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A B S T R A C T

Groundwater is one of the most vital natural resources worldwide. However, shallow aquifers are 
prone to contamination, posing significant risks to human health, livestock, agricultural pro
ductivity, and economic growth. Identifying appropriate land management strategies is critical 
for mitigating groundwater vulnerability to pollution. This study evaluates groundwater 
vulnerability to pollution under various land management scenarios using the modified DRASTIC 
model in Bahir Dar City, Ethiopia. The analysis incorporates multiple parameters within the 
ArcGIS environment, including depth to water table, net recharge, aquifer characteristics, soil 
properties, topography, vadose zone, hydraulic conductivity, and land use/land cover (LULC). In 
this study, LULC was added as an additional parameter to enhance the DRASTIC model. 
Groundwater vulnerability to pollution was evaluated under four distinct land management 
scenarios: baseline, agricultural expansion, urbanization, and reforestation. A single-parameter 
sensitivity analysis and a map removal sensitivity analysis were performed to identify the most 
influential parameters affecting groundwater vulnerability under the baseline LULC conditions. 
The result revealed that groundwater vulnerability in Bahir Dar City under baseline conditions is 
primarily influenced by LULC and net recharge. The areal average groundwater vulnerability to 
pollution index at the baseline scenario was 184. Agricultural expansion and urbanization 
increased the areal average groundwater vulnerability to pollution by 4.9 % and 1.6 %, respec
tively, while the reforestation scenario reduced it by 1.6 %. These findings highlight the critical 
role of effective land management practices, such as reforestation, in mitigating groundwater 
susceptibility to pollution. The results also indicate that groundwater vulnerability to pollution 
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varies across different geological formations. Therefore, given the influence of geological vari
ability on groundwater vulnerability, incorporating geological considerations into urban expan
sion planning is essential for minimizing the risk of groundwater contamination.

1. Introduction

Groundwater, which constitutes approximately 95 % of the available freshwater supply for humanity, is a vital resource for human 
life and economic development [1]. It serves as the primary water source for domestic and commercial uses, particularly in countries 
with limited surface water availability [1–4]. Over the past 50 years, global groundwater usage has significantly increased due to 
population growth, recurring droughts, its generally high quality, and the relatively low development cost [1]. In Africa, groundwater 
is the dominant source of drinking water, and its use for irrigation has grown substantially in recent decades. This trend is expected to 
persist due to factors such as population growth, urbanization, agricultural expansion, and planned irrigation developments aimed at 
enhancing food security [2,5,6].

To ensure the sustainable provision of clean groundwater for current and future generations, it is essential to manage this resource 
effectively by assessing and understanding its vulnerability to pollution [7,8]. Groundwater vulnerability assessment aims to protect 
this critical resource by identifying areas at risk of contamination and informing sustainable management practices [7,9]. The 
fundamental principle of such assessments is to classify areas into different vulnerability categories, which helps pinpoint the key 
factors contributing to groundwater pollution [10]. Providing vulnerability maps based on these assessments supports evidence-based 
decision-making and represents a crucial step toward sustainable groundwater and environmental management [6].

Bahir Dar City, the focus of this study, is one of Ethiopia’s rapidly urbanizing centers. As in many other Ethiopian cities [11,12], 
groundwater serves as the primary source of domestic water supply [13]. However, groundwater quality in the City is under increasing 
pressure due to the disposal of pollutants, including septic tank effluents, landfill leachates, and industrial and domestic wastes, into 
both surface and groundwater bodies. Consequently, assessing the vulnerability of Bahir Dar’s groundwater to pollution is critical for 
ensuring its sustainable management.

Previous studies, such as Alamne [13] have assessed groundwater vulnerability of Bahir Dar City using seven key parameters. 
However, their study excluded land use/land cover (LULC) - a critical factor that significantly influences groundwater vulnerability to 
pollution. Studies conducted both in Ethiopia [5,14] and globally [15] have demonstrated that LULC is among the most influential 
parameters affecting groundwater vulnerability. Moreover, prior research in Bahir Dar and other parts of Ethiopia [11,13,16] has not 
evaluated groundwater vulnerability under varying land management scenarios. In contrast, studies in other parts of the world, such as 
Sepehrara [17], have incorporated dynamic parameters and LULC changes to assess groundwater vulnerability comprehensively. 
Incorporating different land management scenarios is essential for understanding how various management options influence 
groundwater vulnerability, providing a basis for interventions to reduce contamination risks.

Additionally, the validation of groundwater vulnerability assessments in Ethiopia [11,13,16] has primarily relied on NO₃- data 
alone. For a more comprehensive evaluation, it is essential to include other indicators, such as Total Dissolved Solids (TDS), which also 
significantly impact groundwater quality and its suitability for drinking purposes [7,12].

The main objective of this study is to evaluate the vulnerability of groundwater to pollution under different land management 
scenarios in Bahir Dar City, Ethiopia, using the modified DRASTIC model. The innovative aspects of this study include: 1)The 

Fig. 1. Location of Bahir Dar City from Amhara region and Ethiopia.
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application of the modified DRASTIC model, which integrates eight parameters for a more comprehensive assessment, 2) validation of 
the model using multiple data sources to enhance accuracy and reliability, and 3) evaluation of groundwater vulnerability under 
various land management scenarios (baseline, agricultural expansion, urbanization, and reforestation), providing insights into how 
different management practices influence groundwater susceptibility to pollution. By identifying the effects of land management 
options on groundwater vulnerability, this study offers valuable information for evidence-based decision-making and sustainable 
groundwater management. The findings will contribute to safeguarding groundwater resources and ensuring their long-term avail
ability for domestic, agricultural, and economic uses.

