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Abstract
Machine learning (ML) methods have been proposed to improve the assessment of 
agricultural policies through enhanced causal inference. This study uses a simulation 
framework tailored to Farm Accountancy Data Network (FADN) data to scrutinize the 
performance of both ML and classical methods under diverse causal properties cru-
cial for identification. Our findings reveal significant variations in performance across 
different treatment assignment rules, sample sizes and causal properties. Notably, the 
Causal Forest method consistently outperforms others in retrieving the causal effect 
and accurately characterizing its heterogeneity. However, the data-driven approach of 
ML methods proves ineffective in selecting the correct set of controls and addressing 
latent confounding.

Keywords: causal inference, machine learning, FADN, controlled simulation experi-
ment

1. Introduction

As the objectives of the European Union’s Common Agricultural Policy (CAP) 
continue to increase in number and ambition, and the need to justify them to the 
public remains unchanged, it is crucial for CAP interventions to be effective. 
In the period 2023–2027, the CAP can rely on its largest budget in history, 
with 387 billion euros earmarked for promoting a greener, fairer and more 
competitive agriculture (European Commission, 2022). However, in order to 
ensure progress towards these goals, it is essential to assess the effectiveness 
of CAP interventions.
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2 P. L. Brignoli et al.

The ex-post evaluation of CAP interventions has predominantly relied on 
conventional econometric methods, such as matching, as evidenced in the liter-
ature. For instance, the effects of agri-environmental schemes (AES) have been 
analysed using propensity score matching (PSM) (Pufahl and Weiss, 2009), 
or PSM combined with difference-in-differences (DiD) (Arata and Sckokai, 
2016; Mennig and Sauer, 2020). A notable exception is Stetter, Mennig and 
Sauer (2022) who analysed AES participation in Southeastern Germany using 
a causal forest, a machine learning (ML) technique.

Despite their widespread use in the literature, classical matching method-
ologies have come under scrutiny due to several concerns that have been 
raised (Breiman, 2001; King and Zeng, 2007; King and Nielsen, 2019; Storm, 
Baylis and Heckelei, 2019). In general, these methods are (asymptotically) 
unbiased as long as the data generation process (DGP) is known, meaning 
that we can choose a method whose underlying assumptions for unbiasedness 
match the DGP structure. However, in scenarios where this is not the case, 
data-driven approaches based on more flexible assumptions may offer a more 
credible alternative than attempting to guess the correct specification (Hastie, 
Tibshirani and Friedman, 2009).

Since CAP evaluation involves sample selection bias and treatment hetero-
geneity, ML methods could greatly contribute to agricultural policy impact 
assessment (Storm, Baylis and Heckelei, 2019). These methods have emerged 
as a promising complement or even alternative to classical econometric meth-
ods for causal inference recently (Athey, 2018; Athey and Imbens, 2019; 
Storm, Baylis and Heckelei, 2019). Their key advantage lies in the ability to 
model both the treatment assignment and the outcome without restrictions on 
the functional form or number of variables, as well as the ability to explore 
heterogeneity across dimensions not specified previously (Athey, 2018). These 
strengths enable ML methods to overcome some of the limitations of classical 
methods (Athey, Tibshirani and Wager, 2019; Hahn, Murray and Carvalho, 
2020).

However, due to the inherent challenge of causal inference, evaluating a new 
estimator entails a fundamental reliability issue. The fundamental problem 
of causal inference is that since the counterfactual is unobserved, one cannot 
know whether the true treatment effect was retrieved in any given observational 
scenario. To determine whether a method is trustworthy in a specific context, 
it must be validated in a controlled environment where the counterfactuals are 
known.

Therefore, the objective of this paper is to assess the reliability of classic and 
ML causal estimators in retrieving a treatment effect by comparing their perfor-
mances in a simulation study tailored to EU agricultural policies. To tailor our 
simulation to the agricultural economics domain, we start from the European 
Farm Accountancy Data Network (FADN), the reference dataset for study-
ing the CAP (Pufahl and Weiss, 2009; Arata and Sckokai, 2016; Mennig and 
Sauer, 2020; Stetter, Mennig and Sauer, 2022) and focus on participation in 
agri-environmental schemes. We restrict our analysis to causal inference with 
observational data as researchers in the agricultural policy domain are often 
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ML and classical econometric impact assessment methods using FADN data 3

limited to using administrative data for their analyses and policy experiments 
are often not feasible.

Our simulation study is designed building on Lechner and Wunsch (2013), 
Huber, Lechner and Wunsch (2013), Wendling et al. (2018) and Knaus, 
Lechner and Strittmatter (2021). In addition to customizing such simula-
tion to an agricultural economics setting, our research extends the existing 
simulation literature by investigating various treatment assignment proce-
dures, and differentiating between confounding (selection into treatment) 
and sample selection bias. Incorporating treatment assignment under vary-
ing assumptions enables a more equitable comparison, reflecting the diverse 
ways farmers might choose to participate in the treatment. While the tradi-
tional econometric literature often uses confounding and sample selection bias 
interchangeably (Cinelli, Forney and Pearl, 2022), recent advancements in 
causal inference offer a framework to accurately model these distinct phenom-
ena. This approach enhances our understanding of each method’s performance 
across different contexts: whether farmers self-select into treatment (the out-
come and the decision to participate are influenced by the same variables—
confounding), or whether the sampling process or estimation procedure over- 
or under-represents a certain group (sample selection bias).

The paper makes three contributions to the literature on evaluating EU agri-
cultural policies. First, it proposes an evaluation framework for causal methods 
that can be applied flexibly, enabling a nuanced understanding of the most suit-
able method for addressing diverse agricultural economic impact-assessment 
questions. Second, it examines the behaviour of the considered estimators 
across different scenarios and highlights factors that can cause a method to 
fail in retrieving the true effect. Third, it offers guidelines for the practical 
application of the considered methods, taking into account the scenarios’ char-
acteristics and the estimators’ functioning. Overall, these contributions aim to 
support agricultural economists in making informed choices when selecting a 
causal estimator for a specific policy evaluation context.

2. Observational data: ML versus classical approaches

The primary strength of ML methods lies in their data-driven approach to 
selecting variables and functional forms. Researchers often aim to control for 
as many confounders as possible to enhance the credibility of the unconfound-
edness assumption (Baiardi and Naghi, 2021). However, classical approaches 
typically focus on a restricted set of variables selected based on existing litera-
ture. In the absence of theoretical guidance for modelling choices, data-driven 
approaches may be preferable as they are not limited in the number of variables 
they can use to model the response function and treatment assignment. More-
over, data-driven variable selection enhances confidence that these choices 
were made to satisfy the unconfoundedness assumption, rather than through 
a trial-and-error process aimed at achieving specific results or engaging in 
questionable research practices. Therefore, data-driven approaches to variable 
selection are particularly relevant when the theoretical framework behind the 
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4 P. L. Brignoli et al.

research question is not sufficiently developed to guide variable choice (Hastie, 
Tibshirani and Friedman, 2009).

Controlling for confounders is essential in causal inference, which requires 
both selecting the correct controls and functional form (King and Nielsen, 
2019; Chernozhukov et al., 2018). However, most classical econometric meth-
ods rely on the assumption of linearity in parameters, which might not be 
credible in complex contexts like agriculture where biological, social and eco-
nomic factors interact (Storm, Baylis and Heckelei, 2019). In such cases, linear 
functional forms might not be sufficiently flexible or powered to capture com-
plex non-linearities and interactions, and at the same time not sufficiently 
rooted in theory for justifying their use (Storm, Baylis and Heckelei, 2019; 
Hastie, Tibshirani and Friedman, 2009). In contrast, flexible ML methods can 
account for non-linearities and high-order interactions intrinsically, allowing 
to obtain a better fit to the underlying DGP. Moreover, this flexibility is partic-
ularly relevant in the presence of a specific type of latent confounding, where 
the confounders are related to observable controls. Latent confounding occurs 
when a confounder is unobserved, either because it is missing from the dataset 
or because it is unmeasurable. However, if a complex combination of observ-
able controls can sufficiently approximate the latent confounder, the estimator 
can still accurately identify the effect (Louizos et al., 2017; Kallus, Puli and 
Shalit, 2018; Bennett and Kallus, 2019; Wang and Blei, 2019).

