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Review 

Current and emerging issues in chemical food safety 
Chen Liu1, Danlei Wang2, Ivonne MCM Rietjens2 and  
Liang Zheng2   

Food safety is increasingly influenced by global challenges, 
such as climate change, environmental pollution, the shift 
toward plant-based diets, and new technological 
developments. This review addresses key issues currently 
shaping chemical food safety, focusing on natural toxins in 
plant-based foods, the effects of climate change on food safety, 
and the role of endogenous compound formation in exposure 
assessments. The review also discusses the growing concern 
over per- and polyfluoroalkyl substances and nanomaterials 
and examines advances in risk assessment, particularly the 
adoption of new approach methodologies (NAMs) and the 
integration of innovative technologies such as artificial 
intelligence. These topics underscore the need for updated risk 
assessment practices and offer insights into how food safety 
standards and regulations might evolve in response to these 
emerging challenges. 
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Introduction 
The increasing human world population, global 
warming, environmental pollution, and new technolo-
gical developments as well as new scientific insights 
bring challenges and newly emerging issues to the field 
of food safety. The current review presents some of 
these current and emerging issues, including (i) natural 

toxins accompanying the use of more plant-based foods 
to increase the sustainability of our food chain and food 
security, (ii) effects of climate change, (iii) the role of 
endogenous formation for the exposome and risk as-
sessment, (iv) effects of mixtures and the importance of 
relative potencies, (v) nanomaterials and per- and poly-
fluoroalkyl substances (PFAS), (vi) novel food packa-
ging, and (vii) the use of new approach methodologies 
(NAMs) and artificial intelligence (AI) in risk assessment 
(Figure 1). 

For each of these topics, the current and future per-
spectives are presented with a focus on impacts on food 
safety. It is concluded that in a changing world and cli-
mate and based on new insights, hazard risks related to 
the modern food chain and the assessment of their 
consequences for food safety are changing as well. 

Natural toxins accompanying the use of more 
plant-based foods 
The increasing number of people and accompanying 
demands for food and feed pose an imminent threat to 
global food security, the environment, and biodiversity 
and have resulted in a significant growth of the plant- 
based food market [1]. Plant-derived foods, including 
grains, fruits, vegetables, legumes, and nuts, become 
increasingly important in the human diet, and new 
plant-based foods mimicking meat, seafood, or dairy are 
often prepared from plants [1]. These plant-based foods 
may come with new food safety issues to be considered. 
Plant-based raw materials and foods derived from them 
may contain natural toxins, and mimicking the sensory 
characteristics of meat, seafood, or milk may require 
substantial processing and manipulation. Consumers 
may even avoid such products because they are con-
sidered ‘too processed’ and with ‘too many pre-
servatives’ [2]. The levels of natural toxins in plant- 
based foods may vary depending on growth conditions or 
location, plant variety, and processing or storage condi-
tions. Improper food handling, for example, may be the 
cause of exposure to toxic levels of natural toxins, such 
as antinutrients, glycoalkaloids, quinolizidine alkaloids, 
cyanogenic glycosides, or mycotoxins like aflatoxins and 
deoxynivalenol [3]. Additionally, dietary trends like raw 
foodism may increase toxin exposure. Cooking tradi-
tionally helps to inactivate toxins like lectins or cyano-
genic glycosides, but raw food consumption bypasses 
these protective steps, resulting in potential toxicities 
that were otherwise mitigated. Furthermore, some plant 
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toxins, such as allylalkoxybenzenes and pyrrolizidine 
alkaloids (PAs), naturally present in some botanicals, 
may result in intakes at levels that raise a food safety 
concern [3]. In addition, switching varieties, for example, 
by accident, in situations of shortage of a raw commodity 
or in cases of food fraud in a competing market, may 
introduce food safety issues such as in the case of the 
neurotoxin anisatin present in Japanese star anise (Illi-
cium anisatum) used to replace the Chinese variety (I. 
verum), which does not contain this toxin or the unin-
tentional exposure of young women to aristolochic acids 
via a herbal weight-loss preparation in which Stephania 
tetrandra was mistakenly replaced by Aristolochia fangchi 
causing kidney damage developing into cancer of the 
kidneys [3]. Additionally, plant-based foods like tree 
nuts, peanuts, soybean, and wheat may bring a risk of 
allergenicity especially to sensitive individuals. 

