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Abstract
The urban digital twin (UDT) is derived from the original digital-twin concept of a representation of
physical assets. This has left the social component of the city underrepresented in UDTs. Here, we
discuss what this means for the current maturity stage of UDTs and why better representing human
behaviour in UDTs may diversify possibilities to support different types of planning. We con-
template operationalizing the representation of human behaviour by means of agent-based models
(ABMs) integrated with UDTs and illustrate this with two concrete examples of simulating stress
and safety perception in public spaces. One example shows the idea of the UDT as a live data
repository for ABMs, with the ABM adding dynamism, and the other of live feedback between the
city, the ABM and UDT. We discuss several epistemological, conceptual, technical, and ethical
challenges that may be involved in this integration. We conclude with a future agenda to promote
(1) the abandonment of the vision of a UDT as the highly detailed mirror of the city, (2) UDTs fit for
sectoral (strategic) in addition to operational planning, (3) the inclusion of behavioural and social
processes in UDTs by incorporating ABMs, (4) a culture of cumulative research using structured
guided frameworks and reusable building blocks, (5) ABMs with explicit purposes to allow fit-for-
purpose selection in UDTs, and (6) explicitly addressing epistemic, normative, and moral re-
sponsibilities. Thus, though including agents may at some point be a solution for the (currently
lacking) perspective on the role of humans in shaping and being shaped by the city, several re-
considerations in the UDT and ABM communities need to take place first.
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Introduction

Cities around the world are densifying, placing pressure on urban public spaces (Buhaug and Urdal,
2013). These public spaces are crucial for fostering interaction and exchange between people and
thereby impact the quality of the urban environment. Urban planning practices strive to provide
citizens with positive experiences in public spaces (Mouratidis, 2021; Yang et al., 2024). In line with
these efforts, the concept of urban digital twins (UDTs) has been introduced as a potential decision
support tool for municipal authorities to monitor and plan public spaces (Charitonidou, 2022).

The UDT has emerged from the general digital twin (DT) concept, which is a ‘virtual repre-
sentation of physical assets’ (Batty, 2018). This history has two main, interrelated consequences for
the dialogue around UDTs. First, there is an ongoing discussion about the extent to which a
representation of physical assets suffices to effectively aid authorities in decision-making. A
definition of what a UDT should contain remains undecided, both at the conceptual level and in the
technical specifications necessary to classify it as such. Second, present discussions predominantly
emphasize the technical facets of digital twin cities, exemplified by the technologies needed to build
the tool (Lehtola et al., 2022; Weil et al., 2023; Xia et al., 2022; Zhang et al., 2022) and inter-
operability between different systems (Quek et al., 2023; Raes et al., 2021a; Weil et al., 2023).

As a result, one of the unsettled and relatively unexplored issues in the UDT debate is the
underrepresentation of the social components of cities in current UDTs (Ketzler et al., 2020; Lei
et al., 2023; Weil et al., 2023). A solution would be to incorporate virtual citizens, that is, software
agents that can intrinsically experience the digital environment and interact with it, as real citizens
would do. We believe that failing to do so is a shortcoming of current UDTs; it is essential to
recognize that cities are hybrid socio-technical systems. This means that they are not only composed
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of physical assets but also shaped by social factors, including cultural meaning, (spatial) cognition,
social interactions, and governance structures, among others (Elzen et al., 2004).

In turn, these factors are also shaped by the cities themselves. For example, human health is
closely related to experiences of the built environment. Studies have found that these experiences
and perceptions can immediately influence human’s physiological and psychological states such as
stress, perceived safety, and cognition (Krabbendam et al., 2021). Evidence has shown that low-
quality environments (e.g. environmental elements that trigger a sense of disorder, unsafety) elicit
negative responses in individuals, such as stress and concern (Evans, 2003). In contrast, envi-
ronmental elements, such as greenery, have been shown to contribute to positive emotion generation
and stress recovery, and therefore to positive experiences (Li and Sullivan, 2016; Yang et al., 2024).
Thus, when planning interventions in the built environment, it is not sufficient to solely consider
physical elements; public space holds social significance, influences community well-being, fosters
social interactions, and can support or hinder mental health. The example of mental health will serve
as a case for the illustration of the arguments in this paper. A UDT that models cities purely as
physical entities misses the social, psychological and ecological functions these environments serve.

As such, one of the presumed advantages of DTs, to explore and assess the socio-economic and
socio-ecological impacts of proposed actions and changes in the environment (Bauer et al., 2024), is
lost. We argue that integrating social entities and processes in UDTs would allow for assessing how
citizens use public spaces and respond to possible urban design scenarios and how this affects these
citizens. But how could the shift towards UDTs with a social component take shape? Could Agent-
Based Models (ABMs) offer a potential solution? To address these questions, in light of the
complexity of the city, we believe that an interdisciplinary discussion is necessary. Therefore, this
article is written with and includes the viewpoints of scholars from various domains, including
psychology, computer science, geography, health science, data science, and urban planning.

In the upcoming sections, we will first discuss the different perspectives on the UDTs as found in
literature as well as articulated by practitioners in the Netherlands. Second, we will further build our
argument that UDTs lack the representation of human behaviour and contemplate the use of agent-
based modelling as a means to integrate human representation into UDTs. Third, we will elaborate
on two additional ways in which ABMs and UDTs add value to each other: (1) UDTs can serve as a
live data repository for ABMs and ABMs add dynamism to UDTs and (2) live feedback between
ABMs and UDTs can take place. Both sections will provide examples of how agent-based
modelling could be integrated into a UDT to clarify our arguments. Next, we delve into the
epistemological, conceptual, technical, and ethical challenges related to integrating ABMs into
UDTs. We conclude with the discussion of a future agenda.

Urban digital twin: diverse perspectives on its concept

Perspectives in literature

The concept of DTs gained popularity in the early 2000s with the advent of digitizing machinery and
production systems in the manufacturing industry. The term was first presented in a lecture on
product life-cycle management at the University of Michigan by Michael Grieves in 2003. Grieves
(2014) attributed the term to John Vickers of NASA, with whom he had worked closely.

In his whitepaper ‘Digital Twin: Manufacturing Excellence through Virtual Factory Replication’,
Grieves (2014) defines digital twin as ‘a virtual representation of what has been produced’. Ac-
cording to him, the Digital Twin concept model is composed of three main parts: (1) physical
products in real space, (2) virtual products in virtual space, and (3) the connections of data and
information that tie the virtual and real products together.
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Since then, the use of DTs has expanded into various domains, including medicine (Björnsson
et al., 2020), supply chain analysis (Kamble et al., 2022), construction (Opoku et al., 2021), earth-
system science (Bauer et al., 2024; Saltelli et al., 2024), biodiversity (Westerlaken, 2024), and energy
science (Yu et al., 2022), extending to urban-scale digital twins.When it comes to cities, however, their
digital representation is more complicated than that of manufactured products due to the inherent
complexity of a city, as argued byMylonas et al. (2021). Cities, as opposed to manufactured products,
grow, change, and continuously transform themselves together with, and with impact on, their citizens
(White et al., 2015). This makes it harder to decide what should be included in a UDT.

