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Abstract. Functional–structural plant (FSP) models are useful tools for understanding plant functioning and how plants react to their environ-
ment. Developing tree FSP models is data-intensive and measuring tree architecture using conventional measurement tools is a laborious pro-
cess. Light detection and ranging (LiDAR) could be an alternative nondestructive method to obtain structural information about tree architecture. 
This research investigated how terrestrial LiDAR (TLS)-derived tree traits could be used in the design and parameterization of tree FSP models. 
A systematic literature search was performed to create an overview of tree parameters needed for FSP model development. The resulting struc-
tural parameters were compared to LiDAR literature to get an overview of the possibilities and limitations. Furthermore, a tropical tree and Scots 
pine FSP model were selected and parametrized with TLS-derived parameters. Quantitative structural models were used to derive the param-
eters and a total of 37 TLS-scanned tropical trees and 10 Scots pines were included in the analysis. Ninety papers on FSP tree models were 
screened and eight papers fulfilled all the selection criteria. From these papers, 50 structural parameters used for FSP model development were 
identified, from which 28 parameters were found to be derivable from LiDAR. The TLS-derived parameters were compared to measurements, 
and the accuracy was variable. It was found that branch angle could be used as model input, but internode length was unsuitable. Outputs of the 
FSP models with TLS-derived branch angle differed from the FSP model outcomes with default branch angle. Results showed that it is possible 
to use TLS for FSP model inputs, although with caution as this has implications for the model variable outputs. In the future, LiDAR could help 
improve efficiency in building new FSP models, increase the accuracy of existing models, add metrics for optimization, and open new possibil-
ities to explore previously unobtainable plant traits.
Keywords: LiDAR; terrestrial laser scanner; Functional–structural plant models; quantitative structural models; tree architecture.

Introduction
Plant growth models have played an important part in gaining 
insights into plant functioning and improving crop yield 
productivity. The first plant growth models were developed 
at the beginning of the twentieth century (Blackman 1919), 
and since then there have been exponential advancements. 
One of the important drivers of progression is the rapid de-
velopments in computer processing power and accessibility. 
However, plant growth models are limited in that they cannot 
take into account the variation of individual plants and their 
interactions with the environment.

To help solve this limitation functional–structural plant 
(FSP) models were introduced. FSP models are a type of plant 
growth model that incorporates both the physiological pro-
cesses and the 3D structure of a plant (Sievänen et al. 2000). 
These models can be used to study plants on different scales, 
from cell level to whole plant communities (DeJong et al. 

2011). The incorporation of both structure and functioning 
allows FSP models to account for the feedback between them 
and helps to better understand plant growth in relation to its 
environmental conditions (Vos et al. 2010). This interaction 
makes FSP models unique and allows the study of growth in 
heterogeneous plant canopies, like mixed crop species (Evers 
et al. 2019; Gaudio et al. 2019) and to a lesser extent, mixed 
forest stands (Bongers 2020). Findings from research using 
FSP models help in the development of management strategies 
in agriculture, horticulture, and forestry (DeJong et al. 2011; 
Boudon et al. 2020), and can, e.g, be used to study practices 
like agroforestry (Barbault et al. 2024). Additionally, they can 
be used for fire management in forests (Parsons et al. 2011), 
to better understand the behaviour of trees in response to 
extreme climate events (Taugourdeau and Barczi 2013) and 
render more realistic synthetic trees in 3D (Crimaldi et al. 
2021).
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The incorporation of both detailed functional processes and 
the 3D architecture makes FSP models more complex than 
other plant growth models. This is especially valid for mod-
elling forest stands, because of their large structure and long 
lifespan. In the past, the main constraints for building and 
using FSP models for forests were related to the high compu-
tational intensity and data needs (Sievänen et al. 2000). The 
first constraint has been partly solved with the exponential 
developments in computer processing power (O’Sullivan et 
al. 2021), and some mixed forest models have been developed 
(Hemmerling et al. 2008; Petter et al. 2021). However, the 
large amount of data needed for model development and val-
idation are still a relevant problem today (Louarn and Song 
2020). An important component of FSP model development 
is thus to develop techniques to efficiently acquire 3D struc-
tures of plants (Sievänen et al. 2014).

Different instruments can be used to acquire structural 
plant measurements. Conventionally used manual measure-
ment tools are rulers, callipers, compasses, angle finders, and 
hypsometers (Van Der Heijden et al. 2006). More detailed 
measurements are extracted from 3D data, acquired using 
conventially used tools like 3D digitizers (Surový et al. 2011), 
which can often be used outdoors, and 3D reconstructions 
from images or lasers, which are captured using equipment 
that are often fixed indoors (Dornbusch et al. 2007; Paulus 
et al. 2014). These techniques work well for small plant 
structures (e.g. annual crops) which can be moved and be 
measured indoors, but for large plant structures (e.g. trees), 
collecting data with the use of these techniques is often im-
practical and laborious to acquire. For example, digitizing 
two complete tree crowns in 3D with a Polhemus FASTRAK 
took Surový et al. (2011) 14 days, as each 3D coordinate had 
to be individually captured using a pointer. Additionally, the 
high architectural variation between trees compared to an-
nual plants makes full tree-scale validation more difficult, and 
as a result tree models are often validated qualitatively (Grisaf 
et al. 2022).

Light detection and ranging (LiDAR) could be an alter-
native sampling method for obtaining structural informa-
tion of trees for FSP modelling compared to conventionally 
used methods. LiDAR is a nondestructive and active remote 
sensing method, which can capture the 3D architecture of 
trees in high detail (Newnham et al. 2015). The technique 
works by sending out laser beam pulses and recording the 
time it takes after hitting an object for the laser to travel back 
(in ‘time-of-flight’ systems) (Baltsavias 1999) or by measuring 
the phase shift signal between a continuous outgoing one 
and its reflected counterpart (in ‘phase shift’ systems) (Disney 
2019). The amount of laser beam pulses can reach up to mil-
lions per scan position (Brede et al 2017; Wilkes et al. 2017). 
The recorded time of each laser can then be used to calculate 
the distance between the scanner and the object and together 
with the recorded GPS location a highly detailed 3D scan is 
constructed, also called a point cloud data (PCD) (Mallet and 
Bretar 2009).

LiDAR for collecting structural tree information
There are several devices available for obtaining LiDAR scans 
of trees. The most widely used are Terrestrial Laser Scanner 
(TLS), Airborne Laser Scanner (ALS), and more recently 
Mobile Laser Scanner (MLS). The techniques for acquiring 
and processing LiDAR have progressed substantially in the 

last years, making it possible to retrieve valuable information 
from LiDAR data. Diameter at breast height (DBH) and height 
are accurately derivable from LiDAR data, although the ac-
curacy is highly dependent on understory growth because of 
occlusion (Brede et al. 2017; Liu et al. 2018). Additionally, it 
is possible to extract more complex tree characteristics from 
PCD such as crown diameter (Popescu et al. 2003), leaf area 
index (Zheng et al. 2012), plant area index (Calders et al. 
2015b), and branch details (Lau et al. 2018). It is also possible 
to calculate tree attributes like biomass through allometric 
models (Zolkos et al. 2013) and plant scaling with metabolic 
scaling exponents (Lau et al. 2019b). LiDAR is also useful 
for better understanding tree functioning (Malhi et al. 2018; 
Dorji et al. 2021) and measuring the effect of forest manage-
ment strategies (Georgi et al. 2018). There are many examples 
of the use of LiDAR for capturing tree details and for more 
information the review of Calders et al. (2020) can be read.

One of the methods to reconstruct the LiDAR scanned 
trees is through single tree reconstruction modelling. The ac-
curacy to which the 3D tree models can be constructed varies 
in levels of detail of retrievable parameters and complexity to 
acquire (Liang et al. 2016). For example, leaves and higher-
order branches require a high level of model detail compared 
to height and DBH. There are different methods for recon-
structing 3D structural tree models, each with advantages 
depending on the scan quality and goal of the tree model 
(Boudon et al. 2014; Bournez et al. 2017). Quantitative 
methods are often used to reconstruct 3D structural tree 
models, the two most common methods being skeletonization 
(Côté et al. 2009, 2011) and Quantitative Structural Models 
(QSMs) (Raumonen et al. 2013; Delagrange et al. 2014). 
Both methods translate the PCD as an input into an archi-
tectural tree model from which architectural information can 
be derived. Skeletonization converts the PCD into a series of 
segments that are geometrically and topologically connected 
which results in the representation of a tree (Côté et al. 2009). 
TreeQSM is a popular 3D tree model developed by Raumonen 
et al. (2013) which uses fitted cylinders of the PCD to de-
rive several tree attributes, such as tree height, branch angle, 
branch length, branch diameters, among others. The advan-
tages are that the method is able to reconstruct multiple trees 
with high accuracy (Raumonen et al. 2015).

These 3D structural tree models can be used to interpret 
remote sensing data through radiative transfer model simula-
tions (Disney et al. 2006; Calders et al. 2018) or to help en-
hance the quality of the PCD (Côté et al. 2011). Additionally, 
it is possible to extract characteristics from the 3D structural 
tree models which can be used for forest inventories (Liang 
et al. 2016; Aijazi et al. 2017) or model inputs (e.g. wind 
damage modelling (Jackson et al. 2019)).