Taken together, it is clear that our modern food chain 
contains toxins from raw plant-based material so the 
increased use of plant-based raw material may increase 
the accompanying food safety issues. 

Effects of climate change 
Climate change impacts weather patterns, often in-
creasing temperatures and posing threats to food safety 
through mechanisms such as heightened foodborne 
disease risks and elevated levels of chemical hazards, 
including pesticide residues, mycotoxins, and heavy 
metals [4,5]. These impacts are particularly significant 

for plant-based raw materials, as the level of natural 
toxins present in these materials and the foods derived 
from them depends heavily on environmental conditions 
such as climate, soil, watering, and storage conditions. 

Serious concerns have been expressed by the European 
Food Safety Authority (EFSA), stating that climate 
change not only complicates the existing food safety 
challenges but also introduces new hazards into the food 
system [6]. For instance, the warming climate promotes 
the growth of harmful algal blooms, increasing the pre-
valence of marine and freshwater toxins [4,6]. Ad-
ditionally, extreme weather events, becoming more 
frequent and severe, lead to soil degradation and nu-
trient leaching, which increase crop susceptibility to 
pests and diseases [6]. This not only raises the potential 
for mycotoxin contamination but also alters the types of 
mycotoxins that are prevalent, as climate change drives 
shifts in the geographical distribution and activity of 
mycotoxigenic fungi such as Aspergillus and Fusarium 
species [7]. These fungi adapt to the new climatic con-
ditions, potentially leading to different mycotoxin pro-
files in crops [7]. The resulting changes, together with 
variations in pesticide persistence and efficacy due to 
changing climate conditions, may necessitate adjust-
ments in pesticide application strategies, including more 
frequent use or changes in the concentrations or types of 
pesticides used, potentially leading to higher residue 
levels in plant products [4,6]. Moreover, changes in en-
vironmental conditions also impact the behavior of 
heavy metals in soils, affecting their solubility and mo-
bility, which could potentially enhance their uptake by 
crops and increase the levels of these contaminants in 
plant-based foods [6]. 

These evolving challenges necessitate adaptive food 
safety regulations and monitoring systems that can 
swiftly respond to the growing and novel hazards and 
risks posed by climate change. 

The importance of endogenous formation for 
the exposome and risk assessment 
Another topic gaining momentum in the field of food 
safety evaluations is the fact that for some compounds, 
exposure from endogenous formation may contribute 
substantially to the overall exposure (the exposome) [8]. 
This holds, for example, for ethanol and methanol and 
their oxidative metabolites, formaldehyde, and acet-
aldehyde since these compounds can be formed as phy-
siological components by the intestinal microbiota and by 
metabolic pathways in human cellular metabolism. In 
recent years, it has become evident that also various food 
process–related contaminants can be formed en-
dogenously, including, for example, acrylamide, acrolein, 
alpha-, beta-unsaturated carbonyl compounds, advanced 
glycation end products (AGEs) and their aldehyde 

Figure 1  
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precursors methylglyoxal and glyoxal, N-nitroso com-
pounds, ethylene oxide, and furans [8]. The endogenous 
formation of these compounds is important for food safety 
assessment because several of these chemicals are puta-
tive genotoxic carcinogens, for which it is assumed in risk 
assessment that the risk increases with each molecule. 
However, the endogenous formation may serve as a point 
of reference for risk assessment for the exogenous ex-
posure, and the level of exposure from an exogenous 
source may appear to be even negligible compared to the 
endogenous formation. This implies that for such com-
pounds, there would be an apparent threshold, a level of 
exposure where the risk would not be substantially in-
creased above the background effect caused by the en-
dogenous formation. This may be the case, for example, 
for not only ethanol but also for formaldehyde, acrolein, 
acetaldehyde, and AGEs and their aldehyde precursors  

[8]. Despite these new insights, the question of what 
would be considered negligible by risk assessment bodies 
remains to be answered. 