The data-driven choice of variables and greater model flexibility could 
also help in dealing with selection into treatment afflicting CAP interven-
tions, where factors involved and their relationships are unknown but observed. 
Theoretical arguments on CAP participation benefits might not always align 
in practice with participants’ expectations. For instance, a researcher might 
believe that the take-up rate of an AES would be dictated by subsidies and the 
farm structure, while in practice it could be driven by a marketing campaign 
launched by an NGO operating only in certain areas. Allowing the algorithm 
to determine which variables to include and how to include them is expected 
to increase the robustness of the analysis in this situation.

Last, ML also allows to explore treatment heterogeneity without incur-
ring the bias caused by multiple hypothesis testing. Understanding how the 
treatment effect varies by farmers’ characteristics is highly relevant for poli-
cymaking (Koutchadé, Carpentier and Femenia, 2018), as it allows to design 
more cost-effective ways of achieving set objectives. Standard approaches to 
exploring treatment heterogeneity imply prespecifying a set of sub-populations 
over which to assess differences in the causal effect (which is prone to con-
firmation bias on the researcher’s end). However, when proceeding with the 
evaluation, the researcher must account for the probabilistic nature of test-
ing: out of 20 hypotheses on treatment effectiveness tested, we expect to reject 
incorrectly the null of at least one of them considering a 5 per cent significance 
level. Although several corrections are available for the issue (Bonferroni, 
1936; Benjamini and Hochberg, 1995; Holm, 1979) they do not scale well 
in presence of many covariates considered, severely limiting the possibility 
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for testing effect heterogeneity. This is in stark contrast with tree-based meth-
ods, which naturally target the individual treatment effects (ITEs) (Athey, 
Tibshirani and Wager, 2019; Hahn, Murray and Carvalho, 2020).

However, the benefits listed so far do not come without a price, with inter-
pretability being a primary concern. Specifically, not being able to completely 
understand a model makes its debugging and utilization more difficult (Storm, 
Baylis and Heckelei, 2019). However, the loss of interpretability should not be 
deemed inherently connected to ML methods, but rather as part of a trade-off 
with model complexity. Therefore, in some cases, it may be preferable to have 
a more sophisticated model, able for instance to allow for treatment hetero-
geneity, than a simplified but more understandable approximation. In recent 
years, procedures have been developed to improve the interpretability of ML 
methods (Molnar, 2020). Nonetheless, interpretability is associated with issues 
such as transparency, fairness and manipulability, which further hinder the per-
ceived reliability of ML methods (Athey, 2018; Storm, Baylis and Heckelei, 
2019).

3. Simulation background and data

3.1. Underlying assumptions

Monte Carlo simulation using synthetic data are commonly used to provide 
insights into the functioning and properties of estimation methods, allowing 
the researcher to establish the ground truth by retaining control over both the 
treatment assignment and effect (Dorie et al., 2019; Wendling et al., 2018; 
Hahn, Dorie and Murray, 2019; Knaus, Lechner and Strittmatter, 2021). 
Notable examples of simulation studies using hypothetical DGPs to exam-
ine the properties of estimators include Frölich (2004), who explores different 
matching procedures; Zhao (2004), who compares matching based on propen-
sity scores versus matching based on covariates; Busso, DiNardo and McCrary 
(2009, 2014), who compare matching versus reweighting procedures; and 
King et al. (2011), who delve into various classes of matching procedures and 
describes the PSM paradox.

Our simulation is based on FADN data and mimics participation in AES. 
AES are a series of interventions aimed at rewarding farmers for the provi-
sion of positive externalities beyond the mandatory requirements to obtain EU 
subsidies (Baylis et al., 2008). Over the years, AES have been one of the 
main subjects of the European agricultural policy-evaluation literature. This 
extensive research focus stems from a paradox: while AES receive the largest 
share of rural development program funding (Arata and Sckokai, 2016), they 
face significant criticism for their design (Massfeller et al., 2022). This chosen 
application does not affect the generalizability of the results, but it provides a 
framework for making decisions consistently, reducing researcher discretion. 
Therefore, it is possible to think of our treatment as an additional AES scheme 
that is guaranteed to have an effect on the designated outcome.

To obtain a representative and meaningful simulation, we have two targets: 
(i) adhering as closely as possible to reality, while (ii) being able to control 
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6 P. L. Brignoli et al.

the relevant factors in observational causal inference in the domain of agricul-
tural policy impact assessment. The first target is achieved by simulating an 
outcome and a treatment assignment tailored to the FADN dataset, ensuring 
their relationship with farm characteristics. Moreover, we compute the min-
imum detectable effect (MDE) based on the number of observations present 
in the FADN and stick to the percentage of treated found for the AES. The 
second target is achieved by including parameters in the outcome and treat-
ment assignment equations that allow us to manipulate the causal properties 
of each DGP. Specifically, we analyse the effects of five supplementary causal 
properties that influence the structure of causality in empirical studies: (i) the 
degree of non-linearity, (ii) the share of common support, (iii) the strength 
of the treatment effect, (iv) the presence of sample selection bias and (v) 
the presence of latent confounding. We choose these properties, as well as 
their levels, so to include what we perceive as most relevant in agricultural 
policy impact assessment—more specifically, FADN-based analysis—while 
constraining the number of possible combinations.

To have an identifiable effect, the DGPs in this simulation are ensured to sat-
isfy three assumptions: conditional independence (excluding DGPs with latent 
confounding), common support and the stable unit treatment value assumption 
(SUTVA). Conditional independence states that the treatment assignment is 
independent from the potential outcomes conditional on the controls; com-
mon support concerns the existence of overlap in the probability of being 
treated between the treatment and control group; and SUTVA requires the 
treatment effect of each individual to be independent from the treatment sta-
tus of other individuals (Imbens and Rubin, 2015). Although our simulation is 
designed to guarantee conditional independence, it is worth noting that this is 
a strong assumption and the least favoured in economics. However, as applied 
researchers are often confined to working with (increasingly large) observa-
tional datasets, we see value in exploring how causal ML methodologies are 
able to identify causal effects in an observational context.

3.2. Data

Our starting point is the FADN dataset for all the EU-28 countries in the year 
20201 (DG AGRI, 2023), consisting of 81,834 farms. We then conduct our 
simulation, comprising the DGPs combination and the treatment assignment 
procedures, on two different sample sizes. The larger dataset encompasses all 
available observations, while the smaller dataset is limited to 4000 observa-
tions. We focus on two different sample sizes for two reasons. First, CAP 
impact evaluations are usually conducted either aggregating data from vari-
ous member states (Arata and Sckokai, 2016), or at a regional level (Stetter, 
Mennig and Sauer, 2022). Second, ML models are expected to manifest a 
slower convergence rate than classical models (Abadie and Imbens, 2011; 
Chernozhukov et al., 2018; Hastie, Tibshirani and Friedman, 2009). Therefore, 
by having two different sample sizes, we can offer guidance to researchers who 

1 The most recent year available to us for analysis.
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ML and classical econometric impact assessment methods using FADN data 7

may engage in either type of analysis, while analysing to what extent smaller 
or larger datasets can affect the performances of the estimators.

The nature of the FADN dataset, with a vast array of different variables, 
imposes us to start the simulation by limiting in a data-driven way which vari-
ables enter the DGPs. Not all variables can be expected to be equally relevant, 
due to the strong heterogeneity in European farming and the high specificity 
of each variable, so that many variables are excessively sparse.2 Therefore, the 
first step in our simulation is the restriction of the dataset to the least sparse 
variables, described in this section as a matrix of covariates X  plus a sub-
script identifying the set, viz. XTD (treatment determinants) and XOD (outcome 
determinants).

We run a LASSO regression on both a proxy outcome (farm revenues3) and 
a proxy treatment (participation in AES4), obtaining each variable ranking for 
how good it predicts its target (Hastie, Tibshirani and Friedman, 2009). To 
ensure the correct training of the LASSO model, we preprocess our data with 
two transformations. First, we apply the Yeo–Johnson transformation (Yeo and 
Johnson, 2000) to deal with both outliers and the skewness of the variables’ 
distribution. Second, we divide each variable by its own maximum absolute 
value, to preserve the data sparsity5 while constraining it between 0 and 1. 
Then, we select the first 75 variables,6 in order of importance determined by 
the LASSO models, for each target (avoiding repetitions).