As a consequence, there is no consensus on what a UDT precisely is. Many authors use the
original definition of digital twins and understand a UDT solely as a (3D) digital representation of
the assets in a city (see, e.g. Shi et al., 2023; Lehner and Dorffner, 2020; Bellini et al., 2023; Deng
et al., 2021; White et al., 2021; Weil et al., 2023). Shi et al. (2023) define it as ‘a one-to-one
corresponding three-dimensional (3D) representation of the real city’. In the perspective of Deng
et al. (2021), a UDT entails ‘collecting digital twins of city entities through digital twin tech-
nologies’. Some take into account the temporal dynamics of the assets; for example, White et al.
(2021) state that ‘an ideal digital twin would be identical to its physical counter-part and have a
complete, real-time dataset of all information on the object/system’.

Some of the above are 3D visualisations of cities that offer nothing substantially beyond visualisation
(Masoumi et al., 2023), but are still called ‘Urban Digital Twins’ by their creators and users. Such
examples may incorporate analyses and calculations made using other means such as external geo-
graphic information systems (GIS), and they may offer interactive visualisation in forms such as
adjustable timelines, animation, or layer and symbol toggling, but in these respects they are equivalent to
the interactive cartographic and visualisation products of non-UDT technologies (Robinson et al., 2023).

Few authors explicitly see models as part of a UDT, mostly in the sense of data models rather than
simulation models. For instance, Deren et al. (2021) state, ‘It is generally believed that the “Digital
Twin” is a simulation process that makes full use of physical models, sensors, historical data of
operation, etc. To integrate information of multi-discipline, multi-physical quantities, multi-scale,
and multi-probability’, though they do not provide evidence for this general belief. If simulation
models are mentioned in the context of a UDT, they typically simulate physical processes, such as
floods (Deren et al., 2021), wind (Dembski et al., 2020), ground water tables (Koeva et al., 2023),
and urban heat island effects (Cárdenas et al., 2023). Dembski et al. (2020) also include a simulation
of traffic, and Cárdenas et al. (2023) quantify the human perception of thermal conditions in their
urban heat island computation, showing that a start has been made to include human behaviour in
UDTs, though at an aggregate level.

More recently, some authors have been raising the need to incorporate more complex aspects of
the city in UDTs. El Saddik (2018) acknowledges that physical ‘assets’ of a city should be in-
terpreted as physical entities, which could thus include individual humans, with ‘AI’ providing
intelligent decisions. Nochta et al. (2021) argue that the conceptualization of UDT needs further
refinement, utilizing interdisciplinary insights from both the physical and social sciences.

Perspectives in practice

As the above analysis provides an academic view on UDTs but no perspective on how and for what
purpose UDTs are used in practice, we performed interviews with employees from four municipalities
in the Netherlands, whowere responsible for UDTs as part of their portfolio. Each interview took one to
two hours. The interview questions and selected parts of the answers can be found in Appendix
A. Follow-up questions were asked depending on the answers and questions not relevant anymore in
the light of previous answers were skipped. We do not disclose the names of the municipalities (1) to
preserve the anonymity of the interviewees and (2) because the view of the employee does not
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necessarily reflect the view of the municipality as a whole. Nonetheless, the answers give insight in
diverse perspectives that exist among those that work or plan to workwith UDT in an everyday context.

The group of practitioners was found to hold two different views on the purpose a UDT should
serve. One the one hand, three of the four interviewees indicated that they built UDTs to answer
specific questions about the cities. That is, the UDT is used as a tool that supports decision-making in
relation to a particular issue. For example, in one of these three municipalities a dedicated-purpose
UDT is being developed to support the decision of where to build houses in the coming decades in
the context of city policies. The twin can, for example, be used to test whether different design
scenarios adhere to the policy goal to add eight square metres of greenery in the city to each house.
Using the UDT and its dashboard, the policy makers can identify under which scenario(s) the goals
are met. We call this purpose-specific UDT development.

One of the interviewees, on the other hand, had a different approach to building UDTs. To them, a
UDT is not a question-driven tool, but rather a data concept. The first step in the development is therefore
the creation of a more general open urban platform with a digital representation of the entire city. This
open urban platform serves as a versatile infrastructure to connect multiple data sources and tools,
enabling the testing of multiple questions about different areas and their interactions. The UDT involves
establishing rules for this infrastructure, particularly concerning data standardization, to ensure a common
and shareable view of the city’s physical situation. We call this general-purpose UDT development.

In other words, practitioners all have a focus on the technical aspects of UDTs, but differ in
whether they build a UDT as a custom-developed, dedicated tool for answering specific policy
questions, or as a more general-purpose data platform. In this context, it should be noted that some
of the cities that build purpose-specific UDTs mentioned having the ambition to build a general-
purpose platform that gathers and connects various data (see Appendix A), but that this is not how
they currently operate. Yet, all refer to their use case as a digital twin. Please note that these views are
only a sample of perspectives in the Netherlands and are not necessarily generalizable to the rest of
the Netherlands, let alone the rest of the world.

Our perspective on the current status of UDTs and the consequence for urban planning

From the previous two sections, we can conclude that what people currently call a UDT is a digital
representation of the assets in a city with the technical infrastructure and 3D spatial data models to
store and visualize these assets. UDTs are intended to be general-purpose analytical tools, though
they currently are typically operational for only single case studies. Consequently, in the remainder
of this paper we refer to UDTs as they are used currently in practice, namely, as a digital rep-
resentation of the assets in a city including the technical infrastructure and 3D spatial data models,
intended to have a general purpose.

According to the Digital Twin Maturity Model (Kogut, 2022; Raes et al., 2021b), developed by
DUET (Digital Urban European Twins) (Figure 1), this puts current UDTs at the level of Ex-
perimental twins. That is, current UDTs bring together a small number of structured urban datasets
for a specific use case, which supports decision-making based on historical data.

For decision-making, this means that UDTs are currently best suited for operational planning.
UDTs are supposed to help with the integration of various mono-disciplinary (Batty, 2018) or the so-
called sectoral (strategic) planning and policy-making endeavours (Witte and Hartmann, 2022), but
currently do not achieve this goal. To move to UDTs useful for sectoral, and thus for long term,
planning we do not need evermore accurate geospatial representations or maps of the reality in 3D.
Instead, we need (simple) models that help decision-makers better understand the inter-causal
effects resulting from the nexus of sectoral policies, plans, or design interventions on multiple
outcomes of interests or policy goals. This includes understanding how such interventions are likely
to influence the behavioural and social patterns of users.
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Building upon the DUET framework (Figure 1), we argue that, to support sectoral planning, a UDT
should have at least the Predictive Twins level but ideally the Intelligent Twin level, as a starting point.
As such, further simulationmodelling capabilities – such as those provided byABMs – are required of
a UDT, and they should include human entities, as argued in the introduction.

