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Abstract

Spatial branch-and-bound algorithms for global minimization of non-convex problems
require both lower and upper bounding procedures that finally converge to a globally
optimal value in order to ensure termination of these methods. Whereas convergence
of lower bounds is commonly guaranteed for standard approaches in the literature,
this does not always hold for upper bounds. For this reason, different so-called con-
vergent upper bounding procedures are proposed. These methods are not always used
in practice, possibly due to their additional complexity or possibly due to increasing
runtimes on average problems. For that reason, in this article we propose a refinement
of classical branch-and-bound methods that is simple to implement and comes with
marginal overhead. We prove that this small improvement already leads to convergent
upper bounds, and thus show that termination of spatial branch-and-bound methods
is ensured under mild assumptions.
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1 Introduction

In this article, we address the computation of upper bounds in spatial branch-and-bound
algorithms in global optimization, as well as the termination of these algorithms. In
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this context, we consider problems of the form

P(B): min f(x)

s.t. gi(x)<0, iel,
X €B

with a finite set /. The box B is defined by B = {x e R'b < x < E} with
b,b € R", b < b, where inequalities are understood component-wise. We assume the
functions f and g; to be continuous, but we do not require f and g; to be convex. For
that reason, the feasible set

M@B):={xeB|g(kx)<0,iecl)

does not need to be convex either. In total, problem P(B) is a non-convex problem.
Throughout this article the definition M (X) := X N M(B) will be convenient for
some box X C B.

For a problem of type P(B) and some predefined optimality tolerance ¢, > 0 a
typical aim in global optimization is to determine a so-called &, -optimal feasible point
x* € M(B), i.e. a feasible point x* with

FOH = f)+ey

for all x € M(B). Clearly, this immediately implies v* < f(x*) < v* + &, where
v* denotes the globally minimal value of P(B). Note that we impose hard constraints
here, which means that approximately feasible points satisfying the &,-optimality
criterion are not accepted.

The most common approach to globally solve problems of type P (B) in this sense
is to apply spatial branch-and-bound algorithms. In such methods, the problem is
iteratively branched into subproblems P (X) of the form

P(X): mlﬁl f(x) s.t. xe M(X)

with sub-boxes X C B. Then, for those subproblems lower bounds are constructed
and, furthermore, overall lower bounds at the globally minimal value v* of the original
problem P(B) are computed as a minimum of all these lower bounds. Wherever
possible, boxes that cannot contain globally optimal points are excluded from the
search space. In addition, upper bounds at globally minimal values are computed and
the algorithm terminates if lower and upper bounds are sufficiently close to each other.

Whereas convergence is typically ensured for lower bounds, this is not guaranteed
for commonly used upper bounding procedures. Upper bounds for v* can be con-
structed by explicitly evaluating the objective function at feasible points of P(B) or
by applying local solvers, which implicitly make use of such evaluation. However, as
the problem P (B) is non-convex, finding a feasible point is already NP-hard, which
makes it challenging to generate a sequence of feasible points that lead to improved
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upper bounds. Therefore, most research on upper bounding procedures focuses on
heuristics which perform sufficiently well for many practical applications, but are
not guaranteed to ensure convergence of upper bounds in spatial branch-and-bound
methods in general [10, 11].

A popular strategy is the aforementioned approach to solve the non-convex prob-
lem P(B), or some subproblem P (X), locally [7]. Although this often works well in
practice, in general this does not guarantee sufficiently good upper bounds for ter-
mination of branch-and-bound algorithms. Since exact feasibility is hard to ensure,
another common concept is to accept so-called ¢ y-feasible points, i.e. points x € B
with g;(x) < ef,i € I, for some tolerance ¢ > 0. However, this concept is not
sufficient to compute valid upper bounds for v* either. This even holds for ¢ ¢ close to
zero, as discussed in detail by Tuy [56] and Kirst et al. [30].

Hence, whereas for most lower bounding procedures in the literature certain con-
vergence results are available, unfortunately, this does not hold for classical upper
bounding procedures. Since spatial branch-and-bound algorithms rely on convergent
valid upper bounds in the termination criterion, however, such convergence guaran-
tees for the upper bounds are crucial to ensure termination after a finite number of
iterations.

Research in this direction has been limited so far. As discussed above, computing
upper bounds for v* and identifying feasible points are closely related. Therefore, the
work that does exist is mostly focused on feasibility verification. Once verification is
successful for some box X, valid upper bounds are obtained by computing an upper
bound for the objective function over X. In [13, 28, 29] several different feasibil-
ity verification methods are presented. They are based on computing approximately
feasible points, e.g., by using conventional nonlinear solvers, and then verifying the
existence of feasible points in specifically constructed boxes around such points using
interval Newton methods. While these methods are rigorous in the sense that they rule
out false positive feasibility verification, and thus do yield valid upper bounds for v*,
there exist no proven convergence guarantees. In our emphasis on the convergence of
the upper bounding procedure, our work clearly differs from these methods.

For the case of purely inequality-constrained and box-constrained problems, a con-
vergent upper bounding procedure is presented in [30] based on perturbing infeasible
iterates along Mangasarian-Fromovitz directions. It is not straightforward to extend
this approach to equality-constrained problems, though. In reverse, for the case of
purely equality-constrained and box-constrained problems, a convergent upper bound-
ing procedure is presented in [19] based on a generalization of Miranda’s Theorem
[37]. This method, however, does not allow for inequality constraints in problems
P(B) and requires the box constraints to be strictly satisfied. An extension to prob-
lems that also include inequality constraints is presented in [18] based on utilizing
approximations of active index sets of inequalities.

Another common drawback of the existing upper bounding procedures with proven
convergence in the literature is that they are rather technical and often tedious to imple-
ment. On the contrary, some very simple upper bounding procedures, such as starting
non-linear solvers at different points during the solution process, are not guaranteed
to ensure convergence of spatial branch-and-bound algorithms in general, but provide
sufficiently good upper bounds to achieve termination for many problems in practice.
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In this article, we propose a new upper bounding procedure that exploits the
strengths and overcomes the weaknesses of both types of approaches. That is, our
proposed procedure

e is simple to implement,

e is computationally efficient in the sense that there is at most little overhead,

e can be combined easily with other common methods such as the local solution of
the problem at hand,

e but is still proven to provide sufficiently good upper bounds in order to terminate
the algorithm after a finite number of iterations under mild assumptions.

Note that, although some illustrative computational examples are provided using a
simple implementation as a proof-of-concept, it is not our aim to develop an entire new
solver. Instead, we focus on a new upper bounding procedure that can be incorporated
in a wide variety of solvers.

The main idea in this article is based on the concept of restriction of the right-
hand side, which has recently been proposed in [40, 41] in the context of semi-infinite
programming to compute feasible points. Whereas this technique is used for (standard
as well as generalized) semi-infinite programs in [40, 41], to our best knowledge it
has never been examined for standard non-convex problems in global optimization.

This article is structured as follows. In Sect.2 we briefly review some basic con-
cepts from global optimization and further discuss difficulties of non-convergent upper
bounding procedures. In Sect. 3 we explain how the concept of restriction of the right-
hand side from the literature can be applied within a spatial branch-and-bound method
for continuous non-linear global optimization. Based on this, in Sect.4 we prove that
this leads to a convergent algorithm given some assumptions, which are discussed in
Sect. 5. In Sect. 6 we provide computational results for some illustrative test problems,
which highlight that, while providing proven convergence guarantees, the proposed
method has little computational overhead. Finally, Sect.7 concludes the paper with
some final remarks.

The notation in this article is standard. In particular, Df denotes the row vector of
partial derivatives of a function f and by diag(X) we denote the diagonal length of a
box X.

