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Tropical and subtropical forests are important for terrestrial gross primary production. These forests are limited
by nutrient availability and are vulnerable to nutrient enrichment under global change. However, little is known
about how and why belowground biodiversity responds to nutrient enrichment during litter decomposition in
these forests — the fundamental process fuelling nutrients to the soil system while supporting carbon seques-
tration. We conducted a 6-year field microcosm experiment and used a linear mixed effect to investigate the
effects of nutrient enrichment on micro-food webs (i.e., microbes and nematodes) of leaf and root litters in a
subtropical plantation. We found strong effects of nutrient enrichment on diversity and structure of microbes and
nematodes during litter decomposition. For instance, fertilization (nitrogen+phosphorus; N + P) significantly
decreased fungal richness of diversity (OTUs richness) throughout the decomposition process, and shifted the
litter biota toward lower bacterial evenness of diversity (OTUs evenness), with higher relative abundances of
fungi and herbivores at the humus-near stage. Nutrient enrichment also modulated leaf and root litter micro-food
webs in different ways. NP addition had stronger positive effects on leaf litter bacterial oligotrophs:copiotrophs
at the early stage, and stronger positive effects on root litter fungi:bacteria, but stronger negative effects on leaf
litter fungal oligotrophs:copiotrophs at the humus-near stage. Overall, our results indicate that nutrient
enrichment significantly alters microbes and microfauna associated with litter decomposition in subtropical
forests, with important consequences for nutrient replenishment and soil organic carbon formation.

1. Introduction depletion during intensive heavy rainfall events (Du et al., 2020).

Notably, tropical and subtropical regions are the major sinks for atmo-

Tropical and subtropical forests account for approximately one-third
of the Earth’s terrestrial gross primary production (Lewis et al., 2015),
occupying a critical position in the functioning of terrestrial ecosystems.
Native tropical ecosystems are often highly productive and geologically
old environments with limited nutrient availability due to nutrient

spheric nitrogen (N) and phosphorus (P) deposition (Galloway et al.,
2004). It would be expected that human-induced NP enrichment alle-
viates NP limitations in these forests; however, recent meta-analyses and
experimental studies suggest that NP enrichment has moderate to weak
effects on plant growth and exerts no effect at the community level in
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tropical forests (Wright et al., 2018; Wright, 2019; Manu et al., 2022).
The potential reasons may be that most of the deposited P is fixed by
soils and that local plants are adapted to low-nutrient environments
(Wright et al., 2018). However, the underlying mechanisms of this un-
expected response of tropical forests to NP enrichment remain largely
elusive (Wright et al., 2018), which hinders our understanding and
predictions of current and future tropical and subtropical forest
dynamics.

Belowground micro-food webs, complex size-structured networks
formed by trophic groups of organisms (i.e., microbes and nematodes),
are closely related to plant performance (Baldrian et al., 2023; Li et al.,
2023a). These organisms are especially important in litter decomposi-
tion, which both fuel the soil system with nutrients and regulate soil
organic carbon (SOC) formation (Liang et al., 2017, 2019; Sokol and
Bradford, 2019; Craig et al., 2022). Greater microbial evenness allows to
mitigate C loss and N leaching from substrates, while greater soil fauna
richness is associated with higher substrate C and N mineralization (de
Vries et al., 2012; Liu et al., 2023). Depositing organism necromass
accounts for a considerable proportion of SOC (Ludwig et al., 2015;
Liang et al., 2017, 2019; Wang et al., 2021). The organic carbon in
necromass is bound to mineral particles and stabilized as
mineral-associated organic matter (Angst et al., 2024). Compared with
fungal-based decomposition pathway, bacterial-based (especially
r-strategy community with a higher prevalence of copiotrophs)
decomposition pathway is more efficient in microbial necromass pro-
duction (Fierer et al., 2007; Glassman et al., 2018; Shao et al., 2021) and
inhibits the turnover of soil stable C pools (Su et al., 2022).

Previous studies have provided important insights into shifts in bulk
soil biota under NP enrichment in tropical and subtropical forests by
removing litter decomposition residues. These studies have showed that
NP enrichment suppresses nematodes, decreases fungal richness, and
alters the decomposition pathways (e.g. fungal-based or bacterial-based)
(Zhao et al., 2014; Fu et al., 2017; Ma et al., 2022). Indeed, organisms
dwelling in litter and bulk soil are intricately linked through energy and
nutrient exchanges (Bunn et al., 2019; Chen et al., 2020; Lang et al.,
2021). However, examining bulk soil diversity without considering litter
habitats misses a significant portion of belowground diversity in tropical
and subtropical forests, approximately 66 % of nematode diversity and
20 % of bacterial diversity (Powers et al., 2009; Mao et al., 2022). The
unique organism assemblages in distinct habitats (Fierer, 2017; Kita-
gami et al., 2020; Potapov, 2022), together with divergent responses of
different organism assemblages to global change scenarios (Glassman
et al., 2018; Chen et al., 2022a), suggest that litter and bulk soil biota
may exhibit divergent trajectories under global change. However,
knowledge of the response dynamics of litter food webs to NP enrich-
ment is lacking in tropical and subtropical forests, despite studies on leaf
litter microbial communities (Kerekes et al., 2013; Krashevska et al.,
2014); this is particularly true for the food webs in root litter residues.
This knowledge gap hinders our understanding of the effects of NP
enrichment on belowground biota and, consequently, on ecosystem
functions in tropical and subtropical forests.