Humans are lacking in the digital city. How can they be represented?

Agent-based modelling of urban systems

To achieve the Predictive Twins level for UDTs, it is necessary to include not only the static,
physical assets of a city but also the moving and dynamic entities such as vehicles and citizens that
represent the behavioural and social processes in a city. Behavioural and social processes by citizens
are the main drivers of the complex dynamics that characterise cities; as such, a city can be seen as
what is often denoted as a coupled socio-technical or socio-ecological system (Filatova et al., 2013;
Frank et al., 2017). However, current UDT efforts lack a representation of the ‘socio’ component.

Agent-based modelling is a simulation modelling paradigm that enables the representation of
social behaviour by defining agents representing social entities (Crooks and Heppenstall, 2012;
Gilbert, 2020; Schlüter et al., 2017). Agents (A) are computational entities that are immersed in an
environment (E), perceive their environment and other agents, and, based on that, generate a
behaviour that might change their environment, the agent itself or other agents. The environment
consists, in this case, of the physical assets of the city such as infrastructure, green area, or buildings.
The interactions mainly refer to:

· The perceptions a human agent has about its environment (E → A);
· The interactions between the environment and a human agent which involves the adaptation

of the environment by the actors in the pursue of their objectives (A → E); and
· The interactions between human agents which include aspects like communication, nego-

tiation, and collaborations (A → A).

Figure 1. Digital Twin Maturity Model proposed by DUET, adapted from Kogut (2022).
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ABMs can have several benefits for modelling socio-technical systems (Bonabeau, 2002) over
approaches that model the system at an aggregate level, such as differential equations. Firstly,
representing behaviour at the level of an individual is intuitive because this is the level at which we
ourselves operate, and thus easily relate to. Secondly, modelling each individual separately allows
modelling feedback between individuals, path-dependence, and hysteresis effects. Thirdly, it allows
for embodying heterogeneity in the population, which is crucial as the heterogeneity in combination
with feedback may lead to processes like group formation or polarisation (Siedlecki et al., 2016).

AnABM can simulate the mechanisms that drive urban systems, thereby offering insights into how
changes in one area can ripple through to affect the state of the entire system. Even though quite
challenging, agent-based modelling stands out as a particularly effective method for building causal
models of urban environments (Bonabeau, 2002; Crooks et al., 2008). ABMs replicate the actions and
interactions of individual agents (which can represent people, vehicles, institutions, etc.) within a
virtual environment to observe emergent patterns over time. This bottom-up approach to modelling
allows for the exploration of complex scenarios and the examination of potential outcomes of various
policy interventions (what-if scenarios) (Crooks et al., 2008), thus fitting the ambition to move to
Predictive or Intelligent Twins for long-term urban planning and decision-making (Figure 1).

Much of the power of ABMs comes from their ability to discover or explain how processes or
behaviour at one phenomenon scale (Montello, 2015) give rise to effects or further processes at
another scale. The scale at which agents exist and operate drives the emergent patterns seen at the
scale of the environment or collective of agents. UDTs, in contrast, are thought to be most useful at
some singular, high-fidelity modelling scale. With modelling and interactivity, both are ultimately
about observing the collective patterns affected by micro-level components of the model. If, for
example, a UDT can model municipal electrical consumption, it is because it contains smaller
elements, such as households, that each consume energy. Whether or not the UDT in this example
explicitly models its houses in an object-oriented method, the households each have individual
effects that culminate together into a macro pattern, and are thus potentially behaving as agents in an
ABM. This makes UDTs a good fit with ABMs, as opposed to model paradigms that simulate the
macro pattern directly (cf. differential equations).

ABM as causal model for informative UDTs

The formulation of policies in urban planning has increasingly leveraged the power of digital tech-
nologies to foster healthier, more sustainable cities. While recent years have seen the emergence of so-
called data-driven urbanism (Kitchin, 2017), we maintain that urban geographers, planners, and policy
makers should not overlook the explanatory power of ABMs as causal models. In fact, agent-based
modelling emerged as a generative science aimed at contributing to theory building and hypothesis
testing, and thereby providing insights on the mechanisms and dynamics that regulate the simulated
system (Epstein, 2012). ABMs are traditionally built on the formalisation of particular theories or
frameworks (Bianchi and Squazzoni, 2015; Epstein, 1999). As such, the model rules represent (as-
sumed) causal relations, which can also be applied when data about a certain phenomenon is scarce.

Around twenty years ago, modellers across different disciplines started emphasising the ne-
cessity of developing data-driven ABMs (Boero and Squazzoni, 2005) (see Jager and Ernst, 2017;
O’Sullivan et al., 2016, for a discussion on these themes). While the call for the inclusion of data in
agent-based modelling was mainly an appeal to better calibrate, validate, and generalise models
(Janssen and Ostrom, 2006; Rounsevell et al., 2012; Smajgl et al., 2011), some have built agent
mechanisms entirely based on correlations in data instead of causation in theories (for a review:
Smajgl and Barreteau, 2014). This is what we refer to as data-driven ABMs, models in which
aggregated data – for example, trajectory data about people moving in a city by car – guide the
definition of the agent behavioural rules or mechanisms in the ABM. Despite their dissemination,
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these models primarily offer predictive insights (Taghikhah et al., 2021) whose value is inherently
tied to data quality and availability, and built on evidence that is ‘already’ in the past and not
necessarily representative for the future; they lack interpretability and interoperability (Lorscheid
et al., 2019), and they hinder the adoption of common structures across the community (Berger
et al., 2024; Hauke et al., 2020).

Moreover, causal ABMs have been described as more suitable than data-driven ABMs when it
comes to account for emergent behaviours and non-linear dynamics (Lorscheid et al., 2019) that
characterise urban an systems (Crooks and Heppenstall, 2012). As some psychologists (e.g.
Smaldino et al., 2015; Smith and Conrey, 2007) have moved their experiments away from their
laboratories and turned to agent-based modelling, the challenges of simulating human behaviour
across urban space still calls for a deep ‘theoretical engagement’ (O’Sullivan et al., 2016). Not only
should the modelling community refer to theoretical frameworks about urban space (the system) and
human behaviour (agents), but it should also strive to develop new theories regarding how macro-
level patterns may arise from certain behavioural components (see also next section).