Afterwards, we randomly pick the variables used in the equations across 
the different DGPs and iterations. These variables are divided into observed 
confounders (XOC), latent confounders predictors (XLC—the observed controls 
correlating with the latent confounders) and other outcome predictors (XOP) 
(Table 1). For each set, we start from either XTD or XOD and select the variables 
so that they contain both continuous and categorical variables. We obtain the 
following sets:

XOC: 5 variables such that XOC ⊂ XTD
XLC: 6 variables such that XLC ⊂ XTD
XOP: 5 variables such that XOP ⊂ XOD
Following Kallus, Puli and Shalit (2018), we incorporate (a specific form) 

of latent confounding in our simulation. We do not directly employ the XLC
variable set in constructing our simulation, but rather we construct two latent 
confounders, X̂LC, as a linear combination of three variables in XLC, each plus 

2 Variables designed to capture the particularities of a specific region or production system will 
necessarily report no values for most others. For instance, the variable indicating the number of 
hectares dedicated to strawberry cultivation will be zero for all farmers not growing strawberries.

3 Identified in the FADN with the code SE005.
4 Identified in the FADN with the code SAEAWSUB_2_V. This variable measures the amount of 

subsidies farmers received from AES—so in order to use it as a treatment variable, we encoded 
it as a categorical variable being 1 if the amount received was greater than zero and 0 otherwise.

5 Meaning that the relative distance between each point is maintained.
6 We chose this number arbitrarily, aiming to strike a balance between obtaining a dataset large 

enough to fully demonstrate ML methods capability and the implied running time. We chose the 
number of variables for each set with the same logic.
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8 P. L. Brignoli et al.

Table 1. Variable sets and related FADN identifying codes

Variable set FADN identifier Name

Observed confounders
XOC

NUTS2 Regional indicator
SE025 Total utilized agricultural 

area
SE010 Total labour input
SE132 Total output/total input
SE624 Total support for rural 

development
Latent confounders
XLC

SE042 Area in energy crops
SE621 Environmental subsidies
SE105 Number of poultry
LEGAL Farm legal status
SE281 Total specific costs
SE446 Land, permanent crops and 

quotas
Outcome predictors
XOP

AMCHQP_AD Machinery accumulated 
depreciation value

ACSHEQ_CV Cash and equivalents 
closing value

ALNDAGR_OV Agricultural land opening 
value

ARECV_CV Receivables closing value
TF8 Type of farming

a random term. This X̂LC set of variables becomes the one entering the DGPs, 
while each method will be provided with XLC to evaluate its capability to cor-
rectly approximate and manage latent confounding. See Appendix A for more 
details on the variables employed.

4. Simulation design

We start our simulation from a linear DGP, wherein the treatment assignment 
is determined by a propensity score, ensuring the assumptions of uncon-
foundedness and common support are satisfied. This approach establishes 
a comprehensible reference for our study, serving as a benchmark for all 
subsequent comparisons. From this baseline, we incrementally introduce mod-
ifications to the DGP, the treatment assignment mechanism, or both, to evaluate 
how the performance of each method diverges from the outcomes observed 
under the base DGP.

We design 32 DGPs, obtained by manipulating 5 causally relevant proper-
ties (each taking on two different levels) of the base DGP. The causal properties 
considered are (i) degree of non-linearity, (ii) share of common support, (iii) 
strength of the treatment effect, (iv) presence of sample selection bias and (v) 
presence of latent confounding. Over the following sub-sections, we start by 
introducing the base DGP, and then proceed explaining how we extend that 
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ML and classical econometric impact assessment methods using FADN data 9

DGP to modify each causal property. The full replication code is available is 
the online Supplementary Materials.

4.1. Base DGP

To establish our base DGP, we begin by simulating the outcome of interest Y
following a linear model as specified in Equation 1: 

Y = 𝛼XOP + 𝛽XOC (1)

Y  is obtained as the linear combination of XOP, the outcome predictors and 
XOC, the observed confounders. The corresponding vectors of coefficients for 
these variables are denoted by 𝛼 and 𝛽, respectively (Appendix B).

In the second step, we compute each observation’s probability of receiv-
ing the treatment (the propensity score) using the logit function defined in 
Equation 2: 

𝜋 (x) = Pr (T = 1) = 1
1+ e−C

C = 𝜅XOC + 𝜀
(2)

The propensity scores are calculated as a linear combination of XOC, the 
observed confounders, with an added noise term 𝜀. The vector of coefficients 
associated with the observed confounders is denoted by 𝜅. Consequently, con-
founding is introduced by including XOC in both the outcome regression and 
the treatment assignment process.

The treatment assignment rule is then constructed using the computed 
propensity scores in a Bernoulli distribution (Millimet and Tchernis, 2009; 
Huber, Lechner and Wunsch, 2013; Knaus, Lechner and Strittmatter, 2021), 
enforcing a 90 per cent overlap7 and a fixed percentage of treated units. This 
percentage is set as the actual percentage of farmers that participate in the AES 
reported in the FADN in 2020 (26.1 per cent). While the first constraint will 
later on be used to test the robustness of the methods to variation in the overlap 
share, the second is a feature we added to the simulation to strengthen the link 
with actual FADN-based impact assessment studies.

The third step involves estimating 𝜃ATT , the average treatment effect on 
the treated (ATT). To add the possibility to evaluate the ability of ML meth-
ods to address treatment heterogeneity, we first draw the individual treatment 
effects for each farm based on its farm type (𝜏i,TFiin Equation 3) from a uni-
form distribution U ∼ (−1,1). Then, to fix the ATT at a defined value, we 
compute a correction term (𝜃correction), which is the difference between the 
average of the individual farm type effects and the target ATT (Equation 3). 
The target ATT is determined as double the minimum detectable effect (MDE) 
calculated through power analysis based on the size of the FADN dataset 
(Huntington-Klein, 2021) using linear regression. This approach yields two 

7 Meaning that 90 per cent of the treated units fall into the propensity score interval of the control 
units.
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10 P. L. Brignoli et al.

distinct estimands of interest: the ATT, which allows comparison across all 
considered methods, and the conditional ATT (CATT), which exclusively 
assesses the performance of ML techniques. 

𝜃ATT = (1n

n

∑
i
𝜏i,TFi )− 𝜃correction (3)

By allowing the treatment effect to vary in this specific manner, we are able 
to assess the effectiveness of ML models in detecting treatment heterogeneity 
across sub-groups. In scenarios like agricultural policy evaluation, it is reason-
able to assume that the treatment effect varies among subgroups given the vast 
heterogeneity in farmers’ characteristics (Stetter, Mennig and Sauer, 2022). 
In this context, understanding how the treatment effects vary conditionally on 
a specific farm characteristic (in our simulation, the farm type) becomes cru-
cial for better comprehending the policy instrument in question, improving its 
design and enhancing targeting strategies.

Finally, we introduce clustered errors into our base DGP to prevent the 
model from being deterministic. Specifically, we consider a scenario where 
errors are clustered at the country level (Equation 4), as assuming identically 
and independently distributed errors would be unrealistic given the structure 
and data collection methods of the FADN (DG AGRI, 2023). In Equation 4, 
𝜀s is a normally distributed error term, while 𝜀country is a country-specific error 
term. This specification implies that 10 per cent of the residual variation is 
country-specific. Lastly, 𝜎y denotes the standard deviation of the outcome 
(Hahn, Dorie and Murray, 2019). 

Y = 𝛼XOP + 𝛽XOC + 𝜃T +𝜎y (0.9𝜀s+0.1𝜀country)

𝜎y =√Var (Y +𝜋𝜏 (xi))
(4)

Note that the errors are defined additively in this way. While non-additive 
errors could arise in high-dimensional and non-linear settings, considering 
them here would add unnecessary complexity to our simulation setup (for an 
example, see Hahn, Dorie and Murray (2019)).