The ability to scan large plots of trees in a short time and 
extract tree characteristics nondestructively are important 
benefits that make LiDAR an increasingly viable data source. 
However, depending on the LiDAR methods used (TLS, 
ALS, or MLS) there are tradeoffs in time efficiency and de-
tails. Additionally, the highly detailed scans done by TLS 
(e.g. 3 mm accuracy recorded by Brede et al. (2017)) allow 
for deriving more complex tree characteristics not measur-
able by conventional methods (Liang et al. 2016). Research 
about deriving tree characteristics from LiDAR has started 
to mature, and the next step will be to look at other research 
fields that can benefit from this data (Disney 2019). Tree FSP 
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modelling could be the next research field that can benefit 
from LiDAR data, increasing efficiency in building the models 
and improving them through optimization or validation, 
compared to conventional methods.

LiDAR and FSP modelling
O’Sullivan et al. (2021) define four possibilities for tree 
pointclouds from TLS data to be used in FSP models.

1.	 Direct use of 3D tree models (QSMs) derived from TLS 
for simulations of physiology and environment.

2.	 Provide validation data for testing the FSP models.
3.	 Acquire time-series of tree pointclouds to get data about 

the growth dynamics.
4.	 Using pointcloud time-series data for optimization of 

parameters.

Several of these possibilities have been explored in recent re-
search. Sievänen et al. (2018) demonstrated the use of TLS 
data for optimizing a shoot-based FSP model. TLS-scanned 
pine trees were divided into internodes and used to validate 
the predictions of the model. These different outcomes were 
then used to decide the best-fitting method for crown de-
velopment. This study shows the potential of TLS for com-
ponent selection, but due to the small sampling size, they 
disclosed that the results should be viewed as preliminary. 
Another study done by Beyer et al. (2017) focused on using 
TLS data to compare the 3D output of a beech FSP model. 
The TLS data was used for visual comparison and validation 
using relative leaf densities. Perez et al. (2018) used TLS data 
to derive indicators for evaluating the performance of a 3D 
architectural oil palm model. Several basic indicators were 
derived in combination with hemispherical photographs, 
such as plant height, width, volume, and gap fraction. Bailey 
(2019) integrated an automatic LiDAR processing plugin into 
its modelling framework called Helios. The leaf inclination 
distribution was derived from TLS data and used as param-
eter input for a case study to simulate Canopies of Prunus 
dulcis. Finally, Potapov et al. (2017) used TLS data for par-
ameter optimization to simulate virtual trees. The TLS scans 
were reconstructed in a QSM from which structural features 
are extracted and used as inputs in an optimization algorithm.

The above-mentioned studies demonstrate individual cases 
that showcase how TLS data can be used for optimization, 
model component selection, parameter input, and validating 
the structural output of a model. However, the more general 
question regarding the extent to which TLS-derived tree char-
acteristics could be used for FSP model development has not 
been examined. Additionally, a fifth option could be explored, 
apart from the four mentioned by O’Sullivan et al. (2021), 
which is to use TLS-derived parameters from a single time 
frame for FSP model inputs.

Research objectives and research questions
TLS-derived tree parameters have the capability to be a valu-
able source of information for FSP models but have largely 
been unexplored until now. This research aimed to investigate 
how TLS-derived tree traits could be used for tree FSP models 
by providing model inputs.

First, an overview of FSP model development needs was cre-
ated and the possibilities of LiDAR to be an alternative data 
source were determined. Next, two FSP models were selected 

based on several criteria and the structural inputs were ana-
lysed to see which could be replaced with TLS-derived param-
eters from our literature review. Then, the suitable parameters 
were derived from TLS data and the accuracy was analysed. 
These parameters were then used as inputs for the selected 
models and the effect on variable outputs was assessed. This 
research can be an example case and findings could be used 
for future research and encourage more exploration of the 
potential of TLS data for tree FSP model development.

Data and methods
A systematic literature review was performed to create an 
overview of FSP model structural data needs and if these 
tree parameters could be derived from LiDAR data (Section 
Literature review). For the next part, structural data derived 
from LiDAR were used as inputs in the FSP models and the 
outputs were compared with the default settings. For com-
parison two FSP models were selected and introduced in 
Section FSP model selection. Structural parameters were iden-
tified from the model inputs which could be derived from the 
LiDAR data. The LiDAR data used is described in Section 
LiDAR data. Preprocessing steps and QSMs (Raumonen et 
al. 2013) are described in Section Preprocessing \ and the der-
ivation of TLS structural parameters for FSPM inputs are de-
scribed in Section Deriving structural parameters for the FSP 
models. The outputs of the QSM were assessed by comparing 
them to fieldwork observations and manual measurements 
from CloudCompare (Section Accuracy analysis). Finally, the 
procedure and output assessment of running the FSP models 
with TLS-derived inputs and models with default inputs are 
described in Section FSP model running with TLS-derived in-
puts. For a schematic overview of the methods, we refer to 
Supplementary Fig. S1.

Literature review
A systematic literature search was performed to create a rep-
resentation of the structural parameters used in FSP models. 
Different tree FSP models were identified, because of the vari-
ation in structural details needed for different types of FSP 
models. Parts of the Preferred Reporting Items for Systematic 
Reviews and Meta-Analyses (PRISMA) statement were fol-
lowed to improve transparency and help structure the re-
porting of the process (Moher et al. 2009).

The following search engines were used for the literature 
search: Google Scholar, Web of Sciences, and Scopus. To en-
sure that the FSP models would be focused on tree modelling 
the articles had to contain the word ‘tree’. Additionally, the 
article had to contain some variations of the word FSP model, 
like functional–structural tree and functional–structural 
forest model or the corresponding abbreviations. The alter-
native term ‘virtual plants’ was also included (Hanan 1997). 
The following search term using Boolean functions was used 
on the 15th of June in 2024:

tree AND (“Functional Structural Plant model” OR 
“Functional Structural forest model” OR “Functional 
Structural tree model” OR “FSP model” OR “virtual 
plant” OR FSPM OR FSTM OR FSFM)

The hit results for the first 50 results were recorded for each 
of the three search engines. Duplicate records were removed 
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and the abstracts of the remaining records were screened. 
Papers were included only if they met all of the following four 
criteria: be a published paper, the topic should be about FSP 
models, an original article that developed or improved an FSP 
model, and the FSP model was about a nonfruit bearing tree. 
The choice to not include fruit trees was to narrow the scope 
to make the process feasible within the given time frame. The 
papers that met the first inclusion criteria were retrieved and 
the methodology sections were skim-read to assess the eligi-
bility. There were two inclusion criteria for the next selection 
round: the paper had to specify which parameters were used 
for the FSP model and manual field measurements should 
have been done by the authors. This last criterion was cre-
ated as papers that use other databases are often not specific 
in how these field measurements were carried out and what 
exact parameters were retrieved. The review is thus not a 
complete overview of all parameters used in the selected pa-
pers but gives an indication of the field measurements that are 
done for FSP model development.

LiDAR for FSP model structural parameters  The final 
selection of papers was then fully read, and the structural 
parameters that were measured for the tree FSP model de-
velopment were identified. This includes all the data that was 
gathered for parametrization, optimization, and validation.

An additional search was done for each parameter to 
find literature related to extracting structural tree informa-
tion from LiDAR. In total, one paper for each parameter 
was selected. The search was performed between November 
2021 and January 2022. The paper selection was performed 
by searching in Google Scholar, with the structural param-
eter together with the term LiDAR. More recent publications 
and papers with more citations were preferred for the LiDAR 
literature. The type of LiDAR equipment and accuracy of the 
estimation were recorded for the chosen papers. Each param-
eter was also compared with the output results of the QSM 
and deemed possible if the parameter could be retrieved from 
this.

FSP model selection
The decision was made to only focus on FSP models devel-
oped in Growth Grammar related Interactive Modelling 
Platform (GroIMP), because of available support for this soft-
ware. GroIMP is a free interactive modelling platform cre-
ated to develop, use, and analyse the outcomes of FSP models 
(Hemmerling et al. 2008). Nine tree FSP models (Hemmerling 
et al. 2008; Kniemeyer 2008; Smoleňová et al. 2013; Petter 
et al. 2021) were identified from which two were selected for 

the analysis (Supplementary Table S1). The choice was made 
based on the LiDAR tree genus and species data availability 
and the documentation.

The first selected FSP model is a tropical tree and forest 
model (Petter et al. 2021) and the second is a LIGNUM model 
adapted for a Scots pine tree (Pinus sylvestris) (Smoleňová et 
al. 2013). Each model was assessed to identify potential struc-
tural parameters that could be changed to LiDAR-derived 
data. A limitation was that the LiDAR datasets did not con-
tain any temporal information. Nonetheless, the FSP models 
could still benefit from data that is collected from a particular 
time point by focusing on parameters that do not change over 
time.

The tropical FSP model from Petter et al. (2021) uses an 
ecophysiological approach to look at the effect of leaf traits 
on the growth patterns of single trees and forest stands. For 
the analysis, only the individual tree model was analysed. To 
change the input parameters for this model a pass file with 
parameter values can be modified. The parameters listed in 
this file were assessed to identify model inputs that could 
be derived from the QSM, using the results from Section 
Literature review. Four structural parameters were identified: 
branch angle for first and second branch order and internode 
length of the trunk and first-order branches.

