across bands and timesteps to create
a training mask for the model. The process culminates in the creation of several key tensors by
combining masks using these two types of masks (combined mask), input tensor (X), which contains
the original bands data with masked values set to zero, and target tensor (Y) which contains only
the masked values for reconstruction.

In addition, dynamic world tensor with all tree classes value (1) is prepared because it is necessary
for model input, even though dynamic world cross entropy losses are not used during pre-training.
Based on dynamic world mask (mask dw), dw input tensor (dw x) and dw target tensor (dw y) are
prepared.

This tensorization pipeline ensures consistent handling of multi-source earth observation data while
preparing it for pre-training and fine-tuning.
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4. METHODS

Table 4: Tensor Outputs for Presto

Tensor Shape Description

bands tensor (B, T, F ) Original data tensor containing all band values, where B is batch size, T =
12 timesteps, and F = 17 features (bands)

dynamic world (B, T ) Dynamic World classification tensor with values {1, 9}, where 1 represents
tree class and 9 represents masked values

latlons (B, 2) Geographical coordinates tensor containing latitude and longitude
labels (B) Target labels tensor containing class indices
month (B) Temporal indicator tensor (currently set to zeros)
mask tensor (B, T, F ) Boolean tensor indicating naturally missing or invalid values
mask dw (B, T ) Boolean tensor for Dynamic World masking strategy
combined mask (B, T, F ) Boolean tensor combining natural missingness and masking strategy
x (B, T, F ) Input tensor with masked values set to zero
y (B, T, F ) Target tensor containing only the masked values
dw x (B, T ) Input tensor with Dynamic World masked values set to zero
dw y (B, T ) Target tensor containing only the Dynamic World masked values

Where: B = Batch size (number of samples), T = Number of timesteps (12 months), F = Number of
features (17 bands)

4 Methods

4.1 Deep learning

4.1.1 Pre-trained model overview and Presto architecture

Several pre-trained models in RS have been developed since 2021, trained on different datasets and
designed for various downstream tasks such as scene classification, semantic segmentation, object
detection, and change detection (Lu et al., 2024). The accessibility of a model and its pre-trained
weights is important for model selection due to limitations in computational power and time, and the
choice of pre-trained datasets and expected downstream tasks is crucial for tree species classification
using time-series data such as S2. Major models are trained by self-supervised learning using MAE
as described in Figure 4 (He et al., 2021). This methods does not require labeled data, which is
beneficial for RS tasks where labeled data is scarce.

We adopted the Presto model (Tseng et al., 2024) for its demonstrated capabilities in handling multi-
temporal and pixel-based satellite data. This model is based on transformer structures (Vaswani et
al., 2023) and was trained on 21.5 million pixel time-series with 12-month contiguous intervals. Each
month’s composite satellite data included S1, S2 and its NDVI, ERA5, DW, and SRTM (Figure 5),
extracted between 2020-01-01 and 2021-12-31. The advantages of this model include the ability to
handle freely available multi-source and multi-temporal data even when some sources (e.g., ERA5)
or temporal data (e.g., S2 values in November) are missing, and computational efficiency when
processing large areas.

Deep features (encodings/ embeddings) with 128 dimension values were extracted from encoders
of best fine-tuned models with input data in figure 6. This features were used for tree species
classification with RF and Multi Layer Perceptron (MLP) classifier (RQ1).
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Figure 4: Original Masked Auto Encoder (MAE) Structure (He et al., 2021) for Vision transformer
(Dosovitskiy et al., 2021). Encoder block learns the representation of the masked input
data, and decoder block reconstructs the original input data from the representation.

Figure 5: In Pretrained Remote Sensing Transformer (Presto), the masked auto encoder (f) learns
spatial time series representations from masked multi-source and multi-temporal data. The
decoder (g) reconstructs the masked-out part of the input. During this self-supervised
learning process with non-Labeled data, the encoder (f) learns the data representation,
which can be used for various downstream tasks.
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4. METHODS

Figure 6: Presto encoder feature extraction for downstream tasks.

4.1.2 Pre-training (RQ2)

Pre-training parameters were selected as same as the original Presto model to make it comparable.
We used an AdamW optimizer, a cosine annealing schedule for our learning rate, with a maximum
learning rate of 0.001 at the 2nd epoch. We applied a weight decay of 0.05, and β of (0.9, 0.95).
Several pre-train datasize were evaluated while 3,062 samples which extracted from NFI coordinates
are consistently added. Therefore, 53062, 103062, 203062, 403062, 1003062 samples were used for
pre-training. 2% of dataset is used for validation as original Presto allocate 1 data container out of
59 data containers for its first pre-training. Validation data was used to decide the best model based
on the lowest validation loss.