4.2. Introducing non-linearity

The base DGP is modified to violate the linearity assumption by changing 
both the outcome regression and treatment assignment functional form. Specif-
ically, Equation 5 describes the three functions r (x) , s (x) and t (x) that we use 
to introduce non-linearity. 

r (x) = (x+1)3

s (x) =
⎧

⎨
⎩

1

r(x)
if x ≤ −𝜌

round (r (x)) + 𝜂 if − 𝜌 ≤ x ≤ 𝜌
1

r(x)
if x > 𝜌

(5)
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ML and classical econometric impact assessment methods using FADN data 11

t (x) =
log (|s (x)|)

e
cos(s(x))
s(x)

The first transformation involves cubing the linear combination of variables 
sets in consideration (XOPand XOC for the outcome regression, XOC for the 
treatment assignment), and an added constant, thereby incorporating8 up to 
third-order polynomial and interaction terms. This polynomial is then passed 
through a step function that includes hyperbolic terms and rounding to disrupt 
the continuity of the function. The values of 𝜂 and 𝜌 are chosen to prevent 
spikes in the outcome distribution. Finally, a combination of logarithmic, 
exponential and cosine functions is used to further increase the complexity 
of the outcome. A more conventional choice for a non-linear functional form 
could have been to utilize well-known forms from the economic literature. 
However, we opted for this arbitrary form, inspired by the simulation litera-
ture (Dorie et al., 2019), to allow a broader applicability of our analysis across 
various evaluation contexts. To introduce non-linearity in the treatment assign-
ment, we apply the same procedure to C (Equation 2) before passing it through 
the logit function. Consequently, in DGPs where non-linearity is introduced, 
Equations 1 and 2 can be rewritten as Equations 6 and 7, respectively:

Y = t (𝛼XOP + 𝛽XOC) (6)

𝜋 (x) = Pr (T = 1) = 1
1+ e−C

C = t (𝜅1XOC + 𝜀)
(7)

The reason why we give this much importance to the degree of non-linearity 
is because treatments taking place at the border of different domains (eco-
nomic, social and environmental) are expected to be highly complex (Börner 
et al., 2017; Schlüter et al., 2023). Moreover, the importance of accounting 
for higher-order variables and their interactions stems from the necessity of 
correctly incorporating agricultural system characteristics. These higher-order 
variables are assumed to represent elements of a farmer’s decision-making 
process that display varying marginal effects, either increasing or decreasing. 
For example, when assessing the impact of subsidies aimed at moderniz-
ing machinery and farm equipment, the probability of a particular farmer 
enrolling in the programme is expected to increase progressively with each 
additional unit of land they possess. In order to capture the diverse range of 
farm structures stemming from various combinations of factors, we incorpo-
rate interaction terms into our modelling approach. To illustrate, we examine 
the production costs of a tomato farmer, where factors such as being located 
in a region characterized by high temperatures and proximity to a body of 

8 By expanding the cubic polynomial (i.e. multiplying each term by itself and by the other terms in 
the polynomial), the higher-order and interaction terms become apparent.
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12 P. L. Brignoli et al.

water play a significant role. Independently, both these factors might reason-
ably be assumed to decrease the production costs, as high temperatures and 
ample water supply favour tomato production, reducing the need for exter-
nal inputs. However, the combination of these two factors could potentially 
increase the production costs due to a higher presence of insects, necessitating 
the use of more pesticides. This nuanced consideration underscores the com-
plexity inherent in real-world agricultural systems and highlights the necessity 
of incorporating interaction terms in our models.

4.3. Changing common support

To change the overlap in common support from the base DGP, we enforce the 
treatment assignment rule so that only 50 per cent of the treated units fall into 
the propensity score interval of the control units (Appendix B). The assumption 
of common support is critical for all methods considered in this analysis, and 
this modification will help us understand the extent to which these methods 
depend on that assumption.

In agricultural economics, it is often observed that the control group is not 
ideal for comparison with the treated group. This discrepancy can arise, for 
instance, when examining the switch to organic farming or when treatments 
are administered based on geographical location or production orientation, 
resulting in non-treated observations that are structurally different from treated 
observations.

4.4. Changing treatment effect size

To vary the treatment effect size, we adjust 𝜃correction in Equation 3 accord-
ingly. Specifically, while the base data DGP sets the treatment effect at double 
the MDE from the power analysis, we also explore scenarios where the treat-
ment effect equals the MDE itself. Including the size of the causal effect in 
simulations is a standard practice in the literature, but examining method per-
formance near the detection threshold is particularly relevant in agricultural 
economics. This field often experiences gradual rather than abrupt changes in 
response to interventions. Agricultural practices evolve slowly due to factors 
such as the steep learning curve involved in altering farm practices or the time 
required for soil and crop modifications to yield noticeable effects. Therefore, 
assessing method performance under conditions where treatment effects are 
small yet detectable is crucial for accurately evaluating intervention impacts 
in agricultural settings.

4.5. Introducing sample selection bias

Sample selection bias is typically described as a preferential selection to the 
pool, arising during the sampling phase or from controlling for a ‘bad control’ 
or collider9 (Bareinboim and Pearl, 2012; Cinelli, Forney and Pearl, 2022). 

9 A collider is defined as a common effect shared by the two variables on a given causal path.
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ML and classical econometric impact assessment methods using FADN data 13

Fig. 1. Directed acyclic representation of the simulation causality structure. 

This preferential selection leads to the under- or over-representation of spe-
cific population subgroups with particular characteristics in the treated sample, 
resulting in bias in the estimation of treatment effects. When the sampling 
phase introduces selection bias, the outcome and treatment distributions are 
always conditioned on the set of characteristics driving this preferential selec-
tion (Bareinboim and Pearl, 2012). Alternatively, conditioning on a collider 
introduces a spurious correlation between the outcome and treatment.

To introduce sample selection bias into our base DGP, we stratify the sample 
based on S, a continuous variable reflecting the probability of entering the data 
pool (Bareinboim and Pearl, 2012). We then include a control variable Z to 
mitigate10 the bias resulting from sample selection (Cinelli, Forney and Pearl, 
2022) (Figure 1). By stratifying the sample on S, we can better simulate real-
world scenarios, where researchers are often provided with datasets potentially 
affected by sample selection.

In order for S to be a collider on the causal path between the treatment 
and the outcome, causal paths must exist from both the treatment and the out-
come to S. Therefore, we start by computing the intermediate ̇S, the outcome 
predictors (XOP) contribution to S, as in Equation 8. 

̇S = 𝜔1XOP1 +𝜔2XOP2 + 𝜔3XOP3 + 𝜔4XOP4 + 𝜔5XOP5 (8)

In Equation 8, each XOPp represents a variable in XOP, while 𝜔p denotes the 
coefficient associated with each variable. We select the coefficients 𝜔p ensur-
ing that the signs correspond with vector 𝛼 in Equation 5 for each XOP. Then, 
we construct Z as a mediator on the path between the treatment T and the col-
lider S (Equation 9), meaning that treatment T has an impact on S only through 
Z (Cinelli, Forney and Pearl, 2022). U is a random uniform variable having 
the same minimum and maximum values as ̇S, representing the part of the 
mediator independent from T :

10 It is important to note that our analysis focuses on a specific instance of sample selection bias 
that can be corrected using Z, although this may not always be the case (Bareinboim and Pearl, 
2012).
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14 P. L. Brignoli et al.

Z = TU + (1−T) (−1)U (9)

Last, we combine the two components to obtain S (Equation 10), ensuring on 
one end that S is caused by the treatment and that by controlling for Z we are 
able to identify the treatment effect. 

S = 0.5 ̇S+0.5Z (10)

To introduce sample selection bias in our simulation, we stratify our dataset 
dropping all the observations below the first 33 per cent quantile of S. This 
approach ensures that observations with higher values of S, and consequently 
XOP, and Y  are overrepresented in our treated sample. Since our procedure 
to introduce sample selection bias removes a third of the observations, we 
also randomly discard a third of the observations in those DGPs where sample 
selection bias is absent to maintain comparability. As a result, the final sample 
sizes are 57,620 observations (from 81,834) for the larger dataset and 2814 
from (4000) observations for the smaller dataset. We selected the first 33 per 
cent quantile as it strikes a balance between introducing sufficient sample 
selection bias (Appendix B) while avoiding dropping too many observations.