The LIGNUM model of a Scots pine was originally de-
scribed in Perttunen et al. (1998) and Sievänen et al. (2008) 
and was adapted by Smoleňová et al. (2013) to run in GroIMP. 
One individual Scots pine tree is modelled which grows in a 
forest and is competing for light. Parameters can be changed 
through a pass file or directly modified in the model. All 
parameters specified in the pass file and parameters used in 
the model itself were assessed using the results from the lit-
erature review. Two structural parameters were identified that 
could be derived from LiDAR in the module L-systems for 
pine trees: branch angle for first and second branch order.

LiDAR data
Two LiDAR datasets of segmented trees were used for 
this study, and details about the species and field measure-
ments are described in Table 1. The first LiDAR dataset 
contains segmented Scots pine trees from a plot in Loobos, 
the Netherlands, scanned in September 2011 with a RIEGL 
VZ-400 terrestrial laser scanner. The forest stand's age is ap-
proximately 100 years old and has a composition of predom-
inantly Scots pine with sparse understory. This study site has 
repeated measurements available and field observations were 
used that were collected in March 2012. Further details of the 
LiDAR data acquisition can be found in Vaccari et al. (2013)  

Table 1. Specifics of the LiDAR data used for deriving structural tree parameters.

Plot location LiDAR 
scanner

Species and number of trees Field 
measurements 
height (m)

Field 
measurements 
DBH (cm)

Loobos, The Netherlands TLS Scots Pine (Pinus sylvestris) = 10 Range: 12.5–23.8, 
average: 18.6

Range: 22.3–32.9, 
average: 28.9

East Berbice-Corentyne 
Region, Guyana

TLS Greenheart(Chlorocardium rodiei) = 10,
Kabukalli (Goupia glabra) = 5,
Mora (Mora excelsa) = 4,
Morabukea (Mora gonggrijpii) = 9,
Wallaba soft (Eperua falcata) = 5,
Wamara (Swartzia leiocalycina) = 4

Range: 23.8–44.2 
average: 33.3

Range: 22.0–126.0 
average: 60.9
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and the segmentation steps were according to Lau et al. 
(2019a).

The second data set of segmented tropical trees used for 
this study was collected during a field campaign in the East 
Berbice-Corentyne Region of Guyana. The scanned plot was 
situated in a mixed forest dominated by evergreen trees. The 
scanning was done from January to February 2017 using a 
RIEGL VZ-400. Additionally, field observations were avail-
able of the height and DBH which were measured at the same 
time. Further details about the segmentation, scanning setup, 
and sampling plan can be found in Lau et al. (2019a).

Preprocessing
It was decided to use the QSM developed by Raumonen et al. 
(2013) to acquire TLS-derived tree parameters. This method 
was chosen as the output of the QSM gives a wide range of 
relevant and detailed information about the tree architectures 
from which the selected tree parameters could be derived. The 
QSM requires only the woody part of the tree as input, so the 
classification algorithm of D. Wang et al. (2020) was used to 
select the woody parts and discard the rest. Published pre-
processed pipelines from Lau et al. (2019a) were followed 
in MATLAB (R2019b) to run the QSM and classification 
algorithm.

The QSM and leaf separation algorithm was run using an 
Intel Xeon W-2133 running at 3.60 GHz with 128 GB RAM. 
MATLAB had 6 workers during the calculations. Additional 
scripts (available upon request) were written in Python (3.8) 
for analysing and visualizing the results.

Woody component extraction  The algorithm of D. 
Wang et al. (2020) requires one parameter to be specified 
which is the feature similarity called Nzthres. A sensitivity 
analysis was performed to find the best-performing threshold 

using qualitative visual scoring (Supplementary Table S2). We 
analysed the results from each performing threshold ranging 
from 0.025 to 0.225 with a 0.025 step (Supplementary Fig. 
S2 and S3). The best-performing Nzthres for tropical trees 
was found to be 0.1 for the smallest and largest DBH class 
trees and 0.125 for the remaining trees. For the Scots pine, the 
Nzthresvalue 0.15 was found to retain the most wood detail 
and wrongly classify the least amount of soft components.

After inspecting the classification results it was decided to 
apply manual corrections to the LiDAR data. This included 
manual reclassifications of wrongly classified branches and 
removing wrongly classified foliage and ghosting effect (Fig. 
1). This step was performed using the segmentation tool in 
the program CloudCompare (v2.11.3 (Anoia)). The effect of 
manually correcting the data on the QSM was further ana-
lysed to see if there are effects on the outputs of the QSM. All 
Scots pine trees were used for the analysis and one random 
tree was chosen for each DBH class for the tropical LiDAR 
data. Finally, a t-test was performed for the branch angle 
normal distribution to test if there are significant differences 
between the results of the QSM.

QSM fitting  The method from Raumonen et al. (2013) uses 
a cover-set approach where surface patches are applied and 
connected step-wise over the PCD until they cover the whole 
tree surface. Cylinders of varying sizes can then be fitted using 
the patched tree surface. From the fitted cylinders, relevant in-
formation can be extracted about the tree branching structure. 
A complete list of outputs can be found in the TreeQSM docu-
mentation (https://github.com/InverseTampere/TreeQSM/
blob/master/Manual/TreeQSM_documentation.pdf).

The QSM results include three methods to calculate DBH, 
which were all tested to find the best-performing method. For 
both the Guyana and Loobos data sets the DBHqsm method 

Figure 1. Examples of manual corrections made in the points clouds to adjust for errors in the LiDAR data and the output of the classification algorithm 
LeWoS (D. Wang et al., 2020). Woody components are shown in purple and soft components in green.
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was found to have the highest accuracy, so for further ana-
lysis, this DBH calculation method was used. It was decided 
to also use an additional height estimation method which 
uses the original PCD with the foliage still included and takes 
the highest point and subtracts the lowest point from this 
(Calders et al. 2015a).

Deriving structural parameters for the FSP models
The results from the QSM were modified to fit the struc-
tural parameter definitions used in the FSP models. The 
model inputs of branching angle for the first and second 
branch order for the Scots pine model and the second-order 
branch for the tropical tree model could directly be used 
from the QSM output. However, the branch angle of the 
first-order branch for the tropical tree model required the 
branch angle to be relative to the horizontal plane instead 
of being related from the trunk to the first-order branch. To 
correct for this the branch angle was calculated by taking 
the first-order branch angles and subtracting this from 
90°C. The assumption made here was that the trunk grows 
straight up.

Internode length is defined by Petter et al. (2021) as the 
distance between two consecutive branches on the stem or 
parent branches. The internode length was calculated by 
finding the start coordinates of the first cylinder in a branch 
from the QSM output. The distance between the starting 
point of branches was calculated using Equation 1. With d 
being the distance, and x, y, and z being the coordinates of the 
two branch starting locations.

d =
»

(x2 − x1)
2
+ (y2 − y1)

2
+ (z2 − z1)

2 (1)

Accuracy analysis
Field measurements from the Guyana and Loobos datasets 
were used to assess the accuracy of the height and DBH de-
rived from the LiDAR data. Additionally, measured data of 
the branch angle was gathered directly from the PCD that 
served as input for the QSM. The first branch was taken of 
each tree, counting from the ground, for both first and second-
order branches. The condition was that the branch had to 
have a length longer than 10 cm, due to erroneous model-
ling of the QSM and visually inspecting them. Three points 
were visually picked in CloudCompare, one on the branching 
point and the other two along the branches with a length be-
tween 10 and 40 cm, depending on occlusion and changing 
shapes of the branch. The branch angle of the first branch 
order relative to the horizontal plane could not be measured 
this way as CloudCompare needs points present to measure 
the angle, so the same measurement method was used as the 
other branch angles. The measured branch angles were noted 
down together with the height of the beginning of the branch 
and the length of measurement.

The root mean square error (RMSE) (Equation 2), rela-
tive RMSE (%) (Equation 3) and R2 (Equation 4) were cal-
culated to assess the accuracy of the LiDAR estimated DBH, 
height, and branch angle. yˆi the predicted value and yi is the 
measured. The relative RMSE (%) is calculated by taking the 
RMSE and dividing this by the mean of the observations (yi).

RMSE =

Ã
n∑

i=1

Ç
(ŷi − yi)

2

n

å

(2)

RMSE (%) =

 
∑n

i=1

Å
(ŷi − yi)

2

n

ã

yi (3)

R2 =

∑n
i=1 (ŷi − yi)

2

∑n
i=1 (yi − yi)

2 (4)

FSP model running with TLS-derived inputs
The TLS-derived structural parameters were used as inputs 
for the FSP models and compared with the default FSP models 
(original values of the provided input file). The outputs were 
used to understand the sensitivity of the FSP models for these 
different parameter inputs. All models were run in GroIMP 
(V1.6). It was decided to average the maximum and minimum 
of the factor controlling the relationship between internode 
length and total annual length growth to avoid changes be-
tween runs in the tropical model.

