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Abstract

Machine learning (ML) methods have been proposed to improve the assessment of
agricultural policies through enhanced causal inference. This study uses a simulation
framework tailored to Farm Accountancy Data Network (FADN) data to scrutinize the
performance of both ML and classical methods under diverse causal properties cru-
cial for identification. Our findings reveal significant variations in performance across
different treatment assignment rules, sample sizes and causal properties. Notably, the
Causal Forest method consistently outperforms others in retrieving the causal effect
and accurately characterizing its heterogeneity. However, the data-driven approach of
ML methods proves ineffective in selecting the correct set of controls and addressing
latent confounding.

Keywords: causal inference, machine learning, FADN, controlled simulation experi-
ment

1. Introduction

As the objectives of the European Union’s Common Agricultural Policy (CAP)
continue to increase in number and ambition, and the need to justify them to the
public remains unchanged, it is crucial for CAP interventions to be effective.
In the period 2023-2027, the CAP can rely on its largest budget in history,
with 387 billion euros earmarked for promoting a greener, fairer and more
competitive agriculture (European Commission, 2022). However, in order to
ensure progress towards these goals, it is essential to assess the effectiveness
of CAP interventions.
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The ex-post evaluation of CAP interventions has predominantly relied on
conventional econometric methods, such as matching, as evidenced in the liter-
ature. For instance, the effects of agri-environmental schemes (AES) have been
analysed using propensity score matching (PSM) (Pufahl and Weiss, 2009),
or PSM combined with difference-in-differences (DiD) (Arata and Sckokali,
2016; Mennig and Sauer, 2020). A notable exception is Stetter, Mennig and
Sauer (2022) who analysed AES participation in Southeastern Germany using
a causal forest, a machine learning (ML) technique.

Despite their widespread use in the literature, classical matching method-
ologies have come under scrutiny due to several concerns that have been
raised (Breiman, 2001; King and Zeng, 2007; King and Nielsen, 2019; Storm,
Baylis and Heckelei, 2019). In general, these methods are (asymptotically)
unbiased as long as the data generation process (DGP) is known, meaning
that we can choose a method whose underlying assumptions for unbiasedness
match the DGP structure. However, in scenarios where this is not the case,
data-driven approaches based on more flexible assumptions may offer a more
credible alternative than attempting to guess the correct specification (Hastie,
Tibshirani and Friedman, 2009).

Since CAP evaluation involves sample selection bias and treatment hetero-
geneity, ML methods could greatly contribute to agricultural policy impact
assessment (Storm, Baylis and Heckelei, 2019). These methods have emerged
as a promising complement or even alternative to classical econometric meth-
ods for causal inference recently (Athey, 2018; Athey and Imbens, 2019;
Storm, Baylis and Heckelei, 2019). Their key advantage lies in the ability to
model both the treatment assignment and the outcome without restrictions on
the functional form or number of variables, as well as the ability to explore
heterogeneity across dimensions not specified previously (Athey, 2018). These
strengths enable ML methods to overcome some of the limitations of classical
methods (Athey, Tibshirani and Wager, 2019; Hahn, Murray and Carvalho,
2020).

However, due to the inherent challenge of causal inference, evaluating a new
estimator entails a fundamental reliability issue. The fundamental problem
of causal inference is that since the counterfactual is unobserved, one cannot
know whether the true treatment effect was retrieved in any given observational
scenario. To determine whether a method is trustworthy in a specific context,
it must be validated in a controlled environment where the counterfactuals are
known.

Therefore, the objective of this paper is to assess the reliability of classic and
ML causal estimators in retrieving a treatment effect by comparing their perfor-
mances in a simulation study tailored to EU agricultural policies. To tailor our
simulation to the agricultural economics domain, we start from the European
Farm Accountancy Data Network (FADN), the reference dataset for study-
ing the CAP (Pufahl and Weiss, 2009; Arata and Sckokai, 2016; Mennig and
Sauer, 2020; Stetter, Mennig and Sauer, 2022) and focus on participation in
agri-environmental schemes. We restrict our analysis to causal inference with
observational data as researchers in the agricultural policy domain are often
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limited to using administrative data for their analyses and policy experiments
are often not feasible.

Our simulation study is designed building on Lechner and Wunsch (2013),
Huber, Lechner and Wunsch (2013), Wendling et al. (2018) and Knaus,
Lechner and Strittmatter (2021). In addition to customizing such simula-
tion to an agricultural economics setting, our research extends the existing
simulation literature by investigating various treatment assignment proce-
dures, and differentiating between confounding (selection into treatment)
and sample selection bias. Incorporating treatment assignment under vary-
ing assumptions enables a more equitable comparison, reflecting the diverse
ways farmers might choose to participate in the treatment. While the tradi-
tional econometric literature often uses confounding and sample selection bias
interchangeably (Cinelli, Forney and Pearl, 2022), recent advancements in
causal inference offer a framework to accurately model these distinct phenom-
ena. This approach enhances our understanding of each method’s performance
across different contexts: whether farmers self-select into treatment (the out-
come and the decision to participate are influenced by the same variables—
confounding), or whether the sampling process or estimation procedure over-
or under-represents a certain group (sample selection bias).

The paper makes three contributions to the literature on evaluating EU agri-
cultural policies. First, it proposes an evaluation framework for causal methods
that can be applied flexibly, enabling a nuanced understanding of the most suit-
able method for addressing diverse agricultural economic impact-assessment
questions. Second, it examines the behaviour of the considered estimators
across different scenarios and highlights factors that can cause a method to
fail in retrieving the true effect. Third, it offers guidelines for the practical
application of the considered methods, taking into account the scenarios’ char-
acteristics and the estimators’ functioning. Overall, these contributions aim to
support agricultural economists in making informed choices when selecting a
causal estimator for a specific policy evaluation context.

2. Observational data: ML versus classical approaches

The primary strength of ML methods lies in their data-driven approach to
selecting variables and functional forms. Researchers often aim to control for
as many confounders as possible to enhance the credibility of the unconfound-
edness assumption (Baiardi and Naghi, 2021). However, classical approaches
typically focus on a restricted set of variables selected based on existing litera-
ture. In the absence of theoretical guidance for modelling choices, data-driven
approaches may be preferable as they are not limited in the number of variables
they can use to model the response function and treatment assignment. More-
over, data-driven variable selection enhances confidence that these choices
were made to satisfy the unconfoundedness assumption, rather than through
a trial-and-error process aimed at achieving specific results or engaging in
questionable research practices. Therefore, data-driven approaches to variable
selection are particularly relevant when the theoretical framework behind the
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research question is not sufficiently developed to guide variable choice (Hastie,
Tibshirani and Friedman, 2009).

Controlling for confounders is essential in causal inference, which requires
both selecting the correct controls and functional form (King and Nielsen,
2019; Chernozhukov et al., 2018). However, most classical econometric meth-
ods rely on the assumption of linearity in parameters, which might not be
credible in complex contexts like agriculture where biological, social and eco-
nomic factors interact (Storm, Baylis and Heckelei, 2019). In such cases, linear
functional forms might not be sufficiently flexible or powered to capture com-
plex non-linearities and interactions, and at the same time not sufficiently
rooted in theory for justifying their use (Storm, Baylis and Heckelei, 2019;
Hastie, Tibshirani and Friedman, 2009). In contrast, flexible ML methods can
account for non-linearities and high-order interactions intrinsically, allowing
to obtain a better fit to the underlying DGP. Moreover, this flexibility is partic-
ularly relevant in the presence of a specific type of latent confounding, where
the confounders are related to observable controls. Latent confounding occurs
when a confounder is unobserved, either because it is missing from the dataset
or because it is unmeasurable. However, if a complex combination of observ-
able controls can sufficiently approximate the latent confounder, the estimator
can still accurately identify the effect (Louizos et al., 2017; Kallus, Puli and
Shalit, 2018; Bennett and Kallus, 2019; Wang and Blei, 2019).

