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A B S T R A C T

Although bio-nanocomposites hold advantages over fossil-based materials, e.g., their price and barrier properties 
do not measure up to those of classic plastic materials, which prevents their wide-spread application. Still, due to 
their biodegradability, and lower environmental impact, bio-nanocomposites have attracted considerable in
terest, especially to address the growing issue of plastic pollution in the environment. In this review, we explore 
bio-nanocomposites as potential future food packaging materials from multiple perspectives. We focus on key 
topics related to their use, including their biodegradability, functional features, and their potential for replacing 
conventional plastic packaging. Furthermore, we highlight significant advancements in bio-nanocomposite 
research, particularly their ability to improve food preservation through antimicrobial and antioxidant proper
ties. In addition, we address critical challenges that must be overcome for the widespread adoption of bio- 
nanocomposites in food packaging. These challenges include regulatory issues, the need for standardized 
legislation, and integration of bio-nanocomposites with existing waste management systems to ensure their 
environmental benefits are fully realized.

1. Introduction

Plastic is abundantly used in society as a result of its lightweight, 
durable nature, and low production costs [1,2], which also has led to 
environmental concerns given its single-use, and fossil-based nature. 
Around 40 % of global plastic production is dedicated to packaging [3], 
and many of it ends up in nature, remaining there for centuries due to its 
slow degradation. This has created a rising demand for alternative 
packaging materials. Bioplastics, a term that covers plastics that are 
either biobased and/or biodegradable or compostable has been termed 
as eco-friendly alternative to traditional fossil-based plastics [4]. It is 
important to mention that bioplastics include non-biodegradable plas
tics and may be derived from fossil fuels [5], and this has led to mis
conceptions about their environmental impact. There are bio-based and 
biodegradable polymers such as polylactic acid (PLA) and poly
hydroxybutyrate (PHB) can help reduce dependence on fossil fuels, and 
contribute to reducing plastic pollution.

For transitioning from conventional plastics to eco-friendly alterna
tives, the properties of such materials must match those of fossil-based 
plastics. Nanocomposites, that are obtained by incorporating and 

dispersing nano-sized substances into polymers have been suggested for 
this purpose [6,7]. Silica, clay, graphene, titanium dioxide, iron oxide, 
and silver nanoparticles have been put into bioplastic matrices, yielding 
significant enhancements, particularly in mechanical strength and bar
rier properties [8–10]. For instance, incorporating montmorillonite and 
multi-walled carbon nanotubes into PLA improved thermal properties 
[11]. However, when applied in food packaging, the nanoparticles must 
be safe for food contact, be biodegradable, not lead to adverse envi
ronmental effects, and be economically feasible. Therefore, in this study, 
we focus on materials of which both the base polymer and the particles 
are comprised of bio-based and biodegradable substances.

This review focuses on key topics related to the potential application 
of bio-nanocomposites in food packaging, highlighting key advance
ments and matters that require further exploration. It summarizes the 
progress in bio-nanocomposite design, specifically focusing on food 
packaging applications, highlighting functional features. The final sec
tions discuss key points regarding the future use of these materials from 
both technological and societal perspectives.
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2. Biobased and biodegradable plastics

Table 1 compares the properties and costs of fossil-based and bio
based plastics. Bio-based plastics, particularly PLA and PHB are 
competitive with fossil-based plastics in terms of mechanical properties 
but require improvements in barrier properties compared to the current 
industrial benchmark, PET.

While bio-based and biodegradable plastics have some features that 
are comparable to those of ‘regular’ plastics, their higher costs remain a 
constraint. They are expected to become price-competitive in the future, 
driven by fluctuating and most probably increasing oil prices, the finite 
nature of fossil resources, and advancements in production technologies. 
Besides, the properties of biodegradable plastics are still in need of 
improvement. This can be achieved by adding plasticizers to enhance 
flexibility, although this may be at the expense of tensile strength and 
gas barrier properties [23]. Multilayer films can significantly improve 
barrier properties, but challenges remain in creating fully biodegradable 
options and in recycling these complex structures [24]. Nanoparticles 
hold the potential to improve polymer material properties because the 
extent of their influence goes beyond their size. In a recent paper, we 
connected the various scales that are relevant in nanocomposite design 
and highlighted the interphasial layer effects that stem from the pres
ence of nanoparticles, and are transferred to the bulk material to an 
extent much greater than the mass percentage used in the formulation 
would suggest [6,25].