Next, the structural parameters derived from TLS were 
used as inputs for the FSP models. No other parameters 
were changed as the focus was on using TLS-derived param-
eters. There were a total of four runs performed for each tree 
species: the median, 25th percentile, 75th percentile, and a 
normal distribution function. For both branching angles and 
internode lengths, it was chosen to have the minimum and 
maximum range be the 25th and 75th percentile and take 
the median to remove the influence of outliers. The normal 
distribution was taken for all parameters to keep it the same 
for all. The input parameter was replaced directly in the code 
with the normal distribution function (normal(µ, σ)). This 
was done to make sure that for each new branch, a new value 
from the normal distribution was taken instead of one fixed 
value.

FSP model output comparison  The selected FSP models 
were run the same amount of time steps as mentioned in the 
original papers, with each time step representing one year. 
The tropical tree model was run for 200 years and 40 years 
for the Scots pine model. Pictures were saved for each time 
step and used for visual comparison between the different 
runs. Additionally, structural outputs were saved for both 
models for each time step. The variables that were chosen to 
compare the tropical tree and Scots pine model outputs were: 
diameter (m), height (m), woody (Mg tropical tree model 
and kgC Scots pine), and leaf biomass (g tropical tree model 
and kgC Scots pine). Four additional variables were looked 
at for the tropical tree model: crown depth (m), crown area 
(m2), height first branching (m), and light measured by apical 
meristems at each end of the branch and trunk (µmol m2 s−1). 
The Scots pine also had four additional variables for com-
parison between the different model outcomes which were: 
root biomass (kgC), total segments (n), photosynthetic rate 
(kgC year−1), and respiration (kgC year−1).

Results
Literature review
The literature search using the PRISMA method resulted in 
the identification of 150 records, with an additional 21 papers 
added manually (Fig. 2). From these initial records, 47 du-
plicates were removed and the remaining 124 were screened 
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7Improving FSP models using terrestrial LiDAR data

from which an additional 91 records were excluded as they 
did not meet the inclusion criteria. Most papers were excluded 
during the first criteria round because the modelled tree was 
a fruit-bearing species. The remaining 33 articles were then 
retrieved for the second criteria assessment. Two articles were 
excluded in this stage as retrieval was not possible due to ac-
cessibility issues. The remaining 31 studies were then fully 
read and 21 articles were excluded during this stage. Most 
were excluded because they did not do manual field measure-
ments, but referred to other literature for acquiring structural 
parameter data. A total of 10 studies met all criteria and were 
used for the literature review.

Overview LiDAR possibilities for FSP model devel-
opment  The 10 articles that came out of the systematic 
literature search were used to create an overview of FSP 
model structural parameter needs (Table 2). A total of 50 tree 
parameters were identified from the papers, ranging from the 
tree neighbourhood level to foliage details. Specific mentions 
of each parameter in the selected papers (Buck-Sorlin et al. 
2008; Combes et al. 2008; Lu et al. 2011; Parsons et al. 2011; 
Wang et al. 2011; Feng et al. 2011; Guo et al. 2012; Diao 
et al. 2014; Surový and Yoshimoto 2014; Kang et al. 2018) 
are described in (Supplementary Table S3). Measured param-
eters for individual papers ranged from 4 (Buck-Sorlin et al. 
2008; Kang et al. 2018) to 15 (F. Wang et al. 2011; Lu et 
al. 2011; Guo et al. 2012), and an average of 11 structural 
parameters were measured in the studies. The most often 
measured parameters among the papers were tree species 
(10), height (7), age (7), DBH (7), internode length (6), branch 
order (6), and branch angle (5). Parameters about details of 
neighbouring trees and foliage were mentioned in only a few 
papers.

From the 50 found parameters, 28 were found to be de-
rivable from LiDAR data (Table 2). Accuracy was reported 
in different metrics among different papers which makes 
general intercomparison unviable. However, it was fre-
quently reported that lower-order branches had lower ac-
curacy than higher-order branches. Furthermore, 12 of the 
parameters can also be derived directly from the output of 
the QSM of Raumonen et al. (2013) and an additional 12 
have the potentiality to be derived from the cylinder informa-
tion. For example, chord length could be calculated by taking 

the locations of the first and last cylinders of a branch. The 
potentiality of LiDAR declines as the level of detail of the 
parameters increases. All parameters from the neighbourhood 
and tree level are found to be extracted directly or indirectly 
from PCD. The majority was found to be achieved for the 
whorls and branch parameters and parameters on internode 
and foliage level were found to be feasible in less than half of 
the cases.

Terrestrial LiDAR pointcloud preprocessing
Thirty-seven tropical trees were selected from six tropical tree 
species. Additionally, 10 Scots pine trees were used for deriving 
tree parameters. The process outputs of the preprocessing 
steps and QSM fitting are shown in Fig. 3. The average time 
spent manually correcting one tree was 45 minutes. Time 
spent on manually correcting the PCD depended on tree size, 
classification algorithm performance, and complexity of the 
tree. Running the QSM for all manually corrected tropical 
trees took an average of 89 minutes and direct outputs of the 
LeWoS algorithm took 147 minutes. The Scots pine trees took 
an average of 13 minutes to run for all manually adjusted 
trees and an average of 49 minutes for nonadjusted trees.

Effect of manual corrections  QSM outputs that had 
manually corrected inputs differed from noncorrected QSM 
results (Table 3). Results showed low percentage changes for 
DBH, tree height, trunk volume, and branch volume (0%–
3%). Larger differences were found for total volume, trunk 
length, branch length, number of branches, max branch order, 
and total area (8%–80%). Percentage changes were similar 
between the tropical trees and Scots pine for the parameters 
with small changes. However, the Scots pine trees showed 
larger differences in total volume, trunk length, branch length, 
and total area.

A tropical tree, a Mora gonggrijpii (ID: 80_14), was selected 
for visualization and statistical intercomparison between pre 
and postmanual cleaning (Fig. 4). The figure of the manually 
corrected tree shows less noise compared to the noncorrected 
one, resulting in better distinguishable branches. Looking at 
the quantitative results it becomes evident that the manu-
ally corrected tree resulted in fewer branches and a lower 
standard deviation and mean. Additionally, an independent 
t-test was done and it was found that the means are 

Figure 2. Flowchart with the results from the systematic literature search. Figure derived from the PRISMA method (Moher et al., 2009).
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8 Bekkers et al.

Table 2. Overview of FSP model parameters found through the literature review and possibilities of LiDAR to derive these. Parameters are grouped by 
level of detail and literature was searched for each parameter. Deriving the parameter with LiDAR was deemed possible if literature was found that had 
researched this. Used LiDAR scanner and accuracies are summarized for each paper. Finally, the documentation of the QSM (Raumonen et al., 2013) 
was examined to identify parameters that are derivable through the cylinder outputs. 

Level of detail FSP model parameters Needs LiDAR scanner QSM

Possible  Paper LiDAR 
method

Accuracy Possible

Neighbourhood Relative positions to closest 
neighbours

✔ Ritter et al. (2017) TLS 97.2% correct –

Number of competitors ✔ Ritter et al. (2017) TLS – –

Crown radius of sur-
rounding neighbours

✔ (see crown diameter) – – –

Individual Tree Species ✔ Åkerblom et al. (2017) TLS  93% correct –

Age ✔ Rizeei et al. (2018)  ALS  84.91% correct –

Height ✔ Calders et al. (2015a)  TLS (R2 = 0.94, RMSE = 1.28 m) ✔
DBH ✔ Calders et al. (2015a) TLS (R2 = 0.97, RMSE = 2.39 cm) ✔
Crown diameter ✔ Fernández-Sarría et al. 

(2019)
TLS (R2 = 0.92, RMSE = 0.29 m) ✔

Total woody biomass ✔ Calders et al. (2015a)  TLS RMSE%=9.7% ✔
Total foliage biomass ✔ Stovall et al. (2017) TLS (R2 = 0.63, RMSE = 5.2 kg) –

Crown base height ✔ Popescu and Zhao 
(2008)

 ALS (R2 = 0.80, RMSE = 2.03 m) ✔

Number of branches ✔ C. Zhang et al. (2020) TLS (RMSE%: 1st order = 12%, 
2nd = 9.67%, 3rd = 23.81%, 
4th = 164.17%)

✔

Whorls Number of whorls ✔ Pyörälä et al. (2018) TLS 69.9% detected –

Number of branches per 
whorl

✔ Klemmt et al. (2010) TLS – –

Stem diameter above and 
below the whorl

–  – – – –

Height of whorl ✔ Klemmt et al. (2010) TLS (R2: 1st whorl = 0.92, 2nd 
whorl = 0.88, 3rd whorl = 0.67)

–

Branches Branch location – – – – ✔
Branch order ✔ Lau et al. (2018) TLS  99% correct ✔
Branch age – – – – –

Branch diameter ✔ Lau et al. (2018) TLS (10–20 cm = 40% overest., 20–60 
cm = 8% underest., 60 cm > 6% 
underest.)