Chinese fir ranks first in terms of forest plantation area in China and
occupies 36 % of global subtropical plantations (Payn et al., 2015; Qu
et al., 2022). Therefore, we conducted a 6-year litter decomposition
experiment in a Chinese fir plantation to investigate the effects of NP
addition on litter micro-food webs (including bacteria, fungi, and
nematodes). We placed 250 g of leaf litter on the mineral soil surface,
and 50 g of root litter at a depth of 5 cm in the mineral soil. The large
initial litter mass allowed us to trace the litter micro-food webs at both
the early and humus-near decomposition stages. We tested the following
hypotheses: 1) NP addition has stronger negative effects on the
bacterial-based decomposition pathway because NP addition would
decrease litter pH (Gao et al., 2024), diversity and relative abundance of
fast-growing bacteria are more adversely affected by acidification (Li
et al., 2023b), and bacterivore nematodes will correlate with bacteria
(Cesarz et al., 2013; Hedenec et al., 2023) and 2) NP addition modulates
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leaf and root litter biota in different ways, because litter chemistry has
been showed to be an important driver of organism decomposition
pathways (bacterial- or fungal-based), C-use strategy (oligotrophic or
copiotrophic), and the stability of micro-food webs (Ferris and Matute,
2003; Wallenstein et al., 2006; Fierer et al., 2007; Li et al., 2022) and NP
addition increases biochemistry differences between leaf and root litter
residues (Jiang et al., 2018; Chen et al., 2022b; Wang et al., 2022).

2. Materials and methods
2.1. Study site description

The experiment was conducted in a Chinese fir (Cunninghamia lan-
ceolata) plantation at the Qianyanzhou Ecological Research Station,
Chinese Academy of Sciences, Taihe County, Jiangxi Province, southern
China (26°42'N, 115°04°E, 102 m a.s.l.). The mean annual temperature
and precipitation at the site were 17.9 °C and 1471.2 mm, respectively.
The annual atmospheric deposition of N and P at the site was approxi-
mately 20 kg Nha ! y~! and 0.56 kg Pha~' y !, respectively (Zhu et al.,
2016). The soil is a typical red soil, and soil pH in the top 0-10 cm layer
is 4.4.

2.2. Experimental design

A litter decomposition experiment was set up on three separate hilly
slopes (three replicated experimental blocks) in August 2012 (Fig. S1).
There were four 3 x 5 m plots at each block, and resulted in twelve plots
in total. Within each block, the four plots were separated by at least
14 m, with two plots under ambient NP deposition (i.e., control) and two
plots under NP addition (100 kg N ha™' y~! + 50 kg P ha~! y™1). Within
each plot, microcosms for leaf and root litter decomposition were nes-
ted. The range of spatial dependence is approximately 1 m for soil
nematodes (Viketoft, 2013) and generally less than 10 m for microbes
(Saetre and Baath, 2000; Franklin and Mills, 2003). Therefore, we
assumed that all plots were independent.

Leaf and root litter from Chinese fir were collected from an unfer-
tilised area of the plantation. Freshly fallen leaf litter was collected using
litter traps. As obtaining fresh dead fine roots was challenging, we used
living fine roots (diameter < 2 mm) from the 0-10 cm top soil. The roots
were washed on a sieve under running water. Both the leaf and root
litters were not sterilised and air-dried. In each plot, microcosms of leaf
and root litter decomposition treatments were established in polyvinyl
chloride (PVC) tubes (inner diameter, 30 cm; length, 40 cm). To examine
mass loss dynamics during decomposition, 16 PVC tubes were prepared
in each plot, with each PVC tube being employed with either one leaf
litter bag or one root litter bag. The experiment was also designed to
differentiate between the effects of leaf litter and root litter sources on
soil food web. Therefore, the soil O and A horizons at the mesocosm
location were removed to minimize potential legacy effects of the former
leaf and root litters. The decomposition rate of unsterilised leaf litter on
mineral soil in our study was comparable to that of sterilised Chinese fir
leaf litter (by oven-dried) placed on the O horizons (Wang et al., 2007).
Here, we focused on the diversity and structure of microbes and nem-
atodes, which are less affected than organism biomass by the removal
(Lopez-Mondéjar et al., 2015; Liu et al., 2021). Conversion of tropical
forests to plantations had resulted in a 31 % decrease in litter thickness
in the O horizon and a reduction of C content by up to 70 % in the A
horizon (Guillaume et al., 2015; Zhu et al., 2021). Therefore, our find-
ings could provide some insights into understanding the effects of NP
enrichment on litter micro-food webs in extensive tropical plantations,
which are established on degrade sites or involved in harsh topsoil and
litter layers disturbances.