With regard to batch size, too small a batch size could lead to local minima and cause instability
during pre-training (Z. Li et al., 2020). In addition, although larger batch sizes result in better
pre-trained models for a fixed amount of iterations (Vaessen & Leeuwen, 2024), too large batch
size will lead to the model stucking in a sharp minima in a limited pre-training size (Keskar et al.,
2017). Considering Presto pre-training which has 4,096 batch size and 20 epochs, we used same
batch size and epochs for different different pre-train dataset size to ensure consistency with original
pre-training.

The model employs dynamically scaled batch sizes and steps based on dataset size in table 5.

Table 5: Pre-training parameters for different dataset sizes

Dataset Size Batch
Size

Steps
per

Epoch

Total
Epochs

Total
Steps

53,032 4,096 13 20 260
103,062 4,096 25 20 500
203,062 4,096 50 20 1,000
403,062 4,096 98 20 1,960

1,003,062 4,096 245 20 4,900

In the original Presto, the loss calculation combines mean squared error reconstruction loss for band
values and DW cross entropy loss for DW land class. In our setting, since all land class is designated
as tree (class 1) in DW, we omitted the DW cross entropy loss component.

We run the model with 20 epochs 5 times each to ensure the model’s stability and reproducibility.
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The model was trained on a single NVIDIA A100 GPU with 80GB memory. The training process was
monitored, and the best model was selected based on the lowest validation loss.

4.1.3 Fine-tuning (RQ1, RQ2)

For fine-tuning the pre-trained models, the encoder block from the pre-trained model was reused and
trained with newly attached Multi Layer Perceptron (MLP) classifier for the downstream task. This
fine-tuning model is trained on the 1,479 samples for 7 aggregated groups classification task and the
1,462 samples for the 13 dominant species classification task in both NFI data and Francini data.
Pre-trained encoder was set as trainable in this process.

Based on the current state-of-the-art classifier of MLP on tree species classification (Mouret et al.,
2024), this classifier architecture consists of a 3-layer MLP with no dropout (rate: 0.0). The layer
configuration comprises 1024 nodes in the first layer, 512 nodes in the second layer, and 256 nodes
for the last layer, with batch normalization and ReLU activation applied throughout. The training
parameters are configured as follows: a learning rate of 0.0001 is used with a weight decay of
0.00746. The model is trained for a maximum of 100 epochs using a batch size of 64. The training
process employs cross-entropy loss for optimization. The best fine-tuned models and its accuracy
were selected based on best validation loss.

4.2 Classic machine learning with RF (RQ1)

4.2.1 Random Forest Classifier

We used a scikit-learn RandomForestClassifier with 500 estimators, maximum features set to the
square root of the number of features, which are the same setting as the RF in Francini et al., 2024.

4.2.2 Feature Engineering

For comparison with Francini et al., 2024 method, two feature engineering are applied. Although
the original method used only S2, we found that the combination of S1 and S2 further enhance
accuracy in NFI data based on the results in table 6. Therefore, total 12 bands from S1 and S2
are selected and additional 7 indices are calculated from S2 including NDVI, Normalized Burn Ratio
(NBR), Enhanced Vegetation Index (EVI), and Tasseled Cap transformations: Brightness (TCB),
Wetness (TCW), Greenness (TCG), Angle (TCA). Based on these 19 bands, two feature engineering
approaches were implemented:

Harmonic Features : Seven harmonic metrics (β0, β1, β2, β3, A, ϕ, and RMSE) were calculated
for each band (total 133 bands): β0 is the constant, β1 is the time coefficient, and β2 and β3 are the
frequency sine and cosine coefficients, respectively. To fit these four coefficients and to select Pt, the
pixel p harmonic values at time t, we used a least squares regression to fit Eq. 1. A is the amplitude
of the harmonic curve on the y-axis (Eq. 2), ϕ is the phase of the curve on the x-axis to the origin
(Eq. 3) and RMSE is root mean square error between Pt and the actual pixel values Xt (Eq. 4).

Pt = β0 + β1t+ β2 cos(2πωt) + β3 sin(2πωt) (1)

A =
√

β2
2 + β2

3 (2)

ϕ = arctan(β3/β2) (3)
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Table 6: Classification accuracy comparison across different feature combinations and satellite data
sources in NFI data (in %). Bold values indicate best performance for each label type.

Label Features Sentinel-1 Sentinel-2
S1-S2

Combined

Band Acc. Band Acc. Band Acc.