*

Branch base diameter ✔ Bucksch and Fleck 
(2011)

TLS  R2 = 0.98 ✔

Branch diameter below and 
above branching point

– – – – *

Branch angle ✔ Pyörälä et al. (2018)  TLS RMSE = 7.76° ✔
Branch bending angle – – – – *

Branch azimuth – – – – ✔
Branch length ✔ Lau et al. (2018) TLS (50 cm <=20% underest., 50 

cm>=1% overerest.)
✔

Chord length ✔ Y. Zhang and Jia (2021) TLS 90.6% *

Horizontal extent  –  –  –  – *

Height of insertion points ✔ Delagrange and Rochon 
(2011)

 TLS (Mean dev.=1.8 %, mean abs. 
error = 3 cm)

*

Total shoots number ✔ Pallas et al. (2020)  TLS (R2 = 0.81, nRMSE = 1.63) –

Total shoots length ✔ Pallas et al. (2020)  TLS (R2 = 0.97, nRMSE = 0.2 m) –

Branch mortality – – – – –

Ramification number – – – – *

Internode Internode location along the 
stem

– – – – *

Internode length ✔ Saeed and Li (2021) TLS (RMSE = 1.04 cm, R2 = 0.194) *
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9Improving FSP models using terrestrial LiDAR data

statistically different (t(1272) = −6.81, P < 0.05) which indi-
cates that cleaning the trees does not only result in visual dif-
ferences but also has a significant impact on the quantitative 
outputs.

Parameters estimation
It was found that there is potential to use LiDAR-derived 
parameters for branch angle and internode length for the 
tropical tree model and branch angle for the Scots pine model. 
These parameters were extracted from the QSM outputs and 

were calculated separately for tree species and branch order 
(Fig. 5). The branch angle of the Scots pine had evenly dis-
tributed whiskers and a centred mean in the box plot. The 
tropical tree species are not always centred in the middle for 
the branch angles and internode lengths. The whiskers of the 
tropical trees are also longer on one size for the branching 
order and internode lengths of both branch orders, except 
for the first-order internode length Kabukalli. This can hint 
at skewed distributions for some tropical tree parameters. 
Additionally, the box plots show that there are outliers across 

Level of detail FSP model parameters Needs LiDAR scanner QSM

Possible  Paper LiDAR 
method

Accuracy Possible

Internode diameter – – – – *

Total number of internodes – – – – *

Number of Phytomers – – – – –

Internode fresh/dry biomass – – – – *

Needles fresh/dry biomass 
per pythomer

– – – – –

Foliage Specific leaf area – – – – –

Number of leaves per shoot – – – – –

Needle length – – – – –

Needle diameter – – – – –

Geometry of foliage clumps ✔ Ma et al. (2017)  TLS – –

Leaf stalk – – – – –

Leaf height – – – – –

Leaf width – – – – –

Leaf orientation ✔ Stovall et al. (2021). TLS (RMSE: 12.7°–18.2°) –

Surface area leave ✔ Yun et al. (2016)  TLS – –

TLS = Terrestrial LiDAR Scanner. ALS = Airborne LiDAR Scanner. * = indicates that it has the potentiality to be derived from the QSM cylinder information

Table 2. Continued

Figure 3. Preprocessing steps were performed to acquire LiDAR-derived tree parameters. (A) An individual segmented tree PCD was used as input. (B) 
The tree PCD was classified using the LeWoS algorithm (D. Wang et al., 2020) into woody components (brown) and soft components (green). (C) The 
soft components were discarded. (D) The PCD was manually corrected, removing wrongly classified soft components and noise in the PCD. (E) A QSM 
(Raumonen et al., 2013) was fitted for the manually corrected PCD.
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10 Bekkers et al.

Table 3. Selection of QSM outputs (Raumonen et al., 2013) of the tropical tree and Scots pine PCD. Differences of outputs are calculated between 
inputs of direct outputs of the classification algorithm LeWoS (D. Wang et al., 2020) and the PCD with additional manual corrections.

DBH 
(cm)

Tree  
height (m)

Total 
volume (L)

Trunk 
volume (L)

Branch 
volume (L)

Trunk 
length (m)

Branch 
length (m)

Number of 
branches

Max branch 
order

Total 
area (m2)

Tropical 
trees n = 5

Direct 83.2 32.0 10,547.8 8400.2 2147.9 31.6 476.5 667.0  7.6 144.3

Manually 
corrected

82.9 31.7 10,135.9 8481.2 1655.0 32.0 170.2 105.8 5.4 97.3

Difference 0% −1% −8% 1% −28% 1% −64% −84% −29% −34%

Scots pine 
n = 10

Direct 28.2 14.3 924.0 537.6 386.4 13.7 176.9 389.0 5.9 37.3

Manually 
corrected

28.3 14.4 651.8 548.6 103.2 14.2 41.8 77.9 3.5 16.3

Difference 0% 0% −29% 2% −73% 3% −76% −80% −41% −56%

Figure 4. QSM outputs a comparison of one tropical tree (treeID: 80_14) between the direct output of the classification algorithm and PCD with 
additional manual corrections. (A) Visual comparison of the woody component PCD used as QSM input. (B) Visual comparison of the QSM outputs. (C) 
Histogram with the difference of the branch order count QSM output D.) Histogram and normal distribution function of branch angle QSM output.
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11Improving FSP models using terrestrial LiDAR data

all species, and more outliers are observed for the second-
order parameters compared to the first-order.

Accuracy analysis
The accuracy of the QSM outputs and estimated parameters 
were assessed using field observations and measurements 
from the manually corrected PCD, which we considered as 
ground truth. After the first inspection, it was found that for 
height the accuracy has an RMSE of 4.91 m and a relative 
RMSE of 26.40%. It was decided to see if the results im-
proved if the whole PCD was used when the maximum and 
minimum points were used. The RMSE improved to 2.45 m 
and a relative RMSE of 13.19%. This was also tested for the 
tropical trees, however, the accuracy did not improve so the 
QSM calculated height was used.

The tropical trees had higher RMSE for the 1st order 
branch angle (33.14%) and DBH (17.24%) parameters com-
pared to the Scots pine trees, and lower RMSE (2.97%) for 
the height (Table 4). Overall, the DBH for Scots pine trees 
had higher accuracy scores and the lowest accuracy was re-
ported for the branch angle of the tropical trees. RMSE(%) 
of parameters for the second-order branches compared to the 
first-order branches were higher for the internode length of 
the tropical trees and branch angle of the Scots pine. The 
opposite was true for the branch angle of the first-order 
tropical tree branch angles. The QSM of the trees was in-
spected and examples of causes of errors were found, such as 
missing branches, misfit cylinders, and low-quality TLS scans 
(Supplementary Fig. S4).

The field observations and TLS-derived parameters were 
plotted against each other for visualization and shown in Fig. 

6. The plots in Fig. 6a show the results of the tropical trees. 
The height values are spread out and show discrepancies. The 
DBH is plotted around the 1:1 line. The branch angle plots 
for both branch orders show a large spread around the 1:1 
and across small and large degrees. The internode line shows 
most values well fitted around the 1:1 line, with some large 
underestimation errors. The internode length for second-
order branches shows more spread and larger errors. The 
same spread is found back for the height plot as the trop-
ical trees (Fig. 6b). Underestimations of TLS-derived height 
are observed for higher height values. The DBH values are 

Figure 5. Distributions of the LiDAR-derived FSP model inputs. Species abbreviations and number of trees: G = Greenheart (10), K = Kabukalli (5), 
M = Mora (4), MB = Morabukea (9), WS = Wallaba soft (5), W = Wamara (4), SP = Scots pine (10).

Table 4. Accuracy metrics of the QSM outputs for both the tropical trees 
and Scots pines. LiDAR-derived height and DBH are compared to field 
observations. The branch angle and internode length are compared to 
measurements in the PCD.

Tropical trees Scots pine

RMSE RMSE% R2 RMSE RMSE% R2

Height (m) 3.40 10.22 0.58 2.45 13.19 0.59

DBH (cm) 12.96 21.29 0.81 1.17 4.05 0.93

Branch angle 
1st order (°)

22.19 46.11 0.36 9.28 12.97 0.88

Branch angle 
2nd order (°)

18.1 34.32 0.41 11.59 19.11 0.8

Internode length 
1st order (cm)

118.62 38.98 0.81 – – –

Internode length 
2nd order (cm)

79.74 45.60 0.64 – – –
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12 Bekkers et al.

Figure 6. Accuracy of LiDAR-derived parameters for tropical trees and Scots pine trees. Field observations of height and diameter at breast height 
(DBH) plotted against TLS-derived estimations. Additionally, measurements from branch angle and internode length which were measured directly from 
the PCD are plotted against the TLS-derived estimations. The dotted line is the 1:1 line and the red line represents the regression line. Reported R2, 
RMSE, and RMSE(%) of each LiDAR-derived parameter can be found in Table 4.
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13Improving FSP models using terrestrial LiDAR data

plotted around the 1:1 line and the branch angle shows a 
close fit for both branch orders.

FSP models with TLS-derived parameters
TLS-derived branch angle and internode length were used as 
inputs for the selected FSP models. The median, 25th–75th 
percentile and normal distribution function were given in 
separate pass files and the outputs were saved for each time 
step. The original input specified values of 0.3–0.7 cm, while 
ranges from the TLS-derived parameters varied between 36 

and 231 cm. Putting the TLS-derived values in the model re-
sulted in no growth of the trees. For the next runs, it was 
thus decided to only use the TLS-derived branch angle for the 
tropical tree model. The final input values for each tree spe-
cies are specified in Table 5.