2 Preliminaries and assumptions

In this section we briefly review some important concepts from the literature that
are needed for our approach. We start with a small overview on spatial branch-and-
bound methods in global optimization where we focus in particular on lower bounding
procedures. A general definition of a convergent lower bound taken from [30] is
described in Sect.2.2. The concept of restriction of the right-hand side, which is the
basis for our new upper bounding procedure, is briefly explained in Sect.2.3.
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2.1 Lower bounding procedures for spatial branch-and-bound methods

Spatial branch-and-bound algorithms for global optimization were first proposed by
Falk and Soland in [16]. Since then, various enhancements have been developed, for
instance, branch-and-reduce [47, 48], symbolic branch-and-bound [51, 52], branch-
and-contract [59] or branch-and-cut [55]. In addition to these purely scientific works,
many state-of-the-art global optimization solvers are based on implementations of spa-
tial branch-and-bound algorithms, for example BARON [49], COUENNE [9], ANTIGONE
[39], LINDOGLOBAL [33] or ScIP [1, 57]. For monographs covering the theory on
global optimization and, in particular, spatial branch-and-bound algorithms we refer to
[17,23, 34].

Typically, in spatial branch-and-bound algorithms, lower bounds for v* are obtained
by special bounding procedures. A well-known approach is to compute lower bounds
by solving convex relaxations of problems P(X) to optimality. Determining these
relaxations, in turn, is based on computing as tight as possible convex underestimators
of the functions f and g;,i € I, contained in P(B). Many different underestimators
have been proposed for specific classes of functions, among them underestimators
and envelopes for bilinear terms [35], polynomials [32], non-convex piecewise lin-
ear functions [24] and general lower-semicontinuous functions [53, 54]. Additionally,
generic convex underestimators can be constructed for arbitrary non-convex func-
tions, as described in [2, 21, 36] and applied in the BB algorithm [3, 4, 7]. Since tight
underestimators can only be determined explicitly for functions in low dimensions,
these techniques are usually combined with factorization and symbolic reformulation
approaches [35, 52]. However, recently there has also been some progress on obtaining
tight relaxations for composite functions directly [22]. Moreover, convex underes-
timators can often be considerably strengthened by bounds tightening techniques
[9, 44]. Different lower bounding procedures are based on exploiting duality [14,
15], using piecewise linear approximations [20, 38, 45, 46], using Lipschitz constants
[43] or applying interval arithmetic [42] and related concepts, such as centered forms
[8, 31]. For several of those lower bounding procedures it is proven that the determined
lower bounds converge to v* for decreasing box sizes, as they naturally occur in spatial
branch-and-bound algorithms.

2.2 Convergence of lower bounding procedures

In this article we assume that convergent lower bounding procedures are available,
which is commonly fulfilled for the aforementioned approaches. However, in order
to keep the exposition as general as possible we briefly review some definitions from
[30], which will be convenient throughout this article. Furthermore, this enables us to
prove convergence in a rather general manner without restricting our consideration to
a particular lower bounding procedure. We start with some special classes of bounding
procedures.

@ Springer



P. Kirst, C. Fiillner

Definition 1 (Bounding procedures, from [30])

o A function £ from the set of all sub-boxes X of B to R is called M -dependent lower
bounding procedure for the objective function of P(B),if £(X) < inf,epm(x) f(x)
holds for all sub-boxes X € B and any choice of the functions f, g;,i € I.

e A function £ from the set of all sub-boxes X of B to R is called M-independent
lower bounding procedure for a function, if it satisfies £(X) < min,cy ¢ (x) for
all sub-boxes X € B and any choice of the function ¢ : B — R.

e A lower bounding procedure £ is called monotone, if £(X1) > £(X>) holds for all
boxes X; € X, C B.

In the following, by £, we denote an M-independent lower bounding procedure
applied to a specific function ¢, e.g. f or g;,i € I.

To make sure that our spatial branch-and-bound algorithm converges, it is crucial
that all applied lower bounding procedures are convergent. To define the concept of
convergent lower bounding procedures, we consider so-called exhaustive sequences
of boxes and apply the bounding procedures to these sequences. A sequence of boxes
(Xx)ren is called exhaustive, if it is nested (X; C Xj_; for all £k € N), contains no
empty boxes (Xj 7# @ for all k € N) and satisfies limg_, o, diag(Xy) = 0. We refer to
[23] for more information.

For commonly applied box division strategies in global optimization, e.g., dividing
abox along the midpoint of a longest edge, any exhaustive sequence of boxes (X )xeN
converges to a single point X, i.e. we have (), Xx = {X}. Note that under continuity
of f, this implies

lim min £(x) = f(3),

k—00 x

and in particular the limit exists [30]. We can now introduce the notion of convergent
bounding procedures.

Definition 2 (Convergent bounding procedures, from [30])

o An M-independent lower bounding procedure £ is called convergent if it satisfies
lim £4(Xg) = li i
Jim, 6 (X0) = Jlim_ i 9
for any exhaustive sequence of boxes (X )xen and any function ¢ : B — R.

e An M-dependent lower bounding procedure ¢ is called convergent if it satisfies

Iim £(X) = hm min f(x)
k—o00 xeM(Xi

where limy_, oo mingepy(x,) f(x) = 400 if ¥ ¢ M(B), for any exhaustive
sequence of boxes (Xj)reN.

2.3 Restriction of the right-hand side

Convergence of lower bounds of many spatial branch-and-bound algorithms in global
optimization is ensured. Similarly, it is straightforward to compute a sequence of points
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(xk)ken that possesses a convergent subsequence (xi,)yen such that lim,_, o x¢, =
x*, where x* denotes a globally minimal point of the problem P(B). This follows
immediately from the theory on global optimization (see, e.g., [23]) and is ensured
under mild assumptions. Depending on the exact type of algorithm, for instance, the
midpoints of the boxes that are currently examined in the branch-and-bound framework
possess a subsequence that fulfills this requirement, as we shall see in Sect.4. In
contrast, similar convergence results for upper bounds have not been established in
general, as discussed in Sect. 1.

In this article, we are concerned with the computation of convergent upper bounds.
As already discussed before, computing valid upper bounds is closely related to finding
feasible points because evaluation of the objective function f at a feasible point imme-
diately yields an upper bound for v*. Therefore, our new upper bounding procedure
is based on an efficient method to generate feasible points of problem P (B).

As a key idea, our approach draws on a technique called restriction of the right-
hand side, which is introduced in [40, 41] for (generalized) semi-infinite problems.
Using this technique, we introduce some tolerance in the constraints. Importantly,
in contrast to the concept of ¢ s-feasibility, here it is used to further restrict them.
Hence, we require g; (x) < —¢ for all constraints g;. Clearly, a point satisfying these
conditions is also feasible for P(B).

However, if ¢ is chosen too large, the feasible set can become empty. Moreover,
using a fixed value of &7 in general does not lead to a convergent upper bounding
procedure. For that reason, in order to combine restriction of the right-hand side with
a standard branch-and-bound algorithm in global optimization, a crucial component of
our procedure is to drive € ¢ to zero in an appropriate way. As we shall see throughout
this article, this can be achieved such that convergence of upper bounds is ensured,
and thus branch-and-bound algorithms are proven to terminate.

We remark that in [40, 41] in presence of semi-infinite constraints several nonlinear
problems have to be solved from scratch using different parameter settings to obtain
the desired upper bounds. However, in standard global optimization, i.e. in the absence
of semi-infinite constraints, it is not possible to solve several optimization problems
from scratch in order to compute the solution of a single optimization problem, since
this is by far too expensive from a computational point of view. Therefore, in this
article we propose to carefully incorporate the concept of restriction of the right-hand
side into a spatial branch-and-bound algorithm, such that we get along without this
requirement. Essentially, as we shall see, this incorporation results in a different box
selection rule in the branch-and-bound algorithm.