For example, one could build a causal ABM of residential choice on the Filtering Theory (Gray
and Boddy, 1979), which posits that, as tenements age and deteriorate over time, they ‘filter’ down
to lower income occupants. The agent behaviour in this model could emerge from the interaction
between the agents’ income and buildings’ characteristics. Additional components derived from
theories in (social) psychology could be included to investigate how these elements together bring
up different (or more plausible) residential mobility patterns. The model could be further calibrated
or validated with data about residential mobility. However, a data-driven ABM exclusively based on
correlations across said data about residential mobility and variables in a census dataset, for ex-
ample, in 2013 could be suitable for making static predictions or analysis, but would not been able to
provide reusable and scalable scientific insights into the dynamics of the phenomenon (Epstein,
2008; Lorscheid et al., 2019). On the contrary, the causal model could be applied to other urban
contexts, used to explore how the population may react to certain interventions (e.g. building
retrofitting), or to refine the filtering theory.

When we advocate for a more robust integration of agent-based modelling in urban policy
making, and, to some extent, in the design of UDTs as more informative rather than purely visual
tools, we refer to a committed shift (back) to causal ABMs that have the strength to provide reliable
projections of the long-term implications of policy interventions and thus value for sectoral planning
(O’Sullivan and Perry, 2013; Pearl, 2009).

Agent architectures

By definition, agents exhibit autonomy, meaning that they can operate without direct intervention of
a central controller (Bonabeau, 2002). Therefore, they should possess social abilities, meaning that
they should be able to interact with other agents. A common way to model agent architectures is as a
reactive agent architecture, in which the cognitive capacities of agents are limited to perceiving their
environment and reacting on it in a predefined way (i.e., action-reaction, or selection rules). More
advanced architectures try to get even more of the internal (cognitive) processes of the agent
captured by the model. This can include defining a proactive agent, wherein agents not only react
but also exhibit goal-directed and deliberate behaviour (Gilbert, 2020).

Among these more advanced architectures, there are various frameworks and levels of ab-
straction for how to model a human agent. One specific area from which inspiration can be taken is
cognitive architectures. Cognitive architectures aim to capture the general principles that describe
and regulate human behaviour in a single framework, at such a level that computer code can execute
that behaviour in specific tasks (see also Anderson, 2007; Newell, 1990). Cognitive architectures
distinguish between the core ‘architecture’ of the human mind – the general principles that guide
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behaviour (e.g. how does memory work in general? How do eye movements work?) – and task-
specific models (e.g. how is memory used in a specific setting). This distinction between core
architecture and specific models is useful in the context of UDTs, where a general-purpose twin
might specify generic principles of behaviour (following the architecture), yet make tweaks to
specific settings. By now, there is a wide variety of cognitive architectures and models inspired by
those to choose from (Oulasvirta, 2019), and there are many other detailed models of cognition that
go even deeper on specific elements (see e.g. Kriegeskorte and Douglas, 2018), or specific ap-
plication domains, such as transportation (Janssen et al., 2022, 2024).

As there is a wide variety of frameworks possible to inform the design of agent architectures, a
point of attention is at what time scale the human (cognitive) processes should be defined. Insights
from the field of learning and education suggest that specification of processes in the order of
multiple seconds – as is common in agent-based models can be useful. Specifically, Anderson
(2002) reviews evidence from the field of learning that (1) learning that happens over longer time
scales can be decomposed into learning over smaller timesteps, (2) such smaller timesteps are
relevant for behaviour over longer time scales, and (3) thatmodelling these small steps is useful as it
provides a formal way to trace behaviour over longer time-scales. For example, how one masters
concepts in algebra over 100s of hours might be decomposed into how one practices smaller sums
over 10s of seconds, and models can help to trace what types of equations go well. Similarly, in
UDTs, behaviour that emerges over longer time scales (such as the flow of traffic) might be de-
composed into smaller behaviours by individual agents (such as their route choices, how fast they
move, whether they decide to stop; which in turn might be influenced by e.g. their goals and their
perception of the world around them).

Anderson (2002) also indicates that, within the field of learning, the most successful models
model behaviour in steps of up to 10 seconds (‘unit task’), but models that model even smaller
timesteps (10 milliseconds to 100 milliseconds) are also gaining momentum. In the context of
UDTs, specifying human behaviour through agent based models in steps of 1 or more seconds
therefore seems a fruitful starting point. In the context of UDTs, integrating such models would also
require measuring human behaviour at such a level of detail that the measurements of the real world
can be linked to the details in the ‘twin’ world. The exact specification and granularity might differ
across applications.

The next two sections describe two concrete benefits we see in the integration of UDTand ABM:
the UDT as a live data repository for ABMs, with ABM adding dynamism, and live feedback
between the city, the ABM, and the UDT. These benefits are illustrated by two corresponding
examples and their conceptual models, in which we show how human behaviour could be simulated
in the integrated framework.

UDT as a live data repository for ABMs, with ABM adding dynamism

Citizens consistently engage with their immediate environment, whether it is through interactions
with one another or with the physical environment around them. When considering the latter, in line
with the ideas of Bellini et al. (2023), a UDT could serve as a live data repository for ABM that
includes geospatial data acquired from diverse sources, such as earth observation and volunteered
observation, (Huang et al., 2024) and traditional 2D and 3D GIS data layers provided by agencies.
Regarding the data provision, we see two aspects as a way forward to leverage digital twinning
for ABMs.

First, for agent-based modelling, an adequate depiction of the street-level environment and how it
is perceived through the eyes of agents on the ground adds granularity (Helbich et al., 2021) to the
ABM. For instance, integrating (open) street view imagery alongside deep learning approaches to
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exact visible features of the streetscape (e.g. cars, trees, and facades) appears to be a valuable
addition to shaping agents’ behaviour that can hardly be obtained through other means.

Second, agents add dynamism to UDTs. The backbone of contemporary digital twins is mainly
concerned with static (or only slowly changing) environmental settings on a large scale (e.g.
buildings, land use, and road networks). The aspiration of UDTs is to include highly dynamic data
via sensor networks. These sensors, either positioned on buildings or mounted on mobile entities
(e.g. public transport vehicles) (Goodchild, 2007), enable the measurement of specific dynamic
conditions that change throughout the day, such as traffic conditions contributing to air pollution
(Zhang and Woo, 2020). Such near real-time data could prove beneficial in-prompting adjustments
to agents’ behaviour (e.g. their route choice). The agents’ interactions with the static and dynamic
aspects show how the environment influences that state of these agents, which adds extra dynamism
to the UDT, thereby depicting a more realistic socio-technical system.

An example to illustrate the UDT as data repository for the ABM

In line with the example presented in introduction, we explain how UDT data might be connected to an
ABM of a student’s stress level that may change while moving on the campus (Figure 2). For a student
agent trying to reach a classroom on campus, the UDT of the surrounding environment is constantly
serving as a repository of data that supports the agent’s cognitive appraisal and behavioural choices
throughout the process. Environmental stressors here might include crowds, noise, or difficulty of
wayfinding (Beermann and Sieben, 2023; Kanakri et al., 2016). These stressors have the potential to
contribute to chronic stress (Norgate et al., 2020). During the interaction between the agent and the UDT,
data on the agent behaviour and stress levels are continuously collected and processed by the UDT.