3. Why bio-nano?

Bio-nano particles can be sourced from various waste or side streams 
of agrifood products, and are thus wildly available. Due to their 
renewable nature they are a sustainable option, that is if their produc
tion can be carried out in a sustainable way [25,27]. Bio-nanoparticles 
can be produced from the polysaccharide structures they are part of 
through simple methods, such as ultrasonication and acid treatments. 
Thus these particles can be a relevant choice for enhancing biodegrad
able plastics. Their nanometer size leads to a high surface area available 
for interaction with the matrix material thus possibly improving 
strength. Compared to inorganic or metallic nanoparticles, bio-based 
particles are less harmful to ecosystems and organisms [16,23,26].

Incorporation of bio-nanoparticles has led to considerable improve
ments in biodegradable plastics as summarized in Table 2. Bio- 
nanoparticles not only improve the mechanical properties, flexibility, 
and biodegradation of bioplastics but also offer other functionality like 
antimicrobial and antioxidant effects [15,28]. For example, chitin 
nanocrystals and chitosan nanoparticles have been shown to enhance 
the mechanical strength of films and have antioxidant capacity, and 
their properties can be tailored which increases their versatility [32,33].

From the perspective of mechanical properties, uniform distribution 
of nanoparticles is preferred. To mitigate nanoparticle agglomeration, 
surface modification was used [32,33]. The extent to which material 
functionality is affected depends on the particle size; small particles 

create bigger effects. For example, chitin nanocrystals have up to five 
times higher antioxidant activity compared to crude chitin powder, and 
this is also a function of the position of the nanocrystals (1 to 5 %) in PLA 
films, with particles at the surface giving stronger effects [34]. The 
particles should not be released, which was confirmed using food sim
ulant media on chitin-reinforced PLA [35], implying that non-migratory 
active packaging concepts may be within reach. Current active pack
aging concepts often rely on release of phenolics, essential oils, or syn
thetic antioxidants (BHA, BHT) from the food package [36–38] which 
may lead to negative sensory effects. Additionally, such ingredients may 
cause discoloration during processing or storage. Using bio-nano-fillers, 
such as chitin nanocrystals and chitosan nanoparticles, which inherently 
possess antioxidant and antimicrobial properties, is expected to prevent 
undesired sensory changes in packaging during storage [28–34] due to 
their no-migratory behavior. This underscores the potential of 
enhancing the functional properties of biodegradable polymers on 
various aspects including long-lasting and stable antioxidant and/or 
antimicrobial effects.

4. Beyond active packaging

In today’s world, ‘smart’ systems have become an integral part of our 
lives, and that will become more and more the case for food packages 
that rely on active packaging in combination with intelligent monitoring 
of foods during their life time (Fig. 1). These packages offer information, 

Table 1 
Mechanical, thermal, and barrier properties of fossil-based and biobased plastics. Data from [12–22]. LDPE: Low-density polyethylene, PET: Polyethylene tere
phthalate, PP: Polypropylene, PS: Polystyrene, PLA: Polylactic acid, PHB: Polyhydroxybutyrate, PCL: Polycaprolactone, PBAT: Polybutylene adipate terephthalate, 
PBS: Polybutylene succinate.

Property LDPE PET PP PS PLA PHB PCL PBAT PBS

Tensile strength (MPa) 10–12 55–79 15–27 24–60 37–74 20–44 10–30 14–24 32–42
Elongation at break (%) 300–500 15–165 100–600 1.6–2.5 0.5–9.2 5–10 200–1250 80–500 30–275
Oxygen permeability (cm3/m2 day bar, at 

23 ◦C, 50 % RH)
2000 10 800 1500 150 250 530 450 110

Water vapor permeability (g/m2 day, at 
23 ◦C, 85 % RH) 1.4 4 0.8 20 30 12 47 27 37

Glass transition temperature - (Tg) (◦C) − 110 76 − 20 90 55 9 − 62 − 25 − 30
Transparency (Clarity) High Excellent Poor Excellent High High High High Poor
Price (€/ton) 1510–1580 1160 1460–1660 2050–2140 2500–4000 4000–15,000 3500–7500 3500–4500 5250–5750

Table 2 
Bio-nanocomposite examples made of various polysaccharide nano-fillers and 
biodegradable plastics.