3 Incorporation of restriction of the right-hand side into spatial
branch-and-bound methods

In this section, we propose a new upper bounding procedure which is convergent.
It is based on finding feasible points of P(B) with guarantee and then evaluating
the objective function f in such points. To achieve this, the main idea is to exploit
convergence of subsequences (xg,);en for a slightly altered problem.
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More precisely, given a parameter § > 0, we consider a problem of the form
P(B,d8): min f(x)
xeR®

s.t. gilx) <-4, iel,
x € B.

We refer to this as the restricted problem. The feasible set of P(B, §) is denoted by
M (B, §) and, moreover, let X denote a globally optimal point of P (B, §).

According to the explanation at the beginning of this section, given that § is chosen
carefully such that M (B, §) still contains a feasible point, by applying a branch-and-
bound algorithm a subsequence (xg, )ven is generated that satisfies lim,_, oo X, = X.
This implies g; (X) < —38 and due to continuity of the functions g; there exists some vV
such that for all v > V we have g; (xx,) < 0. Thus, as the box constraints are fulfilled
as well, xi, is feasible for the original problem P (B), and we obtain an upper bound
for v* by evaluating the objective function f in xi,. Note that the main difference to
applying the same reasoning to the original problem P (B) is that by restriction of the
right-hand side we ensure that a feasible point satisfying g; (x) < 0 is found after a
finite number of steps and not only in limit.

Simply applying a spatial branch-and-bound algorithm to the problem P (B, §)
instead of the original problem P (B) is still not sufficient for our purpose. In particular,
in that case the obtained lower bounds converge to the optimal value of the restricted
problem which may differ from the value of interest v*. This is clearly not desired.
Moreover, simply using some fixed § > 0 is not sufficient to obtain a sequence of
upper bounds that converges to v* as upper bounds may remain too large in such a
setting.

For that reason, our main idea is to combine the solution of the original problem
P (B) and the use of restriction of the right-hand side in a reasonable way. To this end,
we consider a standard spatial branch-and-bound algorithm for solving P (B) and, in
addition, incorporate the solution of more restricted problems for different values of
4. This is explained in the following and stated formally in Algorithm 1.

As is common for spatial branch-and-bound algorithms in global optimization,
each iteration k is started by choosing a tuple (X, vg) from a list £ of boxes still to
explore, with v; a lower bound for the optimal value v*(Xy) on X (Step 1). In every
second iteration, we follow the selection rule of classical spatial branch-and-bound
algorithms in global optimization, which typically means that a box with the smallest
lower bound is chosen, as it appears most promising to contain a globally minimal
point x*. We refer to this as a normal selection step.

In the remaining iterations, we only choose boxes Xj that may contain feasible
points for the restricted problems P (X, §), thus aiming at the solution of problems
P(B, §). This is checked by computing lower bounds £, (X ) forall g;,i € I, on Xj
using lower bounding procedures, such as interval arithmetic [42]. In case that no such
box can be selected, we reduce the value § > 0 in order to refine the approximation
obtained by restriction of the right-hand side. The same refinement is applied if a
feasible point for P(B) is found (see Step 4) in order to ensure convergence of the
upper bounds to v*. We refer to this as a restricted selection step.
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Algorithm 1 Branch-and-bound framework

Input: Tolerance &, > 0, initial 8o > 0, initial lower bound Py = —o0, initial upper bound u = +oo,
multiplier y € (0, 1) and iteration counter k = 1.

1: Initialization: Set list L = {(B, —00)}.

2: while u;_; —v4_1 > &y and L # ¥ do

3:  Step 1: Choose tuple (X, vr) € L as follows:

4: if k is even then
S: Restricted selection. Compute
L= {(Xk, ) € L | mga;ceg,. (Xp) < —ak} .
l
6 if £ = ¢ then
7: Set §g41 = y .
8: Increment k.
9: Go to Step 1.
10: end if
11: Choose (X, vx) € £ with vy = min{vg | (Xg, vx) € L}.
12:  else
13: Normal selection. Choose (X, vg) € L with vy =Vg_1.
14:  endif
15:  Step 2: Divide X along midpoint of a longest edge into X ]1 and X 1% and remove tuple (X, vg) from
the list L.

16:  Step 3: For j = 1, 2, compute lower bounds Z(X,{) for v*(X,{).
17:  if £(X{) < oo then

18: Add the pair (X7, £(X])) to the list L.

19:  endif ) )

20:  Step 4: For j € {1, 2} choose x,{ € X]i and define

5l = £y if x] € M(X]) (or, equivalently, x} € X{ and g; (x}) < 0,i € I)
+oo else.

21: ifx]{ EM(XI{)forsomeje{lj}then

22: Set §g11 1= yék.

23:  endif

24:  Step 5: Setuy = min{ug_y. f;l, f2} and choose x} € {x}_|.x} x2} with £ (x) = uy.
25:  Step 6: Fathoming:

26:  for (X, v) € L withv > uy do

27: Remove (X, v) from L.

28:  end for

29:  Step 7: Update of lower bound:
30:

31:  if £ # ¢ then

32: U = minfv € R | (X, v) € L}.
33:  endif

34:  Step 8: Increment k.
35: end while
Output: Globally &,-optimal point x* (if it exists).

@ Springer



P. Kirst, C. Fiillner

We should make three important remarks at this point. First, for simplicity we
assume that a restricted selection step based on restriction of the right-hand side is
executed in every second iteration. However, for our following convergence results it
is only important that such step is always executed after a finite number of iterations
with normal selection. Therefore, much more sophisticated schemes are possible as
well. For instance, in our computational tests in Sect.6 we use restricted selection
steps every «-th iteration for different values of x withk € N,k > 1.

Second, we should emphasize that deviations from the standard procedure in spatial
branch-and-bound algorithms have to be correctly designed in order to not compro-
mise the convergence behavior. For instance, as shown by Dickinson [12], alternating
between the standard division rule (division along the longest edge) and free box divi-
sion rules may prevent the emergence of exhaustive sequences of boxes. Importantly,
in our proposed method, we alternate between different box selection rules, while
always dividing along the longest edge. In this case, exhaustiveness of subsequences
of boxes is preserved.

Third, restriction of the right-hand side can be implemented efficiently by comput-
ing the value §(Xy) := max;ej €4, (X) just once when box Xy is constructed, as this
value is independent of §. It can then be stored together with the tuple (X, vg). In
the restricted selection step, §(X) then only has to be compared to the current §; for
all (X, vx) € L instead of recomputing it for each element in L.

Steps 2 to 7 basically remain unchanged from standard spatial branch-and-bound
algorithms in global optimization. In Step 2, the selected box X is branched into two
sub-boxes by division along a longest edge. More sophisticated branching strategies
are possible as well. In Step 3, a lower bounding procedure is used to compute lower
bounds £(X;, J ) for the globally minimal value v*(Xj J ) of the newly obtained boxes
X ,ﬁ, j € {1,2}. As already discussed in Sect. 1, for instance, a convex relaxation of
P(X ,i) can be solved to obtain such a bound. If such a relaxation is infeasible, we set

(X ,{) = 4o0. If this is not the case, the corresponding box is added to L. In Step 4,
some point x,{ € X is determined and checked for feasibility by evaluatmg 8i (xk)
foralli € I.If x,{ € M(XJ) then xk and its objective value f(xk) can be used to

update the best known point x;* and the best known upper bound for uy, for v* (Step 5).

If x,{ ¢ M(X ,{), then x,f and u; remain unchanged. In Step 6, boxes which can be
ruled out as they do not contain a globally minimal point are removed from £ in order
to reduce the search space. Then, taking into account that boxes have been added and
removed from £ in the current iteration, the global lower bound vy for v* is updated
(Step 7). As long as the termination criterion is not satisfied, a new iteration is started.