Tropical tree model  The tropical tree model was run 
for each species with the TLS-derived parameters. However, 
minor differences and the same trends were observed for the 
different variable outputs (Supplementary Fig. S5). Because 

Table 5. The LiDAR-derived branch angle inputs were used for the tropical tree and Scots pine FSP Models. Tropical tree LiDAR-derived branch angle of 
the first-order is relative to the horizontal plane. Scots pine and second-order tropical tree branch angle are calculated by taking the angle between trunk 
and first-order branches (first-order branch angle) and first and second branches (second-order branch angle).

Species Branch angle 1st order (degrees) Branch angle 2nd order (degrees)

Median 25th–75th percentile range Normal distribution Median 25th–75th percentile range Normal distribution

Greenheart 42 60–10 µ = 32,
σ = 38

60 39–81 µ = 64,
σ = 35

Kabukalli 43 58–28 µ = 39,
σ = 25

55 37–74 µ = 57,
σ = 31

Mora 39 62–20 µ = 38,
σ = 30

51 33–65 µ = 53,
σ = 29

Morabukea 45 65–18 µ = 39,
σ = 31

55 39–75 µ = 61,
σ = 33

Wallaba soft 47 58–16 µ = 34,
σ = 35

48 32–72 µ = 56,
σ = 34

Wamara 41 58–14 µ = 38,
σ = 30

57 38–77 µ = 65,
σ = 39

Scots Pine 81 62–99 µ = 82,
σ = 29

69 52–90 µ = 72,
σ = 31

Figure 7. Tropical tree FSP model variable output for different LiDAR-derived parameter inputs. The median of the LiDAR-derived branch angle was used, 
as well as the 25th percentile (min), 75th percentile (max), and a normal distribution function. The average was taken of the variable outputs for the 
species-specific LiDAR-derived parameters. The default input settings were used to compare the outputs of the LiDAR-derived parameters.
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of the similarities, it was chosen to discuss the averaged 
outputs.

The variations in TLS-derived input parameters resulted 
in varying variable outputs compared to the original values 
(Fig. 7). The diameter variable output had slightly more con-
servative values for the TLS-derived branch angles compared 
to the default input values (−1% and −9%). Lower variable 
outputs were also observed for woody biomass (−1% and 
−17%) and crown area (−9% and −27%). Some TLS-derived 
input parameters also resulted in higher values compared to 
default models. For example, the TLS-derived minimum and 
normal distribution resulted in higher leaf biomass, with 25% 
and 12% respectively. The height started with differences in 
model inputs, but after around 100 years the height limit was 
reached and the variable outputs ended up the same. Overall, 
the minimum and normal distribution output variables dif-
fered the most compared to the default model outputs.

An additional three runs were performed with the Greenheart 
normal distribution parameters. The different runs resulted in 
the same trends for all variables, but the difference between 
output variables was not the same (Supplementary Fig. S6). 
Diameter and height did not show large variations among the 
runs with the final diameter values having a standard devi-
ation of 1.5 cm. The other parameters had larger variations 
of the final output parameter. The woody biomass showed a 
standard deviation of 457 mg and the leaf biomass 6093 g. 
The crown depth and area showed larger standard variations 
of 3.21 m and 38.34 m2, respectively.

The visual outputs of the tropical tree FSP model showed a 
similar growing pattern but differences in appearance (Fig. 8). 
The tree first grows up, with branches growing evenly along 
the stem. Once the maximum height is reached the branches 
closest to the ground will start to die until a distinguishable 
crown is formed. The TLS-derived parameter models show 
distinct branching patterns, except for the maximum branch 
angle. The tree with the median branch angle model inputs 
has branches that are more upward compared to the original 
values. The top of the crown is denser at 100, 150, and 200 
years. The minimum branch angle tree time-series shows an 
even more upright branch angle compared to the median and 
the tree is slimmer as a result. Finally, the normal distribution 
tree output shows more random branches, and more distin-
guishable branches growing out of the tree. The tree is more 
asymmetric as a result.

Scots pine model  The TLS-derived inputs resulted in the 
same oscillating trend in all output variables, but differences 
in the output variable were found (Fig. 9). In contrast with the 
Tropical tree model, it was found that the output variables of 
the Scots pine model with TLS-derived inputs were observed 
to be higher compared to the default values. Only for TLS-
derived height was the default model variables found to be 
higher (−4% and −8%). The largest difference was found for 
root biomass where the TLS-derived normal distribution re-
sulted in twice as much biomass compared to the default. The 
minimum and median TLS-derived parameters resulted in the 
largest differences overall.

Looking at the visual outputs of the FSP models there are 
also differences between the default and TLS-derived in-
puts models (Fig. 10). The default trees resulted in a sparser 
number of branches compared to the other models. The me-
dian and maximum TLS-derived input models do not show 

the gentle bending curve, which is present in the original, 
min (Guo et al. 2012), and normal distribution models. The 
branches grow first horizontally before growing at a straight 
angle, resulting in a visually less realistic tree.

Discussion
Structural measurements of tree architecture are laborious to 
acquire with manual methods. Tree FSP models have high data 
needs and restraints in data acquisition limit model develop-
ment. This research explored the potential of LiDAR data to 
serve as a reliable data source for acquiring nondestructive 
tree architecture measurements. Using LiDAR for FSP model 
development can provide parameters that are hard to obtain 
or previously not thought possible. To the best of the author’s 
knowledge, an overview of structural parameters used for FSP 
modellers has not been compiled before. The results of this re-
search have the potential to serve as a guide for LiDAR data 
possibilities for FSP modellers and as a starting point for new 
areas of research for LiDAR. Additionally, no research has 
focused on using LiDAR-derived parameters for FSP model 
inputs and assessed the influence on the variable outcomes. 
Findings from this exploratory research highlight important 
considerations for the future, to ensure the successful integra-
tion of LiDAR data with FSP models.

FSP model parameter needs and LiDAR 
possibilities
Results from the literature review demonstrated the wide 
range of structural measurements used for FSP model devel-
opment and the considerable extent of possibilities of LiDAR 
data to derive these. The large variety and varying scale of de-
tail of the parameters highlight again the high data needs for 
FSP model development (Louarn and Song 2020). LiDAR was 
found to be a possible reliable alternative for the parameters 
on the tree scale. LiDAR-derived DBH, height, and woody bio-
mass are already considered to be feasible to replace manual 
measurements for forest inventories (Aijazi et al. 2017; Jin et 
al. 2021). Bongers (2020) mentioned LiDAR data to be useful 
for detailed branch structures, which was also supported 
by the results of this study. However, it also became evident 
that at a certain level of detail, LiDAR becomes less reliable. 
Higher uncertainty is reported for parameters regarding 
smaller branches (Lau et al. 2018). In addition, parameters for 
internode and foliage geometry were not researched in large 
quantities. The reason could be because it was not deemed 
feasible, or these parameters are less relevant for current pur-
poses (e.g. estimating biomass or wood quality). This high-
lights that there is still unexplored potential. Further research 
could decrease uncertainty for smaller tree structures and 
might bring forward new parameters that are feasible to be 
derived from LiDAR data by improving the trade-off among 
field data requirements, different LiDAR sensors (MLS, TLS, 
UAV), and LiDAR data collection strategy. For example, scan-
ning fine structures might be resolved by using a denser scan-
ning strategy, but requires more fieldwork time, processing 
power, and even a high-density LiDAR scanner.

An essential question regarding the accuracy is what error 
rate is acceptable for FSP model development, this is also 
highlighted by Calder et al. (2020). The review did not have 
an accuracy standard which the results of the papers had to 
meet for it to be included. This resulted in parameters being 
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15Improving FSP models using terrestrial LiDAR data

marked as possible but the large rates of errors might be un-
satisfactory. For example, the whorl detection was 70% ac-
curate, which for some fields of research is considered a high 
error rate. There is yet no clear standard to which the ac-
curacy needs to be upheld and will need further research to 

define acceptable error rates. Furthermore, a tick mark does 
not mean that the accuracies are repeatable for different tree 
species and scanning circumstances. For example, the inter-
node length of cotton plants was researched by Saeed and 
Li (2021). When the same method is applied to larger trees 

Figure 8. Visual differences over time of the outputs of the tropical tree FSP model with different LiDAR-derived parameter inputs. Ten TLS scans of 
Greenheart trees (Chlorocardium rodiei) were used for the LiDAR-derived inputs. The median of the LiDAR-derived branch angle was used, as well as 
the 25th percentile (min), 75th percentile (max), and a normal distribution function.
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16 Bekkers et al.

the occlusion or distance from the scanner could lower the 
accuracies. Additionally, Pallas et al. (2020) scanned 2 and 
3-year-old apple trees in an orchard to estimate shoot lengths. 
In a dense forest, such detail might not be possible to capture.

The average number of structural measurements used for 
the development of FSP models was found to be 11 param-
eters. When analysing the LiDAR literature it was found that 
most methods specialize in retrieving only one or a handful 
of parameters. When a larger number of parameters are to be 
derived, different methods and programs are required (Georgi 
et al. 2018), which can be time-consuming and require ex-
pert knowledge. For the review, the QSM by Raumonen et al. 
(2013) was included to also highlight the possibility of one 
general method to acquire multiple parameters at once. One 
downside of the QSM is that foliage is not included and thus 
no information can be retrieved from this. Other tree model-
ling methods could also be examined to explore if they could 
retrieve more parameters.