In the ABM, there is one type of agent: a student. The student’s stress level is included as an agent
attribute that might change based on their interactions with other agents and the environment. The
conceptualisation of stress could be derived from literature of from a survey asking students about
their self-rated stress levels before and after navigating campus to class, or experience sampling
through a dedicated app for phone and smartwatch, or by collecting biological samples (e.g. saliva)
to measure cortisol levels (Van Holland et al., 2012).

Figure 2. UDT as a live data repository for ABM: Agent-based model of a student’s perceived stress while
walking on campus to find a lecture hall, where the environment of the agent is provided with data (static or
live) by the urban digital twin, which senses the real world.
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The agent starts by selecting the destination and planning routes (Figure 2). Herein, the static data
on campus buildings and roads are provided by the UDT and gradually form the agent’s incomplete
cognitive map of the campus. Furthermore, (naturally) dynamic data is measured in the real world,
fed to the UDT, and then to the ABM. This includes the presence of other people on campus, light,
noise and weather conditions, and traffic (Figure 2).

As the agent performs its wayfinding task, it experiences different levels of stress on the basis of the
stressors encountered along the route. Having monitored changes in the agent’s stress level, the UDT
can dynamically connect it with the physical environment attributes in which the agent is currently
surrounded by and further identify potential problems in the environment, such as a lack of clear
signage and nearby green space that could help alleviate stress, or problematic traffic conditions.

Live feedback between the city, the ABM, and UDT

Following Grieves (2014), we consider the three elements of a UDT as (1) the city as a physical
space, (2) its digital representation in the digital space, and (3) the data that connects these two
spaces. The data exchange operates in a loop: information from the physical city feeds into the UDT,
enabling analysis – such as through a dashboard – and decision-making, leading to interventions in
the physical city (Deng et al., 2021). The planning of these interventions is communicated back to
the physical space, through data, generating changes in the physical city (Schrotter and Hürzeler,
2020). These changes, then, are fed back into the UDT, and so forth.

An ABM can be plugged in within this loop. It is integrated in the UDT, just like in the previous
section, but now it becomes part of the feedback with the city. Thus, the agents respond not only to
static and (naturally) dynamic features in the environment, but also to interventions, that is, actuated
dynamics in the real world (Figure 3).

Inevitably, the modelled system in the UDT and the observed one in the city will diverge over
time. There are two potential solutions to this problem. The first solution is to try to avoid divergence
by not having a one-to-one mapping between agents and actual people.We could let the agent(s) that
we monitor in the model be entities that do not have a real-world counterpart. Such agents would

Figure 3. UDT as a way to provide live feedback between the city and the ABM: Agent-based model of a
student’s perceived safety while walking on a campus where the university changes outdoor lighting, where
the environment of the agent is provided with data (static or live and actuated) by the urban digital twin, which
senses the real world.
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serve as inspectors to get a sense of the circumstances in their surroundings (consisting of objects
and agents that do have a real-world counterpart, detected by sensors). The well-being of the
inspector-agent would help to decide if interventions are desired. Such solution could only work if
the inspector-agent does not (or barely) influence the behaviour of the agents around it; similar to
how agent-based modelling is applied in hydrology to follow the flow path of the water and report
on it but not determine it (Reaney, 2008). For example, it would not work if the inspector-agent can
start a riot.

The second solution to try to solve the divergence between UDT and the observed city when it
occurs. This can be done by means of data assimilation, a set of methods to combine model and
observations to obtain a more realistic model state (Carrassi et al., 2018). The rationale behind data
assimilation is to exploit the respective informational content of model and observations, where the
model has a large spatial and temporal coverage but low accuracy, while the observations have a low
spatial and temporal coverage (only at the locations of sensors) but a high accuracy. Data as-
similation is already performed in near-real time in weather forecasts (Lean et al., 2021). It has been
incidentally applied to models of socio-technical systems (e.g. Suchak et al., 2024; Ternes et al.,
2022; Verstegen et al., 2014), but, to the best of our knowledge, never in (near-)real time, a challenge
also recognized by others (e.g. Swarup and Mortveit, 2020).

An example to illustrate live feedback between the city, UDT, and ABM

Our example to demonstrate this feedback loop revolves around an intervention whereby the
university intends to decrease the levels of the outdoor lighting on campus after dark, for cost or
energy efficiency reasons or in an attempt to decrease light pollution for nocturnal wildlife
(Figure 3). An ABM could allow the prediction or projection of changes in students’ behaviours and
perceptions as they relate to crime and safety in response to that intervention.

Agent-based modelling is well suited to modelling perceived safety as it depends on individual
characteristics, as well as interactions with both the environment and other people therein. Indeed,
individuals first have a base level of perceived vulnerability that affects their sense of safety in
ambiguous situations. This can be estimated through some objective variables such as age, gender,
and identification with a minority groups; and some more subjective such as personal history and
previous experience, but also familiarity with the campus itself. Secondly, spatial characteristics of
the environment such as openness, and sense of prospect and refuge (Appleton, 1975) can affect
perceived safety by providing people with the opportunity to ‘see without being seen’.

Interactions with other people also influence perceived safety through, for example, the concept
of ‘eyes on the street’ proposed by Jacobs (1961) whereby the presence of people nearby instills a
sense of security. However, the presence of people can also be seen as a threat depending on whether
they are perceived as potential defenders or attackers (Appleton, 1975; Lis et al., 2024). This
perception depends on the individual levels of perceived vulnerability as well as socio-demographic
indicators, behaviours and the location in which the encounter takes place. In all cases, the decrease
of outdoor lighting will affect visibility and, in turn, the sense of prospect, increases the likelihood of
perceiving others as potentially threatening and, finally, affect the perceived safety.

Several types of agents could be introduced in the model: students, security agents patrolling the
campus, and potential offenders. Students’ perceived safety is recorded as an agent attribute,
alongside their schedule and routine behaviours. A UDT of the campus is populated with campus
buildings including typical destinations (dorms, cafeterias, etc), roads, areas of both prospect (high
visibility and openness), or refuge (no visibility, enclosed space) identified through a spatial survey
(Figure 3). Weather conditions, seasonal rhythms, and time of day would also be integrated as they
influence behaviours and visibility. The model could then run, while agents dynamically record their
perception of safety, based on changes in the environment, interactions with other agents, and
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personal experiences. Besides these static and naturally dynamic environmental features, there
would be features that can be changed through interventions, such as artificial lighting points and
other people (the security agents).

Sensors placed on campus could record real-time lighting levels, number of people (including
people from security), and potential incidents. Through the feedback between real world, UDT and
ABM, problematic areas could be immediately identified and the lighting, and potentially security
patrol, adjusted accordingly. In this way, the intervention could be modulated for different locations
around campus or weather conditions, thereby maintaining students’ perceived safety, ultimately
reducing student stress levels.