The tubes were vertically inserted into the mineral soil to a depth of
15 cm. Root litter bags (0.05-mm mesh on both sides) containing 50 g of
dry roots were placed horizontally at 5 cm depth of the mineral soil in
the tubes. The mineral soil was then refilled to cover the root litterbags.
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Leaf litter bags (1-mm mesh on the top and 0.05-mm mesh on the bot-
tom) containing 250 g of dry leaves were placed on the surface of the
mineral soil in the tubes. The fine mesh of the root litterbags was
selected to minimize material loss from the litterbags. The initial mass
ratio of leaf litter to root litter was used because the annual leaf litter
input in Chinese fir plantations was approximately 5-fold higher than
the annual fine root litter production at the intact 0-10 cm soil depth
(Yang et al., 2009; Fu et al., 2015). Four small holes were drilled in each
tube, 3 cm above the ground, to prevent excessive retention of water
inside the tube during the rainy season. The 25-cm extension of the tubes
above the soil surface prevented the litter bags from being covered with
mud during heavy rains. The top of each tube was covered with a 2-mm
mesh to prevent disturbance by mammals or birds. Newly shed leaves
were regularly removed from the cover mesh. 0.125 kg ammonium ni-
trate (NH4NO3) and 2.442 kg dihydrogenphosphate (NaHyPO4) dis-
solved in 25 L water were sprayed trimonthly onto the NP plots. Equal
amounts of water were sprayed onto the control plots at the time of NP
addition treatments.

2.3. Sampling and sample processing

One intact root litter bag and one intact leaf litter bag were sampled
from each plot after 2, 7, 12, 18, 24, 36, and 72 months, resulting in 168
samples (7 timesx 2 treatmentsx 2 litter typesx 6 replicates). After about
two months, mosses began growing on the soils in the PVC tubes and
towards the end of the experiments, short herbaceous plants got estab-
lished in most of the tubes. For the litter bags, we did not observe any
ingrown plant material at any sampling time, but there were signs of
root growth in contact with the bags, particularly for the root litter bags
after 72 months of incubation.

Upon collection, litter bags were placed in plastic bags and returned
to the laboratory in a cooler. In the lab, we removed the litter residues
from each bag and carefully homogenised and subdivided the litter in
two portions. One portion was used for nematode extraction, while the
other was further subdivided for analyses of microbial communities
(stored at —20 °C until analysis), litter C, N, P concentration, mass
remaining (oven-dried at 40 °C), and pH (oven-dried at 40 °C and
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Fig. 1. Dynamics of leaf and root litter mass remaining during 72 months of
decomposition. The proportion of litter mass remaining over time was fitted
using the sigmoid model (Rovira and Rovira, 2010; Zhou et al., 2012). The
inserted figure shows the effects of litter type and NP addition on mass
remaining after 2 (early stage) and 72 months (humus-near stage) of incuba-
tion. P-values from mixed models are inset. Significant P-values are presented in
bold. Litter mass remaining data before 36 months were from Wang
et al. (2022).
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ground using a mixer mill). After 72 months of incubation, the mass loss
of both the leaf and root litters reached a limit (Fig. 1). We defined the
timing of the early and humus-near stages of decomposition after 2 and
72 months of incubation, respectively (Berg, 2014; Marian et al., 2018).
Only litter samples after 2 and 72 months of incubation were used for
micro-food webs analysis.

2.4. Extraction of nematodes

Nematodes were extracted using Baermann funnels (Barker, 1985).
The litter sample was placed in a water-filled funnel for 48 hours at 20
°C. The nematodes, collected from a tube connecting with the funnel
were then fixed using a 4 % formaldehyde solution and mounted on
microscope slides for further analysis. Individuals were identified at the
genus level using a reverse light microscope and allocated to bacter-
ivores, fungivores, herbivores, and omnivores/predators based on
mouthpart examination (Yeates et al., 1993). The relative abundances of
these four functional groups and the nematode decomposition pathway
(fungivores:bacterivores) were quantified (Homet et al., 2023).