2. Materials and methods

2.1. Study area

Bahir Dar City, covering an area of 21,341.8 ha, is situated in the Amhara region of Ethiopia, adjacent to Lake Tana. Geograph
ically, the City lies between 11◦30′ N-11◦40′ N latitude and 37◦15′ E− 37◦30′ E longitude (Fig. 1), with elevations ranging from 1716 to 
2008 m above sea level (m a.s.l.). Based on data from the Ethiopian Meteorology Institute (EMI) and the Climate Hazards Group 
Infrared Precipitation with Stations, version 2.0 (CHIRPS v2.0), the long-term areal average annual rainfall of the City for the period 
1990–2023 is approximately 1430 mm. The average temperature recorded at Bahir Dar station for the period 1992–2021 is 27.9 ◦C for 
the maximum and 11.9 ◦C for the minimum. The primary water supply sources for the City’s residents include groundwater and 
springs, with limited contributions from Lake Tana [13]. The topography of the study area is predominantly flat; however, hills, rugged 
terrain, and undulating features are also observed in localized pockets. The region’s climate is primarily influenced by the 
Inter-Tropical Convergence Zone (ITCZ), which drives two distinct seasons: a rainy season (June to September) and a dry season 
(October to May) [18].

The Northwestern Ethiopian Plateau, where Bahir Dar City is part of it, predominantly comprises Cenozoic rocks, including Tertiary 
trap (plateau) volcanics, minor Quaternary volcanics, and associated sedimentary deposits [19]. The Lake Tana sub-basin is underlain 
by tholeiitic Miocene-Pliocene basalts, supplemented by smaller amounts of felsites, nonmarine sedimentary rocks, and localized 
basaltic cinder cones and flows [20–22]. In the southern portion of the sub-basin, including the City of Bahir Dar, Quaternary 
scoriaceous basalts dominate the geological landscape [23].

Lake Tana and the majority of Bahir Dar City (77.9 %) (Fig. 2) are situated within volcanic centers formed at the convergence of 
three grabens: Dengel Ber (buried), Gondar (exposed by erosion), and Debre Tabor (reactivated) [24]. Termaber basalts, Alluvium 
deposits, and Ashangi basalts (Fig. 2) characterize about 21.1 % of the City. From the geological map of the City, approximately 1 % of 
the study area is occupied by sections of Lake Tana (Fig. 2). This geological framework indicates that groundwater sources in Bahir Dar 
City are primarily derived from local recharge and regional groundwater flow.

2.2. Descriptions of modified DRASTIC model

The modified DRASTIC model [25] is an enhanced version of the original DRASTIC model Aller [26] developed in the United States. 

Fig. 2. The geological map of Bahir Dar City.
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In this study, the modified DRASTIC model was employed to assess the groundwater vulnerability of Bahir Dar City to pollution. The 
model categorizes areas based on factors influencing groundwater contamination vulnerability.

While the original DRASTIC model incorporates seven physical parameters-Depth to water table, Recharge, Aquifer media, Soil 
media, Topography, Impact of the vadose zone, and Hydraulic conductivity [26]- the modified DRASTIC model includes an additional 
parameter, LULC, to account for human-induced changes [25]. The integration of LULC is critical because changes from vegetative 
cover to cultivated land or urban areas can introduce pollutant chemicals, which infiltrate groundwater or enter boreholes and springs 
through surface runoff.

Studies comparing the DRASTIC and modified DRASTIC models have consistently demonstrated the superior performance of the 
modified version in assessing groundwater vulnerability [16,27,28]. As a result, the modified DRASTIC model has been widely applied 
in groundwater studies both in Ethiopia [9,11,16] and globally [25,28–31].

2.3. Data types and sources for modified DRASTIC model

This study employed eight datasets to map groundwater vulnerability to pollution, building on methodologies used in previous 
studies conducted in Ethiopia [9,16] and internationally [25,27,28]. A detailed description of these datasets is presented below.

2.3.1. Depth to water table
Depth to the water table refers to the vertical distance between the ground surface and the water table [11]. In this study, the water 

Fig. 3. The depth to the water table, net recharge, aquifer, and soil type maps of Bahir Dar City.
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table depth data of 30 wells were obtained from the Amhara Design and Supervision Enterprise and the Bahir Dar City Water Supply 
and Sanitation Office. To transform the point data into a spatial representation (Fig. 3), the Kriging interpolation method was applied 
following literature [9,32,33]. This process enabled the generation of a continuous water table depth layer, which was subsequently 
reclassified into seven vulnerability classes (Table 1). The final reclassified water depth layer contains a 10 m spatial resolution.

The water table depths in the study area ranged from 7.12 to 42.91 m. Depths between 7.12 and 9.1 m were assigned a vulnerability 
rating of 7 (highest vulnerability), while depths exceeding 30.5 m were rated as class 1 (lowest vulnerability), as illustrated in Fig. 3. 
This classification reflects the general principle that groundwater vulnerability to pollution decrease with increasing water table depth.

The analysis revealed an average water table depth of 25.24 m across the study area. Of the 30 wells and springs surveyed, 31.4 % 
had depths exceeding 30.5 m, while only 1.3 % had depths less than 9.1 m (Table 2). The results clearly indicate that shallower water 
table depths significantly elevate the potential for pollution, with the shallowest depths receiving the highest vulnerability rankings.

2.3.2. Net recharge
Net recharge refers to the volume of surface water that infiltrates into the groundwater system [11,26]. Since net recharge data is 

not available for the study area, the study developed a net recharge index following Piscopo method [36], which requires rainfall, slope 
and soil permeability parameters. Due to the unavailability of net recharge data, the applied method was also implemented by several 

Table 1 
Parameters rate and weight classes of modified DRASTIC model.