Nano-filler Source Film 
type

Achieved properties Reference

Lignin NPs Rice husks PLA

▪Enhanced elongation at 
break 
▪Providing UV-blocking 
property 
▪Antioxidant activity

[29]

Cellulose 
NCs

Not 
specified PHB

▪Improved gas barrier 
properties 
▪Higher glass transition 
temperature

[30]

Starch NPs Cassava PLA

▪Improved polymer’s 
thermal stability 
▪Slight increases in the 
elastic modulus and tensile 
strength

[31]

Chitin NCs Sea 
crustaceans

PLA

▪Enhancing mechanical and 
barrier properties 
▪Antioxidant and 
antimicrobial activities

[15]

Chitosan 
NPs

Sea 
crustaceans PLA

▪PLA’s degree of 
crystallization improved 
▪Antioxidant and 
antimicrobial activities

[28]

*NPs; nanoparticles, NCs; nanocrystals.
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for example, through a QR code or a NFC (near-field communication) 
tag, enabling consumers to access information about the product, 
including its origin, nutritional content, or recommended use [39]. 
Beyond this, the packaging is evolving to include sensors and indicators 
that provide real-time information about the freshness of the contents, 
helping consumers determine when a product is no longer safe to con
sume—surpassing the limitations of traditional ‘use before’ dates. These 
innovations are expected to be particularly relevant for the fast moving 
consumer goods sector, where ensuring product freshness and safety is 
critical. This can enhance supply chain efficiency and sustainability, 
which are key challenges in this industry, although it is good to mention 
that there are still legal matters that need to be solved. It is good to 
realize that current indicators are made of non-renewable and non- 
biodegradable synthetic materials [40–42], which are not easily sepa
rated from packaging. Recent developments have led to bio-based and 
biodegradable sensors, indicators, and data carriers that do not need to 
be removed [43–46], which is an important step toward the develop
ment of fully biodegradable smart packages.

For future food packaging design, technological advancements as 
well as environmental concerns need to be taken into account. Plastic 
pollution can be seen as a result of our failure to predict the impact of 
this break-through invention. Packaging materials will be developed to 
be more in accordance with the food properties that need to be main
tained, and the needs of the consumer. Anticipating this change now and 
designing packaging in harmony with nature will need to be prioritized.

5. Integrating bio-nanocomposites in modern food packaging 
practice

In recent years the prices of bioplastics have notably decreased 
although they are high compared to conventional plastics (Table 1), 
which prevent their use. Still, there are areas in which bioplastics can be 
used e.g., as part of multilayer packaging that combines the strengths of 
diverse materials to create protective, functional barriers [47–51]. By 
incorporating bio-nanocomposites it is possible to enhance gas barrier 
functionality, as well as create additional functionality such as antimi
crobial protection. Still, making multi-layered materials and recycling 
them is a complex matter [52,53].

In essence, we need to rethink packaging, giving equal importance to 
end-of-life considerations and the required functionality during their 
life-time. Extending the shelf life of high‑carbon-footprint foods, such as 

meat and its derivatives, through advanced packaging offers noteworthy 
potential for reducing food waste and enhancing sustainability (clearly, 
not producing these foods would make an even bigger sustainability 
impact). A Life Cycle Analysis (LCA) study by Pauer et al. (2020) 
revealed that the carbon footprint of bacon stored in flexible multilayer 
packaging is 54 times greater than the packaging itself [54]. This un
derscores the room for advanced packaging design to curb environ
mental impact, away from replacing conventional plastics with bio- 
nanocomposites which is a boost in this direction [55]. For recent in
formation, we refer through to papers on biodegradable multilayer 
packaging [55–58].

6. Safety and legislation

Global organizations like FAO, WHO, EU, and FDA have 
nanotechnology-related regulations for the food industry, yet specific 
legislation directly addressing bio-nanocomposite packages remains 
limited. The safety and inertness of Food Contact Materials (FCMs) were 
first outlined in Commission Regulation (EC) No 1935/2004, empha
sizing that materials must not release harmful substances into food or 
alter its composition, taste, or odor [59]. Additional EU regulations, like 
Commission Regulation (EC) No 450/2009 [60], require a case-by-case 
evaluation for materials containing nanomaterials. Although Commis
sion Regulations (EC) No 975/2009, 1282/2011, and 202/2014 for 
plastic materials do not directly address bio-nanocomposites, they do 
specify migration limits and conditions for nanomaterial use [61–63]. 
Commission Regulation (EU) No 1245/2020 provides detailed guide
lines on migration limits for chemical substances in food (simulants): Cu 
(5 mg/kg), Zn (5 mg/kg), and Mg (0.6 mg/kg) [64]. The fact that 
nanoparticles have very low migration tendency compared to the 
chemicals mentioned earlier, this positions them favorably for applica
tion in food packaging.