Dominant
Species
(13 classes)

Seasonal (S) S1 51.03 S2 64.03 S1-S2 64.52
Harmonic (H) S1 55.04 S2 63.79 S1-S2 64.64
All (S+H) S1 57.72 S2 66.34 S1-S2 66.71

Group
(7 classes)

Seasonal (S) S1 55.60 S2 70.18 S1-S2 71.93
Harmonic (H) S1 60.19 S2 71.39 S1-S2 71.52
All (S+H) S1 62.75 S2 72.87 S1-S2 74.22

RMSE =

√√√√ 1

n

n∑
i=1

(Pt −Xt)2 (4)

where t is time, ω = 1 (in years) is the frequency and indicates one cycle per unit of time, initial
guess values before fitting four coefficients were set as β0 = 0.1, β1 = 0.1, β2 = 0.4, β3 = 0.4.

Seasonal medoid Features : Medoid compositing selects pixel values from a specific time point
whose reflectance values are most similar to the median values of the entire image collection, rather
than simply using the median values themselves. Season-wise medoid representative values were
selected for each band, resulting in 19 bands for each of the 4 seasons (total 76 bands): winter (Jan-
uary, February, December), spring (March-May), summer (June-August), and autumn (September-
November).

4.3 Model validation

4.3.1 Validation metrics

Model performance was evaluated using a comprehensive set of established accuracy metrics: per-
class precision and recall, F1 scores, confusion matrices, and overall accuracy. While overall accuracy
provides a general assessment of classification performance, it exhibits reduced sensitivity to class
imbalance issues that are prevalent in ecological datasets. Therefore, the F1 score, which represents
the harmonic mean of precision and recall, was employed as a supplementary metric to provide a
more balanced evaluation of model performance when addressing the inherent class imbalances in
tree species distribution data. These metrics are widely used in tree species classification studies
(Goutte and Gaussier, 2005; Hermosilla et al., 2022; Francini et al., 2024; Blickensdörfer et al., 2024)
and provide comprehensive assessment of classification performance across all species classes.

Precision : Precision is calculated by the ratio of true positive (TP) predictions to the total predicted
positives (true positives (TP) + false positives (FP)).

Precision =
TP

TP + FP
(5)

Recall : The recall is calculated by the ratio of true positives (TP) predictions to the total actual
positives (true positives (TP) + false negatives (FN)).
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Recall =
TP

TP + FN
(6)

F1 Score : The F1 score combines both precision and recall and gives a balanced metric to assess
the model’s accuracy. The F1 score is particularly useful for us since we have a class imbalance.

F1 Score = 2× Precision × Recall
Precision + Recall

(7)

Confusion Matrix : Confusion matrices have been used to visualize the accuracy statistics per
classification class in the format shown below.

Predicted
Negative Positive

Actual Negative TN FP
Positive FN TP

Overall Accuracy: Calculates the proportion of correctly classified instances for both True Positives
(TP) and True Negatives (TN) to the total number of predictions.

Overall Accuracy =
TP + TN

TP + TN + FP + FN
(8)

4.3.2 Train-test split

Train-test split ratio is a critical factor in model performance on downstream tasks. If dataset size
is large, 80/20 or higher ratios are commonly used (Rácz et al., 2021; Joseph, 2022). Based on our
imbalanced dataset and previous research (Blickensdörfer et al., 2024), a 70/30 (approximately 2:1
ratio) train-test split was applied for fine-tuning and RF classification to increase model performance
and reduce standard deviation on tree species classification over large areas for NFI. During fine-
tuning and subsequent RF classification for features extracted from the fine-tuned model, the same
training and test data were used. This practice ensures that extracted features are not trained on test
data, which would cause data leakage. By adopting a class-per-split strategy, each class is equally
split into train and test data at this ratio.

In remote sensing machine learning, ensuring that the train-test split strategy does not introduce
spatial autocorrelation is crucial for obtaining unbiased model performance estimates (Karasiak et
al., 2022). Our NFI data accommodates a sampling strategy which selects each plot with a density of
1 point per 100ha (M. Schelhaas et al., 2014). This means that each random point is designated per
square kilometer. Additionally, the Francini data removed adjacent pixels with a minimum distance
of 15m (Hermosilla et al., 2022; Francini et al., 2024). These sampling strategies ensure that the
train-test split does not introduce strong spatial autocorrelation in the data; therefore, no additional
train-test split strategy was applied in this study.

4.3.3 Model replication

To evaluate variability of model performance, each model was evaluated five times with different
random seeds, which affect to train-test split and model initialization. The mean and standard
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deviation of the accuracy metrics were calculated for each model. This approach provides a more
robust evaluation of model performance.
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5 Results

5.0.1 Research Question 1: Deep features performance

Comparison with current state-of-the-art models
We compared the performance of our deep features model with current state-of-the-art models using
harmonic and medoid predictors. Table 7 shows that the deep features extracted from the pre-trained
Presto model consistently outperformed the harmonic and medoid predictors across all dataset types
by a substantial margin, even when using the same Random Forest (RF) classifier.