Sample selection might be serious issues for impact studies using EU FADN 
data. While the EU FADN dataset represents around 90 per cent of the total EU 
production, it only represents around 42 per cent of the holdings—with small 
part-time farmers being under-represented (Bradley and Hill, 2016). When 
evaluating AES impact, sample selection bias might play an important role 
as smaller and less intensive farmers are often the ones more likely to opt into 
such subsidies. In contrast, larger, more economically driven farms may be 
less inclined to participate (Zimmermann and Britz, 2016). In this context, the 
variable Z can be seen as a mediator, such as farm production orientation, dis-
tinguishing between economically or environmentally oriented farms. Failing 
to account for sample selection bias could lead to over-estimated policy effects 
and hence the policy instrument failing to produce an additional effect in prac-
tice by encouraging more intensive farmers to adopt greener practices. Instead, 
it may also result in windfall effects, where funds are transferred for the adop-
tion of practices that would have been adopted even without the treatment 
(Chabé-Ferret and Subervie, 2013).

4.6. Introducing latent confounding

The base DGP is modified to violate the unconfoundness assumption by adding 
the variables set X̂LC in both the outcome equation and treatment assignment. 
Therefore, in the DGPs where latent confounding is present, it is possible to 
rewrite Equations 6 and 7 as Equations 11 and 12, respectively: 

Y = t (𝛼XOP + 𝛽XOC + 𝛾X̂LC) (11)
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ML and classical econometric impact assessment methods using FADN data 15

𝜋 (x) = Pr (Z = 1) = 1
1+ e−C

C = t (𝜅1XOC + 𝜅2X̂LC + 𝜀)
(12)

Where 𝜅1 and 𝜅2 are the sets of coefficients associated with XOC and X̂LC, 
respectively. By setting t equal to the identity function, it is still possible to 
retrieve the original linear specification.

The presence of latent confounding poses a significant challenge in all 
empirical applications, making selection on observables probably one of the 
least favoured assumptions in economics. As discussed in Section 4.2, impact-
assessment studies in agricultural economics intersect multiple disciplines, 
suggesting that numerous variables influencing a process may remain unob-
servable. However, the interdisciplinary nature of these linkages might offer 
potential for finding observed variables sufficiently connected to those unob-
servables to approximate them. This prospect is supported by the expanding 
availability of large datasets and advancements in causal ML methods capable 
of leveraging them. Consequently, it is important to ascertain the capability of 
these ML techniques in addressing latent confounding and its implications.

4.7. Tree-based treatment assignment

To further evaluate the methods’ dependence on the presence of an under-
lying true propensity score, we replicate the previously described DGPs11 
with treatment assignment using a tree-based model. The tree-based treat-
ment assignment starts with an unsupervised clustering procedure of all the 
observations in the FADN based on XOC. The clustering rules are then learned 
with a random forest algorithm (Breiman, 2001) and are consequently used 
to discriminate among observations that participate or not in the schemes. 
Rather than opting for a single decision tree, we chose to utilize a random for-
est method to avoid arbitrary decisions regarding treatment distribution and 
to eliminate any concerns that the choice of a specific tree could bias the 
performance evaluation of the methods.

The two treatment assignment procedures reflect two distinct perspectives 
on how farmers make decisions regarding their enrolment in a particular pol-
icy intervention. On one hand, the logit assignment represents a scenario in 
which farmers are aware of how their farm structure (elements in XOP, XOC and 
XLC) interacts with the treatment. Consequently, they derive a probability of 
enrolling in the intervention based on these considerations. However, the final 
decision may be influenced by other factors, such as ethical or political beliefs 
(𝜀 in Equation 7). This means that even farmers with lower probabilities of 
enrolling might still decide to do so, and vice versa. On the other hand, the tree-
based assignment represents a scenario in which farmers construct a mental 
map based on their farm structure, and this map deterministically guides their 

11 Except for the DGPs obtained by changing the level of overlap, this is feasible and only makes 
sense when there exists an underlying true propensity score.
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16 P. L. Brignoli et al.

Table 2. Causal properties varied in the simulation and respective settings

 Levels

Causal property Easy Complex

Degree of non-linearity Linear Complex
Common support 90% of treated 50% of treated
Strength of effect 0.3 0.15
Sample selection bias Absent Present
Latent confounding Absent Present

decision on whether to participate or not. Both assumptions can be considered 
realistic and are therefore put to the test. This approach allows researchers 
to make reasoned arguments about which sorting mechanism is likely to be 
more relevant depending on the specific policy tool under consideration, and 
consequently, they can choose the appropriate method accordingly.

4.8. Running the simulation

To summarize, Figure 1 represents the causality structure we establish in our 
simulation, while Table 2 provides a brief recap of the causal properties and 
related settings explained so far, including their possible levels.

In Figure 1, XOD, XTD, XOP, XOC, and XLC, are the variables sets introduced 
in Section 3.2. T represents the treatment (Equation12), Y  represents the out-
come (Equation 11), S represents a covariate necessary to introduce sample 
selection bias (Equation 10), and Z is a control placed to address sample 
selection bias (Equation 9).

These combinations are compared under two treatment assignment proce-
dures based on two different assumptions (and consequently models). The first 
procedure mirrors an assignment based on a propensity score, implying that 
farmers have a certain probability of participating in a treatment based on 
their characteristics. The second procedure mirrors a scenario in which the 
farmers decide on whether to apply for the intervention based on a tree-based 
scheme. Due to the impossibility of controlling the share of common support 
under the tree-based schemes, this causal property is disregarded under this
scheme.

To compare the performances of the considered methods, we run each 
of them on the 32 DGPs for the propensity-based and the 16 DGPs for the 
tree-based assignment obtained from all the combinations of causal properties 
levels.12 Each combination of method and DGPs for the large sample size is 
run 50 times to ensure an accurate representation of bias (Huber, Lechner and 
Wunsch, 2013; Knaus, Lechner and Strittmatter, 2021; Wendling et al., 2018; 
Advani, Kitagawa and Słoczyński, 2019; Künzel et al., 2019; Parikh et al., 
2022). Each run involves drawing a new sample data from the FADN through 

12 We have 32 for the propensity-based assignment, while 16 for the tree-based assignment since 
common support cannot be controlled in the latter case.
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ML and classical econometric impact assessment methods using FADN data 17

Fig. 2. Simulation steps. 

a clustered bootstrap at the NUTS2 region level, while maintaining the origi-
nal sample size. For the smaller sample size, we adhere to the same procedure, 
but each combination of method and DGP is executed 200 times to account for 
the reduced sample size. Figure 2 provides a summary of the steps involved in 
this simulation, with an indication of where the causal properties of the DGPs 
can be manipulated.

5. Methods

In this section, we outline the various evaluation methods used. For each 
method, we briefly explain the underlying mechanism, highlighting their 
strengths and drawbacks, which will later be used in assessing their perfor-
mances. Despite their differences, all the methods require three basic assump-
tions to make their estimates causal: unconfoundedness, common support and 
SUTVA.

5.1. Classical matching methods

5.1.1. Propensity Score Matching
PSM (Rosenbaum and Rubin, 1983) is commonly used as a subset selection 
procedure13 to mitigate confounding in observational settings in economics 
(Athey and Imbens, 2017; King and Nielsen, 2019). It matches treated and 
control observations based on their propensity score, being the probability of 
an observation to receive the treatment conditional on its covariates. The key 
in PSM is Rosenbaum and Rubin’s Theorem 3 (T3) stating that unconfound-
edness based on raw covariates implies unconfoundedness on the propensity 
score (assuming common support and SUTVA). Following T3, the biggest 

13 See Appendix C for a performance comparison between PSM subsetting and re-weighting 
procedures.
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18 P. L. Brignoli et al.

advantage of this method is that it avoids the curse of dimensionality. When 
matching over multiple dimensions, it becomes increasingly difficult to find 
observations which are similar across all of them. The researcher is then left 
either with bad matches or a drastically smaller dataset.

However, the way this method has been traditionally applied presents sev-
eral drawbacks (Ho et al., 2007; Hill, 2008; Austin, 2009) and in recent years 
also its underlying mechanism has been criticized (King and Nielsen, 2019). 
There is a fundamental contrast between the reason a researcher would apply 
matching and the underlying theoretical properties of PSM. Matching is a 
non-parametric procedure used to reduce the model dependence and discre-
tion bias, two consequences of making functional form assumptions during 
estimation (Hill, 2008). However, T3 holds true only for the true propensity 
score—which would require us to know the true treatment assignment pro-
cess. Since this is rarely the case (Ho et al., 2007; King and Nielsen, 2019), 
the researcher is left with making functional form assumptions—which as a 
consequence introduces bias.