7. Integration with waste framework directive

Another vital aspect to consider is the end-of-life options for these 
materials. Governments and international organizations have started 
paying more attention to plastic pollution, and production and disposal 
guidelines have been published [65–68]. According to the Waste 
Framework Directive issued by the European Commission [65], the 
majority (86 %) of plastic waste generated in Europe is handled using 

Fig. 1. Biodegradable smart packaging design.
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linear methods [69], and is thus not part of circular solutions or econ
omies (Fig. 2).

Bio-nanocomposites tap into at all stages of the Waste Framework 
Directive, including composting as a viable end-of-life option. The waste 
management hierarchy emphasizes resource reduction by product 
design strategies [65], that e.g., are aimed at lightweight materials, 
extending lifespan, and promoting reuse. Bio-nanocomposites are ex
pected to have improved properties, possibly leading to a reduction of 
packaging material. The previously mentioned additional functional
ities, are expected to contribute to sustainability by reducing food waste. 
It is good to keep in mind that use, recycling, energy recovery, and 
composting of bioplastics (for which substantial investments are 
needed) is still in the early development stages. The next steps that need 
to be taken for the nanocomposites are: 

(i) Examining whether degradation is influenced by the presence of 
nanoparticles.

(ii) Assessing to what extent the mechanical properties are preserved 
in time.

(iii) Evaluating the material’s performance from a food safety 
perspective.

Some positive results have been obtained with bioplastic films 
reinforced with silk nanocrystals that show delayed degradation, and 
maintained mechanical properties after repeated recycling [70,71], but 
overall the information is limited. The main reasons for bioplastic’s 
status as favored polymer are its biodegradability: these materials can be 
broken down into water, carbon dioxide, and biomass within a couple of 
weeks under industrial composting conditions [72,73]. Even if their 
disposal is mismanaged or they end up in landfills, they will biodegrade 
within a matter of months to years, which compares favorably to con
ventional plastics that can remain for hundreds of years without 
considerably breaking down. Energy recovery by incineration is also an 
end of life option for bio-nanocomposites. For example, the thermal 
energy recovery of PLA (~20 MJ/kg) is comparable to conventional 
plastics (PET: ~22 MJ/kg, PVC: ~18 MJ/kg) [74,75], with no sub
stances with toxicological significance produced [74].

The fact that bio-nanocomposites offer a number of end-of-life op
tions, which may seem advantageous, but can also create confusion in 
society. Fig. 3 illustrates waste bins and disposal routes currently in use 
in The Netherlands. In theory, bioplastics and bio-nanocomposites can 
be disposed of as organic, plastic/metal, and municipal (mixed) waste. 
Conventional fossil-based and bio-nanocomposites will coexist for 
considerable time, and in order to arrive at a better situation, two key 
elements need to be taken into account: (i) revising current waste 
management systems by including bio-nanocomposites, and (ii) 
increasing public awareness for promoting better waste management.

Whether the most environmentally beneficial option can be put in 
practice, depends on the availability of composting and recycling facil
ities that continue to grow. The sustainable and circular disposal of bio- 
nanocomposites can be expected to become increasingly feasible and 
widespread.

8. Biodegradation

Despite the efforts to develop the waste management systems 
mentioned above, a substantial amount of plastic materials continues to 
be improperly discarded in nature. In 2019, over two-thirds of the 353 
million tons of plastic waste was either sent to landfill or incinerated, 
and 22 % (79 Mt) was mismanaged (not properly collected, dumped in 
unregulated sites on land or ocean, or openly burned) [76,77]. There is 
no doubt that bio-nanocomposites will face the same fate when their 
production volumes increase. For this reason, understanding their 
biodegradability across various environments and conditions is of crit
ical importance. It is generally accepted that these biopolymers degrade 
more rapidly at elevated or fluctuating temperatures, as well as in en
vironments with higher microbial load. For instance, multiple studies 
have reported biodegradation rates exceeding 90 % for biodegradable 
polymers such as PLA, PHA, and PBAT when composting at 58 ◦C 
[78–82], while biodegradability can decrease significantly at lower 
temperatures (below 25 ◦C) in seawater or other aqueous environments 
[35,83–88]. As we go, more and more information will become avail
able, allowing better choices to be made.