The data-driven choice of variables and greater model flexibility could
also help in dealing with selection into treatment afflicting CAP interven-
tions, where factors involved and their relationships are unknown but observed.
Theoretical arguments on CAP participation benefits might not always align
in practice with participants’ expectations. For instance, a researcher might
believe that the take-up rate of an AES would be dictated by subsidies and the
farm structure, while in practice it could be driven by a marketing campaign
launched by an NGO operating only in certain areas. Allowing the algorithm
to determine which variables to include and how to include them is expected
to increase the robustness of the analysis in this situation.

Last, ML also allows to explore treatment heterogeneity without incur-
ring the bias caused by multiple hypothesis testing. Understanding how the
treatment effect varies by farmers’ characteristics is highly relevant for poli-
cymaking (Koutchadé, Carpentier and Femenia, 2018), as it allows to design
more cost-effective ways of achieving set objectives. Standard approaches to
exploring treatment heterogeneity imply prespecifying a set of sub-populations
over which to assess differences in the causal effect (which is prone to con-
firmation bias on the researcher’s end). However, when proceeding with the
evaluation, the researcher must account for the probabilistic nature of test-
ing: out of 20 hypotheses on treatment effectiveness tested, we expect to reject
incorrectly the null of at least one of them considering a 5 per cent significance
level. Although several corrections are available for the issue (Bonferroni,
1936; Benjamini and Hochberg, 1995; Holm, 1979) they do not scale well
in presence of many covariates considered, severely limiting the possibility
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for testing effect heterogeneity. This is in stark contrast with tree-based meth-
ods, which naturally target the individual treatment effects (ITEs) (Athey,
Tibshirani and Wager, 2019; Hahn, Murray and Carvalho, 2020).

However, the benefits listed so far do not come without a price, with inter-
pretability being a primary concern. Specifically, not being able to completely
understand a model makes its debugging and utilization more difficult (Storm,
Baylis and Heckelei, 2019). However, the loss of interpretability should not be
deemed inherently connected to ML methods, but rather as part of a trade-off
with model complexity. Therefore, in some cases, it may be preferable to have
a more sophisticated model, able for instance to allow for treatment hetero-
geneity, than a simplified but more understandable approximation. In recent
years, procedures have been developed to improve the interpretability of ML
methods (Molnar, 2020). Nonetheless, interpretability is associated with issues
such as transparency, fairness and manipulability, which further hinder the per-
ceived reliability of ML methods (Athey, 2018; Storm, Baylis and Heckelei,
2019).

3. Simulation background and data
3.1. Underlying assumptions

Monte Carlo simulation using synthetic data are commonly used to provide
insights into the functioning and properties of estimation methods, allowing
the researcher to establish the ground truth by retaining control over both the
treatment assignment and effect (Dorie et al., 2019; Wendling et al., 2018;
Hahn, Dorie and Murray, 2019; Knaus, Lechner and Strittmatter, 2021).
Notable examples of simulation studies using hypothetical DGPs to exam-
ine the properties of estimators include Frolich (2004), who explores different
matching procedures; Zhao (2004), who compares matching based on propen-
sity scores versus matching based on covariates; Busso, DiNardo and McCrary
(2009, 2014), who compare matching versus reweighting procedures; and
King et al. (2011), who delve into various classes of matching procedures and
describes the PSM paradox.

Our simulation is based on FADN data and mimics participation in AES.
AES are a series of interventions aimed at rewarding farmers for the provi-
sion of positive externalities beyond the mandatory requirements to obtain EU
subsidies (Baylis et al., 2008). Over the years, AES have been one of the
main subjects of the European agricultural policy-evaluation literature. This
extensive research focus stems from a paradox: while AES receive the largest
share of rural development program funding (Arata and Sckokai, 2016), they
face significant criticism for their design (Massfeller et al., 2022). This chosen
application does not affect the generalizability of the results, but it provides a
framework for making decisions consistently, reducing researcher discretion.
Therefore, it is possible to think of our treatment as an additional AES scheme
that is guaranteed to have an effect on the designated outcome.

To obtain a representative and meaningful simulation, we have two targets:
(i) adhering as closely as possible to reality, while (ii) being able to control
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the relevant factors in observational causal inference in the domain of agricul-
tural policy impact assessment. The first target is achieved by simulating an
outcome and a treatment assignment tailored to the FADN dataset, ensuring
their relationship with farm characteristics. Moreover, we compute the min-
imum detectable effect (MDE) based on the number of observations present
in the FADN and stick to the percentage of treated found for the AES. The
second target is achieved by including parameters in the outcome and treat-
ment assignment equations that allow us to manipulate the causal properties
of each DGP. Specifically, we analyse the effects of five supplementary causal
properties that influence the structure of causality in empirical studies: (i) the
degree of non-linearity, (ii) the share of common support, (iii) the strength
of the treatment effect, (iv) the presence of sample selection bias and (v)
the presence of latent confounding. We choose these properties, as well as
their levels, so to include what we perceive as most relevant in agricultural
policy impact assessment—more specifically, FADN-based analysis—while
constraining the number of possible combinations.

To have an identifiable effect, the DGPs in this simulation are ensured to sat-
isfy three assumptions: conditional independence (excluding DGPs with latent
confounding), common support and the stable unit treatment value assumption
(SUTVA). Conditional independence states that the treatment assignment is
independent from the potential outcomes conditional on the controls; com-
mon support concerns the existence of overlap in the probability of being
treated between the treatment and control group; and SUTVA requires the
treatment effect of each individual to be independent from the treatment sta-
tus of other individuals (Imbens and Rubin, 2015). Although our simulation is
designed to guarantee conditional independence, it is worth noting that this is
a strong assumption and the least favoured in economics. However, as applied
researchers are often confined to working with (increasingly large) observa-
tional datasets, we see value in exploring how causal ML methodologies are
able to identify causal effects in an observational context.

3.2. Data

Our starting point is the FADN dataset for all the EU-28 countries in the year
2020' (DG AGRI, 2023), consisting of 81,834 farms. We then conduct our
simulation, comprising the DGPs combination and the treatment assignment
procedures, on two different sample sizes. The larger dataset encompasses all
available observations, while the smaller dataset is limited to 4000 observa-
tions. We focus on two different sample sizes for two reasons. First, CAP
impact evaluations are usually conducted either aggregating data from vari-
ous member states (Arata and Sckokai, 2016), or at a regional level (Stetter,
Mennig and Sauer, 2022). Second, ML models are expected to manifest a
slower convergence rate than classical models (Abadie and Imbens, 2011;
Chernozhukov et al., 2018; Hastie, Tibshirani and Friedman, 2009). Therefore,
by having two different sample sizes, we can offer guidance to researchers who

1 The most recent year available to us for analysis.
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may engage in either type of analysis, while analysing to what extent smaller
or larger datasets can affect the performances of the estimators.

The nature of the FADN dataset, with a vast array of different variables,
imposes us to start the simulation by limiting in a data-driven way which vari-
ables enter the DGPs. Not all variables can be expected to be equally relevant,
due to the strong heterogeneity in European farming and the high specificity
of each variable, so that many variables are excessively sparse.? Therefore, the
first step in our simulation is the restriction of the dataset to the least sparse
variables, described in this section as a matrix of covariates X plus a sub-
script identifying the set, viz. Xpp (treatment determinants) and Xp (outcome
determinants).

We run a LASSO regression on both a proxy outcome (farm revenues?) and
a proxy treatment (participation in AES*), obtaining each variable ranking for
how good it predicts its target (Hastie, Tibshirani and Friedman, 2009). To
ensure the correct training of the LASSO model, we preprocess our data with
two transformations. First, we apply the Yeo—Johnson transformation (Yeo and
Johnson, 2000) to deal with both outliers and the skewness of the variables’
distribution. Second, we divide each variable by its own maximum absolute
value, to preserve the data sparsity® while constraining it between 0 and 1.
Then, we select the first 75 variables,® in order of importance determined by
the LASSO models, for each target (avoiding repetitions).