Table 7: Classification performance comparison between deep features and harmonic+medoid features
(in %). Each model was run five times and the mean and standard deviation (±) are reported.
Bold values indicate the best performance between deep features extracted from Presto and
harmonic+medoid features per dataset type.

Random Forest

Dataset type Data
size

Deep feat.
(Tseng et al.,

2024)

Harm.+med.
(Francini

et al., 2024)

Overall
Accuracy

NFI data (7 classes) 1479 74.62 ± 1.93 70.58 ± 1.78
NFI data (13 classes) 1462 66.77 ± 1.51 62.71 ± 1.51
Francini data (7classes) 13,790 95.28 ± 0.60 84.31 ± 0.99

F1 Score
NFI data (7 classes) 1479 60.54 ± 3.08 51.57 ± 3.36
NFI data (13 classes) 1462 46.84 ± 2.65 38.54 ± 2.14
Francini data (7 classes) 13,790 95.27 ± 0.60 84.26 ± 0.99

For the NFI dataset with 7 classes (n=1,479), models trained with deep features achieved an overall
accuracy of 74.62% (±1.93), compared to 70.58% (±1.78) for the harmonic+medoid approach—an
improvement of approximately 4 percentage points. The difference was even more pronounced when
examining F1 scores, where deep features yielded 60.54% (±3.08) versus 51.57% (±3.36) for tradi-
tional features, representing an improvement of nearly 9 percentage points.

When the classification task became more challenging with the 13-class NFI dataset (n=1,462), deep
features maintained their advantage, achieving an overall accuracy of 66.77% (±1.51) compared to
62.71% (±1.51) for traditional features. Similarly, the F1 score showed a substantial improvement
from 38.54% (±2.14) with traditional features to 46.84% (±2.65) with deep features—a gain of
more than 8 percentage points. This indicates that the deep learning approach handles the increased
complexity of multi-class classification more effectively.

The most substantial performance differential was observed in the Francini dataset (n=13,790), which
contained a considerably larger training sample size. In this dataset, deep features achieved a re-
markable overall accuracy of 95.28% (±0.60), representing an improvement of nearly 11 percentage
points over the traditional features’ accuracy of 84.31% (±0.99). The F1 scores demonstrated com-
parable improvements, with deep features achieving 95.27% (±0.60) compared to 84.26% (±0.99)
for traditional features.

The confusion matrices in Figure 7 provide deeper insights into the classification performance differ-
ences between deep features and traditional features approaches across all tested datasets. These
visualizations reveal important patterns in how each model handles the complex task of forest type
classification.
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Figure 7: Confusion matrices for the best performing models. Columns: (1) RF classifier for deep
features, (2) RF classifier for harmonic and medoid features (Francini et al., 2024). Rows:
(a) NFI data (7 classes), (b) NFI data (13 classes), (c) Francini data (7 classes). In each
cell, the first value shows the number of samples predicted, and the second value indicates
the percentage of true positive samples among all true positive and false positive samples
per class (precision).
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In the 7-class NFI dataset, the deep features model generally outperforms traditional features, par-
ticularly for coniferous species groups. However, for deciduous classes, results are mixed: Quercus
(63.6%) and Populus (60.0%) show slightly lower precision than traditional features (63.8% and
66.7%, respectively). Both models struggle with the Other Broadleaves class, often confusing it with
Quercus and Populus.

With 13 classes, classification becomes more challenging, yet deep features improve precision across
multiple species: Pinus sylvestris (77.4% vs. 74.0%), Quercus robur/petraea (53.9% vs. 46.2%),
Pseudotsuga menziesii (83.3% vs. 68.8%), Populus spp. (73.9% vs. 58.3%), Picea spp. (83.3% vs.
58.3%), and Betula spp. (100% vs. 33.3%).

For the Francini dataset, deep features achieve near-perfect classification, minimizing confusion be-
tween classes. Precision remains consistently high across all forest types, highlighting the robustness
of deep feature representations.

The improved class separation in the deep features model suggests that these features effectively
encode species-specific temporal and spectral signatures that traditional handcrafted features cannot
capture as effectively, especially with a large and balanced training dataset.

Comparison of MLP and RF classifiers with Deep Features
We also evaluated the Multi Layer Perceptron (MLP) classifier for tree species classification (Mouret
et al., 2024) on the same deep features extracted from the pre-trained Presto model (Table 8).

Table 8: Classification performance comparison between MLP and RF classifiers with deep features
(in %). Each model was run five times and the mean and standard deviation (±) are
reported. Bold values indicate the best performance between MLP and RF classifier per
dataset type.