Epistemological challenges

Though the previous arguments and examples highlight gains for UDTs integrating ABMs, it is
important to carefully consider the compatibility of the two concepts. Epistemologically and et-
ymologically, the two terms do not immediately match. The term digital twin points towards the
goal of making a digital representation that mirrors the real world (in our case the city) as well as
possible in large detail. ‘An ideal digital twin would be identical to its physical counter-part and
have a complete, real-time dataset of all information on the object/system’ (White et al., 2021). Even
though some recognize that this is ‘an idealization that will never be achieved’ (Batty, 2018), this
mirroring ideal remains the core concept of UDTs.

In contrast, a model is defined as a simplification of a certain object, phenomenon or system
with a specific thematic focus. Herein, this simplification depends on this focus, that is, the
model is more detailed in its central ideas and less detailed or more abstracted in the parts of the
object/phenomenon/system that are considered irrelevant for the given focus (McClelland,
2009). For example, an ABM of route-choice behaviour of pedestrians in a city is detailed in
how the pedestrian picks one street over another, as the other would lead to a different route, but
does not specify whether the pedestrian is on the left or right sidewalk of that street (Filomena
et al., 2022).

In terms of purposes, there also may be a mismatch between UDTs and ABMs. Though many
people mainly think of ABMs (or models in general) as a means to predict the future, prediction is
only one of the possible reasons to model (Epstein, 2008) and the term prediction is often used
erroneously (Verstegen and Scheider, 2023). Models, and ABMs in particular, are used more often
to explain, describe, or stimulate dialogue (Edmonds et al., 2019; Epstein, 2008). As Epstein (2008)
puts it, modelling is making an implicit set of ideas into an explicit explanation or description that
can be discussed; however these ideas do not necessarily reflect reality, as a UDT aims to do.
Another common purpose of ABMs is to project, entailing an ‘if-then’ (or conditional) statement,
for example, to evaluate effects of a potential intervention in the system (Verstegen and Scheider,
2023). A potential intervention is not there yet by definition and also not necessarily expected to be
(as would be the case with a prediction), that is, not a twin. Thus, besides the central thematic focus
(above), the modelling purpose too acts as a kind of filter (Edmonds et al., 2019) that often shifts
ABMs away even more from being an accurate representation as in the ideal twin concept coming
from manufacturing field.

Finally, even when prediction is the purpose, if both the environment and the agents are required
to be fully realistic, this purpose demands ‘[…] modelling a highly complex, dynamic spatial
environment, compounded by the problems of modelling highly complex, dynamic decision
making units interacting with that environment and among themselves in highly complex, dynamic
ways’ (Couclelis, 2001). If possible at all, the costs of the added dimensions of complexity in
models are by many considered to not exceed the benefits (Couclelis, 2001; McClelland, 2009).
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Does the epistemological mismatch between ABMs and UDTs imply that the two should not be
integrated? Or rather that one of the two should revise its epistemological foundations first? Along
with authors from recent publications in the fields of earth system science (Saltelli et al., 2024) and
biodiversity (Westerlaken, 2024), we argue that it is the DT epistemology that requires revision. It
is problematic to present a single view of the world that is based solemnly on what can captured by
technology, that is, by data (Westerlaken, 2024). And, according to Saltelli et al. (2024), DTs of
the earth express a reductionist view that is philosophically untenable. They consider the wish to
make highly detailed digital mirror of the world an old trap, as illustrated by their examples of the
fictional stories of (Saltelli et al. (2024), Carroll, 1893, in: Saltelli et al. (2024)) and (Saltelli et al.
(2024), Borges, 1998, in: Saltelli et al. (2024)) about nations whose maps became so detailed and
large as the territory itself that they were considered useless and forgotten. In line with these
arguments, we call for UDTs to include a wider and less data-driven range of perspectives instead
of a single, detailed mirror.

Conceptual challenges

The agent-based modelling community has shown a propensity to ‘reinvent the wheel’ by adopting
varied terminology for analogous concepts (Achter et al., 2024). This was likely unavoidable
because similar ideas developed in different domains in similar periods (e.g. individual-based
modelling in ecology and multi-agent systems in computer science). Remarkable efforts towards
standardisation, interoperability, replicability, and communication (Grimm and Railsback, 2012;
Hauke et al., 2020; Manson et al., 2020) have been recently made, but challenges remain: modellers
struggle with incorporating and generalising knowledge from existing models into the ones they are
developing (Achter et al., 2024). This is particularly the case for ABMs of socio-technical systems
and for specifications regarding human behaviour and decision-making processes. The latter are
often simplistic, contradictory, poorly detailed (Berger et al., 2024;Wijermans et al., 2023), or based
on different operationalizations of the same theory. For instance, the well-known theory of planned
behaviour (Ajzen, 1991) has seen a multitude of divergent formulations in agent-based modelling
(Groeneveld et al., 2017). As one considers that most of the theories on human behaviour adopted in
the social simulation community have been borrowed from economics (Groeneveld et al., 2017),
modellers should not only embrace more transparent research practices but also revitalise the
relationship with ‘theoretically and/or empirically working scientists’ (Groeneveld et al., 2017:
p. 40) in (environmental) psychology to better substantiate their assumptions. Without this, the
models will not find their way into UDTs.

Another challenge is how to balance the level of detail (in terms of processes/behaviour as well as
space and time) that is needed for model specification with the more high-level abstraction with
which model outcomes need to be represented to be practically useful. All models are an abstraction
from reality, to ensure they address the core scientific of practical issues at hand (McClelland, 2009).
To be scientifically sound, sufficient details should be in there. For example, to capture individual
differences between agents, some parameters need to be included that capture that heterogeneity.
However, in the application of a twin, for example to predict traffic streams, a representation of more
high-level behaviour is needed. Representing that with all details on individual differences might
distract from identifying the more higher-level predictions the model makes. For example, policy
makers might be more interested in predictions about traffic streams, or likelihood of accidents. Yet
they should be confident that the underlying model assumptions are correct, and be able to in-
vestigate those in more detail when needed. It is a scientific challenge to balance the rigour and
details of a model with its ability to communicate more high-level outcomes. This challenge is
present in ABMs in general, but becomes more pronounced in UDTs, as UDTs are more decision-
support focused.