Afterwards, we randomly pick the variables used in the equations across
the different DGPs and iterations. These variables are divided into observed
confounders (Xy¢), latent confounders predictors (X; ~—the observed controls
correlating with the latent confounders) and other outcome predictors (Xop)
(Table 1). For each set, we start from either X, or Xop and select the variables
so that they contain both continuous and categorical variables. We obtain the
following sets:

Xoc: 5 variables such that X C Xrp
X[ c: 6 variables such that X; - C Xrp
Xop: 5 variables such that Xop C Xpp

Following Kallus, Puli and Shalit (2018), we incorporate (a specific form)
of latent confounding in our simulation. We do not directly employ the X;
variable set in constructing our simulation, but rather we construct two latent
confounders, )/(L\C, as a linear combination of three variables in X; -, each plus

2 Variables designed to capture the particularities of a specific region or production system will
necessarily report no values for most others. For instance, the variable indicating the number of
hectares dedicated to strawberry cultivation will be zero for all farmers not growing strawberries.
Identified in the FADN with the code SE005.

4 Identified in the FADN with the code SAEAWSUB_2_V. This variable measures the amount of
subsidies farmers received from AES—so in order to use it as a treatment variable, we encoded
it as a categorical variable being 1 if the amount received was greater than zero and 0 otherwise.

5 Meaning that the relative distance between each point is maintained.

6 We chose this number arbitrarily, aiming to strike a balance between obtaining a dataset large
enough to fully demonstrate ML methods capability and the implied running time. We chose the
number of variables for each set with the same logic.

w
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8 P L. Brignoli et al.

Table 1. Variable sets and related FADN identifying codes

Variable set FADN identifier Name
Observed confounders NUTS2 Regional indicator
Xoc SE025 Total utilized agricultural
area
SEO10 Total labour input
SE132 Total output/total input
SE624 Total support for rural
development
Latent confounders SE042 Area in energy crops
Xic SE621 Environmental subsidies
SE105 Number of poultry
LEGAL Farm legal status
SE281 Total specific costs
SE446 Land, permanent crops and
quotas
Outcome predictors AMCHQP_AD Machinery accumulated
Xop depreciation value
ACSHEQ_CV Cash and equivalents
closing value
ALNDAGR_OV Agricultural land opening
value
ARECV_CV Receivables closing value
TF8 Type of farming

arandom term. This )/(L\c set of variables becomes the one entering the DGPs,
while each method will be provided with X; - to evaluate its capability to cor-
rectly approximate and manage latent confounding. See Appendix A for more
details on the variables employed.

4. Simulation design

We start our simulation from a linear DGP, wherein the treatment assignment
is determined by a propensity score, ensuring the assumptions of uncon-
foundedness and common support are satisfied. This approach establishes
a comprehensible reference for our study, serving as a benchmark for all
subsequent comparisons. From this baseline, we incrementally introduce mod-
ifications to the DGP, the treatment assignment mechanism, or both, to evaluate
how the performance of each method diverges from the outcomes observed
under the base DGP.

We design 32 DGPs, obtained by manipulating 5 causally relevant proper-
ties (each taking on two different levels) of the base DGP. The causal properties
considered are (i) degree of non-linearity, (ii) share of common support, (iii)
strength of the treatment effect, (iv) presence of sample selection bias and (v)
presence of latent confounding. Over the following sub-sections, we start by
introducing the base DGP, and then proceed explaining how we extend that
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DGP to modify each causal property. The full replication code is available is
the online Supplementary Materials.

4.1. Base DGP

To establish our base DGP, we begin by simulating the outcome of interest Y
following a linear model as specified in Equation 1:

Y = aXop + BXoc (1)

Y is obtained as the linear combination of X,p, the outcome predictors and
Xoc, the observed confounders. The corresponding vectors of coefficients for
these variables are denoted by « and 3, respectively (Appendix B).

In the second step, we compute each observation’s probability of receiv-
ing the treatment (the propensity score) using the logit function defined in
Equation 2:

1

Cszoc+E

The propensity scores are calculated as a linear combination of X, the
observed confounders, with an added noise term €. The vector of coefficients
associated with the observed confounders is denoted by k. Consequently, con-
founding is introduced by including X, in both the outcome regression and
the treatment assignment process.

The treatment assignment rule is then constructed using the computed
propensity scores in a Bernoulli distribution (Millimet and Tchernis, 2009;
Huber, Lechner and Wunsch, 2013; Knaus, Lechner and Strittmatter, 2021),
enforcing a 90 per cent overlap’ and a fixed percentage of treated units. This
percentage is set as the actual percentage of farmers that participate in the AES
reported in the FADN in 2020 (26.1 per cent). While the first constraint will
later on be used to test the robustness of the methods to variation in the overlap
share, the second is a feature we added to the simulation to strengthen the link
with actual FADN-based impact assessment studies.

The third step involves estimating 6,77, the average treatment effect on
the treated (ATT). To add the possibility to evaluate the ability of ML meth-
ods to address treatment heterogeneity, we first draw the individual treatment
effects for each farm based on its farm type (7; rp,in Equation 3) from a uni-
form distribution U ~ (—1,1). Then, to fix the ATT at a defined value, we
compute a correction term (8,peciion)> Which is the difference between the
average of the individual farm type effects and the target ATT (Equation 3).
The target ATT is determined as double the minimum detectable effect (MDE)
calculated through power analysis based on the size of the FADN dataset
(Huntington-Klein, 2021) using linear regression. This approach yields two

7 Meaning that 90 per cent of the treated units fall into the propensity score interval of the control
units.

Gz0z Aeniga4 | uo Jasn Aleiqi] YN usbBuluabep A 966626./7€09Al/8RIS/E60 | 01 /10P/2[0IB-80UBApPE/aRI8/WO02 dNO dIWapeIe//:sd)y WO} PaPEOjUMO(]



10 P. L. Brignoli et al.

distinct estimands of interest: the ATT, which allows comparison across all
considered methods, and the conditional ATT (CATT), which exclusively
assesses the performance of ML techniques.

13
Oarr = (Z Z Ty, TF; ) — Ocorrection 3
i

By allowing the treatment effect to vary in this specific manner, we are able
to assess the effectiveness of ML models in detecting treatment heterogeneity
across sub-groups. In scenarios like agricultural policy evaluation, it is reason-
able to assume that the treatment effect varies among subgroups given the vast
heterogeneity in farmers’ characteristics (Stetter, Mennig and Sauer, 2022).
In this context, understanding how the treatment effects vary conditionally on
a specific farm characteristic (in our simulation, the farm type) becomes cru-
cial for better comprehending the policy instrument in question, improving its
design and enhancing targeting strategies.

Finally, we introduce clustered errors into our base DGP to prevent the
model from being deterministic. Specifically, we consider a scenario where
errors are clustered at the country level (Equation 4), as assuming identically
and independently distributed errors would be unrealistic given the structure
and data collection methods of the FADN (DG AGRI, 2023). In Equation 4,
g is a normally distributed error term, while €.y, is @ country-specific error
term. This specification implies that 10 per cent of the residual variation is
country-specific. Lastly, o,denotes the standard deviation of the outcome
(Hahn, Dorie and Murray, 2019).

Y = aXop + BXoc + 6T + 0, (0.9¢; + 0.1€c00ry)
“4)

g, = \Var(Y + nt(x;))

Note that the errors are defined additively in this way. While non-additive
errors could arise in high-dimensional and non-linear settings, considering
them here would add unnecessary complexity to our simulation setup (for an
example, see Hahn, Dorie and Murray (2019)).