Effects of mixtures and the importance of 
relative potencies 
Another topic of increased attention in modern food 
safety assessment is the fact that consumers are often 
exposed to a mixture of chemicals of concern rather than 
to a single chemical. The combined exposure to mul-
tiple chemicals is relevant in, for example, the risk as-
sessment of pesticides, veterinary drug residues, 
additives, contaminants, etc. EFSA proposed two ap-
proaches for the evaluation of combined exposures to 
multiple chemicals, including a whole mixture approach 
and a component-based approach (Figure 2) [9]. The 

Figure 2  
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Simplified framework for risk assessment of combined exposure to multiple chemicals using a whole mixture approach or a component-based 
approach [9,10]. WMA: whole mixture approach, CBA: component-based approach, REPi: relative potency of chemical i, BMDLi: benchmark dose 
lower confidence limit of chemical i, BMDLref: benchmark dose lower confidence limit of the reference chemical, MOE: margin of exposure, EXPi: 
exposure level of chemical i.   
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whole mixture approach applies to mixtures of known 
and also poorly defined compositions, for example, for-
mulated pesticides, biocide products, wastewater ef-
fluents, natural flavoring agents, and fermentation 
products, and treats the mixtures like a single chemical  
[9]. The component-based approach is applicable for 
chemically defined mixtures with variability of the 
mixture’s composition in the different exposure sce-
narios [9]. In the last approach, the components are 
grouped for assessment based on the similarity in che-
mical structure, physiochemical properties, hazard char-
acteristics (mode of action and adverse outcome 
pathways), and exposure considerations. NAMs were 
recommended for grouping chemicals into mode-of-ac-
tion-based assessment groups by developing and im-
plementing generic in silico approaches such as 
quantitative structure–activity relationships (QSARs) 
and physiologically based kinetic (PBK) models [10]. 
Data on the relative potency (REP) of each component 
in the mixture are crucial to predict the toxicity of 
combined exposures of toxicologically similarly acting 
chemicals. Using REP values or relative potency factors 
(RPFs), the different toxic potencies of the individual 
component in a mixture are normalized toward the po-
tency of a reference material (with REP or RPF value 
equal to 1.0) by multiplying the respective concentration 
or dose level of the respective chemical in the mixture 
by its REP or RPF value after which the concentration 
of the total mixture can be expressed in toxicity 
equivalent of the reference compound by adding up the 
obtained normalized concentrations or doses. The REP 
or RPF values are defined by dividing the toxicity re-
ference point such as a No observed adverse effect level 
(NOAEL) or lower confidence limit of the benchmark 
dose (BMDL) of each individual component by that of 
the index chemical. The REP/RFP methodology allows 
the cumulative risk characterization on combined ex-
posure of mixtures by calculating the sum of the margin 
of exposures (MOET), taking the exposure of each 
component into consideration [9]. Furthermore, pre-
vious studies showed the potential for the use of NAMs 
like PBK models and/or in vitro assay to define REP 
values for, for example, dioxins, PAs, and PA N-oxides  
[11], enhancing Next-Generation Risk Assessment of 
combined exposure to multiple chemicals even with 
limited data. 