2.5. PLFA assay

For the analysis of litter microbial communities, we used phospho-
lipid fatty acids (PLFAs), following methods previously described
(German et al.,, 2011). Briefly, the sample for PLFA analysis was
extracted using a chloroform-methanol-phosphate buffer (1:2:0.8).
Solid-phase extraction cartridges (LiChrolut Si 60, Merck) were used to
separate phospholipids, followed by mild alkaline methanolysis. The
free methyl esters of phospholipid fatty acids were analyzed via gas
chromatography-mass spectrometry (Varian 3400; ITS-40, Finnigan).
PLFAs i14:0, i15:0, al5:0, i16:0, i17:0, al7:0, 16:1w7cis, 16:1w9cis,
17:107cis, 18:105¢c, 18:1w7cis, cy17:0, and cy19:0 were used as in-
dicators of bacteria. PLFAs 18:1w9cis, 18:2w6cis, 18:209cis, and
18:3w6cis were used as indicators of fungi. We further used the PLFA
data to calculate the relative abundances of bacteria and fungi in the
microbial community and the fungi:bacteria ratio, also referred to as the
microbial community decomposition pathway (de Vries et al., 2006).

2.6. DNA extraction and amplicon sequencing

For analysis of litter microbial communities, we further used DNA
analysis. Briefly, the 16S rRNA (primer set 515 F_ 907 R) and ITS (primer
set ITS1F_ITS2R) gene sequences were amplified from bacterial and
fungal DNA by PCR using the primers 515 F (GTGCCAGCMGCCGCGG),
907R  (CCGTCAATTCMTTTRAGTTT), ITS1F (CTTGGTCATTTA-
GAGGAAGTAA), and ITS2R (GCTGCGTTCTTCATCGATGC), respec-
tively (Klindworth et al, 2013; Xiong et al., 2017). The PCR
amplification products were purified using a QIAquick PCR purification
kit (Qiagen), and the DNA concentrations were measured using a
NanoDrop ND-1000 (Thermo Scientific). The PCR products were mixed
in equimolar ratios. The samples were then barcoded and sequenced
using Illumina MiSeq (Illumina Inc., San Diego, CA, USA). For each of
these sequences, a length of > 250 bp or a cumulative error of <1 %
was selected to eliminate sequence redundancy. Quality-filtered and
combined sequences were clustered into OTUs at a similarity cutoff of
97 % using UPARSE to acquire higher-quality sequences as representa-
tive sequences and generate a table of OTUs for each litter sample. The
OTUs of bacterial and fungal samples were classified and annotated
based on the SILVA 119 database (http://www.arb-silva.de/download/
—archive/qiime/) at 97 % similarity.

We distinguished the microbial life-history strategies into copio-
trophs (r-strategists) and oligotrophs (K-strategists) according to previ-
ous classifications. The class Betaproteobacteria and
Gammaproteobacteria, and the phyla Bacteroidetes and Firmicutes were
classified as bacterial copiotrophs; the class Alphaproteobacteria and
Deltaproteobacteria, and the phyla Acidobacteria, Actinobacteria, and
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Chloroflexi were considered bacterial oligotrophs (Foulquier et al.,
2024). We also estimated bacterial average ribosomal RNA operon (rrmn)
copy number at community level to determine whether the community
prefers r- or K-strategy. The rrn copy number was obtained from the
rrmDB database, a publicly available and carefully curated resource
providing copy number information for bacteria (Stoddard et al., 2015)
(version 5.9, https://rrndb.umms.med.umich.edu/). The mean rrn copy
number was matched starting from the lowest rank, otherwise higher
rank matches were searched. The abundance-weighted rrn operon copy
number was calculated of all OTUs (Dai et al., 2022). The rrn operon
copy number was significantly and negatively correlated with the bac-
terial oligotrophs:copiotrophs (Fig. S2), indicating that the classification
of bacterial copiotrophs and oligotrophs was reasonable. Fungal oligo-
trophs include the phyla Basidiomycota and Chytridiomycota; fungal
copiotrophs include the phyla Ascomycota and Zygomycota (Li et al.,
2021; Wu et al., 2023). Copiotrophs are enriched in environments with
abundant labile organic substrates, while oligotrophs are enriched in
environments containing recalcitrant C compounds (Lopez et al., 2023).
The ratio of oligotrophs:copiotrophs represents microbial C-use strate-
gies. A larger oligotrophs:copiotrophs ratio indicates that the microbial
community is inclined to utilise recalcitrant C, less efficient in producing
microbial necromass, and thus less mineral-associated organic matter
accumulate efficiency (Fierer et al., 2007; Angst et al., 2024).

2.7. Chemical analyses

The total C and N concentrations of each litter sample were deter-
mined using a Vario Max CN elemental analyser (Elementar, Hanau,
Germany). The P concentration was determined using an Inductively
Coupled Plasma Atomic Emission Spectrometer (Thermo Elemental,
Waltham, MA, USA) after high-pressure microwave digestion. The C:N
and N:P ratios were calculated. Litter pH was measured in a 1:5 litter:
water mixture.