Importantly, Algorithm 1 is rather a conceptual description of a spatial branch-and-
bound algorithm in global optimization. Further improvements that are known to work
well in practice, for instance, bounds tightening or using additional upper bounding
procedures, such as starting a local non-linear solver, can be incorporated as well. By
doing so, it is possible to construct a solver that is fast yet proven to terminate after a
finite number of iterations as we shall see in the remainder of this article. Furthermore,
with respect to the choice of the point x,ﬁ we are rather generic. In fact, every common
selection rule will work, e.g., choosing the midpoint of a box.
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We should note that evaluating midpoints of sequences of shrinking boxes shares
similarities with the DIRECT algorithm proposed by Jones et al. [25, 26]. However,
our proposed method differs in several aspects. In our case, choosing midpoints in
Step 4 is sufficient, but not mandatory; a locally optimal point can be used as well.
Our proposed method is a spatial branch-and-bound method with proven convergence
(see Sect.4), whereas DIRECT is a pure branching method and a heuristic. Finally, in
DIRECT, the next box to partition is selected based on the diagonal lengths of boxes
and the objective values at the box midpoints. In our restricted selection steps, the
selection is based on restriction of the right-hand side and computing deterministic
bounds on constraint functions g;,i € I.

Worth mentioning, the feasibility check for points x,f in Step 4, whereas straight-
forward on first sight and an integral part of most implementations of spatial
branch-and-bound methods, can be rather time-consuming in practice. Moreover, in
case of a rigorous implementation, rounding errors need to be taken into account in
order to prevent some of the issues related to ¢ s-feasible points, see the discussion
in Sect. 1, which may complicate this step considerably. While feasibility verification
and rigorous implementation are not the main focus of this paper, we should mention
that restriction of the right-hand side might also help to facilitate this step. If we check

for x,i e M(X J ,8) for some § > 0, we may allow for some & f-tolerance, but still

guarantee a rigorous feasibility check for P(B) as long as ey < 5. This might be

particularly helpful for points x; obtained by applying local solvers to P (X}, §), as
these are often guaranteed to be ¢ p-feasible only for the considered problem. As we
shall see in Sect. 4.1, given that § < &, this does not compromise the convergence of
Algorithm 1.

Finally, we illustrate the mechanism of restriction of the right-hand side using an
example.

Example 1 The illustrative problem is given by

min f(x) = 6x7 + 2x3 — 60x; — 8x2 + 166

xeR2

1
s.t. g1(x) = Z(xlxz —x1 —x2) <0,

1
gx) = Z(_xl —x2+3) <0,
x € [0, 10] x [0, 10].

It is based on problem zecevic4 from the COCONUT benchmark library [50].

After several branching steps, in iteration 26 of Algorithm 1, we obtain a list £ of
25 boxes. These boxes, as well as the level curves of g1 and g, (blue and red lines,
respectively), are depicted in Fig. 1. Without restriction of the right-hand side, all
these boxes can be chosen in the next step of Algorithm 1. Therefore, all of them are
highlighted in yellow.

Using our approach of restriction of the right-hand side, the set of boxes from
which the next box can be selected in iteration 26 is reduced to £ C L. This subset
depends on parameter 8¢ > 0. For different values of 8¢ the resulting lists £ are
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Fig.1 Level curves and selectable boxes for Example 1 without restriction of the right-hand side

visualized in Fig. 2. It is also illustrated how the choice of 8¢ affects the considered
level curves associated with the functions g1 and g» (depicted in red and blue, whereas
the original level curves are depicted in grey). Note that more boxes are contained in
L than the ones containing feasible points of the restricted problems, as £ is defined
using lower bounds for g1 and g», which are computed using centered forms. As we
can see, choosing 8¢ = 2 is too conservative and leads to an empty list £. Hence, 826
is decreased in Algorithm 1 for the next iteration.

4 Proof of convergence

In this section, we give a proof of convergence for Algorithm 1. We require that a
convergent lower bounding procedure is used, which is a mild assumption, as this is
fulfilled for many concepts that are available. This immediately leads to convergence
of the overall lower bound that is generated by standard branch-and-bound algorithms,
as we describe in Sect.4.2. Similarly, this holds for the optimal points. However, in
addition, we are also able to prove convergence of upper bounds to the globally optimal
value v*. This is presented in Sect. 4.1. Moreover, it will become clear that this ensures
finite termination of the algorithm. Feasibility of our assumptions will be discussed in
Sect. 5.

4.1 Convergence of upper bounds
In this subsection we state our main result together with the corresponding proof, i.e.,

we show convergence for the sequence of upper bounds generated in Algorithm 1 for
&y = 0. In fact, we show that this sequence converges to the globally optimal value v*

@ Springer



On the Use of Restriction of the Right-hand Side in Spatial Branch...

10 ‘ 10 5. ‘
ro ‘ T
3 } 8 “
\ \
) \ \
6T \‘ NS - \‘
N \
\ 4 T N T
\\ \
2 2
- ! T — | [ T
2 INC 6 8 10 /2 | 6 8 10
(a) 626 = 0.25. (b) 526 =0.5.
10 5 ‘ 10 5| . ‘
1} ‘ T2 ‘
N3 } 8 }
| T
| ) |
6 ‘ 6T \‘
x /|
<4 : <4
2 2
TN | |
L - ’—‘f—FT" L T :
2 4 [ 8 10 2 4 _—6 8 10
(c) d26 = 1. (d) d26 = 2.

Fig.2 Level curves and selectable boxes in £ for Example 1 and different choices of 854

under mild assumptions. This is needed in order to ensure that the algorithm terminates
after a finite number of iterations for any termination tolerance &, > 0, as we shall
see in the next subsection.

To achieve convergence of upper bounds, we require that all lower bounds in
Algorithm 1 are generated by convergent and monotone M-independent and M-

dependent lower bounding procedures, respectively. We formalize this requirement
in the following assumption.

Assumption 1 We assume that

o the M-independent lower bounding procedure £z ,i € I, used in Step 1 of
Algorithm 1 is convergent and monotone,

e the M-dependent lower bounding procedure £ used in Step 3 of Algorithm 1 is
convergent and monotone.

Note that both requirements can be satisfied by applying standard lower bounding
procedures from the literature, such as interval arithmetic [42], centered forms [8] or
using BB underestimators [2] among others.
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With respect to problem P (B), our main assumption is the following type of Slater
condition.

Assumption 2 We assume that in every neighborhood N (x*) of every globally optimal
point x* of P(B) there exists a Slater point, i.e. a point x satisfying g;(x) < O for all
iel.

While the former assumption is standard in global optimization anyway, the latter
is needed in order to ensure that for small values of § the problems P (B, §) and P(B)
do not differ too much, as shown in the following lemma. We discuss feasibility of
these requirements in more detail in Sect. 5.

Lemma 1 Let (6k)keN be a sequence with limy_, o 8 = 0 and & > 0 for all k € N.
Moreover, let M(B, &) # @ for all k € N and let us assume that the Slater condition
in Assumption 2 holds for the problem P (B). Then, there exists a sequence of optimal
values (v;)ren of P(B, 8x) such that

lim (v —v*) = 0.
k—o00

Proof First of all, note that in view of M (B, §;) # 0 and the fact that M (B, ;)
is compact, there exists a sequence of optimal values (v;)keN of P(B, ). Further-
more, the sequence is bounded below by v* and monotonically decreasing and, hence,
convergent.

Next, we shall prove that for every d > 0 there exists some k such that v —v*| <d
for all k > k. To this end, we assume that the assertion does not hold and derive a
contradiction. Hence, we require that there is some v > v* such that for all keN
there is some k > k such that v > v. Now consider a Slater point X in a sufficiently
small neighborhood N (x*) around an optimal point x* such that f(x) < v. Note that
due to Assumption 2 and continuity of the defining functions such a point X exists.