Per- and polyfluoroalkyl substances 
Although PFAS have been used and produced for several 
decades, they have become a hot topic in food safety only 
over the last years and are expected to remain important 
in the near future [12]. The compounds have been in use 
since the previous century because of their unique phy-
sical characteristics being both hydrophobic and oleo-
phobic, providing applications in many fields, including 
the food industry, where they have been used in, for 

example, grease-resistant food packaging and surface- 
active cooking devices [13]. Because of the strong 
carbon-fluorine bonds, they are highly resistant to 
thermal and chemical degradation making them sub-
stances that are persistent, bioaccumulative, and toxic 
and also substances of very high concern [14–16]. Recent 
years have seen significant revisions in health-based 
guidance values for PFAS by regulatory bodies, resulting 
in growing concerns about the risks posed by these per-
sistent chemicals. For example, the tolerable daily intake 
(TDI) of 150 ng/kg bw per day for perfluorooctane sul-
fonate (PFOS) and of 1.5 μg/kg bw per day for per-
fluorooctanoic acid (PFOA) established by EFSA in 2008  
[14], were first in 2018 reduced to a tolerable weekly 
intake (TWI) of 13 ng/kg bw per week for PFOS and 
6 ng/kg bw per week for PFOA [15] and in 2020 lowered 
even further to a group TWI of 4.4 ng/kg bw per week for 
the sum of four PFAS, including PFOA, PFNA, PFHxS, 
and PFOS [16]. In contrast, while the Food and Drug 
Administration (FDA) has not set specific TWI or TDI 
values similar to EFSA, it has focused on establishing 
action levels for PFAS in food and consumer products 
based on the latest toxicological data, aiming to mitigate 
exposure risks through regulatory oversight [17]. While in 
earlier risk assessments, estimated human exposure le-
vels were below the established health-based guidance 
values, with the newly established TWI of 4.4 ng/kg bw 
per week for the sum of four PFAS set by EFSA in 2020  
[16], this was no longer the case. As a result, levels of 
PFAS in food and drinking water have become a risk 
management priority. Given this situation and the fact 
that PFAS are persistent and considered so-called ‘for-
ever’ chemicals, in 2023, the national food safety autho-
rities of Denmark, Germany, the Netherlands, Norway, 
and Sweden submitted a proposal to the European 
Chemical Agency (ECHA) for the restriction of around 
10 000 PFAS, with the aim to reduce PFAS emissions 
and make products and processes safer [18]. 

Adoption and implementation of such a restriction now 
await the opinions from ECHA’s scientific committees 
for risk assessment and Socio-Economic Analysis. A ban 
may prove to be needed to reduce current exposure le-
vels, and some initial data show that the voluntary in-
dustrial phase-out of PFOS and PFOA in 2000 has 
resulted in reductions in exposure at the population 
level [19]. Future efforts in this field also will have to 
focus on the definition and use of reliable RPFs to en-
able a refined assessment of combined PFAS exposure, a 
topic at present leading to substantial debate since it has 
been argued that the current RPFs proposed by Bil et al.  
[20] are not robust enough to be used in risk assessment  
[21–23]. It is expected that the use of in vitro and in silico 
NAMs could be of help to define more robust RPFs for 
the various PFAS, once better insight into their mode of 
action and relevant critical target organ and effects have 
been elucidated, likely also with the help of NAMs. 