Factor Weight Range Rate References

Depth to water table (m) 5 7.12–9.1 7 [3,14,26,29]
9.1–12.1 6
12.1–15.2 5
15.2–22.9 4
22.9–26.7 3
26.7–30.5 2
>30.5 1

Net recharge 4 7–9 5 [6,25]
9–11 8
>11 10

Aquifer 3 Massive shale 10 [14,26]
Basalt 9
Massive sandstone 8
Sand and gravel 6
Weathered metamorphic 4
Karst limestone 2

Soil 2 Waterbody and rock 10 [3,26,29]
Regosol 9
Leptosol 9
Luvisol 7
Fluvisol 5
Cambisol 3
Vertisol 2

Topography/slope (%) 1 0–2 10 [9,26]
2–4 9
4–6 8
6–8 7
8–10 6
10–12 5
12–14 4
14–16 3
16–18 2
>18 1

Vadose zone 5 Water body and rock 10 [26,34]
Rubble 9
Loamy 5
Clay loam 3
Clay 1

Hydraulic conductivity (m/day) 3 >39.71 10 [7,26]
20.74–39.71 8
10.45–20.74 6
4.87–10.45 4
1.84–4.87 2
<1.84 1

Land use land cover 5 Built-up area 10 [9,35,34]
Cultivated land 9
Grassland 4
Water body 2
Forest 1
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studies [6,25,37–39]. The detailed procedures for implementing Piscopo method [36] for developing a proxy to net recharge can be 
referred in Baki and Ghavami [6] and Moghaddam [39].

Rainfall data were collected from five meteorological stations-Bahir Dar, Zenzelema, Meshenti, Zege and Tis Abay-and were ob
tained from the Ethiopian Meteorology Institute (EMI). The mean annual rainfall data (1990–2023) for each station were computed 
and interpolated using the Kriging interpolation method [5] within a GIS environment. The Hydro-processing tools, such as SNAP 
Toolbox software, were used to derive the slope map from the Sentinel-1A Digital Elevation Model (DEM). With a 10-m spatial res
olution, this DEM was sourced from the European Space Agency (ESA).

A soil type map of the study area was obtained from the Ministry of Water and Energy (MoWE), while soil properties for various soil 
types were gathered from the Harmonized World Soil Database (HWSD). Using the pedotransfer function, soil permeability for each 
soil type was derived based on soil texture data from the HWSD for three distinct soil layers. Due to the absence of required soil 
property data for many model-based studies, the pedotransfer method was widely used in the scientific community to estimate soil 
properties from textural data [40–42]. The derived soil permeability values for each soil type were subsequently converted into a raster 
format for further analysis.

The final net recharge index layer, which was converted to a 10 m spatial resolution, was reclassified into three sub-classes based on 
the values presented in Table 1. The study found that net recharge indexes within the City ranged from 7 to 14 (Fig. 3), with an average 
net recharge index of 11.09. Specifically, 48.2 % of the study area exhibited net recharge indexes between 9 and 11. In comparison, 
39.1 % of the area experienced net recharge index exceeding 11 (Table 2 and Fig. 3). The remaining 12.7 % of the area had net recharge 
indexes between 7 and 9.

2.3.3. Aquifer
Aquifer media refer to geological formations that function as groundwater reservoirs, characterized by material properties that 

influence contaminant attenuation based on the permeability of each layer. The geological setting determines the aquifer’s perme
ability and its ability to either restrict or permit the entry of pollutants into the groundwater [9]. According to the Ethiopian Geological 
Survey, the aquifer of Bahir Dar City is unconfined, featuring continuous permeable layers extending from the land surface to the base 
of the aquifer. It is typically recharged by rainwater or stream water infiltrating directly through the overlying soil. This study obtained 
aquifer media data in vector format from the Ethiopian Geological Survey. The attained aquifer media map of Bahir Dar City was 
transformed into a 10 m spatial resolution raster using a conversion tool, ensuring compatibility in spatial resolution and charac
teristics with other thematic layers.

The aquifer media data was then reclassified based on its sensitivity to contaminants, as shown in Table 1. The analysis revealed 
that 76.68 % of the City is primarily composed of basalt (Fig. 3 and Table 3), which received a sensitivity rate of 9 (Table 1). This 
composition indicates an elevated risk of groundwater pollution across most of the City’s area.

2.3.4. Soil
Soil media refers to the upper layer of the subsoil, extending to the root zone of plants and regions of organic activity [11]. In this 

study, a soil type map was sourced from MoWE. The identified soil types include Liptosols, Regosols, Luvisols, Fluvisols, Vertisols, 
Cambisols, as well as water bodies and rock formations (Fig. 2). Following the methodology of Aller [26], the rate and weight of each 
soil type were assigned based on their relative significance and contribution to aquifer vulnerability. The soil data were subsequently 

Table 2 
The coverage of depth to the water table and net recharge.

Depth to water table Area in ha Area in % Net recharge Area in ha Area in %

7.12–9.1 285.6 1.3 7–9 2707.0 12.7
9.1–12.1 1340.5 6.3 9–11 10287.9 48.2
12.1–15.2 1585.6 7.4 >11 8346.9 39.1
15.2–22.9 5605.6 26.3 Total 21341.8 100
22.9–26.7 3021.4 14.2 ​ ​ ​
26.7–30.5 2794.4 13.1 ​ ​ ​
>30.5 6708.8 31.4 ​ ​ ​
Total 21341.8 100 ​ ​ ​

Table 3 
Aquifer and soil type areal coverage of the study area.

Aquifer Area in ha Area in % Soil type Area in ha Area in %

Massive shale 1325.9 6.21 Water body and rock 1144.04 5.36
Weathered metamorphic 3070.11 14.39 Regosols 7463.19 34.97
Massive sandstone 219.1 1.03 Leptosol 3847.45 18.03
Sand and gravel 101.7 0.48 Luvisol 5826.04 27.3
Basalt 16,364.01 76.68 Fluvisols 39.62 0.19
Karst limestone 260.97 1.22 Cambisols 277.86 1.3
Total 21,341.8 100 Vertisol 2743.61 12.86
​ ​ ​ Total 21,341.8 100
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classified into distinct categories based on sensitivity to contaminants (Table 1).
The analysis revealed the following distribution of soil types: Regosols occupy 34.97 %, and Luvisols account for 27.3 % of the area. 