4.2. Introducing non-linearity

The base DGP is modified to violate the linearity assumption by changing
both the outcome regression and treatment assignment functional form. Specif-
ically, Equation 5 describes the three functions 7 (x), s(x) and ¢ (x) that we use
to introduce non-linearity.

r(x) =(x+1)°

— if x<-—p

r(x)

s(x)=4 round(r(x))+n if —p<x<p (5)
- if x>p

)
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log (Is()D)
E) = o
e s

The first transformation involves cubing the linear combination of variables
sets in consideration (Xppand Xy for the outcome regression, X, for the
treatment assignment), and an added constant, thereby incorporating® up to
third-order polynomial and interaction terms. This polynomial is then passed
through a step function that includes hyperbolic terms and rounding to disrupt
the continuity of the function. The values of 7 and p are chosen to prevent
spikes in the outcome distribution. Finally, a combination of logarithmic,
exponential and cosine functions is used to further increase the complexity
of the outcome. A more conventional choice for a non-linear functional form
could have been to utilize well-known forms from the economic literature.
However, we opted for this arbitrary form, inspired by the simulation litera-
ture (Dorie et al., 2019), to allow a broader applicability of our analysis across
various evaluation contexts. To introduce non-linearity in the treatment assign-
ment, we apply the same procedure to C (Equation 2) before passing it through
the logit function. Consequently, in DGPs where non-linearity is introduced,
Equations 1 and 2 can be rewritten as Equations 6 and 7, respectively:

Y = t(aXop + BXoc) (©6)

1

C= t(KlXOC + E)

The reason why we give this much importance to the degree of non-linearity
is because treatments taking place at the border of different domains (eco-
nomic, social and environmental) are expected to be highly complex (Borner
et al., 2017; Schliiter et al., 2023). Moreover, the importance of accounting
for higher-order variables and their interactions stems from the necessity of
correctly incorporating agricultural system characteristics. These higher-order
variables are assumed to represent elements of a farmer’s decision-making
process that display varying marginal effects, either increasing or decreasing.
For example, when assessing the impact of subsidies aimed at moderniz-
ing machinery and farm equipment, the probability of a particular farmer
enrolling in the programme is expected to increase progressively with each
additional unit of land they possess. In order to capture the diverse range of
farm structures stemming from various combinations of factors, we incorpo-
rate interaction terms into our modelling approach. To illustrate, we examine
the production costs of a tomato farmer, where factors such as being located
in a region characterized by high temperatures and proximity to a body of

8 By expanding the cubic polynomial (i.e. multiplying each term by itself and by the other terms in
the polynomial), the higher-order and interaction terms become apparent.
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water play a significant role. Independently, both these factors might reason-
ably be assumed to decrease the production costs, as high temperatures and
ample water supply favour tomato production, reducing the need for exter-
nal inputs. However, the combination of these two factors could potentially
increase the production costs due to a higher presence of insects, necessitating
the use of more pesticides. This nuanced consideration underscores the com-
plexity inherent in real-world agricultural systems and highlights the necessity
of incorporating interaction terms in our models.

4.3. Changing common support

To change the overlap in common support from the base DGP, we enforce the
treatment assignment rule so that only 50 per cent of the treated units fall into
the propensity score interval of the control units (Appendix B). The assumption
of common support is critical for all methods considered in this analysis, and
this modification will help us understand the extent to which these methods
depend on that assumption.

In agricultural economics, it is often observed that the control group is not
ideal for comparison with the treated group. This discrepancy can arise, for
instance, when examining the switch to organic farming or when treatments
are administered based on geographical location or production orientation,
resulting in non-treated observations that are structurally different from treated
observations.

4.4. Changing treatment effect size

To vary the treatment effect size, we adjust .gecion iN Equation 3 accord-
ingly. Specifically, while the base data DGP sets the treatment effect at double
the MDE from the power analysis, we also explore scenarios where the treat-
ment effect equals the MDE itself. Including the size of the causal effect in
simulations is a standard practice in the literature, but examining method per-
formance near the detection threshold is particularly relevant in agricultural
economics. This field often experiences gradual rather than abrupt changes in
response to interventions. Agricultural practices evolve slowly due to factors
such as the steep learning curve involved in altering farm practices or the time
required for soil and crop modifications to yield noticeable effects. Therefore,
assessing method performance under conditions where treatment effects are
small yet detectable is crucial for accurately evaluating intervention impacts
in agricultural settings.

4.5. Introducing sample selection bias

Sample selection bias is typically described as a preferential selection to the
pool, arising during the sampling phase or from controlling for a ‘bad control’
or collider’ (Bareinboim and Pearl, 2012; Cinelli, Forney and Pearl, 2022).

9 Acollider is defined as a common effect shared by the two variables on a given causal path.
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Fig. 1. Directed acyclic representation of the simulation causality structure.

This preferential selection leads to the under- or over-representation of spe-
cific population subgroups with particular characteristics in the treated sample,
resulting in bias in the estimation of treatment effects. When the sampling
phase introduces selection bias, the outcome and treatment distributions are
always conditioned on the set of characteristics driving this preferential selec-
tion (Bareinboim and Pearl, 2012). Alternatively, conditioning on a collider
introduces a spurious correlation between the outcome and treatment.

To introduce sample selection bias into our base DGP, we stratify the sample
based on S, a continuous variable reflecting the probability of entering the data
pool (Bareinboim and Pearl, 2012). We then include a control variable Z to
mitigate'” the bias resulting from sample selection (Cinelli, Forney and Pearl,
2022) (Figure 1). By stratifying the sample on S, we can better simulate real-
world scenarios, where researchers are often provided with datasets potentially
affected by sample selection.

In order for S to be a collider on the causal path between the treatment
and the outcome, causal paths must exist from both the treatment and the out-
come to S. Therefore, we start by computing the intermediate S, the outcome
predictors (Xp) contribution to S, as in Equation 8.

S = w Xop, + 0, Xop, + w3Xop, + W4 Xop, + wsXop, (8)

In Equation 8, each XOPP represents a variable in Xpp, while w, denotes the
coefficient associated with each variable. We select the coefficients w, ensur-
ing that the signs correspond with vector a in Equation 5 for each Xp. Then,
we construct Z as a mediator on the path between the treatment 7 and the col-
lider S (Equation 9), meaning that treatment 7" has an impact on S only through
Z (Cinelli, Forney and Pearl, 2022). U is a random uniform variable having
the same minimum and maximum values as S, representing the part of the

mediator independent from 7

10 Itis important to note that our analysis focuses on a specific instance of sample selection bias
that can be corrected using Z, although this may not always be the case (Bareinboim and Pearl,
2012).
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Z=TU+Q-T)(-1)U ©)]

Last, we combine the two components to obtain S (Equation 10), ensuring on
one end that S is caused by the treatment and that by controlling for Z we are
able to identify the treatment effect.

$=058+05Z (10)

To introduce sample selection bias in our simulation, we stratify our dataset
dropping all the observations below the first 33 per cent quantile of S. This
approach ensures that observations with higher values of S, and consequently
Xop, and Y are overrepresented in our treated sample. Since our procedure
to introduce sample selection bias removes a third of the observations, we
also randomly discard a third of the observations in those DGPs where sample
selection bias is absent to maintain comparability. As a result, the final sample
sizes are 57,620 observations (from 81,834) for the larger dataset and 2814
from (4000) observations for the smaller dataset. We selected the first 33 per
cent quantile as it strikes a balance between introducing sufficient sample
selection bias (Appendix B) while avoiding dropping too many observations.

Sample selection might be serious issues for impact studies using EU FADN
data. While the EU FADN dataset represents around 90 per cent of the total EU
production, it only represents around 42 per cent of the holdings—with small
part-time farmers being under-represented (Bradley and Hill, 2016). When
evaluating AES impact, sample selection bias might play an important role
as smaller and less intensive farmers are often the ones more likely to opt into
such subsidies. In contrast, larger, more economically driven farms may be
less inclined to participate (Zimmermann and Britz, 2016). In this context, the
variable Z can be seen as a mediator, such as farm production orientation, dis-
tinguishing between economically or environmentally oriented farms. Failing
to account for sample selection bias could lead to over-estimated policy effects
and hence the policy instrument failing to produce an additional effect in prac-
tice by encouraging more intensive farmers to adopt greener practices. Instead,
it may also result in windfall effects, where funds are transferred for the adop-
tion of practices that would have been adopted even without the treatment
(Chabé-Ferret and Subervie, 2013).