4 Food Toxicology  
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Nanomaterials 
Nanomaterials, engineered from diverse chemical con-
stituents, such as silver, titanium dioxide, silicon di-
oxide, and zinc oxide, have become increasingly integral 
to the food industry. These nanoparticles are used in a 
wide range of applications, from preservatives and anti-
microbials to flavoring agents and packaging materials, 
playing a transformative role in enhancing the quality, 
sensory appeal, shelf life, and safety of food products  
[24]. Human exposure to these nanomaterials can occur 
both intentionally, through the consumption of food 
products containing engineered nanoparticles and un-
intentionally through contact with packaging materials 
that release nanoparticles [24,25]. Additionally, these 
particles can enter the food chain from environmental 
sources or as byproducts of food processing techniques  
[24,25]. Public concern over the safety of nanomaterials 
has heightened due to the growing use of nanomaterials 
and the limited scientific understanding of key risk 
factors, such as nanoparticle toxicity, including their 
genotoxicity, potential for bioaccumulation, unclear ex-
posure levels, and hazards associated with ingestion. 
Nanomaterials’ small size and large surface-to-volume 
ratio allow them to interact with biological systems in 
novel ways, which may include the potential to cause 
DNA damage [26]. This has been particularly observed 
in studies of metallic, metallic oxide nanoparticles, and 
fibrous nanomaterials, although inconsistencies in the 
literature and variations in study design make it difficult 
to draw definitive conclusions about the physicochem-
ical features and the generation of reactive oxygen spe-
cies that promote genotoxicity [26,27]. The regulatory 
landscape is also adapting in response to these concerns. 
For instance, the use of titanium dioxide (E171) as a 
food additive in the European Union has been banned 
since August 2022, following EFSA’s scientific opinion 
that it could no longer be considered safe due to con-
cerns about its genotoxicity [28]. Given the diverse 
chemical compositions and dynamic properties of nano-
materials, they can undergo transformations throughout 
their life cycles, influenced by environmental and bio-
logical factors, making it impractical to assess every 
transformation using animal studies for risk assessment. 
This challenge has driven the adoption of NAMs, as 
recently highlighted in EFSA’s guidance on the risk 
assessment of nanomaterials, which promotes NAMs in a 
tiered approach to reduce reliance on animal studies 
while ensuring comprehensive risk assessments of na-
nomaterials [29]; however, adapting NAMs to address 
the specific challenges of nanomaterials for regulatory 
risk assessment, including potential effects on complex 
toxicological endpoints remains a significant challenge. 
Building on the concept of NGRA introduced by Dent 
et al. [30], Hristozov et al. [31] recently further proposed 
an NGRA framework for nanomaterials, which integrates 
NAMs, prioritizing relevant exposure scenarios and 
combining existing data with targeted testing. 

In addition to engineered nanoparticles, micro- and 
nano-plastics (MNPs) have raised significant concerns 
over the past year. MNPs have been detected in human 
food products, including seafood and drinking water, 
and, more recently, in human blood and maternal and 
fetal placental tissues [32,33]. This suggests that MNPs 
can cross the maternal–fetal placental barrier and may 
reach the fetal circulation. Despite the growing aware-
ness of their presence, our understanding of the health 
implications and risks associated with MNP ingestion 
remains even more limited compared to those of en-
gineered nanoparticles. Future research should focus on 
developing methodologies, drawing from approaches 
used for engineered nanomaterials, to assess MNP ex-
posure, toxicity, and potential bioaccumulation more 
comprehensively. 

Novel food packaging 
The development of novel food packaging materials, 
such as reinforced bioplastics, metal-organic frameworks 
(MOFs), and biopolymers, has significantly enhanced 
packaging functionality and sustainability [34–38]. 
However, these innovations bring new chemical food 
safety concerns, primarily due to the migration of sub-
stances into food. Reinforced bioplastics, which in-
corporate nanofillers or additives, may release chemical 
components under heat or acidic conditions, posing po-
tential food safety risks [34,35]. Similarly, MOFs, in-
corporated into packaging materials for their ability to 
enhance antimicrobial activity and selectively adsorb 
gases like ethylene, present risks of metal ion leaching 
into food matrices, particularly in moist or acidic en-
vironments [36]. 

Another source of migration that raises new food safety 
hazards arises from secondary reactions in packaging 
materials. The Maillard reaction, applied as a cross- 
linking method in biopolymer films, enhances mechan-
ical and antioxidant properties but may potentially 
generate reactive byproducts that could migrate into 
food, raising safety concerns [37]. Similarly, active 
compounds like plant extracts, added for their anti-
microbial and antioxidant benefits, may migrate into 
food matrices and chemically interact with the polymer 
or food components, potentially forming secondary 
substances that warrant further toxicological evaluation  
[38]. These risks highlight the need for comprehensive 
studies on chemical stability and migration behavior of 
these materials to ensure safe application in food 
packaging systems. 