In contrast, Vertisols cover 12.86 %, while Fluvisols and Cambisols are found in much smaller areas, covering 0.19 % and 1.3 %, 
respectively. In this area, the water body and rock cover 5.36 % (Fig. 3; Table 3). Consistent with other model parameters, the soil types 
were classified into varying vulnerability categories as detailed in Table 1, and then converted into a 10-resolution raster layer (Fig. 3).

2.3.5. Topography
Topography refers to the characteristics of the land surface, including features such as hills, plains, and mountains [11]. In the 

modified DRASTIC model, the slope map in percentage represents the topographic information. In this study, the slope map was 
developed from the 10-m spatial resolution Sentinel-1A DEM, which was obtained from the ESA. The resulting slope map was then 
reclassified following established literature (Table 1).

The analysis revealed that slope classes 1 and 2 were assigned ratings of 10 and 9, respectively, and together they account for 80.19 
% of the total study area. Slopes greater than 18 % (steeper slopes), specifically those between 16 % and 18 %, cover 2.63 % of the area, 
as shown in Fig. 4 and Table 4. Regarding slope, these findings indicate that the majority of the study area is highly susceptible to 
pollution.

Fig. 4. The slope, vadose zone, and hydraulic conductivity of the study area.
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2.3.6. Vadose zone
The vadose zone refers to the unsaturated area situated below the soil horizon and above the water table [9,26]. The influence of 

the vadose zone was assessed based on the distribution of soil texture and its characteristics, which were sourced from the Amhara 
National Regional State Bureau of Environmental Protection. The soil texture rates were determined based on particle size and 
composition. These characteristics were then used to evaluate the impact of the vadose zone, with ratings assigned based on the criteria 
outlined in Table 1. Subsequently, the developed vadose zone data were converted into a raster layer (10 m resolution) (Fig. 4).

The study area mainly comprises clay and rubble soils, covering 41.13 % and 34.96 %, respectively. The remaining area includes 
loamy soil, clay loam, water bodies, and rock, which collectively account for 23.91 % of the total area (Fig. 4 and Table 4).

Table 4 
The slope, vadose zone, and hydraulic conductivity area coverage of the City.

Slope class Area in ha Area in % Vadose zone Area in ha Area in % Hydraulic conductivity Area in ha Area in %

0–2 10,018.28 46.94 Water body and rock 1144.31 5.36 <1.84 373 1.7
2–4 7095.21 33.25 Rubble 7461.58 34.96 1.84–4.87 1791.4 8.4
4–6 1643.53 7.7 Loamy 23.01 0.11 4.87–10.45 5447.3 25.5
6–8 735.82 3.45 Clay loam 3935.02 18.44 10.45–20.74 9785.5 45.9
8–10 477 2.24 Clay 8777.88 41.13 20.74–39.71 3221.2 15.1
10–12 334.85 1.57 Total 21,341.8 100 >39.71 723.5 3.4
12–14 264.3 1.24 ​ ​ ​ Total 21,341.8 100
14–16 212.29 0.99 ​ ​ ​ ​ ​ ​
16–18 176.97 0.83 ​ ​ ​ ​ ​ ​
>18 383.57 1.8 ​ ​ ​ ​ ​ ​
Total 21,341.8 100 ​ ​ ​ ​ ​ ​

Fig. 5. The LULC type maps of the study area at the baseline (A), agricultural expansion (B), urbanization (C) and reforestation (D) scenarios.
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2.3.7. Hydraulic conductivity
Hydraulic conductivity refers to the ability of aquifer materials to transmit water, thereby determining groundwater flow rates 

under a given hydraulic gradient [11,26]. In this study, hydraulic conductivity data were generated from 15 wells (Fig. 4). A point 
feature shape file was created, and Kriging interpolation method [5,32,33] was applied to generate a continuous hydraulic conduc
tivity surface across the study area. The resulting hydraulic conductivity layer was then classified according to established literature 
(Table 1). Therefater, the classified map was converted to a 10 m spatial resolution layer to match with the characteristics of other 
model inputs (Fig. 4).

The hydraulic conductivity values in the study area range from 0.115 to 71.5 m/day, with six distinct classes, as shown in Fig. 4. 
The results reveal that 45.9 % of the study area exhibits conductivity values between 10.45 and 20.74 m/day, while 25.5 % falls within 
the range of 4.87–10.45 m/day (Table 4). An additional 15.1 % of the area has conductivity values between 20.74 and 39.71 m/day, 
and 3.4 % shows values greater than 39.71 m/day. The remaining 10.1 % of the study area has hydraulic conductivity values below 
4.87 m/day, as detailed in Table 4.

2.3.8. Land use land cover
LULC represents both the physical characteristics of the land surface and its human utilization. To create the LULC map, a Sentinel- 

2 MSI Level-1C image from February 2023 was acquired from the Copernicus hub. Sentinel-2 provides high radiometric, spatial, 
spectral, and temporal resolution, making it ideal for LULC analysis.

A supervised image classification method, utilizing 250 sample points, was employed to classify the satellite image into LULC 
classes. The final LULC map of Bahir Dar City, with a 10 m resolution, contains five primary classes: built-up area, cultivated land, 
grassland, forest, and water bodies. To ensure accuracy, an assessment was performed using 100 reference points collected from field 
surveys and Google Earth imagery.