4.6. Introducing latent confounding

The base DGP is modified to violate the unconfoundness assumption by adding
the variables set )?L\C in both the outcome equation and treatment assignment.
Therefore, in the DGPs where latent confounding is present, it is possible to
rewrite Equations 6 and 7 as Equations 11 and 12, respectively:

Y= t(OCXop+5Xoc+Y)/(L\c) a1
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_1
1+e€ (12)
C = t()iXoc +1,Xic +€)

Tx)=Pr(Z=1)=

Where x; and x, are the sets of coefficients associated with X, and )/(L\C,
respectively. By setting ¢ equal to the identity function, it is still possible to
retrieve the original linear specification.

The presence of latent confounding poses a significant challenge in all
empirical applications, making selection on observables probably one of the
least favoured assumptions in economics. As discussed in Section 4.2, impact-
assessment studies in agricultural economics intersect multiple disciplines,
suggesting that numerous variables influencing a process may remain unob-
servable. However, the interdisciplinary nature of these linkages might offer
potential for finding observed variables sufficiently connected to those unob-
servables to approximate them. This prospect is supported by the expanding
availability of large datasets and advancements in causal ML methods capable
of leveraging them. Consequently, it is important to ascertain the capability of
these ML techniques in addressing latent confounding and its implications.

4.7. Tree-based treatment assighment

To further evaluate the methods’ dependence on the presence of an under-
lying true propensity score, we replicate the previously described DGPs'
with treatment assignment using a tree-based model. The tree-based treat-
ment assignment starts with an unsupervised clustering procedure of all the
observations in the FADN based on Xc. The clustering rules are then learned
with a random forest algorithm (Breiman, 2001) and are consequently used
to discriminate among observations that participate or not in the schemes.
Rather than opting for a single decision tree, we chose to utilize a random for-
est method to avoid arbitrary decisions regarding treatment distribution and
to eliminate any concerns that the choice of a specific tree could bias the
performance evaluation of the methods.

The two treatment assignment procedures reflect two distinct perspectives
on how farmers make decisions regarding their enrolment in a particular pol-
icy intervention. On one hand, the logit assignment represents a scenario in
which farmers are aware of how their farm structure (elements in Xp, X and
X ) interacts with the treatment. Consequently, they derive a probability of
enrolling in the intervention based on these considerations. However, the final
decision may be influenced by other factors, such as ethical or political beliefs
(¢ in Equation 7). This means that even farmers with lower probabilities of
enrolling might still decide to do so, and vice versa. On the other hand, the tree-
based assignment represents a scenario in which farmers construct a mental
map based on their farm structure, and this map deterministically guides their

11 Except for the DGPs obtained by changing the level of overlap, this is feasible and only makes
sense when there exists an underlying true propensity score.

Gz0z Aeniga4 | uo Jasn Aleiqi] YN usbBuluabep A 966626./7€09Al/8RIS/E60 | 01 /10P/2[0IB-80UBApPE/aRI8/WO02 dNO dIWapeIe//:sd)y WO} PaPEOjUMO(]



16 P.L. Brignoli et al.

Table 2. Causal properties varied in the simulation and respective settings

Levels
Causal property Easy Complex
Degree of non-linearity Linear Complex
Common support 90% of treated 50% of treated
Strength of effect 0.3 0.15
Sample selection bias Absent Present
Latent confounding Absent Present

decision on whether to participate or not. Both assumptions can be considered
realistic and are therefore put to the test. This approach allows researchers
to make reasoned arguments about which sorting mechanism is likely to be
more relevant depending on the specific policy tool under consideration, and
consequently, they can choose the appropriate method accordingly.

4.8. Running the simulation

To summarize, Figure 1 represents the causality structure we establish in our
simulation, while Table 2 provides a brief recap of the causal properties and
related settings explained so far, including their possible levels.

In Figure 1, Xop, X7p, Xop, Xoc»> and X ¢, are the variables sets introduced
in Section 3.2. T represents the treatment (Equation12), Y represents the out-
come (Equation 11), S represents a covariate necessary to introduce sample
selection bias (Equation 10), and Z is a control placed to address sample
selection bias (Equation 9).

These combinations are compared under two treatment assignment proce-
dures based on two different assumptions (and consequently models). The first
procedure mirrors an assignment based on a propensity score, implying that
farmers have a certain probability of participating in a treatment based on
their characteristics. The second procedure mirrors a scenario in which the
farmers decide on whether to apply for the intervention based on a tree-based
scheme. Due to the impossibility of controlling the share of common support
under the tree-based schemes, this causal property is disregarded under this
scheme.

To compare the performances of the considered methods, we run each
of them on the 32 DGPs for the propensity-based and the 16 DGPs for the
tree-based assignment obtained from all the combinations of causal properties
levels.!> Each combination of method and DGPs for the large sample size is
run 50 times to ensure an accurate representation of bias (Huber, Lechner and
Wunsch, 2013; Knaus, Lechner and Strittmatter, 2021; Wendling et al., 2018;
Advani, Kitagawa and Stoczynski, 2019; Kiinzel et al., 2019; Parikh et al.,
2022). Each run involves drawing a new sample data from the FADN through

12 We have 32 for the propensity-based assignment, while 16 for the tree-based assignment since
common support cannot be controlled in the latter case.
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Fig. 2. Simulation steps.

a clustered bootstrap at the NUTS2 region level, while maintaining the origi-
nal sample size. For the smaller sample size, we adhere to the same procedure,
but each combination of method and DGP is executed 200 times to account for
the reduced sample size. Figure 2 provides a summary of the steps involved in
this simulation, with an indication of where the causal properties of the DGPs
can be manipulated.

5. Methods

In this section, we outline the various evaluation methods used. For each
method, we briefly explain the underlying mechanism, highlighting their
strengths and drawbacks, which will later be used in assessing their perfor-
mances. Despite their differences, all the methods require three basic assump-
tions to make their estimates causal: unconfoundedness, common support and
SUTVA.

5.1. Classical matching methods

5.1.1. Propensity Score Matching

PSM (Rosenbaum and Rubin, 1983) is commonly used as a subset selection
procedure'? to mitigate confounding in observational settings in economics
(Athey and Imbens, 2017; King and Nielsen, 2019). It matches treated and
control observations based on their propensity score, being the probability of
an observation to receive the treatment conditional on its covariates. The key
in PSM is Rosenbaum and Rubin’s Theorem 3 (T3) stating that unconfound-
edness based on raw covariates implies unconfoundedness on the propensity
score (assuming common support and SUTVA). Following T3, the biggest

13 See Appendix C for a performance comparison between PSM subsetting and re-weighting
procedures.
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advantage of this method is that it avoids the curse of dimensionality. When
matching over multiple dimensions, it becomes increasingly difficult to find
observations which are similar across all of them. The researcher is then left
either with bad matches or a drastically smaller dataset.

However, the way this method has been traditionally applied presents sev-
eral drawbacks (Ho et al., 2007; Hill, 2008; Austin, 2009) and in recent years
also its underlying mechanism has been criticized (King and Nielsen, 2019).
There is a fundamental contrast between the reason a researcher would apply
matching and the underlying theoretical properties of PSM. Matching is a
non-parametric procedure used to reduce the model dependence and discre-
tion bias, two consequences of making functional form assumptions during
estimation (Hill, 2008). However, T3 holds true only for the true propensity
score—which would require us to know the true treatment assignment pro-
cess. Since this is rarely the case (Ho ef al., 2007; King and Nielsen, 2019),
the researcher is left with making functional form assumptions—which as a
consequence introduces bias.

Despite its weaknesses, we decided to focus on two different versions of
PSM due to its huge popularity. The two specifications differ in their underly-
ing mechanism as well as the function used in computing the propensity scores.
The first is the bias-corrected missing value imputation procedure proposed
by Abadie and Imbens (2011), employing a logistic function. The second
alternative is a matching procedure employing Bayesian additive regression
trees (BART). We focus on the first version as it is used in most applied work
(Austin, 2009; King and Nielsen, 2019), while we selected the BART ver-
sion as a possible way to mitigate model dependence, being non-parametric
and highly flexible (Lee, Lessler and Stuart, 2010; Westreich, Lessler and
Funk, 2010). Both approaches are based on nearest-neighbor (NN) match-
ing, as it is the most widely applied procedure (Austin, 2009) and because
asymptotically all matching algorithms should yield the same result (Caliendo
and Kopeinig, 2008). Trimming rules commonly studied in other simulation
studies are not considered in our simulation because they are known to be prob-
lematic with heterogenous treatment effects (Busso, DiNardo and McCrary,
2009). To code the models, we relied on the Matchlt R package (Ho et al.,
2011). After matching, following Ho et al. (2007), we regress the outcome on
the treatment indicator and observed confounders, identifying the ATT.