2.8. Data analyses

Diversity indices, including Pielou evenness and Margalef richness
(Fontana et al., 2018; Enquist et al., 2019) were determined for the
microbial communities based on OTUs and for the nematode commu-
nities based on nematode numbers for each genus at the early and
humus-near stages, respectively. To test the main and interactive effects
of NP addition and litter type on litter C:N, N:P, and pH, and the vari-
ables of diversity, relative abundance, decomposition pathway ratio,
and microbial C-use strategy ratio at the early and humus-near stages,
we used a linear mixed effect model. Litter type, NP addition, and their
interaction were defined as fixed factors and block was defined as a
random effect. Mixed effect model was run using the “nlme” package in
R 4.4.1. Before analysis, the variables were loglO-transformed to
approximate normal distribution. To investigate whether the effects of
NP addition were associated with changes in litter chemistry, the
Spearman’s rank correlations between the variables with significant
main effect of NP addition (both leaf litter and root litter data together)
at the early and humus-near stages and the litter chemistry were
calculated with the SPSS version 26.0 (IBM Corp, Armonk, NY, USA).

Succession of micro-food web network in leaf and root litters over
time was analyzed by constructing co-occurrence networks (Qiu et al.,
2021). For each litter type, we analyzed micro-food web network for
each sampling time and for ambient NP and NP addition treatment
separately. The co-occurrence networks were constructed using Spear-
man’s correlation coefficient > 0.6 and P-values < 0.01. A multiple
testing correction using the Benjamini-Hochberg method was applied to
adjust the P-values to reduce the false-positive rate (Jiang et al., 2017).
Negative associations promote stability of communities (Coyte et al.,
2015). The percentage of negative associations was calculated. All
network analyses were realized by the Molecular Ecological Network
Analyses Pipeline (http://ieg2.ou.edu/MENA/).
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3. Results
3.1. Litter residue chemistry

Nutrient enrichment altered litter residue chemistry. For example,
NP addition impacted litter C:N, N:P, and pH (Fig. 2). NP addition
decreased litter N:P at the early stage, but increased litter C:N at the
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Fig. 2. The response of decomposition residues of litter C:N (a), litter N:P (b),
and litter pH (c) at the early and humus-near stages to NP addition and litter
type (leaves, roots). Box plots show mean values (lines inside the box) and
outliers (black dots). P-values from mixed models are showed in each of the
panels. Significant P-values are presented in bold. Data on litter C:N and N:P at
the early stage were obtained from Wang et al. (2022). The black dash line in
panel (c) represents ambient soil pH (4.4).
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humus-near stage. At the early stage, litter pH was higher (6.7 and 6.2
for leaf and root litter residues, respectively). At the humus-near stage,
litter pH became acidic (4.8 and 4.7 for leaf and root litter residues,
respectively), but was still higher than the ambient soil pH of 4.4
(F=46.5, P < 0.001). NP addition increased litter pH at the early stage
and decreased it at the humus-near stage. A significant interaction be-
tween NP addition and litter type resulted in stronger effects on leaf
litter N:P and root litter pH at the early stage, as well as on root litter C:N
at the humus-near stage.

3.2. Characterization of litter micro-food webs

Overall, the effects of litter type were much stronger than those of NP
addition at both the early and humus-near stages, as indicated by the
number of significantly altered variables (Table 1) and the magnitude of
those responses (Figs. 3-5). However, the effects of NP addition were
still outstanding, significantly altering two and six variables at the early
and humus-near stages, respectively.

At the early stage, NP addition significantly decreased fungal rich-
ness by 13 % (Table 1). The decline in fungal richness was associated
with a decrease in Basidiomycota richness (Fig. S3b). NP addition
significantly increased bacterial oligotrophs:copiotrophs by 18 %,
mainly by affecting leaf litter bacterial oligotrophs:copiotrophs (Fig. 5c,
Table 1). Moreover, nematode richness was affected by a significant
interaction between NP addition and litter type (Table 1), with NP
addition having negative effects on root litter but positive effects on leaf
litter. Therefore, no significant main effect of NP addition was noted on
nematode richness across leaf and root litter types. Besides, NP addition
decreased the percentage of negative correlations of leaf (-26 %) and
root (-8 %) litter micro-food web networks (Table S2).