The overall Kappa coefficient for classification was 0.814 (81.4 %), and the accuracy assessment yielded a coefficient of 0.83 (83 
%), both of which are considered acceptable [43]. The generated LULC map, which represents the baseline scenario in Fig. 5 and 
Table 5, was then reclassified based on the criteria outlined in Table 1. The classification results revealed that cultivated land covers 
60.75 % of the study area, while forest accounts for 17.27 % and built-up areas comprise 14.72 %. Grassland and water bodies cover 
the remaining area, as shown in Fig. 5 and Table 5.

2.4. Rate and weight of parameters for the model

As discussed in section 2.3 and outlined in Table 1, each parameter used in the modified DRASTIC model was rated on a scale from 1 
to 10. Higher values represent the most vulnerable subclasses to groundwater pollution, while lower values indicate the least sus
ceptible subclasses. In addition, weights were assigned to the eight parameters, ranging from 1 to 5, based on established literature 
(Table 1). A weight of 5 corresponds to the most significant parameters in relation to groundwater pollution, while a weight of 1 
denotes the least significant parameters [30].

2.5. Vulnerability index and vulnerability classes

Groundwater vulnerability was evaluated after preparing the thematic layers for each parameter based on their respective ranges as 
well as projection of all output rasters to WGS 1984 UTM Zone 37N reference system. The resulting vulnerability index, derived from 
the modified DRASTIC model, was then reclassified into various vulnerability levels, as shown in Table 6, following the methodology 
outlined in the literature [9,26].

The vulnerability categories indicate the degree of protection needed for groundwater conservation. Areas classified as very high or 
highly vulnerable require the most stringent protection, as they are highly susceptible to a wide range of water pollutants and are 
considered maximum protection zones. Areas with moderate vulnerability are at risk from certain pollutants and are identified as 
requiring high levels of protection [44].

2.6. Model validation

Although groundwater can be contaminated by various physicochemical and biological pollutants, the concentrations of NO₃⁻ and 

Table 5 
The LULC type areal coverage at the baseline, agricultural expansion, urbanization and reforestation scenarios.

LULC type Baseline Agricultural expansion Urbanization Reforestation

Area in ha Area in % Area in ha Area in % Area in ha Area in % Area in ha Area in %

Built-up area 3141.2 14.72 3159.1 14.8 13561.4 63.5 3166.2 14.8
Forest 3685.41 17.27 312.0 1.5 3713.5 17.4 4840.1 22.7
Water body 717.88 3.36 738.4 3.5 746.0 3.5 745.5 3.5
Cultivated land 12,965.3 60.75 17079.7 80.0 2460.8 11.5 11730.3 55.0
Grassland 832.01 3.9 52.6 0.2 860.1 4.0 859.7 4.0
Total 21,341.8 100 21,341.8 100 21,341.8 100 21,341.8 100
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TDS are among the most common and significant in terms of their impact on water quality and human health. As a result, these 
parameters are frequently used to validate groundwater vulnerability assessments [9,11].

In our study, water samples were collected from 15 wells, chosen explicitly from areas with varying levels of vulnerability: very 
high (4 samples), high (4 samples), moderate (4 samples), and low (3 samples). The samples were taken after 6–10 min of pumping to 
ensure consistent water flow. The water was collected in clean plastic bottles, stored in a cold box, and transported to the North Wollo 
Zone Water and Energy Laboratory within 48 h for analysis. In this study, Pearson’s correlation coefficient method was employed to 
assess the relationships between the concentrations of NO₃⁻ and TDS with the groundwater vulnerability following previous studies [6,
7,16]. Before conducting the correlation analysis, a normality assessment was performed using the Shapiro-Wilk test [45,46] to 
determine whether the datasets followed a normal distribution.

2.7. Sensitivity analysis

Sensitivity analysis is a method used to identify the most influential parameters that affect the vulnerability of groundwater to 
pollution, thereby informing effective groundwater management strategies [9,35]. In this study, two renewed sensitivity analysis 
methods were employed: single parameter sensitivity analysis and map removal sensitivity analysis [4,9,16,27,30].

Single parameter sensitivity analysis helps identify the most sensitive parameters within the analytical model. On the other hand, 
map removal sensitivity analysis assesses the impact of each parameter on the vulnerability index by systematically removing one 
parameter at a time [16,35]. The comparison is then made between the vulnerability index obtained after removing the parameter and 
the original index (which includes all parameters) to evaluate the influence of each parameter on the overall model. Both sensitivity 
analysis methods have been successfully applied in recent studies [9,11,35].

2.8. Land management scenarios

This study considered four land management scenarios: baseline, agricultural expansion, urbanization, and reforestation. The 
baseline scenario represents the current LULC and land management conditions, classified from the 2023 Sentinel Image. The agri
cultural expansion and urbanization scenarios were selected based on widely reported projections of future LULC changes, such as the 
expansion of cultivated lands and urban areas, as documented in previous studies in Ethiopia [47,48]. The reforestation scenario was 
chosen in response to ongoing land rehabilitation efforts and tree planting campaigns across Ethiopia [49]. The detailed descriptions of 
these land management scenarios, along with the rationale for their selection, are provided below.

The agricultural expansion scenario suggests that increasing cultivated lands will satisfy the food demands of a growing population. 
To mitigate land degradation associated with this expansion, it is assumed that cultivated lands will be confined to areas with slope of 
less than 15 % [50]. This scenario is based on the assumption that future agricultural expansion in the study region, and Ethiopia as a 
whole, will primarily occur at the expense of vegetative LULC types, such as grasslands and forests, particularly in areas with slopes 
below 15 % [47,48].

The urbanization scenario predicts the expansion of built-up areas, which, according to previous studies, typically occurs at the 
expense of cultivated lands in the study region and Ethiopia at large [47,48]. In this scenario, cultivated lands with slopes below 8 % 
are converted to urban areas.