In addition to the two specifications above, we added a humble PSM model,
where at random (across the 50 iterations) two controls are removed from the
specification. While this estimator is expected to always fail to retrieve the true
ATT, it remains interesting to assess both the size and sign of the bias occurring
in an FADN-like setting.

The PSM models are expected to perform well in limited common sup-
port scenarios (Busso, DiNardo and McCrary, 2009, 2014), and the version
exploiting a BART model for the estimation of the scores should be able to
tackle non-linear DGPs (Hill, Weiss and Zhai, 2011).
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5.1.2. Coarsened exact matching

In response to the shortcomings of PSM, lacus, King and Porro (2011; 2012)
introduced a method to address these issues and surpass PSM’s performance.
This method, known as coarsened exact matching (CEM), has gained signifi-
cant traction in recent years and has been recognized for its effectiveness (King
et al., 2011). CEM consists of two steps: in the first one, variables are coars-
ened in bins based on domain knowledge or algorithmically; in the second
step, the bins are exactly matched. More specifically, variables are coarsened
so that indistinguishable values (from an analytical perspective) are grouped
together. This step facilitates finding exact matches—as the definition of exact
gets broader the more the data are coarsened—even on continuous variables,
while avoiding dropping too many observations.

CEM features two major advantages over PSM, allowing it to deal better
with imbalances in covariates. First, CEM guarantees covariates imbalance
reduction at the expense of sample size—the opposite of what PSM entails
(Tacus, King and Porro, 2011). The maximum imbalance for a given variable
depends on how fine it is coarsened, where higher coarsening leads to larger
imbalance. Second, CEM allows the researcher to set the maximum level of
unbalance for each covariate independently. In PSM, different specifications
will lead to different balancing in an unpredictable way.

The major drawback in applying CEM is that despite the coarsening it dis-
cards all the observations not exactly matched. This leads to a decrease in
sample size, which implies reductions in power and precision. [acus, King and
Porro (2012) defend their method following Rubin (2006), stating that unbi-
asedness comes before efficiency, and that in observational studies functional
form assumptions are a bigger problem than sample size. However, as noted by
Black, Lalkiya and Lerner (2020), CEM drops observations in a non-obvious
way, misidentifying average and heterogeneous effects.

Following lacus, King and Porro (2012), we used domain knowledge
(meaning consistency with the framework we simulate) to coarsen factor vari-
ables and applied Sturges’ (1926) algorithm for continuous variables. Also in
this case, we coded the model relying on the Matchlt R package (Ho et al.,
2011).

5.2. Tree-based matching methods

5.2.1. Causal forests
A causal forest (CF) is an algorithm built on top of the classic random forests
(RFs) (Breiman, 2001) and belonging to the family of generalized random
forests (GRFs) (Athey, Tibshirani and Wager, 2019). The basic building block
of a RF is the decision tree, which is an algorithm that partitions the vari-
able space to obtain clusters as homogenous as possible. From that, RFs
are obtained as ensembles of several decision trees—in order to reduce the
variance of the estimate.

While RFs are limited to expected outcomes, thanks to an adaptation of the
optimization criterion GRFs allow for the estimation of other quantities (for
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instance, a causal estimand for CFs—assuming all identifying assumptions
are met). The algorithm looks for the partitions of the variable space, which
maximizes the heterogeneity of the target estimand between different regions.

In our analysis, we consider two different CF specifications: one in which
the input variables are selected with a data-driven approach by the CF (Data—
CF), and another in which we feed the CF the same subset of variables we
feed to classical models (Theory—CF). Thus, it is possible to test the extent
to which it is possible to rely on the CF in scenarios where the choice of the
controls to be employed cannot be guided completely by theory.

In our analysis, we implement the CFs through the grf package in R (Tibshi-
rani et al., 2022), which relies on three augmentations compared to standard
approaches. First, the estimation is conducted on the residualized outcome
and treatment, in order to increase the efficiency and reduce bias. The orthog-
onalization follows Robinson (1988), and relies on marginal outcomes and
propensity scores computed via separated RFs. Second, the trees are grown
honestly (to avoid overfitting): observations used to build the structure of
the tree cannot be used to make predictions. Last, average treatment effects
are not obtained as averages of the ITEs but are rather plugged in a doubly
robust estimator following Chernozhukov et al. (2018). The values for the tun-
able hyper-parameters for each CF are obtained via cross-validation. Last, our
target estimand, to maintain comparability with classical methods, is the ATT.

A limitation of the CF method is its inability to deal with categorical vari-
ables if not encoded suitably for a sparsity-seeking algorithm (Johannemann
et al., 2019). Since this assumption is violated in our framework, we prepro-
cess the data through a cross-validated target-encoding procedure (Appendix
D).

5.2.2. Bayesian additive regression trees

BART is a tree-based method relying on Bayesian inference (Chipman, George
and McCulloch, 2010). Conceptually, its frequentist analogue would be a
boosted RF, as subsequent trees are fit on the residual of the previous tree.
However, this procedure is only effective as long as we are able to avoid
overfitting—i.e. picking up contingent'* noise. Therefore, it is important to
limit the contribution that each individual tree has in explaining the overall
variability of the response. To do so, tree-based methods (including CF) rely
on the hard choice of two hyper-parameters values via cross-validation: one
governing the number of splits in a given tree (its depth), and the other being a
penalty shrinking the fit of the tree. BART, thanks to its Bayesian framework,
employs regularization prior only, encouraging the trees to be small. Over-
all, the Bayesian framework allows a principled approach to regularization,
leading to flexible trees that can fit complex functions. However, while also
frequentist tree-based methods have this flexibility, the Bayesian framework

14 Since the training of the ML models takes place in batches, contingent here refers to the
specificities of each batch as opposed to the properties of the overall DGP.
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also allows the quantification of uncertainty, to compute coherent confidence
intervals.

Similarly to CF, BART’s main advantages are that it naturally identifies
heterogeneous effects and its flexibility in estimation—which is however com-
bined with an easier usage (Carnegie and Wu, 2019). The default regularization
prior has already been developed by Chipman, George and McCulloch (2010),
who found it to be robust in a wide range of settings. Therefore, it allows the
researcher to avoid the computational step of cross-validating the hyperparam-
eters (Hill, 2011). Moreover, it is able to handle a larger number of controls
than classical methods.

We deploy our BART model without cross-validating it (off-the-shelf),
since one of its most praised abilities is the versatility of its regularization
prior (Hill, 2011; Hill, Weiss and Zhai, 2011; Hahn, Murray and Carvalho,
2020). Similarly to the approach we use with CF, we specify two different
BART models, trained on either a subset of variables selected by the algorithm
(Data—BART) or the same variables used in classical methods (Theory—
BART). Therefore, we specify our models following Hahn, Dorie and Murray
(2019) who adapt BART to causal settings and exploit the bartCause R package
(Hill, 2011).

5.3. Computation

To conduct our analyses, we utilized a high-performance computing cluster
and partitioned the computations into smaller batches based on the required
computational resources. Specifically, for each of the 9 models, we divided
the 1600 runs (32 DGPs with 50 cluster-bootstrapped samples each) across
50 distinct nodes. This procedure was repeated for each treatment assignment
scheme and each sample size. Each node provided computational resources as
follows: 8GB of RAM for the three PSM-based and CEM models, 16GB of
RAM for the CFs models and 64GB of RAM for the BART models. The entire
procedure required a total runtime of 120 h.