Results

Dataset type Data MLP RF
size classifier classifier

Overall
Accuracy

NFI data (7 classes) 1479 77.13 ± 1.17 74.62 ± 1.93
NFI data (13 classes) 1462 67.99 ± 1.33 66.77 ± 1.51
Francini data (7 classes) 13,790 98.21 ± 0.20 95.28 ± 0.60

F1 Score
NFI data (7 classes) 1479 68.24 ± 2.85 60.54 ± 3.08
NFI data (13 classes) 1462 52.45 ± 2.25 46.84 ± 2.65
Francini data (7 classes) 13,790 98.20 ± 0.20 95.27 ± 0.60

The MLP classifier consistently outperformed the RF classifier across all datasets when using the same
deep features. For the NFI dataset with 7 classes, the MLP achieved an overall accuracy of 77.13%
(±1.17) compared to 74.62% (±1.93) for the RF with a difference of approximately 2.5 percentage
points. The performance gap was even more pronounced in terms of F1 score, with the MLP achieving
68.24% (±2.85) versus 60.54% (±3.08) for RF, representing a substantial improvement of nearly 8
percentage points. For the more challenging 13-class NFI dataset, the MLP classifier maintained
its advantage with an overall accuracy of 67.99% (±1.33) compared to 66.77% (±1.51) for the RF
classifier. Similarly, the F1 score showed the MLP’s superior performance with 52.45% (±2.25) versus
46.84% (±2.65) for RF. The largest dataset, Francini data with 7 classes, demonstrated the same
pattern, with the MLP achieving an outstanding overall accuracy of 98.21% (±0.20) compared to
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95.28% (±0.60) for RF. The corresponding F1 scores were 98.20% (±0.20) for theMLPand 95.27%
(±0.60) for RF.

Notably, the MLP classifier not only achieved higher mean performance values but also demonstrated
more consistent results across repeated runs, as evidenced by the lower standard deviations in most
cases. These results indicate that while both classifiers can effectively leverage deep features, the
MLP classifier with pre-trained Presto offers superior performance for forest type classification tasks
across datasets of varying complexity and size.

5.0.2 Research Question 2: The effect of the second stage of pre-training and its
dataset size

The performance of models incorporating a second stage of pre-training is presented in table 9. The
trends in model performance across varying pre-training dataset sizes are visualized in figures 8, 9,
and 10.

Table 9: Effect of additional pre-training dataset size on MLP classification accuracy (in %). Each
model was run five times and the mean and standard deviation (±) are reported. Bold values
indicate the best performance among different dataset sizes per dataset type.

Metric Dataset
MLP

Size NFI data NFI data Francini data
(7 classes) (13 classes) (7 classes)

Overall
Accuracy

0 77.13 ± 1.17 67.99 ± 1.33 98.21 ± 0.20
53,062 76.19 ± 1.25 67.27 ± 1.99 98.34 ± 0.21

103,062 76.46 ± 2.38 68.62 ± 1.63 98.24 ± 0.13
203,062 75.74 ± 1.24 67.54 ± 2.14 98.26 ± 0.34
403,062 76.50 ± 2.34 67.58 ± 1.69 98.27 ± 0.11

1,003,062 75.61 ± 1.30 66.55 ± 1.56 98.32 ± 0.16

F1 Score

0 68.24 ± 2.85 52.45 ± 2.25 98.20 ± 0.20
53,062 65.98 ± 2.27 50.05 ± 4.47 98.34 ± 0.21

103,062 67.46 ± 4.41 55.11 ± 3.78 98.23 ± 0.13
203,062 66.58 ± 1.68 52.57 ± 3.84 98.26 ± 0.35
403,062 66.29 ± 3.97 51.43 ± 2.75 98.27 ± 0.11

1,003,062 65.21 ± 2.36 51.04 ± 3.06 98.31 ± 0.17
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Figure 8: NFI data (7 classes) accuracy and F1 score in different dataset sizes. Values are mean
of 5 runs and the error bars represent the standard deviation of the results.
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Figure 9: NFI data (13 classes) accuracy and F1 score in different dataset sizes. Values are mean
of 5 runs and the error bars represent the standard deviation of the results.
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Figure 10: Francini data (7 classes) accuracy and F1 score in different dataset sizes. Values are
mean of 5 runs and the error bars represent the standard deviation of the results.

For the NFI dataset with 7 classes, the highest overall accuracy (77.13%) and F1 score (68.24%)
were observed when no additional pre-training data was used (0 samples). Increasing the pre-training
dataset size to 403,062 samples yielded the second-best accuracy (76.50%), but did not surpass
the baseline model, with a large variability of 2.34% standard deviation. The best model with no
additional pre-training still has a large standard deviation (1.17% and 2.85% in accuracy and F1 score
respectively) sufficient to overlap with other models except the model trained with 1M samples in
terms of its score. This suggests that for the 7-class NFI dataset, additional pre-training data did
not consistently enhance model performance and might even introduce some level of performance
degradation.