New approach methodologies in risk 
assessment 
As already evident from the topics discussed above, an-
other important development in food safety is the de-
velopment and use of NAMs [10,11,31,39]. NAMs aim at 
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enabling risk and safety assessment without the need for 
animal-based data and encompass various nonanimal 
testing approaches, such as in silico and in vitro methods. 
An overview of relevant representative NAMs is pre-
sented in Table 1. This development is driven by the fact 
that animal experiments are time-consuming, costly, and 
more and more considered unethical, while at the same 
time, they may not adequately reflect the human situation 
and are less suitable for the mechanistic underpinning of 
toxicity at a molecular level. Thus, also in the field of food 
safety, there is a large effort to integrate NAMs, based on 
in silico and in vitro approaches, into the hazard and risk 
assessments. This development has in recent years also 
been accompanied by a call from the food industry to 
integrate NAMs routinely into scientific and regulatory 
risk assessment [40]. This regulatory acceptance and up-
take require a paradigm shift in risk assessment [39]. A 
recent review focusing on the use of NAMs in food safety 
assessments concluded that “Reducing animal testing and 
filling some RA gaps via NAMs is almost a reality. Moreover, 
there is a growing body of evidence confirming that the inclusion 
of mechanistic information improves risk assessments [39].” 
The relevant in vitro and in silico methods include QSARs 
and read-across and PBK modeling to facilitate quantita-
tive in vitro in vivo extrapolation (QIVIVE), omics tech-
nologies, with cell models and PBK models preferably 
being relevant for the human situation [41]. Recently, 
EFSA launched the open-access online TKPlate platform  
[42], aiming at facilitating food safety without animal 
testing by providing a platform for PBK modeling and 
predicting the toxicokinetics of a large number of che-
micals in humans. At present, the outcomes of TKPlate 
are not yet used in EFSA’s risk assessments, but it is 
expected that training of staff and further optimization of 
the platform will support its use shortly. The outcomes 
would, for example, be of use in demonstrating target 

tissue exposure or for forward or reverse dosimetry. For-
ward dosimetry enables the translation of estimated levels 
of human exposure to corresponding internal concentra-
tions, which can then be compared to outcomes from 
relevant in vitro bioassays to estimate the likeliness of in 
vivo effects to occur (Figure 3a) [43]. Reverse dosimetry 
enables the translation of in vitro concentration-response 
data to the in vivo situation, thus defining dose–response 
curves that provide points of departure to define health- 
based guidance values in risk assessment (Figure 3b) [44]. 

Artificial intelligence in food safety 
AI is becoming increasingly important in the field of 
food safety, offering significant improvements in how 
risks are assessed and monitored. AI is particularly ef-
fective at rapidly processing large volumes of data, which 
helps to identify and predict potential food safety ha-
zards that traditional methods might overlook. This 
ability is especially valuable as food supply chains be-
come more complex and globalized. Moreover, AI’s 
strength lies in predictive modeling, which enables the 
early detection of risks by analyzing data on foodborne 
pathogens, environmental conditions, and supply chain 
dynamics [45,46]. For instance, in risk assessment, AI- 
driven in silico models can be used as NAMs, offering 
faster and more ethical alternatives to conventional 
testing methods [47]. A recent study by Fu et al. [48] 
highlights how automated read-across technology, that 
is, the read-across-based structure–activity relationships 
tool can accurately predict the toxicity of food-related 
chemicals, thus reducing the need for traditional animal 
testing. 

As the food industry faces new challenges, including 
those related to environmental changes and emerging 
contaminants, AI’s ability to analyze diverse data sets 

Table 1 

Overview of relevant representative NAMs in risk assessment.     

Type of NAM Description Examples/techniques  

In vitro models Experimental models using cultured cells, tissues, or organs to 
replace animal testing for toxicity and safety evaluation. 