Next, we set g := max;¢; g;(x) < 0. For some § > 0 with g < —§ we conclude
that X is feasible for problem P (B, §). Due to limy_, », §; = O there is some k such that
g < —éforallk > k. Therefore, the point x is feasible for all problems P (B, §;) with
k > k, and hence v,’j < f(x) <vforallk > k. This contradicts our aforementioned
assumption which completes the proof. O

In the remainder of this article it will often be convenient to draw conclusions
based on convergence of certain sequences. To this end, we may artificially set the
termination tolerance &, = 0. In this case, it may indeed happen that Algorithm 1
does not terminate. In the following, this is referred to as the possibly infinite branch-
and-bound procedure corresponding to &, = 0. Using this we can prove the following
lemma, which can be used to show that after a finite number of iterations in Algorithm 1
a feasible point of the original problem P (B) is guaranteed to be found.

Lemma 2 Let§ > O such that there exists some point x € M(B) with g; (x) < —4 for
alli € 1. Moreover, let Assumption 1 hold and assume that the possibly infinite branch-
and-bound procedure corresponding to €, = 0 in Algorithm 1 does not terminate.
Then, after a finite number of iterations a feasible point of the original problem P (B)
is found by Algorithm 1.
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Proof We consider an exhaustive subsequence of boxes (Xk,)ven chosen in Step 1
with

malx Lo (Xg,) < =6 for all v eN.

4SS

First, we point out that given the box selection rule in Step 1 such an exhaustive
sequence of boxes exists, provided the possibly infinite branch-and-bound procedure
corresponding to &, = 0 does not terminate. This follows immediately using standard
arguments from global optimization. In order to see this, it is important to note that
there are at most a finite number of such boxes in the list £ in every iteration and at
least in every second iteration one must choose such an element. For a more formal
explanation we refer to the proof of Theorem IV.1. as well as to Corollary IV.1. in
[23].

We now consider a point X that is contained in all boxes Xy, for all v € N. From the
definition of M-independent lower bounding procedures as well as continuity of the
defining functions it follows lim, _, oo €4, (Xg,) = g;(X) for all i € I, and hence we
have max;e; g; (X) < —§. Again, using continuity of the functions g;, for v sufficiently
large we conclude that all points in Xy, are feasible for P (B). Therefore, every point
X, that is chosen from this box is feasible as well, which concludes the proof. O

Revisiting our discussion on feasibility verification from Sect. 3, we observe that
the proof of Lemma 2 allows to check feasibility for sets M (X],§) with0 < § < §
in Step 4 of Algorithm 1 without compromising the result.

Importantly, it can be shown that the assumptions of Lemma 2 are always satisfied
after a finite number of steps.

Lemma 3 Assume that Assumption | and Assumption 2 are satisfied, and that the
possibly infinite branch-and-bound procedure corresponding to €, = 0 in Algorithm I
does not terminate. Let (81 ) r.eN denote the sequence of § obtained in Algorithm 1. Then,
there exists some k € N such that the first condition from Lemma 2 is satisfied for all
k> k.

Proof First, we note that due to the existence of a Slater point ¥ € M (B) satisfying
gi(¥) < O forall i € I (Assumption 2), for some sufficiently small § > 0, the
first condition from Lemma 2 is guaranteed to be satisfied. By construction, it is also
satisfied for all § < § then. We now prove that such a § is reached in Algorithm 1 after
a finite number of steps.

We assume that this does not hold and derive a contradiction. Hence, we assume
that for all k € N, we have g;(x) > —§; forall x € M(B) and at leastone i € .

We now consider an exhaustive subsequence of boxes (X, ),eN obtained in Algo-
rithm 1, with x € Xy, for all v € N. We have x € M(B), as by Lemma 4.1 in [30],
otherwise the boxes (X, ),en would no longer be selected and refined in Algorithm 1
after a finite number of steps.

As the M-independent lower bounding procedure £, , i € I, is convergent accord-
ing to Assumption 1, for at least one i € I we obtain lim,_, o £g, (Xg,) = gi(X) >
—&k,. From continuity it follows that there exists some v € N such that also
max;es £g; (Xg,) > —6, forall v > v.
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However, this means that for all v > 7 the list £ is empty and the parameter 8y, is
decreased in Step 1 of Algorithm 1. The same argument can be repeated, so we obtain
lim,_ o0 8k, = 0, and thus also limy_, o §x = 0. This is a contradiction to 8 not being
reached after a finite number of steps. O

Remark 1 Lemma 3 in combination with Lemma 2 implies that after finitely many
steps in Algorithm 1 a feasible point is identified, and thus the global upper bound
uy is updated. In particular, there exists a non-empty subsequence (ux,)veN of upper
bounds related to iterations k,, v € N, where the upper bound is updated.

Remarkg From Lemma 3 it also follows that there exists some k € N such that for
all k > k we have M (B, 8;) # @. Therefore, by restricting to a subsequence (8, )veN

with k, > kforallv e N, all conditions of Lemma 1 are satisfied.

With these results, we are now able to prove convergence of the sequence of upper
bounds generated by Algorithm 1.

Theorem 4 Consider problem P (B) with non-empty feasible set M (B). Let Assump-
tions 1 and 2 hold. Then, if the possibly infinite branch-and-bound procedure
corresponding to &, = 0 in Algorithm 1 does not terminate, the sequence of upper
bounds (uy)reN converges to the globally optimal value v*.

Proof The sequence (ug)reN of upper bounds generated by Alorithm 1 is monoton-
ically decreasing and bounded from below by the optimal value v* of the original
problem P (B). Thus, the sequence (uy)xeN is convergent.

However, it remains to be shown that this sequence really converges to the glob-
ally optimal value v* of P(B). To this end, we consider the non-empty subsequence
(uk,)ven Where there is an update of the upper bound in iteration k,. According to
Lemma 3 and Remark 2 such a sequence exists. The values uy, are computed by
evaluating the objective function at feasible points (xk, ),eN. Since all these points are
feasible and since the feasible set is compact, there must be a cluster point X of this
sequence of points with X € M (B).

Next, we show that X is, in fact, a globally optimal point of problem P(B). To
achieve this, we assume that this is not the case and derive a contradiction. Hence, if
X is feasible and not optimal, then we have f(X) > v*. Moreover, in view of the box
selection rule of Algorithm 1 there must be an exhaustive sequence of boxes (X ;) eN
created by the algorithm such that X € X, for all u© € N. By Assumption 1 our lower
bounding procedures are convergent, so we have

lim ¢(X,) = f&x) > v~
L—>00
In particular, there is some 7t such that
1, _ N -
(X, > E(f(x)+v ) forall p > )

We now continue to show that this is actually not possible. To this end, we consider
an arbitrary iteration k together with the corresponding ;. After a finite number of
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iterations we either have that the list £ is empty or otherwise, as shown in Lemma 3,
that a feasible pointis found. In both cases, in these iterations k the value ; is decreased
by letting §x+1 = y 8k (either in Step 1 or in Step 4). Inductively, for that reason, we
have limy_, o 6 = 0.

Additionally, by Lemma 3 and Remark 1, for sufficiently large k, all conditions of
Lemma 1 are satisfied. Hence, we conclude that the sequence of optimal values v} of
the problems P (B, 8;) converges to v*. In particular, there is some k € N such that

1 _
Zf—(f(f)+v*) forall k >k

Then, however, for k > k, neither in iterations with an even iteration number k nor in
iterations with an odd iteration number k we select a box in Step 1 of Algorithm 1 with
a lower bound larger than v} < %( f(X) + v*), because there are always boxes with
a smaller lower bound contained in the list £ and £, respectively. In particular, that
means that inequality (1) is violated for u sufficiently large, such that the sequence
(X ) pen is not created by the algorithm at all. This contradicts our assumption and,
hence, the point x must be a globally optimal point of the problem P (B).