In contrast, the NFI dataset with 13 classes (more fine-grained classification) showed different behav-
ior. The best overall accuracy (68.62%) was achieved with 103,062 pre-training samples, representing
a modest improvement over the baseline (67.99%). Similarly, the F1 score peaked at 55.11% with the
same pre-training dataset size, compared to 52.45% without pre-training. However, each standard
deviation is high enough to cover the difference between the best and the baseline model. This indi-
cates that the benefits are not significant even though moderate amounts of additional pre-training
data could lead to slight improvement for more complex classification tasks with more classes.

For the Francini dataset with 7 classes, which contained significantly more labeled and class-balanced
samples (13,790 compared to approximately 1,480 for the NFI datasets), the effect of pre-training
was minimal. The highest overall accuracy (98.34%) was achieved with 53,062 pre-training samples,
only marginally higher than the baseline (98.21%). This suggests that when sufficient labeled data
is available for the target task, the benefits of additional pre-training become negligible.

Across all datasets, the results indicate that there is no clear linear relationship between pre-training
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dataset size and classification performance. Rather, each dataset exhibits a different optimal pre-
training size, with diminishing or even negative returns beyond certain thresholds. In addition, the
standard deviations across repeated runs remain relatively high across all models trained with different
dataset sizes, suggesting no significant difference between the models.
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6 Discussion

Our results demonstrate that deep features extracted from the pre-trained Presto model more ef-
fectively capture spatial and temporal information from satellite time series compared to traditional
methods using harmonic and medoid predictors. Furthermore, the MLP classifier with fine-tuned pre-
trained Presto significantly enhanced the classification accuracy of tree species in The Netherlands.
As shown in Table 13, the integration of S1 and S2 data yielded optimal performance for Dutch NFI
classification, while supplementary environmental data from ERA5 and SRTM had minimal impact
on classification accuracy. This approach is readily transferable to other countries’ NFI systems and
is computationally efficient due to Presto’s lightweight architecture, which enables fine-tuning on a
single GPU or CPU (Tseng et al., 2024). The computational efficiency is evidenced by the Presto
pre-training process, which processed 21.5 million pixel time-series in only 2 hours 12 minutes per
epoch (43 hours 15 minutes for 20 epochs), suggesting that large-scale pixel-label mapping could be
feasible for other countries, including The Netherlands with its 36.4 million 10×10m pixels.

The study also highlights the importance of high-quality and abundant training data for improving tree
species classification accuracy. The difference in performance between the NFI and Francini datasets
highlights the impact of class imbalance on classification accuracy. The NFI dataset contained
varying numbers of samples per class, while the Francini dataset was more balanced. This suggests
that addressing class imbalance could further improve classification performance, especially for regions
with limited ground reference data, focusing collection of samples for poorly classified species groups
than broad data collection efforts. Following the approach of Francini et al., 2024, supplementing NFI
data with additional samples through visual interpretation of high-resolution satellite imagery, possibly
using tools like Collect Earth Online (Saah et al., 2019), could further enhance model performance.

Regarding the second research question, our results indicate that additional pre-training of Presto
on non-labeled data did not significantly improve downstream accuracy in tree species classification.
This finding contrasts with observations from Natural Language Processing (Gururangan et al., 2020)
and image-based object identification tasks (Ma et al., 2023), where significant improvements were
achieved through domain-specific and task-specific second-stage pre-training.

The lack of significant improvement in our pixel-level tree species classification task can be attributed
to four key factors:

1. Limited Data Variability: Our non-labeled datasets were restricted to forest pixels in The
Netherlands with only one year of temporal coverage, potentially constraining the model’s ability
to learn useful features.

2. Task Complexity: Our pixel-level tree species classification task may not have been suffi-
ciently complex to benefit from additional pre-training. The pre-trained Presto model likely
already possessed adequate capacity to capture the spatial and temporal information needed
to differentiate between 7 or 13 classes.

3. Methodological Differences: Variations between our methodology for pixel extraction from
GEE and the original Presto implementation may have affected model performance. While
our current extraction method using GEE is more accessible than the OpenMapFlow package
(Zvonkov et al., 2023), differences in cloud and shadow treatment could have introduced in-
consistencies between first and second-stage pre-training data. Such differences can potentially
degrade model accuracy, as irrelevant data has been shown to impair performance (Ma et al.,
2023).

