WIAS

Annual Conference

2025

Effects of dietary crude protein level on energy and nitrogen balance of lactating dairy cows during an immune challenge with lipopolysaccharide

A.H. van Ruitenbeek^{1*}, S.J.J. Alferink¹, A.T.M. van Knegsel², A. Bannink³ and J. Dijkstra¹ Animal Nutrition Group, Wageningen University & Research, The Netherlands

Reducing dietary Crude Protein (CP) level effectively decreases N excretion in dairy cows. However, it can be hypothesized that the energy and N balance during an acute immune challenge in lactating dairy cows is altered when low CP level is fed, compared with a high CP level. To investigate the effect of dietary CP level with or without an immune response, twelve lactating Holstein Friesian cows (61 \pm 14 DIM at the start of the trial; mean \pm SD) were used in a completely randomized block design. Cows were fed diets with a high crude protein content (HCP) of 176 or low crude protein content (LCP) of 145 g CP/kg DM. Cows were housed in climate respiration chambers for two four-day periods to measure energy and N balance. The first period served as a baseline measurement and during the second period, cows received continuously an intravenous a LPS solution with a daily incrementing dose from 0.010 to 0.033 $\mu g/kg$ of BW per hour in order to induce an acute phase immune response. The LCP diet resulted in lower DMI and a lower milk yield, but did not affect the energy and N balance compared to HCP. During the challenge period, the energy and N balance was significantly more negative compared to the baseline period, with no significant difference between cows fed HCP or LCP. In conclusion, reducing dietary CP from 176 to 145 g/kg DM did not affect the energy and N balance in response to the immune challenge.

²Adaptation Physiology Group, Wageningen University & Research, The Netherlands

³Animal Nutrition, Wageningen UR Livestock Research, The Netherlands

^{*} Corresponding author. E-mail: axel.vanruitenbeek@wur.nl