2D/3D cell culture models, organ-on-a-chip, stem 
cell–derived models 

Cell-based omics 
technologies 

Techniques to analyze genetic, proteomic, or metabolic 
responses to chemicals, providing mechanistic insights into 
toxicity. 

Gene expression profiling, RNA-seq, mass 
spectrometry–based proteomics, metabolomics 
profiling 

Computational modeling Using algorithms, simulations, and data-driven approaches to 
predict the physicochemical, toxicokinetic, and toxicodynamic 
characteristics of chemicals, reducing the need for physical 
experiments. 

QSAR models, PBK models, QIVIVE, machine 
learning–based prediction tools 

Read-across A data-driven approach to predict the toxicity of untested 
chemicals based on similarity to tested chemicals. 

Structural similarity-based predictions, category 
formation, analog identification; tools like ToxRead 

High-throughput 
screening 

Rapid testing of large numbers of substances or compounds 
for specific biological activities or toxicological effects using 
automated technologies. 

Automated toxicity screening, enzyme inhibition 
assays, receptor binding assays 

Tissue engineering Creating three-dimensional tissues or organ models using 
biocompatible materials to replicate human biology for testing. 

3D-printed tissues, scaffold-based tissue models, 
bioreactor systems for tissue culture 

Organotypic cultures Cultures mimicking the structure and function of specific 
organs or tissues for real-world biological evaluation scenarios. 

Brain organoids, liver spheroids, kidney organoids   
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becomes increasingly valuable. It helps assess and pre-
dict the impact of factors like climate change and pol-
lutants on food safety, ensuring that safety standards 
evolve in line with these new challenges [4]. 

Conclusions 
The current review presents some of the current and 
emerging issues in food safety. The selection made was 
based on topics raising concern at present and expected 
to maintain or even gain importance in the near future. 
These developments are to a large extent driven by the 
increasing human world population and related con-
sequences, including global warming, environmental 
pollution, concerns over food security and biodiversity, 

and increased use of plant-based foods. In addition, new 
technological developments as well as new scientific 
insights bring newly emerging issues to the field of food 
safety, such as consideration of the exposome and en-
dogenous formation of compounds of concern 
and NAMs. 

The related topics discussed in some more detail in the 
present review included (i) natural toxins accompanying 
the use of more plant-based foods to increase the sus-
tainability of our food chain and food security, (ii) effects 
of climate change, (iii) the role of endogenous formation 
for the exposome in risk assessment, (iv) effects of 
mixtures and the importance of relative potencies, (v) 

Figure 3  

Current Opinion in Food Science

Schematic presentation of the PBK modeling-based forward (a) and reverse dosimetry (b) approaches.   
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nanomaterials and PFAS as newly emerging risks, and 
(vi) use of new technologies like NAMs and AI in risk 
assessment. 

The common characteristic of all these food safety issues 
is the way in which science precedes risk assessment 
practice, where risk assessment bodies and regulators do 
take the developments into consideration but take time 
to shift the risk assessment paradigm. This may in part 
be due to the fact that relevant data are not yet available. 
Some developments however show that changes are 
actually happening or likely to happen in the near fu-
ture, and these include, for example, the launch of 
TKPlate by EFSA, the potential ban of PFAS in the EU, 
and the use of outcomes obtained by NAMs in risk and 
safety assessment. Other topics of current and emerging 
concern do still require further data before risk assess-
ment and related risk management practices in food 
safety will be changed. This includes, for example, the 
definition of additional methods to evaluate mixture 
toxicity, of RPFs for PFAS, and of the impact of climate 
change on mycotoxin levels in plant raw materials and 
foods derived from them. Moreover, with the rapid de-
velopment of AI, questions remain on how to effectively 
utilize AI to reduce or replace animal testing, analyze 
vast data sets resulting from environmental changes and 
emerging contaminants, and even predict novel risks in 
food safety. 
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