At the humus-near stage, NP addition had more profound effects on
the micro-food webs (Table 1). The evenness of the bacterial community
declined by 3 %, along with a decrease in the dominance of Betapro-
teobacteria and Chloroflexi (Fig. S4, Table S3). A 12 % decline in fungal
richness was associated with a decrease in two less dominant fungal
phyla (Basidiomycota and Chytridiomycota) and one rare taxon of Glom-
eromycota (Fig. S5, Table S4). The increase in fungal predominance
(+19 % relative abundance of fungi and +22 % fungi:bacteria) was due
to the increases in the dominant Ascomycota (Fig. S5, Table S4). A
decline in Basidiomycota and Chytridiomycota further decreased fungal
oligotrophs:copiotrophs by 68 % (Fig. S5, Table S4). However, NP

Table 1
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addition had no significant effect on fungivores. In contrast, NP addition
significantly increased only the relative abundance of herbivores
(+107 %), with Filenchus, Nothotylenchus, and Paratylenchus being
enriched (Fig. S6, Table S5). Moreover, NP addition had stronger posi-
tive effects on root litter fungi:bacteria compared with those of leaf litter
fungi:bacteria (Fig. 5a, Table 1), but stronger negative effects on leaf
litter fungal oligotrophs:copiotrophs than those on root litter oligo-
trophs:copiotrophs (Fig. 5d, Table 1). However, the response directions
of fungal evenness and bacterial oligotrophs:copiotrophs to NP addition
differed between litter types (Figs. 3b, 5c, and Table 1). Therefore, NP
addition had no significant effect on these two variables (Table 1). Be-
sides, NP addition increased the percentage of negative correlations of
root litter micro-food web network (485 %), but slightly decreased the
percentage of negative correlations of leaf litter micro-food web network
(-3 %) (Table S2).

3.3. Relationships between litter residue chemistry and variables of micro-
food webs

Four of the eight significantly affected response variables to NP
addition were associated with litter residue pH, but none of these eight
variables were related to litter residue C:N and N:P (Fig. S7). At the early
stage, fungal richness decreased with increasing litter pH because higher
litter pH was harmful to four fungal phyla (Basidiomycota, Glomer-
omycota, Rozellomycota, and Zygomycota) (Table S6). At the humus-near
stage, a higher relative abundance of fungi with a lower oligotrophic
proportion was related to lower litter pH because copiotrophs (Zygo-
mycota) were enriched at a lower pH (Table S6).

4. Discussion

Recent studies have investigated how plants in tropical and sub-
tropical forests respond to global change scenarios (Manu et al., 2022;
Yang et al., 2022a). However, little is known about how the below-
ground biota drives plant dynamics in these forests (de Paula et al.,
2021). Using NP addition as a global change agent, our results suggest
that nutrient enrichment affects soil biota across multiple trophic levels
associated with litter decomposition in subtropical plantation, with
consequences for the replenishment of nutrients, SOC dynamics, and
plant performance in these ecosystems.

Results from mixed effects models evaluating the statistical significance of effects of litter type (leaves, roots) and NP addition on diversity, relative abundance,
decomposition pathway ratio, and microbial C-use strategy ratio of the micro-food webs at the early and humus-near stages.

Decomposition stage Variable Litter type NP addition Litter type x NP addition
F P F P F P
Early stage Diversity Bacterial evenness 7.63 0.01 L 0.91 0.35 0.25 0.62
Bacterial richness 12.58 0.003 R 0.85 0.37 1.10 0.31
Fungal richness 1.09 0.31 5.28 0.03 | 0.00 0.98
Nematode richness 15.17 0.001 L 2.56 0.13 6.22 0.02
Relative abundance Bacteria 10.93 0.005 L 0.20 0.66 0.13 0.72
Microbial C-use strategy ratio Bacterial oligotrophs:copiotrophs 45.34 < 0.001 L 7.47 0.01 1 59.80 < 0.001
Fungal oligotrophs:copiotrophs 99.31 < 0.001 R 0.09 0.77 0.14 0.71
Humus-near stage Diversity Bacterial evenness 47.79 < 0.001 L 10.07 0.006 | 17.37 < 0.001
Fungal evenness 90.18 < 0.001 L 3.11 0.10 5.44 0.03
Fungal richness 47.46 < 0.001 L 5.18 0.04 | 0.73 0.41
Relative abundance Bacteria 415.11 < 0.001 L 4.32 0.05 1.28 0.27
Fungi 470.82 < 0.001 R 11.49 0.003 1 8.73 0.008
Fungivores 15.35 0.002 L 0.00 0.98 1.24 0.29
Herbivores 11.66 0.004 R 11.23 0.004 t 2.46 0.14
Omnivores/predators 1.93 0.18 2.25 0.15 11.18 0.004
Decomposition pathway ratio Fungi:bacteria 429.32 < 0.001 R 4.80 0.04 1 1.60 0.22
Fungivores:bacterivores 9.41 0.01 L 0.02 0.90 1.59 0.24
Microbial C-use strategy ratio Bacterial oligotrophs:copiotrophs 6.05 0.02 L 1.05 0.32 3.02 0.10
Fungal oligotrophs:copiotrophs 114.95 < 0.001 L 29.48 <0.001 | 1.48 0.24

The F-ratios are presented with their levels of significance. Significant P-values are presented in bold. L, leaf litter with higher value; R, root litter with higher value; 1
NP addition significantly increased value; | NP addition significantly decreased value. The results of these non-significant differences are presented in Table S1.
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Fig. 3. The response of diversity indices for bacterial (a) and fungal OTUs (b), and nematodes (c) at the early and humus-near stages to NP addition and litter type
(leaves, roots). Box plots show mean values (lines inside the box) and outliers (black dots). Results of main effects (litter type and NP addition) and their interactions

are showed in Tables 1 and S1.