Since our upper bounds are created by evaluating the objective function at the points
(xk,)ven and since this sequence possesses the feasible point x as a cluster point, the
assertion now follows from continuity of the objective function f. O

4.2 Convergence of lower bounds and optimal points

In this section we establish convergence of the sequence of the overall lower bounds vy
of Algorithm 1. Together with the convergent upper bounding procedure this ensures
finite termination of the branch-and-bound algorithm. Similarly, one can establish a
convergence result for optimal points.

Proposition5 Let M(B) # O and let Assumption 1 hold. Then, if the possibly infi-
nite branch-and-bound procedure of Algorithm 1 corresponding to €, = 0 does not
terminate, for the overall lower bounds Uy in every iteration k the limit satisfies
limg_, oo Uk = v* where v* denotes the optimal value of P(B).

Proof We apply Theorem IV.3. from [23]. To this end, two main properties need to be
ensured, i.e. the bounding operation needs to be bound improving and consistent. The
former means that after a finite number of iterations a tesselation element needs to be
selected where the lowest bound is attained. Clearly, in Algorithm 1 in every second
iteration such a box is chosen.

The latter, i.e. consistency of the bounding operation, is a bit more involved. In
view of the box division rule in Algorithm 1 for our setting this means that for every
exhaustive sequence of boxes (X, ),en created by the algorithm we have
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Clearly, this expression cannot be negative, since boxes X where the lower bound £(X)
is strictly larger than the current upper bound u, are fathomed in Step 6 of the algorithm.
Moreover, for any threshold v > 0 the difference uy, — £(Xx,) cannot remain larger
than t, as we show now. From Theorem 4 we know that for the subsequence of upper
bounds (ux,)ven We have

lim wug, = v*.

V—> 00
Furthermore, by monotonicity of the lower bounding procedure the sequence of lower
bounds (£(X,))ven is monotonically increasing. As it is also bounded from above by
v*, it is convergent. Let us now assume for a moment that

lim ¢(Xg,) =7 < v*.
V— 00

Then, there exists a feasible point X € X, for all v with f(X) = v, see Lemma 4.1
in [30]. However, that means that v* could not be the optimal value of the problem,
which contradicts our assumption. Hence, we have

0 = (m,—tXe)) = (=) + (v = xXe))

and the assertion follows by sandwiching the expression in the middle. O

In classical branch-and-bound algorithms in global optimization one can easily
consider convergent subsequences of points in boxes and usually these subsequences
converge to globally optimal points of the original problem. Due to the fact that
not always boxes with the most promising lower bounds are selected in Step 1, in
Algorithm 1 one could think that this might not necessarily be the case. However, in
the next result we show that this result still holds under this modification.

Proposition 6 Let M (B) # @, let Assumption 1 and Assumption 2 hold and let us
assume that the possibly infinite branch-and-bound procedure of Algorithm 1 corre-
sponding to &, = 0 does not terminate. Moreover, we consider a subsequence of boxes
(Xi)keN chosen in Step 1, and let xi € Xy for all k € N. Then, (xi)reN possesses a
cluster point and any such cluster point is a globally optimal point of P(B).

Proof Due to x; € B for all k € N and due to the fact that B is bounded, the sequence
(xk)ken possesses a cluster point. We now consider a convergent subsequence (X, )yeN
of (xr)ken and put X := lim,_, oo X, -

Next, we assume that X is not a globally optimal point and derive a contradiction
by distinguishing two different cases.

Case 1: X € M(B) and f(X) > v*. Then, there exists an exhaustive sequence of
boxes (X, )uen generated by the algorithm with X € Xj, for all © € N. According
to Assumption 1 in Step 3 an M-dependent lower bounding procedure is used, so we
have lim,_, o, £(X k,L) = f(x). Using arguments from the proof of Theorem 4 we can

show that after a finite number of iterations no box with €(Xg,) > %( f&) +v¥)is
selected and, hence, the exhaustive sequence of boxes (X ku) weN 18 not created at all,
contradicting the assumption.
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Case 2: X ¢ M(B). Then, by Assumption 1 we have limy_, o0 £(Xg,) = +o00.
Again, this can be ruled out by using the same line of arguments as in the proof of
Theorem 4. O

According to Theorem 4, the overall upper bounds generated by Algorithm 1 con-
verge to the globally optimal value if the assumptions of Theorem 4 hold. Moreover,
in view of Proposition 5 lower bounds are ensured to converge to the globally opti-
mal value as well. Therefore, the branch-and-bound method terminates after a finite
number of iterations for &, > 0. This immediate consequence is stated formally in the
following result.

Corollary 7 Consider problem P(B) with non-empty feasible set M (B) and let a pos-
itive termination tolerance &, > 0 be given. Further assume that Assumption I
and Assumption 2 hold. Then, if a convergent lower bounding procedure is used,
Algorithm I terminates after a finite number of iterations.

Proof Since the lower bounding procedure is assumed to be convergent we have from
Proposition 5 the limit limg_, o T = v*. Moreover, according to Theorem 4 we have
limy s oo U = v*. Thus, we obtain

lim (u — ) = lim ((uk — ") 4 (0 —ﬁk)) =0.
k— 00 k— 00

Therefore, after a finite number of iterations we have u; — v; < &,, and the assertion
must hold. O

Let us remark that we have not addressed the case of an empty feasible set yet.
Typically, spatial branch-and-bound algorithms in global optimization are able to rec-
ognize this by stopping with a certificate of infeasibility. In this case, no box can be
selected in Step 1 anymore, since the list £ becomes empty. In principle, this also holds
for Algorithm 1. In order to show this formally, it is required that the lower bounding
procedure is not only convergent, but also recognizes empty boxes X by evaluating
to the extended real value £(X) = 400, provided that the box X is sufficiently small.
This is also fulfilled for common lower bounding procedures (see, e.g., [3, 4, 7]).

5 Discussion of the assumptions

In the following we briefly discuss our main requirements that need to be fulfilled so
that the concept of restriction of the right-hand side in Algorithm 1 is sufficient to ensure
termination of spatial branch-and-bound algorithms. We start with Assumption 1 that
is straightforward in this regard, as it comprises a common requirement regarding the
lower bounding procedure in global optimization. In fact, lower bounding procedures
that fulfill this are widely used and typically required for basically all algorithms in
that domain (see, e.g., [23, 30]).

In contrast, Assumption 2 is rarely used in global optimization, although very
common in local optimization. Moreover, under the additional assumption that all
defining functions are differentiable, it can even be shown to be a straightforward
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consequence of other (weak) constraint qualifications that are also common in non-
linear local optimization. This holds, for instance, for the Mangasarian-Fromovitz
constraint qualification (MFCQ). In order to formulate this for problem P(B) we
explicitly rewrite the box constraints as additional constraints, see [30]:

hix)=b, —x; <0 i=1,...,n
hj(x)=xi—b; <0 j=n+1,...,2n.

Then, MFCQ is said to hold at a feasible point x € M (B), if there is a direction
d € R" such that

Dgi(x)d <0 for all active indices, i.e. indices i with g;(x) =0

Dhj(x)d <0 for all active indices, i.e. indices j with 4 ;(x) = 0.

Hence, if MFCQ holds at every globally optimal point x*, then standard arguments
show that for A > 0 sufficiently close to zero we have

g(x*+Ad) <0 foralli el
and hj(x*+rd) <0 forallj=1,...,2n,

and thus a Slater point exists in every neighbourhood N (x*) around a point x*. In
particular, that means that Assumption 2 holds.

Hence, Assumption 2 is mild in the sense that it is a direct consequence of MFCQ,
which, in turn, is implied by the Linear Independence Constraint Qualification (LICQ).
This, however, is already mild in the sense that it is proven to generically hold every-
where in the feasible set M (B) (see [27]). The latter means, in particular, that in case
of its violation it may be expected to hold at least under small perturbations of the
problem data. We briefly state the aforementioned consideration in the next remark.