4. Pre-training Parameters: The pre-training settings, including learning rate, weight decay,
band selection, and mask ratio for MAE, may not have been optimal. As noted by (Z. Li et al.,
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2020), batch size and learning rate requirements can vary significantly with pre-training dataset
size.

These findings emphasize the importance of carefully considering pre-training configurations, including
dataset extraction methodology, alignment with existing frameworks, and data quality and diversity
in pixel-level additional pre-training.

The enhanced classification accuracy achieved through our methodology has significant implications
for forest ecosystem monitoring and management. Improved tree species mapping accuracy directly
contributes to several critical areas such as biomass estimation, biodiversity assessment, and forest
management planning. However, the observed sensitivity to training data quality and quantity high-
lights a critical consideration: the continued need for investment in high-quality reference datasets
for remote sensing applications in forestry. This emphasizes the importance of maintaining and ex-
panding systematic forest inventory programs, particularly in regions where limited ground truth data
may constrain the application of advanced classification methods.
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7 Conclusion

This study examined the efficacy of deep learning approaches for tree species classification in Na-
tional Forest Inventories, yielding several significant findings. First, deep features extracted from
pre-trained Presto models consistently outperformed traditional methods employing harmonic and
medoid predictors across varying dataset sizes and classification complexities. This performance ad-
vantage was particularly evident with larger and more balanced training datasets, as demonstrated
by the results from the Francini dataset, indicating superior scalability of deep learning approaches
with increased high-quality data availability. Second, the MLP classifier demonstrated superior per-
formance compared to RF in our experimental setting, corroborating previous findings (Mouret et
al., 2024). Collectively, these results demonstrate the potential for implementing computationally
efficient, large-scale tree species mapping within NFI systems.

Our investigation into enhancing model performance through second-stage pre-training with domain-
specific data yielded an important insight: additional pre-training did not provide significant improve-
ments over the original pre-trained model. This unexpected finding contrasts with results from other
domains and highlights the unique challenges of transfer learning in pixel-level remote sensing appli-
cations. The outcome emphasizes that successful transfer learning in forestry applications requires
careful consideration of data temporal coverage, pre-training methodology, and the complexity of the
target classification task.

This research significantly advances our understanding of deep learning applications in forestry through
two key contributions. First, we have demonstrated the effectiveness of fine-tuning pre-trained deep
learning models for tree species classification, establishing a computationally efficient approach for
improving NFI accuracy. Second, we have identified important limitations in domain-specific pre-
training approaches at the pixel level, providing valuable insights for future applications. Our findings
underscore that while pre-trained models offer powerful feature extraction capabilities, their successful
adaptation to specific forestry applications requires careful consideration of data quality, pre-training
strategies, and methodological alignment. These insights lay the groundwork for future developments
in automated forest inventory systems and broader applications in environmental monitoring.
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8 Use of generative AI statement

This research utilized several artificial intelligence tools to enhance the quality of writing and code
implementation. The following AI assistants were employed:

• OpenAI’s ChatGPT 3.5

• GitHub Copilot (powered by GPT-4)

• Anthropic’s Claude 3.5 Sonnet

These tools were specifically used for:

1. Writing Enhancement: Grammar correction, academic writing style improvement, and clarity
of expression in the thesis manuscript.

2. Code Development:

• Debugging assistance and error resolution

• Code optimization and refactoring

• Generation of unit tests

3. Document Formatting: Assistance in converting tabular data to LaTeX format

All AI-assisted content was carefully reviewed and validated for academic appropriateness. The core
research methodology, analysis, and conclusions were developed independently of these tools.
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Appendix

10 Appendix

10.1 Content of the zip file

Table of Content of the zip file that accompanies the thesis report.

• Documentation of what is where in the file (including folder structure; Word, PDF)

• Report (Word, PDF)

• Midterm & Final presentation (PPTX)

• Datasets used and created

• Figures/Maps/Tables

• Scripts /code/exe

• Literature (PDFs of used articles / preferable Endnote)

10.2 Additional results

10.2.1 Results of models using only S1 and S2 data for fine-tuning

Our primary models incorporated all available satellite data as input for both the second stage of
pre-training and fine-tuning to extract deep features. In this section, we present results from models
using only S1 and S2 data as input for fine-tuning and feature extraction, excluding SRTM and ERA5
data.

Research Question 1: Deep features model performance
Table 10 demonstrates that deep features extracted by pre-trained Presto from only S1 and S2 data
outperformed harmonic and medoid features in the RF classifier. These results were comparable to
models that utilized all satellite data as input.

Table 10: Classification performance comparison between deep features and harmonic+medoid fea-
tures (in %). Each model was run five times and the mean and standard deviation (±) are
reported. Bold values indicate the best performance between deep features extracted from
Presto and harmonic+medoid features per dataset type.