5.4. Evaluation metrics

To compare our estimators, we rely!’> on the absolute bias in the ATT
(Equation 13), being the mean of the absolute value of the percentage deviation

—_—
of the causal estimate GATTJ, from its correct value across m replications.

m

1 6ATT eATT
absolutebias = — E
ATT m =t

X 100 13)
© Oarr

To assess the effectiveness of ML methods in estimating CATT, we present
a direct comparison of true effects versus estimated ones. Utilizing a metric
that aggregates the effects might obscure the nuances of how well the methods
approximate the distribution of the treatment effect.

15 For additional metrics describing the comparison please refer to Appendix E.
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Fig. 3. Percentage bias across different causal properties.

6. Results and discussion
6.1. Treatment effect across causal properties

Figure 3 presents the average percentage bias scored by each model across var-
ious causal property levels, both for propensity-based and tree-based treatment
assignments. Within each subplot, three causal properties are held constant at
the easier level, illustrating the variation in percentage bias when transitioning
from the easier to the more challenging level of the remaining causal property
in both linear (left box) and non-linear (right box) scenarios. In each box, the
vertical line represents the 5 per cent bias threshold that we use to determine
whether a method has sufficiently satisfying performances. Then, to keep the
illustration compact, when a model percentage bias surpasses 1, we replace it
with a cross placed close to its box right border.

To illustrate interpretation, the top left subplot shows the difference in aver-
age percentage bias as the overlap changes from low to high across linear and
non-linear scenarios—limiting the analysis in DGPs where the effect size is
large, and both latent confounding and sample selection bias are absent. The
rationale behind presenting results in this manner is to offer a concise repre-
sentation of the relevance of specific causal properties and when they come
into play, while minimizing the aggregation of bias stemming from different
causal properties as much as possible. As a reference point, the light blue dots
in the linear box represent the base DGP and therefore are in the same positions
across the four subplots. Similarly, the light blue dots in the non-linear box
represent the non-linear version of the base DGP. What changes within each
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subplot is the position of the more challenging level dots. Therefore, com-
paring the position between the light blue dots in the linear and non-linear
box within a single subplot allows us to understand the effect of non-linearity.
Comparing the relative distance between the dots in the linear and non-linear
boxes within a single subplot illustrates the interaction effect between the con-
sidered causal property and the degree of non-linearity. Finally, comparing the
absolute positions of the orange dots in respect to the light blue dots gives
the impact of moving from a scenario with no particular hindrances to the
estimation to one where we expect serious bias from the considered causal
property. For a more complete presentation of the results, Appendix E contains
tables reporting all biases from the various DGPs for each model. Appendix
F includes supplementary results from the simulation analysis carried out on
a smaller sample size. Although the results for the smaller sample are not
graphically presented in the main body to maintain brevity, they are briefly
discussed in the following section, and the corresponding images are provided
in Appendix F. In Appendix H, we compare results at different levels of com-
mon support. Last, Appendix G reports bias-variance plots for each method
over all scenarios.

Examining the impact of common support (Figure 3—top left subplot), it
appears that it only has an impact on the propensity score-based methods,
affecting some exclusively in the context of linear DGPs and others solely in
nonlinear scenarios. This pattern persists when considering a smaller sample
size, as indicated in the supplementary materials (Appendix F).

Examining the treatment effect magnitude (Figure 3—bottom left subplot),
we observe that, for each method (excluding the Data-BART), distinct levels
of treatment effects correspond to varying bias levels. Notably, two scenarios
highlight pronounced differences: in the case of ML models, particularly with
propensity-based treatment and linear DGPs, and for classical models when
applied on tree-based assignment with non-linear DGPs. Comparing these
findings with those obtained from a smaller sample size reveals a generally
similar pattern, albeit with some nuanced differences among models. Specif-
ically, CFs encounter challenges in tree-based assignments and non-linear
DGPs, whereas BARTs demonstrate overall improved performance. Con-
versely, propensity-based methods appear more adept at handling non-linear
scenarios.

Exploring sample selection bias (Figure 3—top right subplot), we observe
distinct responses among various methods. Notably, the disparities in per-
formance are more pronounced in the propensity-based treatment assignment
compared to the tree-based assignment. In the former, theory-driven ML meth-
ods exhibit proficiency in handling sample selection bias within non-linear
DGPs, whereas data-driven ML models struggle with this challenge. However,
it is worth noting that data-BART outperforms theory-BART in this specific
instance. A possible explanation is that BART, being a sparsity-seeking algo-
rithm, tends to discard Z (the control needed to address sample selection bias)
when fed only the relevant variables (theory-BART). Among Xp and Xy¢, Z
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has the lower predictive power for both the treatment and the outcome. How-
ever, when BART is provided with the entire set of variables, Z is more likely
to be retained because it has greater predictive power than the irrelevant con-
trols (data-BART). Classical models, in general, prove susceptible to sample
selection bias, with many estimations displaying significant bias. A noteworthy
exception is CEM, which consistently manages sample selection bias across all
four scenarios. For the smaller sample size, we observe an overall reduction in
bias attributed to sample selection bias. This reduction is particularly evident
for classical models, which, while not yet achieving a fully satisfactory level
of handling sample selection bias, demonstrates improvement in their perfor-
mance. We believe this to be a consequence of how sample selection bias is
introduced: while we drop the same percentage of units in both the large and
small samples, the relative number of treated units discarded changes. This
happens because of the stochastic component of S: in larger samples, there is
a higher possibility that control units happen to have higher S, leading to more
treated units being discarded and thus exacerbating the overrepresentation of
high S—high Y observations.

A notable contrast emerges in method performances when latent confound-
ing is introduced (Figure 3—bottom right subplot). Concerning the tree-based
assignment, no method demonstrates efficacy in handling latent confound-
ing. This is particularly pronounced when coupled with non-linear DGPs. For
propensity score-based assignment, while the overall bias levels are lower,
most models still exhibit disappointing performance. Remarkably, two mod-
els display notable robustness to sample selection bias: BART, consistent with
findings by Hahn, Dorie and Murray (2019), and the bias-corrected PSM.
Upon conducting an analysis with a smaller sample size, the inability of any
model to address latent confounding persists when the assignment is tree-
based. However, it becomes evident that the overall bias induced by latent
confounding has a smaller impact on propensity-based treatment assignment.

Finally, it is worth noting a few points when discussing the importance of the
underlying treatment assignment assumption. First, PSM tends to perform rel-
atively well with the tree-based assignment in respect to the propensity-based
assignment, but mostly if the forest does not include interaction and higher
order terms. A possible reason for this lies in random forests functioning,
clustering similar observations into the same group and assigning all of them
the same probabilities. Consequently, overlap is enhanced while the scores
variability is decreased, resulting in a simpler setting for PSM. Conversely,
ML methods tend to perform better under the tree-based assignment when the
setting is more complex (for instance with complex non-linear variable space).

In general, the performance of the models raises concerns, as the majority
of methods consistently fail to stay below the 5 per cent bias threshold. The
standout performer in this evaluation is the Theory-CF, demonstrating con-
sistent accuracy in retrieving the correct treatment effect in non-linear DGPs,
except when faced with low common support or latent confounding. A parallel
scenario unfolds in the comparison involving a smaller sample size, with the
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Fig. 4. CATT estimation.

notable difference that the best performance is by Data-BART. Despite grap-
pling with challenges related to sample selection bias, latent confounding and
treatment effect size (excluding common-support), Data-BART consistently
retrieves the correct effect under these conditions.

6.2. Treatment effect heterogeneity

Building upon the preceding results, there are three distinct scenarios war-
ranting investigation concerning the accuracy of CATT: when the method
successfully retrieves the ATT, when the ATT is partially biased, and when
the ATT is entirely biased. The main question revolves around whether the
model accurately discerns the CATT and aggregates them to retrieve the cor-
rect ATT, or alternatively, it explores the possibility of a biased ATT resulting
from an incorrect aggregation of the CATT, even if the latter are reasonably
approximated. In Figure 4, we present the estimated CATT versus the actual
CATT for three DGPs, each representing one of the aforementioned scenarios.
Our focus remains on DGPs where the theory-CF can successfully retrieve the
ATT, given its unique capability in this regard.