Despite its weaknesses, we decided to focus on two different versions of 
PSM due to its huge popularity. The two specifications differ in their underly-
ing mechanism as well as the function used in computing the propensity scores. 
The first is the bias-corrected missing value imputation procedure proposed 
by Abadie and Imbens (2011), employing a logistic function. The second 
alternative is a matching procedure employing Bayesian additive regression 
trees (BART). We focus on the first version as it is used in most applied work 
(Austin, 2009; King and Nielsen, 2019), while we selected the BART ver-
sion as a possible way to mitigate model dependence, being non-parametric 
and highly flexible (Lee, Lessler and Stuart, 2010; Westreich, Lessler and 
Funk, 2010). Both approaches are based on nearest-neighbor (NN) match-
ing, as it is the most widely applied procedure (Austin, 2009) and because 
asymptotically all matching algorithms should yield the same result (Caliendo 
and Kopeinig, 2008). Trimming rules commonly studied in other simulation 
studies are not considered in our simulation because they are known to be prob-
lematic with heterogenous treatment effects (Busso, DiNardo and McCrary, 
2009). To code the models, we relied on the MatchIt R package (Ho et al., 
2011). After matching, following Ho et al. (2007), we regress the outcome on 
the treatment indicator and observed confounders, identifying the ATT.

In addition to the two specifications above, we added a humble PSM model, 
where at random (across the 50 iterations) two controls are removed from the 
specification. While this estimator is expected to always fail to retrieve the true 
ATT, it remains interesting to assess both the size and sign of the bias occurring 
in an FADN-like setting.

The PSM models are expected to perform well in limited common sup-
port scenarios (Busso, DiNardo and McCrary, 2009, 2014), and the version 
exploiting a BART model for the estimation of the scores should be able to 
tackle non-linear DGPs (Hill, Weiss and Zhai, 2011).
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5.1.2. Coarsened exact matching
In response to the shortcomings of PSM, Iacus, King and Porro (2011; 2012) 
introduced a method to address these issues and surpass PSM’s performance. 
This method, known as coarsened exact matching (CEM), has gained signifi-
cant traction in recent years and has been recognized for its effectiveness (King 
et al., 2011). CEM consists of two steps: in the first one, variables are coars-
ened in bins based on domain knowledge or algorithmically; in the second 
step, the bins are exactly matched. More specifically, variables are coarsened 
so that indistinguishable values (from an analytical perspective) are grouped 
together. This step facilitates finding exact matches—as the definition of exact 
gets broader the more the data are coarsened—even on continuous variables, 
while avoiding dropping too many observations.

CEM features two major advantages over PSM, allowing it to deal better 
with imbalances in covariates. First, CEM guarantees covariates imbalance 
reduction at the expense of sample size—the opposite of what PSM entails 
(Iacus, King and Porro, 2011). The maximum imbalance for a given variable 
depends on how fine it is coarsened, where higher coarsening leads to larger 
imbalance. Second, CEM allows the researcher to set the maximum level of 
unbalance for each covariate independently. In PSM, different specifications 
will lead to different balancing in an unpredictable way.

The major drawback in applying CEM is that despite the coarsening it dis-
cards all the observations not exactly matched. This leads to a decrease in 
sample size, which implies reductions in power and precision. Iacus, King and 
Porro (2012) defend their method following Rubin (2006), stating that unbi-
asedness comes before efficiency, and that in observational studies functional 
form assumptions are a bigger problem than sample size. However, as noted by 
Black, Lalkiya and Lerner (2020), CEM drops observations in a non-obvious 
way, misidentifying average and heterogeneous effects.

Following Iacus, King and Porro (2012), we used domain knowledge 
(meaning consistency with the framework we simulate) to coarsen factor vari-
ables and applied Sturges’ (1926) algorithm for continuous variables. Also in 
this case, we coded the model relying on the MatchIt R package (Ho et al., 
2011).

5.2. Tree-based matching methods

5.2.1. Causal forests
A causal forest (CF) is an algorithm built on top of the classic random forests 
(RFs) (Breiman, 2001) and belonging to the family of generalized random 
forests (GRFs) (Athey, Tibshirani and Wager, 2019). The basic building block 
of a RF is the decision tree, which is an algorithm that partitions the vari-
able space to obtain clusters as homogenous as possible. From that, RFs 
are obtained as ensembles of several decision trees—in order to reduce the 
variance of the estimate.

While RFs are limited to expected outcomes, thanks to an adaptation of the 
optimization criterion GRFs allow for the estimation of other quantities (for 
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instance, a causal estimand for CFs—assuming all identifying assumptions 
are met). The algorithm looks for the partitions of the variable space, which 
maximizes the heterogeneity of the target estimand between different regions.

In our analysis, we consider two different CF specifications: one in which 
the input variables are selected with a data-driven approach by the CF (Data—
CF), and another in which we feed the CF the same subset of variables we 
feed to classical models (Theory—CF). Thus, it is possible to test the extent 
to which it is possible to rely on the CF in scenarios where the choice of the 
controls to be employed cannot be guided completely by theory.

In our analysis, we implement the CFs through the grf package in R (Tibshi-
rani et al., 2022), which relies on three augmentations compared to standard 
approaches. First, the estimation is conducted on the residualized outcome 
and treatment, in order to increase the efficiency and reduce bias. The orthog-
onalization follows Robinson (1988), and relies on marginal outcomes and 
propensity scores computed via separated RFs. Second, the trees are grown 
honestly (to avoid overfitting): observations used to build the structure of 
the tree cannot be used to make predictions. Last, average treatment effects 
are not obtained as averages of the ITEs but are rather plugged in a doubly 
robust estimator following Chernozhukov et al. (2018). The values for the tun-
able hyper-parameters for each CF are obtained via cross-validation. Last, our 
target estimand, to maintain comparability with classical methods, is the ATT.

A limitation of the CF method is its inability to deal with categorical vari-
ables if not encoded suitably for a sparsity-seeking algorithm (Johannemann 
et al., 2019). Since this assumption is violated in our framework, we prepro-
cess the data through a cross-validated target-encoding procedure (Appendix 
D).

5.2.2. Bayesian additive regression trees
BART is a tree-based method relying on Bayesian inference (Chipman, George 
and McCulloch, 2010). Conceptually, its frequentist analogue would be a 
boosted RF, as subsequent trees are fit on the residual of the previous tree. 
However, this procedure is only effective as long as we are able to avoid 
overfitting—i.e. picking up contingent14 noise. Therefore, it is important to 
limit the contribution that each individual tree has in explaining the overall 
variability of the response. To do so, tree-based methods (including CF) rely 
on the hard choice of two hyper-parameters values via cross-validation: one 
governing the number of splits in a given tree (its depth), and the other being a 
penalty shrinking the fit of the tree. BART, thanks to its Bayesian framework, 
employs regularization prior only, encouraging the trees to be small. Over-
all, the Bayesian framework allows a principled approach to regularization, 
leading to flexible trees that can fit complex functions. However, while also 
frequentist tree-based methods have this flexibility, the Bayesian framework 

14 Since the training of the ML models takes place in batches, contingent here refers to the 
specificities of each batch as opposed to the properties of the overall DGP.
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also allows the quantification of uncertainty, to compute coherent confidence 
intervals.

Similarly to CF, BART’s main advantages are that it naturally identifies 
heterogeneous effects and its flexibility in estimation—which is however com-
bined with an easier usage (Carnegie and Wu, 2019). The default regularization 
prior has already been developed by Chipman, George and McCulloch (2010), 
who found it to be robust in a wide range of settings. Therefore, it allows the 
researcher to avoid the computational step of cross-validating the hyperparam-
eters (Hill, 2011). Moreover, it is able to handle a larger number of controls 
than classical methods.

We deploy our BART model without cross-validating it (off-the-shelf), 
since one of its most praised abilities is the versatility of its regularization 
prior (Hill, 2011; Hill, Weiss and Zhai, 2011; Hahn, Murray and Carvalho, 
2020). Similarly to the approach we use with CF, we specify two different 
BART models, trained on either a subset of variables selected by the algorithm 
(Data—BART) or the same variables used in classical methods (Theory—
BART). Therefore, we specify our models following Hahn, Dorie and Murray 
(2019) who adapt BART to causal settings and exploit the bartCause R package 
(Hill, 2011).