Remark 3 Let MFCQ or LICQ hold in every globally optimal point of problem P (B).
Then, Assumption 2 is fulfilled.

Furthermore, we point out that in nonlinear local optimization the assumption of
LICQ even in all locally minimal points is standard for convergence proofs. This
means, in particular, that common upper bounding procedures in spatial branch-and-
bound methods which rely on the local solution of NLP subproblems implicitly use
this or related assumptions as well and, hence, Assumption 2 is not restrictive in this
regard.

Finally, let us stress that even in case that Assumption 2 is violated, our upper
bounding procedure may still provide valid upper bounds, although it may happen
that these upper bounds do not converge to the globally optimal value v*. As becomes
clear from the proof of Lemma 1 it is not possible, though, that a value is computed
that is strictly smaller than v*, in contrast to many other approaches such as acceptance
of ¢ p-feasible points.

@ Springer



On the Use of Restriction of the Right-hand Side in Spatial Branch...

Table 1 Test problems and

. . name
dimensions

N
<

booth
hsO11
simpllpa
zecevic4d
hs030
congigmz
hs044
hs268
ex3_1_2
hs098
hs113
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6 lllustrative computational results

In this section, we provide illustrative computational results for 11 small test problems
from the COCONUT benchmark library [50], which are summarized in Table 1 with
their name, variable dimension and number of inequality constraints.

We should emphasize that we do not present results for extensive computational tests
and large problem instances, and this is for the following reason: The merit of restric-
tion of the right-hand side is that it is a very simple, but powerful concept that allows
to ensure deterministic and finite convergence of spatial branch-and-bound methods
with marginal additional computational effort. For most of the implementations of
such algorithms, this is not guaranteed. However, solvers like ANTIGONE, BARON,
LINDOGlobal, Octeract or SCIP arehighly-tuned and perform extremely well
for many test problems. Therefore, we do not expect a simple implementation using
restriction of the right-hand side to be computationally competitive with these solvers.
We rather advocate to incorporate our proposed approach into existing methods as an
additional way to obtain upper bounds and as a convergence guarantee. The results in
this section are included for illustrative reasons and as a proof-of-concept.

6.1 Implementation and test details

Our implementation is based on Algorithm 1 with only slight modifications. The
algorithm is implemented in Python 3.7. For numeric operations Numpy and Scipy
are used, and for interval arithmetic operations we apply the IntvalPy package [6].
The lower bounds are computed using centered forms [31]. Moreover, as indicated in
Sect. 3, for each k, the value 8 (X;) = max;¢s £g; (X¢) is computed once when the box
X is constructed. We do not use bounds tightening or similar acceleration techniques.

In Step 4 of Algorithm I, we use three different strategies to choose candidate points

J.
Xp -

(a) Mid: Here, we choose x,{ = mid(X ,{), and then check for feasibility.
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(b) Mid + Loc: Here, in addition to (a), if mid(X,{) ¢ M(X,{), we run IPOPT
[58] to obtain a local solution of P (X ,{ ) as an alternative candidate for x,{ . This
candidate is then checked for feasibility.

(c) Mid + Loc-Res: Same approach as (b), but for k£ being even, we solve the
restricted problem P (X J , 8) locally; see also our discussion at the end of Sect. 3.

In each case, we do not allow for ¢ ¢-feasibility when checking whether x,{ €
M(X}).

To access IPOPT as a local solver, we use the default function minimize_ipopt from
the Python package cyipopt [5]. We use the default feasibility tolerance of 10~%, but
do not provide information on gradients or Hessians manually.

For restriction of the right-hand side, we choose o = 1, y = 0.95 and perform
a restricted selection step in every «-th iteration with « € {2, 10, 100}. We compare
this to a branch-and-bound method with only normal selection steps (no restriction).
Note that for case Mid + Loc-Res we only consider « € {2, 10}, since solving
the restricted problems locally only seems worthwhile if restricted problems occur
sufficiently often.

For the termination criterion we set &, = 10~ and additionally introduce a time
limit of 7,200 s and an iteration limit of 10,000 iterations. The experiments are executed
on a Windows machine with 2.5GHz Intel Core 15-6300U CPU and 12GB of RAM.

6.2 Discussion of results

The results are summarized in Tables 2. The columns compare the results for different
values of k (with “-” indicating that no restriction is applied) and with different selec-
tion strategies for x,ﬁ. In each column, the total number of iterations until termination
(itzerm), the first iteration in which a feasible point is found and an upper bound is
computed (it f.4s), the total time in seconds (time) and the solution status (status) are
reported. If the problem is not solved to optimality, we report the remaining relative
optimality gap % as the status.

The results show that the computational performance of using restriction of the
right-hand side and of using only normal selection steps do not differ by much (for
all strategies, Mid, Mid + Loc and Mid + Loc-Res). On first sight, this seems
detrimental, as we do not see a clear performance advantage for our proposed method.
However, the results highlight that restriction of the right-hand side provides a con-
vergence guarantee at low computational overhead, i.e. without compromising the
performance of the spatial branch-and-bound method by much. For several problems,
the number of iterations and total time required until termination are a bit lower if only
normal selection steps are applied, but this is not always the case.

In fact, we see that in one case, for problem congigmz, restriction of the right-hand
side with a sufficiently small x and x,{ = mid(X ,{ ) leads to an early identification of a
feasible point, and thus computation of a valid upper bound for v*. In contrast, without
restriction of the right-hand side no finite upper bound can be computed within the
given time and iteration limit.
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Table 2 Computational results for Algorithm 1 (part 1)

Mid Mid + Loc Mid + Loc-Res
K 2 10 100 - 2 10 100 - 2 10
booth
it 527 527 2 527 2 2 2 2 2 2
ity 526 526 1 526 1 1 1 1 1
time 18 21 4 17 3 2 2 2 2 2
status® opt opt opt opt opt opt opt opt opt opt
hs011
ity 1683 1673 1672 1672 1672 1672 1672 1672 1671 1672
ity 1 1 1 1 1 1 1 1 1 1
time 57 56 52 56 673 613 627 599 1004 710
status® opt opt opt opt opt opt opt opt opt opt
simpllpa
ity 106 92 89 89 106 92 89 89 100 92
ity 1 1 1 1 1 1 1 1 1 1
time 3 3 6 4 20 19 18 18 27 20
status® opt opt opt opt opt opt opt opt opt opt
zecevic4
ity 609 579 572 570 603 579 572 572 570 579
ity 4 4 4 4 4 4 4 4 2 4
time 27 29 29 47 532 506 542 509 521 667
status® opt opt opt opt opt opt opt opt opt opt
hs030
ity max max max max 400 400 400 400 414 400
ity - - - - 1 1 1 1 1 1
time 334 292 386 345 354 349 356 338 494 413
status® - - - - opt opt opt opt opt opt
congigmz
ity max max max max 852 839 728 920 594 511
ity 964 1580 - - - - - - - -
time 1042 1017 1345 1049  max max max max max max
status™ 0.02 0.21 - - - - - - - -
hs044
ity 398 283 268 268 398 283 269 269 384 283
ity 47 47 47 47 47 47 47 47 47 47
time 46 43 36 40 2194 1870 1614 1577 2195 1746
status*® opt opt opt opt opt opt opt opt opt opt
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Table 2 continued

Mid Mid + Loc Mid + Loc-Res
K 2 10 100 - 2 10 100 - 2 10
hs268
ity max max max max 902 839 738 912 862 780
ity - - - - - - - - - -
time 1536 1926 1914 1466 max max max max max max
status®* - - - - - - - - - -
ex3 1.2
ity max max max max 613 710 652 714 732 221
ity 2 2 2 2 2 2 2 2 4 2
time 2793 2871 2619 2384 max max max max max max

status*  0.01 0.01 0.01 0.01 5.65 1.97 2.01 1.90 5.65 6.59
hs098

ity max max max max 525 529 493 529 522 350
ity - - - - 299 223 210 210 4 20
time 2102 2418 2323 2518 max max max max max max
status* - - - - 71.83 68.02 68.05 67.15 71.88 72.70
hs113

ity max max 6725  max 79 73 62 82 69 74

it f - - - - - - - - - -
time 3456 4360 max 6995  max max max max max max
status®* - - - - - - - - - -

* opt: an e-optimal solution has been determined;

otherwise the remaining relative gap Uﬁ]_BLlB is reported (“-” if no UB has been found)

Whereas the additional usage of basic ITPOPT does not lead to significantly more
instances being solved (only £s030), and also slows down the solution process, the
results illustrate that local solvers can be easily combined with restriction of the right-
hand side and leveraged to find feasible points more quickly (see booth, hs030, hs098).