The reforestation scenario aims to combat land degradation by restricting cultivation in areas with slopes greater than 15 % [40,
50]. In this scenario, cultivated lands on slopes greater than 15 % are converted to forested areas to promote land recovery. The LULC 
maps and the areal coverage for each category of the four land management scenarios are provided in Fig. 5 and Table 5.

2.9. Methods of evaluating the vulnerability of groundwater to pollution under different land management scenarios

This study assessed groundwater vulnerability to pollution under four land management scenarios such as baseline, agricultural 
expansion, urbanization and reforestation. The approach used in this study involved modifying the LULC inputs while keeping all other 
model parameters constant, in line with methods applied in previous research on similar [17] and other environmental topics [40–42,
50].

3. Results and discussion

3.1. Model validation

Based on laboratory tests conducted on samples collected from 15 wells, the groundwater quality analysis revealed that NO₃⁻ and 
TDS values ranged from 1.9 to 13.1 mg/L and 78.8–498 mg/L, respectively (Fig. 6). The mean values for these parameters were 

Table 6 
The vulnerability categories in the applied model.

Vulnerability category Very low Low Moderate High Very high

Vulnerability index score <100 100–145 145–190 190–235 >235
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determined as 6.64 mg/L for NO₃⁻ and 250.13 mg/L for TDS.
Previous studies in the same and similar study areas have reported varying results regarding correlation coefficients. For instance, 

Alamne [13] investigated groundwater vulnerability in Bahir Dar City and reported a correlation coefficient of 0.53 for NO₃⁻. The 
higher correlation coefficient observed in this study can be attributed to the enhanced method employed for estimating net recharge, 
incorporating variables such as rainfall, slope, and soil permeability, instead of relying solely on rainfall, as in Alamne [13]. Additional 
discrepancies in correlation coefficients may stem from differences in the modified DRASTIC model inputs as well as the inclusion of 
LULC parameter in this study.

Nevertheless, Abera [11] study in Mekelle City reported correlation coefficients of 0.681 and 0.702 for NO₃⁻ using the DRASTIC and 
modified DRASTIC models, respectively. Other studies conducted in Ethiopia [16] and globally [6,7,30,31] also reported NO₃⁻ cor
relation coefficients exceeding 0.50. Conversely, lower correlation coefficients (<0.5) have been observed in some global studies, such 
as Moghaddam, Nouri Sangarab [25]. The variations in the strength of correlation coefficients may result from differences in the 
quality of input data, the methodologies employed in model calibration, and the accuracy of the measured data used for model 
validation. Consistent with the TDS correlation coefficient reported in this study, other global studies have also documented values 
exceeding 0.5 [7].

The distribution of NO₃⁻ and TDS concentrations across different geological formations in the study area is summarized in Table 7. 
Four statistical measures-minimum, maximum, mean, and standard deviation-were used to evaluate whether specific geological types 
exhibited the highest or lowest concentrations of NO₃⁻ and TDS. The findings reveal that Alluvium and Basalts associated with volcanic 
centers showed the highest maximum, mean, and standard deviation values for both NO₃⁻ and TDS (Table 7), indicating their sus
ceptibility to elevated concentrations. Termaber Basalts emerged as the third most vulnerable formation, ranking high in terms of 
minimum, maximum, and standard deviation for NO₃⁻ and TDS, suggesting these aquifers face significant risks (Table 7). In contrast, 
Ashangi Basalts consistently displayed the lowest maximum and standard deviation values, indicating a relatively lower degree of 
contamination and variability.

However, the lowest minimum and mean concentrations were observed in Basalts related to volcanic centers and Termaber Basalts, 
respectively, suggesting spatial heterogeneity in contamination levels even within vulnerable formations. These findings underscore 
the prominent role of geological characteristics in influencing NO3

− and TDS concentrations. The elevated levels in Alluvium and 
Basalts associated with volcanic centers may be linked to their lithological properties, such as high porosity and permeability, coupled 
with proximity to contamination sources. Conversely, the lower concentrations in Ashangi Basalts may reflect limited permeability or 
reduced exposure to pollutant sources. These insights highlight the need for targeted management strategies, particularly for for
mations with higher vulnerability, to mitigate risks to water quality and safeguard these vital aquifers.

3.2. Sensitivity analysis

The sensitivity analysis using the single-parameter sensitivity method revealed that the effective weights of LULC (22.97 %) and net 
recharge (22.56 %) exceeded their theoretical weights of 17.86 % and 14.29 %, respectively (Table 8). This indicates that LULC and net 
recharge have a more considerable impact on groundwater vulnerability than other parameters, such as the vadose zone media and 
depth to the groundwater table, which demonstrated effective weights of 14.97 % and 13.31 %, respectively (Table 8).

Further insights were provided by the map removal sensitivity analysis, which also identified LULC and net recharge as the most 
sensitive parameters affecting groundwater vulnerability in Bahir Dar City (Table 9). The average vulnerability indices, calculated 
after sequentially removing thematic layers of LULC, net recharge, aquifer media, vadose zone, hydraulic conductivity, depth to the 
water table, soil, and topography were 129, 141, 152, 142, 151, 149, 162, and 175, respectively-values consistently below the overall 

Fig. 6. The concentration of NO₃⁻ and TDS in Bahir Dar City.
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mean vulnerability index of 184. The sensitivity index values further confirmed the prominent influence of LULC and net recharge, 
with differences of 54 and 42, respectively, followed by the vadose zone (41) and depth to the water table (34). Both sensitivity 
analysis methods consistently highlighted LULC and net recharge as the dominant factors influencing groundwater vulnerability to 
pollution.