5.3. Computation

To conduct our analyses, we utilized a high-performance computing cluster 
and partitioned the computations into smaller batches based on the required 
computational resources. Specifically, for each of the 9 models, we divided 
the 1600 runs (32 DGPs with 50 cluster-bootstrapped samples each) across 
50 distinct nodes. This procedure was repeated for each treatment assignment 
scheme and each sample size. Each node provided computational resources as 
follows: 8GB of RAM for the three PSM-based and CEM models, 16GB of 
RAM for the CFs models and 64GB of RAM for the BART models. The entire 
procedure required a total runtime of 120 h.

5.4. Evaluation metrics

To compare our estimators, we rely15 on the absolute bias in the ATT 
(Equation 13), being the mean of the absolute value of the percentage deviation 
of the causal estimate 𝜃ATTj from its correct value across m replications.

absolutebiasATT =
1
m

m

∑
j=1

|
|
|
𝜃ATT − 𝜃ATT

𝜃ATT

|
|
|
× 100 (13)

To assess the effectiveness of ML methods in estimating CATT, we present 
a direct comparison of true effects versus estimated ones. Utilizing a metric 
that aggregates the effects might obscure the nuances of how well the methods 
approximate the distribution of the treatment effect.

15 For additional metrics describing the comparison please refer to Appendix E.
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Fig. 3. Percentage bias across different causal properties. 

6. Results and discussion

6.1. Treatment effect across causal properties

Figure 3 presents the average percentage bias scored by each model across var-
ious causal property levels, both for propensity-based and tree-based treatment 
assignments. Within each subplot, three causal properties are held constant at 
the easier level, illustrating the variation in percentage bias when transitioning 
from the easier to the more challenging level of the remaining causal property 
in both linear (left box) and non-linear (right box) scenarios. In each box, the 
vertical line represents the 5 per cent bias threshold that we use to determine 
whether a method has sufficiently satisfying performances. Then, to keep the 
illustration compact, when a model percentage bias surpasses 1, we replace it 
with a cross placed close to its box right border.

To illustrate interpretation, the top left subplot shows the difference in aver-
age percentage bias as the overlap changes from low to high across linear and 
non-linear scenarios—limiting the analysis in DGPs where the effect size is 
large, and both latent confounding and sample selection bias are absent. The 
rationale behind presenting results in this manner is to offer a concise repre-
sentation of the relevance of specific causal properties and when they come 
into play, while minimizing the aggregation of bias stemming from different 
causal properties as much as possible. As a reference point, the light blue dots 
in the linear box represent the base DGP and therefore are in the same positions 
across the four subplots. Similarly, the light blue dots in the non-linear box 
represent the non-linear version of the base DGP. What changes within each 
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subplot is the position of the more challenging level dots. Therefore, com-
paring the position between the light blue dots in the linear and non-linear 
box within a single subplot allows us to understand the effect of non-linearity. 
Comparing the relative distance between the dots in the linear and non-linear 
boxes within a single subplot illustrates the interaction effect between the con-
sidered causal property and the degree of non-linearity. Finally, comparing the 
absolute positions of the orange dots in respect to the light blue dots gives 
the impact of moving from a scenario with no particular hindrances to the 
estimation to one where we expect serious bias from the considered causal 
property. For a more complete presentation of the results, Appendix E contains 
tables reporting all biases from the various DGPs for each model. Appendix 
F includes supplementary results from the simulation analysis carried out on 
a smaller sample size. Although the results for the smaller sample are not 
graphically presented in the main body to maintain brevity, they are briefly 
discussed in the following section, and the corresponding images are provided 
in Appendix F. In Appendix H, we compare results at different levels of com-
mon support. Last, Appendix G reports bias-variance plots for each method 
over all scenarios.

Examining the impact of common support (Figure 3—top left subplot), it 
appears that it only has an impact on the propensity score-based methods, 
affecting some exclusively in the context of linear DGPs and others solely in 
nonlinear scenarios. This pattern persists when considering a smaller sample 
size, as indicated in the supplementary materials (Appendix F).

Examining the treatment effect magnitude (Figure 3—bottom left subplot), 
we observe that, for each method (excluding the Data-BART), distinct levels 
of treatment effects correspond to varying bias levels. Notably, two scenarios 
highlight pronounced differences: in the case of ML models, particularly with 
propensity-based treatment and linear DGPs, and for classical models when 
applied on tree-based assignment with non-linear DGPs. Comparing these 
findings with those obtained from a smaller sample size reveals a generally 
similar pattern, albeit with some nuanced differences among models. Specif-
ically, CFs encounter challenges in tree-based assignments and non-linear 
DGPs, whereas BARTs demonstrate overall improved performance. Con-
versely, propensity-based methods appear more adept at handling non-linear 
scenarios.

Exploring sample selection bias (Figure 3—top right subplot), we observe 
distinct responses among various methods. Notably, the disparities in per-
formance are more pronounced in the propensity-based treatment assignment 
compared to the tree-based assignment. In the former, theory-driven ML meth-
ods exhibit proficiency in handling sample selection bias within non-linear 
DGPs, whereas data-driven ML models struggle with this challenge. However, 
it is worth noting that data-BART outperforms theory-BART in this specific 
instance. A possible explanation is that BART, being a sparsity-seeking algo-
rithm, tends to discard Z (the control needed to address sample selection bias) 
when fed only the relevant variables (theory-BART). Among XOP and XOC, Z
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has the lower predictive power for both the treatment and the outcome. How-
ever, when BART is provided with the entire set of variables, Z is more likely 
to be retained because it has greater predictive power than the irrelevant con-
trols (data-BART). Classical models, in general, prove susceptible to sample 
selection bias, with many estimations displaying significant bias. A noteworthy 
exception is CEM, which consistently manages sample selection bias across all 
four scenarios. For the smaller sample size, we observe an overall reduction in 
bias attributed to sample selection bias. This reduction is particularly evident 
for classical models, which, while not yet achieving a fully satisfactory level 
of handling sample selection bias, demonstrates improvement in their perfor-
mance. We believe this to be a consequence of how sample selection bias is 
introduced: while we drop the same percentage of units in both the large and 
small samples, the relative number of treated units discarded changes. This 
happens because of the stochastic component of S: in larger samples, there is 
a higher possibility that control units happen to have higher S, leading to more 
treated units being discarded and thus exacerbating the overrepresentation of 
high S—high Y  observations.

A notable contrast emerges in method performances when latent confound-
ing is introduced (Figure 3—bottom right subplot). Concerning the tree-based 
assignment, no method demonstrates efficacy in handling latent confound-
ing. This is particularly pronounced when coupled with non-linear DGPs. For 
propensity score-based assignment, while the overall bias levels are lower, 
most models still exhibit disappointing performance. Remarkably, two mod-
els display notable robustness to sample selection bias: BART, consistent with 
findings by Hahn, Dorie and Murray (2019), and the bias-corrected PSM. 
Upon conducting an analysis with a smaller sample size, the inability of any 
model to address latent confounding persists when the assignment is tree-
based. However, it becomes evident that the overall bias induced by latent 
confounding has a smaller impact on propensity-based treatment assignment.

Finally, it is worth noting a few points when discussing the importance of the 
underlying treatment assignment assumption. First, PSM tends to perform rel-
atively well with the tree-based assignment in respect to the propensity-based 
assignment, but mostly if the forest does not include interaction and higher 
order terms. A possible reason for this lies in random forests functioning, 
clustering similar observations into the same group and assigning all of them 
the same probabilities. Consequently, overlap is enhanced while the scores 
variability is decreased, resulting in a simpler setting for PSM. Conversely, 
ML methods tend to perform better under the tree-based assignment when the 
setting is more complex (for instance with complex non-linear variable space).

In general, the performance of the models raises concerns, as the majority 
of methods consistently fail to stay below the 5 per cent bias threshold. The 
standout performer in this evaluation is the Theory-CF, demonstrating con-
sistent accuracy in retrieving the correct treatment effect in non-linear DGPs, 
except when faced with low common support or latent confounding. A parallel 
scenario unfolds in the comparison involving a smaller sample size, with the 
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Fig. 4. CATT estimation. 

notable difference that the best performance is by Data-BART. Despite grap-
pling with challenges related to sample selection bias, latent confounding and 
treatment effect size (excluding common-support), Data-BART consistently 
retrieves the correct effect under these conditions.