4.1. The effects of NP enrichment on diversity and structure of litter
micro-food webs

Contrary to our first hypothesis, we found no evidence that NP
addition had a stronger effect on bacteria-based decomposition pathway
(Table 1). Instead, our results showed that NP addition consistently
shifted litter micro-food webs to low fungal richness during the
decomposition process. The NP addition-induced decline in litter fungal
richness is consistent with findings from a bulk soil study in other
tropical forests (Ma et al., 2022). The different responses of bacterial and

fungal communities to NP addition may be attributed to their divergent
demands on nutrient. Previous study showed that soil fungi typically
have lower nutrient demands than soil bacteria (Leff et al., 2015). The
increase in nutrient availability caused by NP addition may disadvan-
tage soil fungi with large genomes and low guanine-cytosine content
(Zhang et al., 2023). After 6-years of decomposition, our study further
demonstrated that NP addition increased litter fungi:bacteria and
decreased litter bacterial evenness. This shift direction of litter fungi:
bacteria in response to NP addition is opposite to that in bulk soil after
3-years of decomposition from the same experiment design (Fu et al.,
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2017), despite the shift direction of litter bacterial evenness is consistent
with the observation from a study on the bulk soil biota of two tropical
forests (Ma et al., 2022). Moreover, NP addition significantly altered the
relative abundance of herbivores compared with other nematode func-
tional groups in our study, likely because herbivores are more widely
and uniformly distributed (Liu et al., 2019). In contrast, two previous
studies (one in from the same experiment design) on bulk soils from
tropical and subtropical forests showed no significant effects of NP
addition on herbivore predominance (Zhao et al., 2014; Fu et al., 2017).
Collectively, these findings suggest that litter nematode communities, in
the aboveground leaf litter (Chen et al., 2021) and the belowground root
litter, are more vulnerable to nutrient enrichment than those of bulk soil
nematode communities.

In line with a recent report on soils from alpine ecosystems (Hu et al.,
2024), we found that litter pH overrode litter stoichiometry in regu-
lating the diversity and structure of the litter biota (Fig. S7). At the early
stage, the pH increase induced by NP addition inhibited fungal richness;
however, at the humus-near stage, the pH decrease caused by NP
addition promoted the relative abundance of fungi and fungi:bacteria.
This is likely because acidification enhances the competitiveness of
fungi. Existing evidences showed that soil fungi have much higher
tolerance to osmotic stress, compared with soil bacteria (Griffiths et al.,
1998) and show greater resistance to the increasing concentrations of
AL%* jons due to soil acidification (Pina and Cervantes, 1996; Chen et al.,
2015). Thus, soil fungi generally reach maximal growth in acidic

environments (Rousk et al., 2009). Surprisingly, at the humus-near
stage, litter pH was still higher than the ambient soilpH. Although we
did not have data from bulk soil, the strong influence of pH on the biotic
communities and functions observed in the present and previous studies
(Thakur et al., 2014; Li et al., 2023a) suggests that the biota of
humus-near litters may still be different from that in soil. Along with the
notion that litter biota is likely more vulnerable to NP enrichment than
bulk soil biota, we argue that bulk soil biota is insufficient as a general
driver of soil biota-function relationships under global change.

4.2. The asymmetric effects of NP enrichment on leaf and root litter
micro-food webs

In agreement with our second hypothesis, our results showed
nutrient-induced asymmetric effects on leaf and root litter micro-food
webs (Table 1). For the leaf litter micro-food web, NP addition
increased the bacterial oligotrophs:copiotrophs at the early stage and
decreased the fungal oligotrophs:copiotrophs at the humus-near stage.
At the early stage, NP addition accelerated the leaf litter decomposition
more than root litter in our study, leading to the accumulation of
recalcitrant C (Cotrufo et al., 2015). This process favored the prolifer-
ation of oligotrophic bacteria and increased the bacterial oligotrophs:
copiotrophs in leaf litter residue. At the humus-near stage, NP addition
induced a greater decrease of pH in leaf litter residue than in root litter
residue. This is because a greater decrease of pH led to a more
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pronounced decrease of fungal oligotrophs (Basidiomycota and Chy-
tridiomycota) and a more pronounced increase of fungal copiotrophs
(Zygomycota) (Table S6). For the root litter micro-food web, the lack of
changes in microbial life-history strategies by NP addition at the
humus-near stage may be attributed to the relatively small change in pH
caused by NP addition. Instead, NP addition affected the microbial
community decomposition pathway of root litter at the humus-near
stage, as indicated by an increase of fungi:bacteria. This is likely
because a lower pH favors fungal growth (Rousk et al., 2009). The pH of
root litter residue, which was consistent lower than that of leaf litter
residue, was further lowered by NP addition.