The pronounced role of LULC and net recharge in influencing groundwater vulnerability in our study aligns with previous studies. 
For example, a study by Asmamaw and Debie [5] in the same study area identified LULC as a key factor affecting groundwater quality. 
Similarly, Asfaw and Mengistu [9] reported that LULC and net recharge were the most influential parameters affecting groundwater 
vulnerability in the Megech watershed. Other studies conducted in Ethiopia have also emphasized the impact of anthropogenic ac
tivities, including LULC, as primary drivers of groundwater pollution [11,16]. Globally, studies by Al-Rawabdeh [34] and Shirazi [3] 
have further corroborated the significant role of human-induced factors in groundwater pollution.

In this study, the vadose zone and water table depth were also found to have significant impact on groundwater vulnerability. This 
finding aligns with results from Zenebe [16], who identified the vadose zone and water table depth as significant factors in the 
Elalla-Aynalem catchment, Ethiopia. Similarly, a study in Greece by Kazakis and Voudouris [15] demonstrated the influence of the 
vadose zone, aquifer media, and LULC on groundwater pollution.

Conversely, other studies conducted in numerous areas of the globe have also reported differing factors as predominant. For 
instance, Moghaddam [25] in the Ajabshir Plain, Iran, and Huan [51] in Jilin City, China, found hydrological conductivity and soil to 
be key drivers of groundwater vulnerability. Other studies have identified net recharge [30,35,52] and slope [52] as influential factors. 
These discrepancies can be attributed to variations in geological and hydrological characteristics, disparities in land management 
practices as well as varying extent of industrial and agricultural activities across study areas.

3.3. Vulnerability of groundwater to pollution under different land management scenarios

The vulnerability of groundwater to pollution under baseline conditions, as well as scenarios involving agricultural expansion, 
reforestation, and urbanization, is summarized in Table 10 and illustrated in Fig. 7. The results indicate that the total vulnerability 

Table 7 
The concentrations of NO₃⁻ and TDS in different geological types of the study area.

Geology NO₃⁻ TDS

Min Max Mean SD Min Max Mean SD

Alluvium 5.08 11.78 9.5 2.05 176.49 496 358.06 88.52
Ashangi basalts 5.34 7.11 5.93 0.54 209.15 273.17 229.78 20.65
Basalts related to volcanic center 1.92 13.06 6.57 2.4 78.83 497.97 245.24 85.35
Termaber basalts 2.43 11.11 5.55 1.92 109.04 462.9 218.26 69.16

Table 8 
The sensitivity of parameters based on the single parameter sensitivity method.

Parameter Theoretical weight Theoretical weight (%) Effective weight (%)

Max Mean Min

Depth of water table 5 17.86 16.26 13.31 7.57
Recharge 4 14.29 16.33 22.56 52.18
Aquifer 3 10.71 12.35 10.78 9.23
Soil 2 7.14 8.23 7.19 6.15
Topography 1 3.57 4.22 3.37 1.42
Vadose zone 5 17.86 18.52 14.97 7.69
Hydrologic conductivity 3 10.71 12.51 9.97 4.81
LULC 5 17.86 26.9 22.97 55.75

Table 9 
The sensitivity of parameters according to the map removal method.

Parameter Vulnerability index Sensitivity index

Max Mean Min SD Max Mean Min SD

Depth of water table 225 149 54 32.4 49 34 15 3.9
Recharge 223 141 49 33.2 51 42 20 3.1
Aquifer 242 152 55 33.6 32 31 14 2.7
Soil 248 162 63 33.5 26 21 6 2.8
Topography 262 175 64 35.1 12 8 5 1.2
Vadose zone 229 142 51 32.9 45 41 18 3.4
Hydrologic conductivity 235 151 53 32.5 39 32 16 3.8
LULC 203 129 51 29.8 71 54 18 6.5
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values across the study area under these scenarios range from 69 to 274. As outlined in Section 2.5, these vulnerability indices are 
categorized into five classes: very low, low, moderate, high, and very high (Fig. 7, Table 10).

Under the baseline scenario, the average groundwater vulnerability value for the study area is 184. In this scenario, 43.7 %, 32.1 %, 
and 9.7 % of the area fall into the moderate, high, and very high vulnerability classes, respectively (Table 10). Zones of low and very 
low vulnerability account for approximately 13.5 % and 1 % of the study area, respectively.

Consistent with the substantial proportion (85.5 %) of the study area classified as having moderate to very high groundwater 
vulnerability under the baseline scenario, previous studies conducted in similar regions in Ethiopia have reported comparable findings 
[9,11,13]. For example, Alamne [13] observed that 70 % of Bahir Dar City is vulnerable to moderate to very high groundwater 
pollution. Similarly, Asfaw and Mengistu [9] reported that over 85 % of the Megech watershed falls within the moderate to very high 
vulnerability classes. Other studies in Ethiopia, such as those by Zenebe [16] in the Elalla-Aynalem catchment and Abera [11] in 
Mekelle City, also found that a significant proportion of study sites were categorized within the moderate to very high vulnerability 
classes.

The groundwater vulnerability under the baseline scenario was further analyzed with respect to the geological formations of the 
study area (Table 11). Statistical measures, including minimum, maximum, mean, and standard deviation, were employed to deter
mine the geological formations exhibiting the highest and lowest levels of groundwater vulnerability. The analysis revealed that the 
Alluvium and Basalts related to volcanic centers demonstrated the highest maximum, mean, and standard deviation values, indicating 
a greater vulnerability to groundwater pollution. In contrast, the lowest values for these statistics were recorded in the Ashangi Basalts, 
reflecting their reduced vulnerability to groundwater pollution. The Termaber Basalts exhibited the third-highest values for maximum, 
mean, and standard deviation, highlighting this aquifer’s susceptibility to groundwater pollution. Overall, Alluvium and Basalts 
related to volcanic centers emerged as the most vulnerable geological units to groundwater contamination, while the Ashangi Basalts 
generally demonstrated the lowest vulnerability across most statistical measures (Table 11).