An advantage of LiDAR is that measurements can be done 
nondestructively. However, from the review, it came forward 
that tree age is important information that is needed to ac-
company the other parameter measurements. Knowledge will 
need to be available of the stand age or an estimate could 
be made based on the tree characteristics. Forest stand age 
estimation was performed by Rizeei et al. (2018), but this 
was for one species and needed calibration. Also, tree species 
are crucial information that needs to accompany the LiDAR 
measurements. Åkerblom et al. (2017) made good estimates 
of multiple tree species and also recent advancements using 
deep learning show promising results (Allen et al. 2023), yet 
species recognition models will need additional training data 
when other species are to be included.

The scope of this review was on FSP models about nonfruit-
bearing trees. Nevertheless, fruit-bearing FSP models have a 
large share in the amount of tree FSP models (O’Sullivan et al. 
2021). This was confirmed in our systematic literature search, 
where the nonfruit-bearing criteria excluded more than one-
third of the screened papers. This means that there could be 
parameters missing from the overview which are essential for 
a large share of tree FSP models. The aim of fruit-bearing tree 
models is often different from nonfruit-bearing trees, which 
results in different structural parameter needs. FSP models for 
fruit-bearing trees are made to make management decisions 
for improved crop growth, which is a process not included 
in the review. For instance, the model developed by Boudon 
et al. (2020) describes the geometry of the fruits and uses the 
number of fruits produced for validation. For these specific 
types of models, an additional review might be necessary. For 
the scope, it was also decided to only include papers that had 
information regarding descriptions of structural measure-
ments done for the study. As a result, a substantial amount 
of papers were excluded as they used databases of previously 
done measurements. By doing so, parameters that tend to 
not be measured often are not included. Even though they 
might be the parameters which are the ones being most dif-
ficult to acquire and thus benefit most to have an alternative 
measuring method. For new studies, updating the literature 
review to include new papers would help to fill this gap.

In conclusion, the literature review demonstrated good 
potential for LiDAR data to support FSP model develop-
ment. However, it is important to consider the limitations 
of accuracy for smaller-scale parameters. The main focus of 
LiDAR-derived parameters has been on forest inventories, so 
information regarding foliage and branch structures is less 

Figure 9. Scots pine FSP model variable output for different LiDAR-derived parameter inputs. The median of the LiDAR-derived branch angle was used, 
as well as the 25th percentile (min), 75th percentile (max), and a normal distribution function. The default input settings were used to compare the 
outputs of the LiDAR-derived parameters.
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17Improving FSP models using terrestrial LiDAR data

researched. Additionally, a standard for the accuracy require-
ments for structural parameters should be defined to determine 
if the error rates of LiDAR-derived measurements are accept-
able. LiDAR research for extracting parameters is also still rela-
tively young and will likely make big leaps in the coming years. 

New advancements are being made with LiDAR scanners 
using multispectral scans or combining LiDAR remote sensing 
data (Van Leeuwen and Nieuwenhuis 2010). Also, the use of 
machine learning or deep learning shows a large potential for 
retrieving more useful data (Saeed and Li 2021).

Figure 10. Visual differences over time of the outputs of the Scots pine FSP model with different LiDAR-derived parameter inputs. The median of the 
LiDAR-derived branch angle was used, as well as the 25th percentile (min), 75th percentile (max), and a normal distribution function. An additional 
closeup of the last growth year was added to highlight the structural differences.

D
ow

nloaded from
 https://academ

ic.oup.com
/aobpla/article/17/2/plae071/7931820 by W

ageningen U
R

 Library user on 12 M
arch 2025



18 Bekkers et al.

Accuracy of TLS-derived parameters
Model quality was assessed by estimating height and DBH. 
The accuracy of the derived parameters varied between the 
tropical tree and the Scots pine data sets. Tree height RMSE 
for tropical trees (3.4 m) and Scots pine (2.45 m) were both 
worse compared to Y. Wang et al. (2019) (1.68–2.11 m) and 
Liu et al. (2018) (0.54–1.23 m). Height errors were distrib-
uted along all size classes for the tropical trees, whereas errors 
in the Scots pine parameters were caused by underestimation 
for larger trees. This problem was also found by Y. Wang et 
al. (2019) to be a large source of error. The errors are likely 
caused by the laser not being able to reach the top of the 
crown because of occlusion. However, lower accuracies can 
also be caused by errors in the field measurements (Luoma et 
al. 2017). Vaccari et al. (2013) mentioned the tool used for 
field observations for acquiring the Scots pine height intro-
duced bias, which could be a source of error. DBH for tropical 
trees (RMSE: 12.96 cm) showed substantially higher errors 
compared to the Scots pine (RMSE: 1.17 cm). High errors 
for DBH of tropical trees were also reported by Lau et al. 
(2019a) who found that buttresses were a source of error. The 
derived DBH from the Scots pine LiDAR data was more ac-
curate compared to Brede et al. (2017) (RMSE: 4.24 cm) and 
Pyörälä et al. (2018) (RMSE: 1.31 cm).

The accuracy of the branch angle estimation for Scots pine 
(RMSE(%): 12.97%–19.11%) was higher compared to trop-
ical tree branch angles (RMSE(%): 46.11%–34.32%). Scots 
Pine branch angle accuracy was also higher compared to the 
methods of Côté et al. (2011) (RMSE(%): 25%) and Pyörälä 
et al. (2018) (RMSE(%): 23.4%). However, for their struc-
tural measurements, they took all branches attached to the 
stem, instead of the first branch of each tree. Branches closer 
to the ground have fewer problems of occlusion and are gener-
ally larger which makes them more accurate in the QSM PCD 
(Malhi et al. 2018). This could explain the higher accuracy 
reported for this study, as more errors are reported when 
also measuring branches higher in the crown. In the future, 
it is thus relevant to assess the accuracy by taking multiple 
branches from a tree at different heights. The high errors for 
the tropical trees’ branch angle were likely caused by taking 
only the first cylinder of a branch and one cylinder from the 
trunk. Individual cylinders often fit in slightly different dir-
ections to account for curvatures in the branch which makes 
the branch angle sensitive if only one cylinder is considered. 
A solution could be to take the average of multiple cylinders 
(Malhi et al. 2018).

Mistakes in the QSM led to large errors for internode 
length (RMSE: 118.62 cm). Saeed and Li (2021) reported an 
RMSE of 1.04 cm which is substantially better than the found 
RMSE of this research. Even though the plants studied were 
largely different (max. tree height of 1.5 m against 44.2 m) 
the errors of this research are still substantial. For internode 
length, all large errors were caused by extra, or missing cylin-
ders of the branches. This indicates that the QSM approach 
might not be the best method for estimating internode length, 
and a deep learning approach (Saeed and Li 2021) could give 
better estimates. Internode allometric models are found to not 
be constant for the whole tree, so further research in this area 
is important to help create more accurate estimates for FSP 
models (Diao et al. 2014).

The effect of manually correcting the PCD before the QSM 
shows minimal changes for tree parameters that are often used 

for forest inventories. Yet, for higher detailed branch structure 
parameters it was found to have a significant effect on QSM 
outputs. If LiDAR will be used in the future it is thus good to 
consider that preprocessing steps have large effects on the out-
puts. Visually it was found to reduce noise and make branches 
more distinguished, but additional research is needed to assess 
if accuracy also improves. Since manually correcting the data 
is a laborious process (45 minutes per tree) it is also essen-
tial to assess the payoff between scalability and data quality. 
During manually correcting there is also a loss of detail as 
smaller branches are often surrounded by foliage. This ties 
in again with the point made in Section FSP model param-
eter needs and LiDAR possibilities, where more research is 
needed to determine the sensitivity of errors of the LiDAR-
derived parameters for FSP model performance. Additionally, 
segmentation of the trees from a PCD has a large effect on 
QSM results. For this study, we used presegmented trees which 
were also manually corrected. Fully automatic segmentation 
algorithms exist with promising results (Krisanski et al. 2021; 
Wilkes et al. 2023), but errors still occur. Thus the trade-off of 
fully automizing and manually correcting at different steps of 
the preprocessing also needs to be further explored.

The quality of the QSM is also highly dependent on the 
PCD density and scanning conditions (occlusion). The data 
used for this research came from a densely populated tropical 
forest and was scanned in conditions that did not result in op-
timal PCD density (Lau et al. 2018). Additionally, the scanned 
trees in this study had foliage which led to the occlusion of 
the smaller branches. Deciduous trees in winter or dead trees 
which has shed their leaves could be scanned in the future to 
mitigate this. More research is needed for designing a pipeline 
that gets the most accurate results but is also fast and does 
not require laborious manual measurements. Fully automatic 
pipelines are still found to be unreliable and intermediate 
checks are crucial to avoid large errors (Martin-Ducup et 
al. 2021). For this research, only first and second-order 
branches were considered, but higher-order branches could 
also be relevant for FSP models. QSM does not perform well 
in identifying and counting third and fourth-order branches 
(Zhang et al. 2020), so further research would be needed to 
assess the accuracy.