14 EPB: Urban Analytics and City Science 0(0)



Technical challenges

Some claim that the development of social model components in UDTs is less constrained by
technical challenges and more by the lack of our ability to understand and generalise such systems
(Bauer et al., 2024). Still, there are a number of technical challenges that limit the integration of
dynamic models in general (i.e. not only ABMs) into UDTs. The first is the matching of spatial and
temporal extents and resolutions (discretisations) of different existing dynamic models. The
processes that influence an individual’s behaviour might play at the millisecond level, whereas the
change in, for example, traffic conditions or level of building maintenance might occur over
minutes, hours, or weeks. Correspondingly, models that have been built to simulate these processes
will differ in their spatial and temporal extents and resolutions. Therefore, connections between
models or model components may need to be made that they can span several orders of magnitude
(Anderson, 2002). Solutions have been proposed for resolving misalignment between simulation
models, for example, with accumulators as building blocks (Schmitz et al., 2014), but to the best of
our knowledge such solutions are currently not implemented in UDTs. Furthermore, if the feedback
between the city, the ABM and UDT really needs to be ’live’, the ABM has to be fast enough to be
run in real-time, thus matching exactly the processes operating the real system. Although it is
unlikely to have a system without any time-lag, the lag may be short enough to enable timely actions
or interventions in the city (Batty, 2018).

Second, the matching between model components does not only need to happen at the data and
process flow level, as described above, but also at the semantic level (Argent, 2004). If a model
requires daily temperature as an input and a dataset available in the DT provides daily temperature,
this seems a fit; the data can be used as model input. Yet, upon further inspection, the two daily
temperatures may have different meanings. Is it the temperature averaged over the day from sunrise
until sunset, over the day from midnight to midnight, or over the day from noon to noon (as
meteorologists tend to do)? Such problems of semantic interoperability may occur between data and
model or between different models at the level of model concepts, observations, and context, and
could be (partially) solved through semantic annotation (Villa et al., 2017).

Ethical challenges

The concept of UDTs, already now at the Experimental Twin level but even more so at the Predictive
or Intelligent Twin level (Figure 1) when they include ABMs, leverages extensive datasets sourced
from human behaviour. These datasets may include individuals’ movements, activities, and
preferences. These, alongside the mathematical models and algorithms, transcend a mere tech-
nological artefact due to UDTs’ aim to support (political) decision-making on societal problems.
Positioned at the intersection of technology and society, UDT and the potential combination of it
with ABMs emerge as a socio-technological construct that can affect and be affected by power
dynamics involving humans, society, and decision-makers (Nochta et al., 2021). Consequently, this
can give rise to ethical and privacy-related concerns, including issues related to power asymmetry,
data quality and control, and transparency and accountability. For instance, the use of vast amounts
of data raises concerns about the protection of personal privacy (Shahat et al., 2021). Moreover,
ethical concerns arise regarding the risk of misrepresenting or inaccurately reflecting the urban
system due to inherent limitations of the data, models, and algorithms used (Ford and Wolf, 2020).
When using ABM to represent human behaviour in a UDT, besides the risk of modelling it in-
correctly, we must also question the ethics of relying excessively on such models, as in cases such as
predictive policing (Karppi, 2018).

In discussions around data privacy and ethics, three main concerns surface: epistemic, normative,
and moral responsibility (Tsamados et al., 2022). Epistemic concerns relate to fundamental
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questions regarding the nature of the data, its collection and utilisation, and access rights to it (Desai
et al., 2022). In the context of when an ABM is used to represent human behaviour in a UDT,
citizens might lack awareness of the comprehensive extent to which their data is collected, analysed,
and shared, leading to a lack of clarity regarding the depth of the collected data.

Additionally, citizens usually express concerns about how public administrations use their data,
mainly about the intended purpose of the use and the potential of data being shared with third parties
(Trein and Varone, 2023). Cybersecurity emerges as a crucial aspect of this discourse, and in the
context of UDTs cyber-attacks pose significant risks (Ferré-Bigorra et al., 2022). A breach in these
systems could lead to the exposure of sensitive personal information and also potentially enable
attackers to control essential urban infrastructures (Ferré-Bigorra et al., 2022; Lee et al., 2019).

Epistemic concerns highlight the importance of transparency and informed consent in data
practices and also emphasise the need for individuals to have both knowledge and agency in making
informed decisions about the collection and usage of their data.

Normative concerns might arise when ABMs integrated in a UDT leads to discrimination,
inequality, or harm to population sub-groups, or to society overall. One of these concerns is the
quality of data (Swarup and Mortveit, 2020). This directly impacts UDT simulations: when data is
inaccurate and/or biased, it might hinder proper decision-making and future scenario projections
(Nochta et al., 2021). For instance, data coming from citizens such as participatory sensing and
crowdsourced data often suffer from human errors and lack of sensor calibration (Ferré-Bigorra
et al., 2022; Kim et al., 2019; Sanderson et al., 2024). Moreover, unequal distribution of sensor
measurement locations usually favours densely populated areas such as city centres, and also
locations with more engaged citizens produce biased data which as a result raises fairness issues and
marginalisation of certain groups (Robinson et al., 2022; Sanderson et al., 2024). Because sim-
ulation models and algorithms used in UDTs may reflect biases present in the data they are utilising,
this might result in unfair outcomes or worsening existing inequalities in urban planning domains
such as housing, transportation, or healthcare. Furthermore, the ‘black box’ approach to UDT design
(lack of information on the used data, algorithms, and models) can lead to a lack of liability and
understanding of how decisions are made (Barn, 2022). Addressing normative concerns requires
careful consideration of principles such as attention to data quality, adopting open-source ap-
proaches, providing clear documentation of algorithms and data sources, and a balanced repre-
sentation of all stakeholders’ interests in the creation and management of UDTs.

Concerns regarding moral responsibility are related to the duties and liability of various involved
stakeholders and entities engaged in the creation and management of UDTs. This arises from the fact
that UDTs do not belong solely to a single entity or stakeholder but rather involve a collaborative
effort among multiple parties (Batty, 2018; De Matos et al., 2022; Raes et al., 2021b). Although
involved stakeholders and entities share the moral responsibility, identifying the precise respon-
sibility and accountability mechanisms of each party within such a complex ecosystem is chal-
lenging. There is also the question of who will be accountable when the UDT makes a wrong
interpretation and leads to bad decision-making that is detrimental to society and the environment
(Ferré-Bigorra et al., 2022; Tzachor et al., 2022). Regulatory frameworks and governance structures
might be needed to hold individuals and organisations accountable for their actions and can help
enforce transparency and accountability standards.

Considering epistemic, normative, and moral concerns, including accountability, the question
persists: How do we proceed ethically with a UDTwhen it can predict the behaviour of individuals
explicitly linked actual citizens? In sensitive cases such as simulating a crime (Bosse and Gerritsen,
2008), for example, we may turn to a logic of preemptive policing (Egbert and Krasmann, 2019),
targeting individuals solely based on the probability of committing a crime. Dedicated labs, such as
the Ethical, Legal, and Societal Aspects (ELSA) AI labs,1 that have been started in the Netherlands
(Nederlandse AI Coalitie, 2020) may be helpful in this realm. However, the centres are at the starting
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point, and in part separated from technical innovation labs. It would be beneficial if ELSA concepts
were integrated in the development of technology.