Under the agricultural expansion scenario, the areal average groundwater vulnerability index increased to 193, representing a 4.9 
% rise in mean vulnerability compared to the baseline scenario. In this scenario, 42.6 %, 37.9 %, and 12.7 % of the study area fall into 
the moderate, high, and very high vulnerability categories, respectively, while the low and very low categories account for 6 % and 0.8 
%, respectively (Table 10). The implementation of the agricultural expansion scenario led to a significant increase in areas classified as 
high and very high vulnerability, with coverage expanding by 18 % and 30.8 %, respectively. Conversely, this scenario reduced areas 
classified as very low, low, and moderate vulnerability by 27.4 %, 55.1 %, and 2.4 %, respectively.

The implementation of the urbanization scenario increased the average groundwater vulnerability index to 187, reflecting a 1.6 % 
rise in mean groundwater pollution compared to the baseline scenario. The results indicate that 42 % of the study area falls within the 
moderate vulnerability zone, 33 % within the high vulnerability zone, and 11.5 % within the very high vulnerability zone. Addi
tionally, 12.5 % of the area is categorized as low vulnerability, while 1 % is classified as very low (Table 10). Under the urbanization 
scenario, the coverage of very low, low, and moderate vulnerability zones decreased by 3 %, 7.5 %, and 3.9 %, respectively. In contrast, 
the areas classified as high and very high vulnerability increased by 2.8 % and 18.9 %, respectively.

Under the reforestation scenario, the mean groundwater vulnerability index decreased to 181, representing a 1.6 % reduction in the 
areal average vulnerability to pollution. The results indicate that 3.8 % and 14.2 % of the study area fall within the very low and low 
vulnerability zones, respectively (Table 10). The moderate, high, and very high vulnerability classes account for 40.6 %, 31.8 %, and 
9.6 % of the area, respectively (Table 10). The implementation of the reforestation scenario resulted in significant increases in the 
coverage of very low and low vulnerability zones by 262.8 % and 5.5 %, respectively. Conversely, the areas classified as moderate, 
high, and very high vulnerability decreased by 7.1 %, 1.1 %, and 0.8 %, respectively (Table 10; Fig. 7).

Overall, changes in LULC to agricultural and urban uses have increased groundwater vulnerability to pollution, while the refor
estation scenario contributed to a reduction in groundwater vulnerability. Consistent with these findings, previous studies in the same 
study area indicated that LULC is a key factor influencing groundwater quality [13]. The study by Sepehrara et al. (2023) in the 
Hashtgerd Plain, Iran, also demonstrated that projected expansions in agricultural and built-up areas significantly impacted 
groundwater vulnerability. Similarly, LULC has been identified as a critical parameter for groundwater vulnerability to pollution in 
several studies conducted in Ethiopia [9,11,16] and elsewhere in the world [3,15,53]. Additionally, agricultural practices and sewage 
disposal in urban areas have been recognized as major contributors to groundwater pollution in India [54,55].

Table 10 
Areal distribution of groundwater vulnerability classes across the study area under baseline, agricultural expansion, urbanization, and reforestation 
scenarios.

Vulnerability class Vulnerability index Baseline Agricultural expansion Urbanization Reforestation

Area in ha Area in % Area in ha Area in % Area in ha Area in % Area in ha Area in %

Very low <100 226.2 1 164.3 0.8 219.5 1 820.7 3.8
Low 100–145 2874 13.5 1290.1 6 2657.2 12.5 3031.6 14.2
Moderate 145–190 9320.1 43.7 9097 42.6 8960.8 42 8659.3 40.6
High 190–235 6856 32.1 8088.5 37.9 7047.9 33 6782.1 31.8
Very high >235 2065.5 9.7 2702 12.7 2456.4 11.5 2048.1 9.6
Total ​ 21,341.8 100 21,341.8 100 21,341.8 100 21,341.8 100

W.A. Ashagrie et al.                                                                                                                                                                                                   Heliyon 11 (2025) e42660 

13 



4. Conclusion

This study evaluated the vulnerability of groundwater to pollution under four distinct land management scenarios using the 
modified DRASTIC model in Bahir Dar City, Ethiopia. The scenarios examined included the baseline, agricultural expansion, urban
ization, and reforestation scenarios. Single-parameter sensitivity analysis and map removal sensitivity analysis were employed to 
identify the most influential parameters affecting groundwater vulnerability to pollution under the baseline LULC conditions. The 
findings reveal that LULC and net recharge are the most significant factors influencing groundwater vulnerability to pollution under 
the baseline scenario, with an average groundwater vulnerability index of 184. In the agricultural expansion and urbanization sce
narios, the average groundwater vulnerability index increased by 4.9 % and 1.6 %, respectively.

In contrast, the reforestation scenario reduced the average vulnerability index by 1.6 %. These results indicate that agricultural 
expansion and urbanization exacerbate groundwater susceptibility to pollution, while reforestation serves as an effective mitigation 
strategy. Therefore, the study emphasizes the critical need for sustainable land management practices, such as reforestation, to 

Fig. 7. The groundwater vulnerability to pollution of Bahir Dar City at the baseline, agricultural expansion, urbanization and reforesta
tion scenarios.

Table 11 
Groundwater vulnerability indices across different geological formations under the baseline LULC conditions of the study area.

Geology Groundwater vulnerability index

Min Max Mean SD

Alluvium 93 274 179.91 36.96
Ashangi basalts 95 174 128.57 21.22
Basalts related to volcanic center 84 274 188.98 35.34
Termaber basalts 69 254 157.41 27.56
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mitigate groundwater contamination and protect long-term water resources. The finding also showed that the vulnerability of 
groundwater to pollution varies within geological formations. Consequently, incorporating geological considerations into future urban 
expansion plans could further reduce groundwater vulnerability.
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