6.2. Treatment effect heterogeneity

Building upon the preceding results, there are three distinct scenarios war-
ranting investigation concerning the accuracy of CATT: when the method 
successfully retrieves the ATT, when the ATT is partially biased, and when 
the ATT is entirely biased. The main question revolves around whether the 
model accurately discerns the CATT and aggregates them to retrieve the cor-
rect ATT, or alternatively, it explores the possibility of a biased ATT resulting 
from an incorrect aggregation of the CATT, even if the latter are reasonably 
approximated. In Figure 4, we present the estimated CATT versus the actual 
CATT for three DGPs, each representing one of the aforementioned scenarios. 
Our focus remains on DGPs where the theory-CF can successfully retrieve the 
ATT, given its unique capability in this regard. 

Our findings emphasize that when the CF is precisely specified and suc-
cessfully retrieves the correct CATTs, it concurrently captures the correct ATT. 
Even small deviations from the correct CATTs result in significant biases in 
the estimation of the ATT. A noteworthy example is the data-driven CF, which 
remarkably performs well in predicting the CATTs despite being moderately 
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distant from the ATT. On the other hand, neither the data-driven nor the theory-
driven BART can successfully retrieve the CATT in any scenarios. As the bias 
in ATT increases, a corresponding bias is consistently observed in CATTs 
across all DGPs, as detailed in Appendix E. Examining the results for the 
smaller sample size, we observe a similar phenomenon, albeit with the notable 
difference that the data-driven CF performs significantly better than in previous 
scenarios, as outlined in Appendix F. It is important to note, however, that the 
hyperparameters of the BART models were not optimized, leaving for further 
research whether such optimization could have improved model performance.

7. General discussion

This simulation study compares the performance of ML methods with clas-
sical econometrics for causal inference using observational data. The first 
observation from the results is that classical methods, whether parametric 
or non-parametric, consistently fail to retrieve the true causal parameter in 
non-linear DGPs. This underscores the potential risks associated with assum-
ing linearity, leading to unrealistic dynamics in intervention outcomes. For 
instance, assuming constant marginal values for AES subsidies may be inap-
propriate, given the non-constant marginal costs of farms of varying sizes. 
Therefore, the assumption of linearity should be approached cautiously, and 
its implications should be contrasted with empirical knowledge. Our results 
indicate that in cases where linearity assumptions do not hold, ML methods 
are preferable.

Second, comparing performances under high or low common support ini-
tially suggested that methods were not significantly affected by this property. 
However, recognizing the common support assumption required by each 
model, we further investigated the issue by comparing results at different lev-
els of support, reported in Appendix H. What we find with the new simulation 
design is that ML methods maintain nearly a constant level of bias across dif-
ferent shares of common support, indicating their robustness to low overlap as 
long as it exists. In contrast, classical methods exhibit a significantly higher 
bias below a certain threshold. Specifically, the bias-corrected PSM registers 
an almost fourfold increase in bias when the share of common support falls 
below 50 per cent. Similar trends are observed for BART-PSM and CEM when 
the share of common support drops below 25 per cent. These results, however, 
should be viewed as preliminary, and a dedicated simulation is required to 
thoroughly examine how different shares of common support influence the 
identification of a causal effect.

Third, comparing results under large or small treatment effects revealed 
that each method exhibits different power characteristics. Estimates of smaller 
treatment effects were more biased for every method compared to larger 
treatment effects. Consequently, a power analysis using the chosen methods 
is imperative to ensure the capability of detecting effects based on antici-
pated intervention results or targets, even if it entails running computationally 
intensive models (Ioannidis, Stanley and Doucouliagos, 2017).
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Fourth, comparing estimates in the presence or absence of sample selection 
bias reveals the susceptibility of both ML and classical methods when incor-
rectly specified. Sample selection bias exacerbates existing biases when other 
factors hinder the correct treatment assignment retrieval. Conversely, when 
provided with the correct controls, the model can address sample selection bias 
if capable of retrieving the treatment effect. While direct policy implications 
are absent, the results emphasize the importance of selecting an appropriate 
model for the analysis, underscoring the significance of simulation studies.

Fifth, considering latent confounding, neither ML nor classical methods 
prove suitable for addressing it. Despite the potential mitigation of bias in 
simple DGPs by providing a correct proxy for latent confounders, latent con-
founding remains a persistent issue without a clear solution. This serves as a 
reminder that any analysis based on the FADN is constrained by the control 
variables present within it.

Finally, our analysis shows substantial differences in performance when 
the underlying treatment assignment is assumed to follow either a probability-
based or a decision tree procedure. The performance of each method undergoes 
drastic changes when transitioning between these two treatment assignment 
procedures. In linear DGPs, a bias-corrected PSM is sufficient to retrieve the 
true treatment effect. However, in non-linear DGPs, theory-based counterfac-
tuals are shown to be the best performers.

8. Conclusions

To evaluate agricultural policies, economists used a variety of econometric 
impact evaluation techniques the last few decades. More recently, ML tech-
niques have been proposed as a panacea for all their ills. In this simulation 
study, we compared the performances of classical econometric methods versus 
ML methods in retrieving a causal estimand across different DGPs tuned to the 
European FADN. We tested four main advantages ML methods are supposed 
to have derived from their data-driven approach: functional form selection, rel-
evant controls selection, treatment effect heterogeneity exploration and latent 
confounding control. Accordingly, we first assessed the reliability of each 
method over a wide range of scenarios, and second, investigated how ML 
methods can enhance causal analysis for agricultural policy evaluation.

Our findings reveal that, on the whole, ML methods exhibit superior perfor-
mance compared to classical methods. Specifically, the theory-driven CF is the 
best performing model in large sample sizes, while the theory-driven BART 
excels in small sample sizes. The success of the CFs might be due to the dou-
bly robust correction they employ, differently from the other methods. The 
success of the data-driven approach to approximate the functional form is par-
ticularly noteworthy, as ML methods perform significantly better on non-linear 
DGPs. Surprisingly, this advantage does not extend to situations where the 
underlying treatment assignment is assumed to follow a tree-based procedure. 
However, the data-driven variable selection does not consistently enhance per-
formance and can even detrimentally impact both CF and BART. While these 
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forest methods identify relevant controls, the relative importance of these con-
trols is obscured by other variables that exhibit higher correlation with the 
magnitude of the treatment effect rather than the assignment. A notable excep-
tion is observed with data-driven BART, which, in small sample sizes and 
only in certain scenarios, performs similarly or better than its theory-driven 
counterpart, underscoring the specific advantages of a data-driven approach 
in certain contexts. The most substantial contribution of ML methods, set-
ting them significantly apart from classical methods, lies in their capability to 
correctly capture complex and heterogeneous treatment effects when appropri-
ately specified. In this regard, CF appears better equipped than BART, making 
a considerable contribution to the toolbox of agricultural economists. Finally, 
our results suggest that the ability of tree-based methods to handle latent con-
founding does not solely hinge on providing the correct variables to generate 
control combinations.

There are three limitations to this study. First, the results of our models are 
only valid over the causality structures specified. In particular, we focus on 
cross-sectional methods relying on the conditional independence assumption, 
while we leave for future research the possibility of extending this framework 
to panel data (to leverage methodologies based on the DiD framework for 
instance) or designing scenarios resembling natural experiments. Second, we 
chose to focus on a subset of relevant properties that could pose challenges to 
identification in a causal study. Third, despite our efforts to make the simula-
tion framework as general as possible, there are still some arbitrary choices, 
such as the number of variables included in each DFP or the specification of 
the non-linear functional form. While these limitations may negatively affect 
the generalizability of our results, we are confident that our findings can be 
extended across different scenarios since the causality structure we have spec-
ified encompasses a wide range of scenarios, and the entire framework allows 
for both implementations and modifications.

Further research on this topic could investigate the impact of framework 
modifications, such as the consideration of different causal properties. Another 
direction could be implementing additional preprocessing procedures to make 
the ML estimators more effective. Considering BART, a question that natu-
rally follows our analysis is assessing the impact cross-validating its hyper-
parameters would have on its performances. Moving to CFs, another open 
question remains the design of preprocessing procedures to ensure their cor-
rect usage by the tree-based methods. The objective of these preprocessing 
procedures is to ensure that controls known from theory to be relevant have pri-
ority over remaining variables. Finally, future research could explore exploring 
the capabilities of ML models to deal with sample selection bias due to 
unobservables.
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