Random Forest

Dataset type Data
size

Deep feat.
(Tseng et al.,

2024)

Harm.+med.
(Francini

et al., 2024)

Overall
Accuracy

NFI data (7 classes) 1480 75.47 ± 1.15 70.58 ± 1.78
NFI data (13 classes) 1462 67.77 ± 2.38 62.71 ± 1.51
Francini data (7 classes) 13,790 94.96 ± 0.58 84.31 ± 0.99

F1 Score
NFI data (7 classes) 1480 63.83 ± 1.21 51.57 ± 3.36
NFI data (13 classes) 1462 48.24 ± 4.31 38.54 ± 2.14
Francini data (7 classes) 13,790 94.94 ± 0.58 84.26 ± 0.99
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Table 11 shows that the MLP classifier consistently achieved higher accuracy than the RF classifier,
even when using only S1 and S2 data as input for the pre-trained Presto model.

Table 11: Classification performance comparison between MLP and RF classifiers with deep features
(in %). Each model was run five times and the mean and standard deviation (±) are
reported. Bold values indicate the best performance between MLP and RF classifier per
dataset type.

Results

Dataset type Data MLP RF
size classifier classifier

Overall
Accuracy

NFI data (7 classes) 1480 78.79 ± 1.01 75.47 ± 1.15
NFI data (13 classes) 1462 69.39 ± 1.65 67.77 ± 2.38
Francini data (7 classes) 13,790 98.08 ± 0.09 94.96 ± 0.58

F1 Score
NFI data (7 classes) 1480 70.57 ± 2.20 63.83 ± 1.21
NFI data (13 classes) 1462 54.91 ± 4.29 48.24 ± 4.31
Francini data (7 classes) 13,790 98.07 ± 0.09 94.94 ± 0.58

Research Question 2: Effect of second-stage pre-training and dataset size
As shown in Table 12, no significant improvement was observed after additional pre-training with S1
and S2 data. These results align with those from models that used all satellite data as input.

Table 12: Effect of additional pre-training dataset size on MLP classification accuracy (in %) in S1
and S2 inputs. Each model was run five times and the mean and standard deviation (±)
are reported. Bold values indicate the best performance among different dataset sizes per
dataset type.

Metric Dataset
MLP

Size NFI data NFI data Francini data
(7 classes) (13 classes) (7 classes)

Overall
Accuracy

0 78.79 ± 1.01 69.39 ± 1.65 98.08 ± 0.09
53,062 76.46 ± 1.27 67.86 ± 0.82 98.14 ± 0.11

103,062 76.68 ± 0.67 67.58 ± 1.25 98.06 ± 0.21
203,062 77.44 ± 1.88 69.12 ± 1.48 98.06 ± 0.20
403,062 77.98 ± 1.60 68.94 ± 1.42 98.21 ± 0.37

1,003,062 77.13 ± 0.39 66.82 ± 0.89 98.24 ± 0.23

F1 Score

0 70.57 ± 2.20 54.91 ± 4.29 98.07 ± 0.09
53,062 68.59 ± 1.40 52.15 ± 2.54 98.14 ± 0.11

103,062 68.39 ± 1.01 52.07 ± 3.67 98.06 ± 0.21
203,062 69.49 ± 3.31 53.99 ± 2.46 98.06 ± 0.20
403,062 69.41 ± 2.49 53.93 ± 3.78 98.20 ± 0.37

1,003,062 69.08 ± 2.89 50.62 ± 2.35 98.24 ± 0.23

Comparison between all bands and only S1 and S2 bands
Table 13 compares models using all satellite data against those using only S1 and S2 data with MLP
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classifier. Interestingly, models with only S1 and S2 data achieved higher accuracy with NFI data,
while no significant difference was observed with Francini data.

Table 13: Classification performance comparison between using all available bands versus using only
S1 and S2 bands (in %). Each model was run five times with mean and standard deviation
(±) reported. Bold values indicate best performance between the two band configurations
for each dataset type.

MLP classifier

Dataset type Data
size

All bands S1S2 only

Overall
Accuracy

NFI data (7 classes) 1480 77.13 ± 1.17 78.79 ± 1.01
NFI data (13 classes) 1462 67.99 ± 1.33 69.39 ± 1.65
Francini data (7 classes) 13,790 98.21 ± 0.20 98.08 ± 0.09

F1 Score
NFI data (7 classes) 1480 68.24 ± 2.85 70.57 ± 2.20
NFI data (13 classes) 1462 52.45 ± 2.25 54.91 ± 4.29
Francini data (7 classes) 13,790 98.20 ± 0.20 98.07 ± 0.09
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