NP enrichment improved the stability of the root litter micro-food
web but decreased that of the leaf litter micro-food web at the humus-
near stage (Table S2). Fungi, acting as a “stabilizer”, play a pivotal
role in maintaining the stability of community association networks
(Yang et al., 2022b). Moreover, in terms of microbial interactions within
co-occurrence network, an increase in fungal relative abundance can
further enhance stability of the microbial network (Yue et al., 2023).
Thus, the different effects of NP addition on the stability of leaf and root
litter micro-food webs could be attributed to the stronger positive in-
fluence of NP addition on the relative abundance of fungi in root litter
residue at the humus-near stage.

4.3. The potential influence of NP enrichment on plant growth through
litter biota

Here, we showed three mutually compatible pathways through
which the litter biota modulates plant growth in subtropical forests

under NP addition (Fig. 6). First, the NP addition-induced higher rela-
tive abundance of herbivores at the humus-near stage (Fig. 4b, Table 1)
indicates a harmful structure of the nematode community for plant
productivity, because a higher proportion of herbivorous nematodes
would increase damage to roots (Thakur et al., 2014). Second, the
oxidation of organic N driven by fungi is a pivotal process that produces
plant-available N for plant growth in subtropical coniferous forests (Zhu
et al.,, 2015). Higher fungal biodiversity was associated with higher
mobilisation of organic N (Digby et al., 2010; Li et al., 2019). Then, NP
addition-induced decline in fungal richness at both early and
humus-near stages (Fig. 3b, Table 1) indicates inhibition of litter N
release for plant uptake during the decomposition process. Third, NP
addition-induced shifts in the decomposition pathway and microbial
C-use strategy may decrease soil fertility over a longer period by
reducing SOC formation efficiency. For example, microbial necromass
directly contributes to SOC (Ludwig et al., 2015; Liang et al., 2017,
2019; Wang et al., 2021), and fungal turnover is slower than bacterial
turnover (Glassman et al., 2018). The higher fungal-dominant microbial
community induced by NP addition (Fig. 4a, Table 1) suggests a lower
production efficiency of microbial necromass. Moreover, a higher bac-
terial oligotrophs:copiotrophs is less efficient in producing bacterial
necromass, resulting in less mineral-associated organic matter accu-
mulation, and a lower fungal oligotrophs:copiotrophs confers a lower
conversion efficiency of recalcitrant plant residue C into more stable
microbial necromass C (Fierer et al., 2007; Glassman et al., 2018; Shao
et al., 2021). The higher prevalence of K-strategy bacteria communities
at the early stage and lower prevalence of K-strategy fungal communities
at the humus-near stage induced by NP enrichment further indicates a
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lower formation efficiency of the stable C pool (Fig. 5c, d, and Table 1).
Collectively, the three pathways indicate that shifts in the litter biota
caused by NP enrichment could have negative effects on plant growth.
Therefore, in addition to plant adaptation to native infertile soils (Coley
et al., 1985) and increasing leaf pest pressure (Campo and Dirzo, 2003),
our results present new mechanisms that contribute to the weak effects
of NP enrichment on plant growth in tropical and subtropical forests.

5. Conclusions

Our study revealed that NP addition can largely alter the microbes
and microfauna associated with litter decomposition in subtropical
plantation by shifting the litter food webs to lower fungal richness and
higher relative abundance of fungi and herbivorous nematodes, espe-
cially at the humus-near stage. Globally, 75-135 Pg dm of leaf and root
litters are continuously deposited in the soil every year (Matthews,
1997). Given that litter habitats hold a significant portion of below-
ground biodiversity and that most previous studies of belowground
biota have largely focused on bulk soil, this work advances our under-
standing of belowground biota-function relationships under global
change. Furthermore, our results showed that NP addition modulates
leaf and root litter micro-food webs in different ways. NP addition had
stronger effects on leaf litter microbial life history but stronger effects on
root litter microbial community decomposition pathway. Therefore, our
findings encourage models to include the responses of root and leaf litter
biota together with those of soil biota to generate realistic predictions of
how the structure and function of belowground biota will respond to
ongoing environmental changes.
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