The advantage of using a QSM is that it is scalable since it 
performs well with larger samples of trees (Raumonen et al. 
2015). However, the accuracy of the QSM is dependent on 
the quality of the LiDAR input data and the accuracies found 
for this research did not always compare to skeletonization 
methods. For future research, accuracy could be improved by 
exploring other 3D tree reconstruction methods that could 
overcome certain limitations of LiDAR data. Different recon-
struction methods are found to perform better under different 
scan circumstances or parameters to be estimated (Bournez et 
al. 2017). For example, the skeletonization method by Côté 
et al. (2011) could be a good alternative modelling approach, 
as the effect of occlusion is accounted for and information 
regarding the geometry of foliage is included. These different 
reconstruction methods could be assessed to find better op-
timal performing methods (Boudon et al. 2014). Additionally, 
measurements of branch angle and internode length were 
only done for one branch per tree. A more complete study 
would be needed to make conclusions about the accuracy of 
internode length and branch angle for the whole tree, and 
what method would result in the highest accuracy.
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LiDAR-derived inputs in FSP models
The branch angle was successfully used as input in both FSP 
models, but internode length resulted in problematic out-
comes. This result is in contrast with the literature (Section 
Literature review), where internode length was reported to 
be derivable from LiDAR data and could potentially replace 
manual measurements. The internode length was consider-
ably larger than the default value used in the model, which 
could be the reason why the model did not work. The differ-
ence between the default and the LiDAR-derived value could 
be explained by the fact that the internode lengths during the 
first years of the tree growth are different from the mature 
trees measured for this study. Thus it might not be possible 
to use LiDAR-derived internode length as model inputs, even 
though this was found to be feasible in the literature review. 
The definition of internode distance could also be different 
depending on the models. The model of Petter et al. (2021) 
defined nodes as points on the stem where branches grow 
from. However, nodes can also be defined differently across 
research fields. Botanical nodes are defined as the point of the 
stem where buds or leaves originate from. Further research 
will need to explore if such detailed tree organs can also be 
detected from a LiDAR scan.

LiDAR-derived branch angle inputs were different from the 
default inputs and the tropical tree model runs with LiDAR-
derived branch angle resulted in lower variable outputs com-
pared to the default values. This contrasts the Scots pine 
model, for which the LiDAR-derived branch angle resulted 
in higher variable outputs. Perez et al. (2018) found that TLS 
could provide good validation data, but also highlights that 
discrepancies in the TLS validation data make it difficult to 
distinguish errors in the model and the validation data. This 
highlights the need for caution when using TLS data since 
errors in the data can have a substantial effect on model out-
puts. However, TLS data is much more scalable than manual 
measurements, allowing for larger sample sizes. More re-
search is needed to conclude if the results of output variables 
are close to observations in reality.

Differences were found in variable output between TLS-
derived inputs and default values, indicating model sen-
sitivity to changes in branch angle. Streit et al. (2016) also 
looked at the sensitivity of the LIGNUM Scots pine model 
with differing branch angles. It was found that first-order 
branch angles had limited effect related to light interception, 
and higher-order branch angles had minimal effect. The range 
of branch angles for the sensitivity analysis was 4.5°C. This 
choice was not based on data but on an assumption that 10% 
ranges from the set branch angle were reasonable. Results 
from the QSM suggest that there might be larger ranges, and 
including normal distribution might lead to larger changes 
than observed before. In this research, both branch orders 
were changed during the model running so it could be rele-
vant to look at the sensitivity of them separately in the future.

Visually the normal distribution of TLS-derived model 
inputs reflects the nonasymmetric branch architecture well. 
Probability distribution functions are more often used for 
branch angles to reflect the stochasticity during the growth 
of the tree (Lu et al. 2011; Parsons et al. 2011; Potapov et al. 
2017). Using LiDAR can provide large quantities of measured 
attributes, from which distribution can be made to make more 
realistic models. This finding could be interesting to consider 
for the inclusion of LiDAR-derived parameter distributions 

for general tree models, which can be reparametrized more 
easily for different species (Henke et al. 2016).

The visual output of the branching structure changed for 
different TLS-derived inputs in the Scots pine model. The me-
dian and maximum values created sharp angles at the stem 
and straight branches. An explanation could be that occlu-
sion and distance from the LiDAR scanner resulted in fewer 
branch angles measured at the top of the crown and the end of 
branches. The LIGNUM model requires the branch angle for 
new shoots, which are thus the places where fewer measure-
ments were possible. After each time step, there is a bending 
effect that brings the branches down to a maximum of 90°C. 
The branch angles measured from the Scots pines were al-
ready branches that had bent which could be the reason that 
the bending effect was not used with larger values of TLS-
derived branch angles. Acquiring a branching angle for new 
shoots in the tree crown with foliage might not be suitable 
with LiDAR because of occlusion and higher uncertainty for 
smaller branches. In the future, it could be interesting to use 
UAV-based laser scanning data, which can measure the top of 
the crown directly and reduce the influence of occlusion. An 
alternative approach is to find trees that have lost the needles 
or leaves to acquire better detail in the crown (Aijazi et al. 
2017).

Results from this research confirm the statement made by 
Beyer et al. (2017), who claimed that LiDAR can be of great 
value for FSP model development. However, LiDAR-derived 
model inputs differed from the default values, resulting in dif-
ferent output variables. Additionally, not all input values are 
feasible with LiDAR, as it was found that internode length 
derived from LiDAR could not be used as FSP model input. 
More research is needed in the future to understand the effect 
of using alternative derived inputs for FSP models. Results 
also showed that using LiDAR can result in a scalable and 
efficient method for deriving a large range of parameters for  
a large tree sample or individual tree. This can be useful for 
a general tree model that requires species-specific inputs  
for a large range of species or to personalize specie specific 
FSP models with data under different environmental condi-
tions. FSP models are also becoming more accessible, with 
new tools like Jupyter notebooks (Vaillant et al. 2022), which 
will also likely increase the demand for tree architectural data. 
For this research focus was put on FSP model inputs that 
could be derived from a single time measurement, e.g. param-
eters that do not change over time. Nonetheless, models also 
need inputs that are related to the dynamic growth rules of 
the tree. Because of the nondestructive measurements taken 
by LiDAR, it could also be possible to track change through 
a time-series (Liang et al. 2012). Although, LiDAR time-series 
for multiple years exists (Campos et al. 2021; Calders et al. 
2023), logistical challenges arise and might not be feasible in 
most time frames. Sievänen et al. (2018) overcame this by cre-
ating a pseudo-time-series by scanning trees of different ages.

Conclusion
Tree FSP models have high data needs because of the inclu-
sion of both the 3D architecture and functional processes. As 
a result, acquiring structural measurements of trees with con-
ventional methods is a laborious process. LiDAR has been 
mentioned to be a possible reliable measurement tool that can 
be used for FSP model development. There has been some 
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research where LiDAR for validation and parametrization, 
but these were for specific cases. The aim of this research was 
to create an overview of the possibilities of LiDAR data to 
complement tree FSP model development and to investigate 
if TLS-derived tree traits could be used for tree FSP model 
inputs.

It was demonstrated through a literature review that 
LiDAR could be used as an alternative measurement tool for 
a large share of parameters used in FSP models. Important 
considerations were found that need to be addressed before 
LiDAR can be used as a reliable data source. There is still 
large uncertainty surrounding the accuracy of smaller-scale 
parameters, like internode and foliage details. Additionally, 
accuracy standards need to be defined for FSP model data 
sources, to make sure that data quality is satisfactory.

Two parameters, branch angle and internode length were 
found to have the potential as TLS-derived model inputs. 
However, the accuracy of the TLS-derived parameters was 
variable because of errors in the QSM fitting. TLS-derived 
branch angles were successfully used as input parameters in 
both FSP models. On the other hand, TLS-derived internode 
lengths were not found suitable which contradicted the re-
sults from the literature review. Using the TLS-derived in-
puts resulted in different output variables of the FSP models 
compared to the default models. Visually there were also 
differences, and variations of TLS-derived inputs resulted in 
different architectural outcomes. It was concluded that it is 
possible to use TLS-derived branch angle as FSP model input, 
but further research is necessary to understand the implica-
tions on model outcomes.

The results demonstrated that there is considerable poten-
tial for LiDAR data to complement FSP models but some con-
siderations still need to be further worked out before LiDAR 
can be used as a reliable alternative data source.

(1)	What accuracy standard do LiDAR-derived parameters 
need to attain to be acceptable for FSP model develop-
ment?

(2)	Which methods work best for deriving different types of 
parameters, and how can non-LiDAR experts use these?

(3)	What effect does erroneous data have on FSP model out-
comes?

Conclusions from this research have resulted in new in-
sights into considerations and limitations of using LiDAR 
for deriving structural parameters and can further advance 
finding new possibilities for interdisciplinary research be-
tween the research fields of LiDAR and FSP modelling. In 
the future, LiDAR could help improve efficiency in building 
new FSP models, increase the accuracy of existing models, 
add metrics for optimization, and open up new possibilities 
to explore previously unobtainable plant traits to include in 
the models.

Supplementary data
Supplementary data is available at AoB Plants online
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