Our findings emphasize that when the CF is precisely specified and suc-
cessfully retrieves the correct CATTs, it concurrently captures the correct ATT.
Even small deviations from the correct CATTs result in significant biases in
the estimation of the ATT. A noteworthy example is the data-driven CF, which
remarkably performs well in predicting the CATTs despite being moderately

Gz0z Aeniga4 | uo Jasn Aleiqi] YN usbBuluabep A 966626./7€09Al/8RIS/E60 | 01 /10P/2[0IB-80UBApPE/aRI8/WO02 dNO dIWapeIe//:sd)y WO} PaPEOjUMO(]



26 P. L. Brignoli et al.

distant from the ATT. On the other hand, neither the data-driven nor the theory-
driven BART can successfully retrieve the CATT in any scenarios. As the bias
in ATT increases, a corresponding bias is consistently observed in CATTs
across all DGPs, as detailed in Appendix E. Examining the results for the
smaller sample size, we observe a similar phenomenon, albeit with the notable
difference that the data-driven CF performs significantly better than in previous
scenarios, as outlined in Appendix F. It is important to note, however, that the
hyperparameters of the BART models were not optimized, leaving for further
research whether such optimization could have improved model performance.

7. General discussion

This simulation study compares the performance of ML methods with clas-
sical econometrics for causal inference using observational data. The first
observation from the results is that classical methods, whether parametric
or non-parametric, consistently fail to retrieve the true causal parameter in
non-linear DGPs. This underscores the potential risks associated with assum-
ing linearity, leading to unrealistic dynamics in intervention outcomes. For
instance, assuming constant marginal values for AES subsidies may be inap-
propriate, given the non-constant marginal costs of farms of varying sizes.
Therefore, the assumption of linearity should be approached cautiously, and
its implications should be contrasted with empirical knowledge. Our results
indicate that in cases where linearity assumptions do not hold, ML methods
are preferable.

Second, comparing performances under high or low common support ini-
tially suggested that methods were not significantly affected by this property.
However, recognizing the common support assumption required by each
model, we further investigated the issue by comparing results at different lev-
els of support, reported in Appendix H. What we find with the new simulation
design is that ML methods maintain nearly a constant level of bias across dif-
ferent shares of common support, indicating their robustness to low overlap as
long as it exists. In contrast, classical methods exhibit a significantly higher
bias below a certain threshold. Specifically, the bias-corrected PSM registers
an almost fourfold increase in bias when the share of common support falls
below 50 per cent. Similar trends are observed for BART-PSM and CEM when
the share of common support drops below 25 per cent. These results, however,
should be viewed as preliminary, and a dedicated simulation is required to
thoroughly examine how different shares of common support influence the
identification of a causal effect.

Third, comparing results under large or small treatment effects revealed
that each method exhibits different power characteristics. Estimates of smaller
treatment effects were more biased for every method compared to larger
treatment effects. Consequently, a power analysis using the chosen methods
is imperative to ensure the capability of detecting effects based on antici-
pated intervention results or targets, even if it entails running computationally
intensive models (Ioannidis, Stanley and Doucouliagos, 2017).
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Fourth, comparing estimates in the presence or absence of sample selection
bias reveals the susceptibility of both ML and classical methods when incor-
rectly specified. Sample selection bias exacerbates existing biases when other
factors hinder the correct treatment assignment retrieval. Conversely, when
provided with the correct controls, the model can address sample selection bias
if capable of retrieving the treatment effect. While direct policy implications
are absent, the results emphasize the importance of selecting an appropriate
model for the analysis, underscoring the significance of simulation studies.

Fifth, considering latent confounding, neither ML nor classical methods
prove suitable for addressing it. Despite the potential mitigation of bias in
simple DGPs by providing a correct proxy for latent confounders, latent con-
founding remains a persistent issue without a clear solution. This serves as a
reminder that any analysis based on the FADN is constrained by the control
variables present within it.

Finally, our analysis shows substantial differences in performance when
the underlying treatment assignment is assumed to follow either a probability-
based or a decision tree procedure. The performance of each method undergoes
drastic changes when transitioning between these two treatment assignment
procedures. In linear DGPs, a bias-corrected PSM is sufficient to retrieve the
true treatment effect. However, in non-linear DGPs, theory-based counterfac-
tuals are shown to be the best performers.

8. Conclusions

To evaluate agricultural policies, economists used a variety of econometric
impact evaluation techniques the last few decades. More recently, ML tech-
niques have been proposed as a panacea for all their ills. In this simulation
study, we compared the performances of classical econometric methods versus
ML methods in retrieving a causal estimand across different DGPs tuned to the
European FADN. We tested four main advantages ML methods are supposed
to have derived from their data-driven approach: functional form selection, rel-
evant controls selection, treatment effect heterogeneity exploration and latent
confounding control. Accordingly, we first assessed the reliability of each
method over a wide range of scenarios, and second, investigated how ML
methods can enhance causal analysis for agricultural policy evaluation.

Our findings reveal that, on the whole, ML methods exhibit superior perfor-
mance compared to classical methods. Specifically, the theory-driven CF is the
best performing model in large sample sizes, while the theory-driven BART
excels in small sample sizes. The success of the CFs might be due to the dou-
bly robust correction they employ, differently from the other methods. The
success of the data-driven approach to approximate the functional form is par-
ticularly noteworthy, as ML methods perform significantly better on non-linear
DGPs. Surprisingly, this advantage does not extend to situations where the
underlying treatment assignment is assumed to follow a tree-based procedure.
However, the data-driven variable selection does not consistently enhance per-
formance and can even detrimentally impact both CF and BART. While these

Gz0z Aeniga4 | uo Jasn Aleiqi] YN usbBuluabep A 966626./7€09Al/8RIS/E60 | 01 /10P/2[0IB-80UBApPE/aRI8/WO02 dNO dIWapeIe//:sd)y WO} PaPEOjUMO(]



28 P L. Brignoli et al.

forest methods identify relevant controls, the relative importance of these con-
trols is obscured by other variables that exhibit higher correlation with the
magnitude of the treatment effect rather than the assignment. A notable excep-
tion is observed with data-driven BART, which, in small sample sizes and
only in certain scenarios, performs similarly or better than its theory-driven
counterpart, underscoring the specific advantages of a data-driven approach
in certain contexts. The most substantial contribution of ML methods, set-
ting them significantly apart from classical methods, lies in their capability to
correctly capture complex and heterogeneous treatment effects when appropri-
ately specified. In this regard, CF appears better equipped than BART, making
a considerable contribution to the toolbox of agricultural economists. Finally,
our results suggest that the ability of tree-based methods to handle latent con-
founding does not solely hinge on providing the correct variables to generate
control combinations.

There are three limitations to this study. First, the results of our models are
only valid over the causality structures specified. In particular, we focus on
cross-sectional methods relying on the conditional independence assumption,
while we leave for future research the possibility of extending this framework
to panel data (to leverage methodologies based on the DiD framework for
instance) or designing scenarios resembling natural experiments. Second, we
chose to focus on a subset of relevant properties that could pose challenges to
identification in a causal study. Third, despite our efforts to make the simula-
tion framework as general as possible, there are still some arbitrary choices,
such as the number of variables included in each DFP or the specification of
the non-linear functional form. While these limitations may negatively affect
the generalizability of our results, we are confident that our findings can be
extended across different scenarios since the causality structure we have spec-
ified encompasses a wide range of scenarios, and the entire framework allows
for both implementations and modifications.

Further research on this topic could investigate the impact of framework
modifications, such as the consideration of different causal properties. Another
direction could be implementing additional preprocessing procedures to make
the ML estimators more effective. Considering BART, a question that natu-
rally follows our analysis is assessing the impact cross-validating its hyper-
parameters would have on its performances. Moving to CFs, another open
question remains the design of preprocessing procedures to ensure their cor-
rect usage by the tree-based methods. The objective of these preprocessing
procedures is to ensure that controls known from theory to be relevant have pri-
ority over remaining variables. Finally, future research could explore exploring
the capabilities of ML models to deal with sample selection bias due to
unobservables.
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