Finally, it is important to point out that all the discussion aboutUDTs and the incorporation ofABMs is
based on the assumption that data are available to populate the UDT. However, the reality is that data
availability and quality vary greatly between and within different regions of the world. This disparity
underscores the need for a concerted effort to bridge the data divide (McCarthy, 2022), particularly
between well-resourced areas such as the Netherlands and the less data-affluent regions, notably in the
Global South. UDTs rely on a vast array of data, encompassing everything from geospatial and remotely
sensed data, real-time sensor data for traffic patterns and energy consumption to environmental metrics
such as air and water quality (Kitchin et al., 2015). In countries like the Netherlands, where the data
infrastructure is robust, UDTs can achieve high levels of geospatial data coverage and accuracy, though
even there numerous data integration and management challenges exist (Zheng et al., 2014). In other
European Union countries, the data landscape is more fragmented and inconsistent. This variability
undermines the potential of UDTs by limiting the scope of analyses and the applicability of insights
derived from the ABMs. The challenges are even more pronounced in the Global South, where data
scarcity and quality issues are compounded by infrastructural and technological limitations (McCarthy,
2022). These regions often struggle with the basic prerequisites for DT technologies, such as reliable
internet access and digital literacy among the workforce. Bridging this data divide requires a multifaceted
approach, focussing on technological infrastructure and capacity building. For countries lagging in data
infrastructure, international collaboration and investment in data collection and analytics capabilities are
crucial. Initiatives like open data platforms, public–private partnerships and possibly capacity building for
digital literacy can play a pivotal role in enhancing data availability.

Future agenda

Here, we distil future agenda points that have arisen from our discussion about how ABMs and UDTs
may add value to each other, but also which challenges will be faced in achieving such integration.

1. The vision of a single, highly-detailed mirror of the city should be abandoned. In the quest
to build a digital city usable for everything, there is a high risk of producing something not
useful for anything (Saltelli et al., 2024). The UDT’s technical infrastructure to bring together
different data sources (and potentially models) and visualize them is a positive development.
But the purpose and corresponding vision and technology, and preferably also the used term
(i.e. NOT twin), of UDTs should acknowledge that there is no single, complete view of the city.
Data are incomplete and uncertain, theories are divergent and dependent on scale and purpose.
Accounting for this is technically feasible, as demonstrated by the modelling community, but
requires thought, redefinition, and studies on usability for the decision-making audience2.

2. UDTs should be made more suitable for sectoral (strategic) planning, thereby ideally be
capable of replicating themultitude of different social, environmental, and economic impacts of
proposed changes in the built environment, thus moving beyond the Experimental Twin phase.

3. In this realm, humans and other socio-technical entities should be represented in UDTs,
for which ABMs could be a way forward. We suggest to experiment with UDTs that
include ABMs, as these provide a coherent way to capture behavioural and social processes.
Two ways of integration we suggest, are the UDT as a live data repository and the UDT as
live feedback between the ABM and the city. Benefits can only made tangible when the
integration of UDT and ABM takes shape. Also only then, challenges may be faced that we
did not foresee and may downplay the benefits discussed here.

4. (Agent-based) modellers should foster a ‘culture of cumulative research’, serving in-
teroperability as well as theory development. Hereto, they should establish structured guided
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frameworks (Groeneveld et al., 2017) to better inform and justify their decisions on how to
model human behaviour, by critically engaging with dominant and alternative theories in the
social sciences. This helps the creation of more robust models built on (theorized) cause-
effect relations reflect the complexities of urban life rather than correlations derived from
data. At the same time, they should promote and resort to (behavioural) Reusable Building
Blocks (RBB), namely, blocks that regulate ‘a particular mechanism or process that is
relevant across many ABMs in a certain application domain’ (Berger et al., 2024: p. 2).
Without this, it is unlikely that ABMs and UDTs can ever be meaningfully integrated.

5. (Agent-based) modellers should provide clarity about the purposes of their models. This
clarity is crucial as purpose determines fit-for-purpose of, for example, an ABM already
developed in another study, and thereby validity and acceptance in the community of practice
(Oreskes, 2019). A possible future direction may be to develop a grammar, which is a
formalisation the different kinds of purposes of spatio-temporal model applications in an
information pragmatic sense (Scheider and Verstegen, 2024). Such grammar could automate
the selection of a fitting model within a UDT based on the research question posed in the
study, with the added benefit of making this selection process transparent.

6. Each UDT should make clear who holds the epistemic, normative, and moral re-
sponsibility for what, before including data on individuals in the UDT instead of as an
afterthought. This, in addition to our first point, should reduce the risk that UDTs ‘end up
being used as a political instrument for justification and control, eroding the basic principles
of democracy’ (Saltelli et al., 2024).

The question posed in this study’s title was: Do UDTs need agents? In summary, our answer is:
UDTs are in need of a more diverse perspective on the world, including their (currently lacking)
perspective on the role of humans and other socio-technical entities in shaping the city. Though
including agents may at some point be a solution for this lack, UDTs needs to be thoroughly revised
first, in terms of (planning) purpose, vision, technology, and responsibilities.
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Notes

1. https://nlaic.com/en/bouwsteen/human-centric-ai/elsa-concept/.
2. Though we suggest here to abandon the term UDT, we continue to use this term in the rest of this section for

the sake of clarity and in absence of a new community-agreed term.
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Appendix A

Table 1. Interview questions with selected parts of answers from one of the interviewees.

Interview question Selected quote related to answer

Please describe what your UDT looks like Open urban platform. A centre piece in the digital infra-
structure to connect everybody in an equal digital system,
where they can exchange data, applications, services. The
open urban platform is the infrastructure and we give
meaning/ direction to it by putting the data concept of the
digital twin on top of it.

Does it do simulation? What is the maturity
level?

The municipality, as a government body, will put the rules in
this infrastructure. So, metaphorically, how fast the cars
can drive on this infrastructure, where the traffic lights are.
Done that, different applications will be connected to that
infrastructure.

What is your goal with the UDT? What
problems do you want to tackle with it?

Bringing all different views connected to one single/basic
layer. From the police making point of view, it is very
important that we start by creating a common reality. Are
we looking at the same reality? Yes. Only then create
policies.

Have you already reached this goal? The platform was recently released, though not all goals have
been reached yet.

What are the challenges? To create an equal system where tools can to talk to each
other.

Where do you collect data from? Openly available data.
What is missing from these DTs so that you can
reach your goal?

We want to create rules for the digital infrastructure, and in
the end a to a digital public space.

Do you see opportunities to include humans in
it? Is there a lack of humans?

The digital twin is in the digital-physical dimension. People are
left out because we believe people are an digital urban
community, but not a digital twin. The digital twin is the
first step towards a digital urban community.
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