For 2 out of 12 test problems, even with restriction of the right-hand side, no valid
upper bound is determined within the given time and iteration limit. Additionally, for
5 problems, finite upper bounds are determined, but no convergence is achieved in
the predefined iteration and time limit, even if for congigmz and ex3_1_2 at least very
small relative optimality gaps are reached.

This lack of performance can be assumed to be explained by the very simple branch-
and-bound implementation. In practical applications, a branch-and-bound method
using restriction of the right-hand side could be tuned by introducing improved lower
bounding procedures, bounds tightening, additional strategies to identify feasible
points and several more acceleration techniques. Also ITPOPT could be tuned, for
instance by providing derivative information.

Finally, let us note that even in cases where we only examine box midpoints for
feasibility, for 6 out of 12 test problems, the branch-and-bound method terminates

@ Springer



On the Use of Restriction of the Right-hand Side in Spatial Branch...

successfully in the predefined iteration limit. This is even true without using restricted
selection steps. Importantly, in contrast to the proven results for our proposed approach,
using only normal selection steps this is not guaranteed in general, though. We provide
an illustrative example in Appendix A for which only boxes with infeasible midpoints
are selected as long as the selection step is not modified.

7 Conclusions

In this paper we proposed a new convergent upper bounding procedure that is straight-
forward to incorporate into spatial branch-and-bound algorithms in global optimization
with little overhead. A proof of convergence is provided so that termination of clas-
sical branch-and-bound algorithms is ensured. Moreover, some illustrative numerical
examples are presented. However, there are still a few issues we would like to mention.

First, we point out that our aim is not to present an entire new branch-and-bound
algorithm. Instead, we focus on the upper bounding procedure itself that can be applied
in a wide number of real solvers. The assumptions are mild, as discussed in detail.
For this reason, our own implementation is meant as a proof-of-concept rather than a
solver that is meant for production. For this reason, we did not incorporate important
acceleration steps such as bound tightening. Moreover, the lower bounding procedure
is convergent, but weaker than many of the standard approaches that are commonly
used. In addition, none of the steps is performed in parallel, which is standard in
real solvers in this domain. This is also reflected in our numerical results where we
only solved some small problems. However, from the discussion of the assumptions
it becomes clear that the method works under mild assumptions, and thus can be
integrated into a wide range of solvers in that area.

Furthermore, in this paper we assumed boxes as partition elements, although we
believe that the approach can be extended to other partition elements as well. We also
assumed that a box is always divided along the midpoint of the longest edge. Although
this is common, it should be possible to use other strategies here as well, as long as
they guarantee exhaustive sequences. The same holds for acceleration strategies such
as bound tightening, which are common in state-of-the-art implementations that are
used in practice.

Moreover, as mentioned before, in our theoretical results we assume that a restricted
selection step based on restriction of the right-hand side is performed in every second
iteration for simplicity. For our proofs of convergence it is only important that such
step is always made after a finite number of iterations. Hence, we have some flexibility
regarding the choice of iterations with restricted selection steps, which also allows the
combination with different search patterns.

Finally, in this paper we discussed a very specific strategy to drive the feasibility
parameter to zero by letting §;4+1 = y 8k for some y € (0, 1). However, we point out
that other possibilities can be used here as well.
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Appendix A lllustrative example

The following example illustrates that sufficiency of considering box midpoints to find
feasible points is a special feature of our proposed approach, while not guaranteed in
general.

Example 2 Consider the nonlinear problem

P(B): min f(x):=x;
xeR2

st g(x) = —xF — (2 =524+ V2+25<0,
x € B:=[1,2] [0, 1],

which is borrowed and slightly adapted from Example 3.1 in [30]. The globally min-
imal point is x* = (+/2, 0) " with globally minimal value f (x*) = +/2. The feasible
set is depicted in Fig. 3.

We show that for any box X that is chosen within a simple spatial branch-and-
bound method with only normal selection and division along the longest edge (cf.
Algorithm 1),

the midpoint X := mid(X) is infeasible. For the initial box B and any sub-box
X = [x,x] withX] < V2, this can be easily see from Fig. 3. The initial box B has
rational bounds, so that all other boxes obtained by division of the longest edge have
rational bounds and midpoints as well. Hence, the case x| = /2 can be excluded.
The assertion remains to be proven for boxes X with X] > +/2. We proceed with a
case distinction.

7

/

Fig.3 Box X and feasible set for Example 2
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Case 1: %] > x; > /2.Let X = [a, @] beaboxin Lwithe| < V2 < @1, < x,

and x* € X, i.e., a box located left of X and containing x*. Since x* is the globally
optimal point, such a box always has to exist.

Assume thatin Step 3 of the branch-and-bound method we use some lower bounding
procedure, which uses a convex relaxation M(X) of M(X). The objective function f
is linear and therefore not relaxed. We obtain

¢X) < min f(x) = f(x*) =2,

xeM(X)

but also
¢X)= min >min f(x) > V2
xeM(X) x€X
by definition of X. However, this yields a contradiction, since box X would have never
been selected by the selection rule.

Case 2: %] > V2 > x 1- In this case, there exist two possible sub-cases. In the first
one, the selected box X is a rectangle with X — x5 = 2(x| — x;). By division by the
longest edge, two quadratic boxes X’, X” are constructed with midpoints mid(X') =
(1, 3x, + 1%2) and mid(X”) = &1, §x, + 3%2). If mid(X") is infeasible, then
mid(X") is clearly infeasible as well, so we only examine the first one.

Looking at Fig. 3, we see that the level curve of g to level O can be interpreted as
a convex function in x1, and thus can be overestimated by a linear function between

(2,0) and (2,5 — v/21 + +/2). Let
5-v21+42

m="—""T~%~ 03276,
2-J2

then this linear function is given by

¢ (x1) := mx; — ~/2m. (A1)

On the other hand, the midpoint mid(X’) is located on a line with slope 1 and
starting at x. More formally, this line is described by the linear function

y(x1) == x1 +x; — x5 (A2)
Note that ¢»(x1) by construction has a zero at V2, while
y(V2)=V2+x,-x, >x,>0.
Hence, y (v/2) > ¢(~/2). Since y also has a larger slope than ¢, it overestimates the
latter on (~/2, 2]. This means that mid(X’) lies above ¢, by that above the level curve
of g to level 0, and thus is infeasible.
In the second sub-case, the selected box X is quadratic. We can prove the assertion

using a similar reasoning as before.
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The main difference in applying restriction of the right-hand side is that Case 1
cannot be excluded by the adapted selection rule. Therefore, it is guaranteed that after
finitely many steps for some selected box X, the midpoint mid(X) will be feasible. In
fact, if we apply Algorithm 1 with 9 = 1 and y = 0.95, in iteration 16 a box with
feasible midpoint is selected, and thus a valid upper bound for v* is computed.
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