Specifically for nano-composites, the presence of the nanoparticles 
has been reported to both positively and negatively affect biodegrad
ability. In general, hydrophobic nanoparticles, particularly metals or 
inorganic materials, increase polymer crystallinity, thereby slowing the 
biodegradation process [89–91]. In contrast, polysaccharide nano
particles and other substances that microorganisms can utilize, may 
accelerate biodegradation [92–95] by improving water penetration 
within the polymer. Therefore, incorporating bio-nano-fillers may offer 
dual benefits; enhancing the properties of the biopolymer while simul
taneously improving its biodegradability.

9. Other aspects

Plasticizers and compatibilizers may enhance the performance and 
functionality of plastics in general, e.g., improving flexibility and 
compatibility, but also pose safety risks through migration into food or 
the environment. Additives also affect biodegradability and end-of-life 
options; biodegradable ones aid decomposition, whereas non- 
biodegradable ones may hinder it, complicating recycling and com
posting processes [96–100]. To mitigate these risks, biodegradable ad
ditives seem the way forward.

Whether bio-nanocomposites will be able to replace conventional 
plastics will greatly depend on consumer acceptance. While these ma
terials offer benefits in terms of performance and environmental sus
tainability, their costs could from a barrier. Especially given the current 
state of the art, it is crucial to communicate the long-term value of bio- 
nanocomposites (reduced environmental impact) to justify the price. 
Education and clear labeling can help build consumer trust. Ultimately, 
balancing cost with perceived value will be essential for fostering 
acceptance and integration into daily life.

10. Conclusion

The unique characteristics of bio-nanocomposites imply that they 
can serve as food packaging materials that meet standard functional 
requirements as well as provide advanced features, such as anti-oxidant 
and anti-microbial activity. Their most important selling point is their 
biodegradability, making them a logical solution to plastic pollution. 
Widespread bio-nanocomposite use faces challenges, including current 
costs, the absence of well-defined waste management systems, and gaps 

Fig. 2. The waste hierarchy described by the European Commission (left) and 
the distribution of how plastic waste was managed in Europe in 2020 (right, the 
data was taken from [69]).

M. Yanat and K. Schroën                                                                                                                                                                                                                     Reactive and Functional Polymers 209 (2025) 106184 

4 



in legislation. The realization of their true potential and becoming a 
sustainable alternative to conventional plastics is only possible if bio- 
nanocomposites are accepted by consumers, and that is ideally tested 
before they enter the market. Collaboration among researchers, poli
cymakers, businesses, and societal parties is crucial to promote aware
ness, create incentives, and establish infrastructure to support the 
production and disposal of sustainable bio-nanocomposites. In the 
transition from fossil-based to more sustainable packaging, bio- 
nanocomposite materials are expected to play a pivotal role.
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[26] F. Ortega, F. Versino, O.V. López, M.A. García, Biobased composites from agro- 
industrial wastes and by-products, Emerg. Mater. 5 (3) (2022) 873–921, https:// 
doi.org/10.1007/s42247-021-00319-x.

[27] S. Baraketi, K. Khwaldia, Nanoparticles from Agri-food by-products: green 
technology synthesis and application in food packaging, Curr. Opin. Green 
Sustain. Chem. (2024) 100953, https://doi.org/10.1016/j.cogsc.2024.100953.
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Valorization of starch nanoparticles on microstructural and physical properties of 
PLA-starch nanocomposites, J. Appl. Polym. Sci. 139 (10) (2022) 51757, https:// 
doi.org/10.1002/app.51757.

[32] I. Colijn, M. Yanat, G. Terhaerdt, K. Molenveld, C.G. Boeriu, K. Schroën, Chitin 
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of PBAT with plasticized starch for packaging applications: mechanical 
properties, rheological behaviour and biodegradability, Ind. Crop. Prod. 144 
(2020) 112061, https://doi.org/10.1016/j.indcrop.2019.112061.

[80] Y.X. Weng, X.L. Wang, Y.Z. Wang, Biodegradation behavior of PHAs with 
different chemical structures under controlled composting conditions, Polym. 
Test. 30 (4) (2011) 372–380, https://doi.org/10.1016/j. 
polymertesting.2011.02.001.

[81] A. Anstey, S. Muniyasamy, M.M. Reddy, M. Misra, A. Mohanty, Processability and 
biodegradability evaluation of composites from poly(butylene succinate) (PBS) 
bioplastic and biofuel co-products from Ontario, J. Polym. Environ. 22 (2014) 
209–218, https://doi.org/10.1007/s10924-013-0633-8.
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