FEMS Microbiology Ecology, 2025, 101, fiaf004

DOI: 10.1093/femsec/fiaf004
Advance access publication date: 8 January 2025

Research Article

OXFORD

Spinach seed microbiome characteristics linked to
suppressiveness against Globisporangium ultimum
damping-off

Makrina Diakaki
Wietse de Boer

12" Beatriz Andreo Jimenez 1, Patrick Butterbach3, Liesbeth van der Heijden?, Jurgen K6hl 1,

1

1, Ezra de Lange
25 Joeke Postma

Wageningen Plant Research, Wageningen University and Research, 6708 PB Wageningen, The Netherlands

2Soil Biology Group, Wageningen University and Research, 6708 PB Wageningen, The Netherlands

3Germains Seed Technology, 1601 MH Enkhuizen, The Netherlands

“Bejo Zaden B.V,, 1749 CZ Warmenhuizen, The Netherlands

>Department of Microbial Ecology, Netherlands Institute of Ecology, 6708 PB Wageningen, The Netherlands
*Corresponding author. Droevendaalsesteeg 1, 6700 AA Wageningen, The Netherlands. E-mail: makrina.diakaki@wur.nl
Editor: Angela Sessitsch

Abstract

Recently we demonstrated that the seed microbiome of certain spinach (Spinacia oleracea) seed lots can confer disease suppression
against Globisporangium ultimum damping-off (previously known as Pythium ultimum). We hypothesized that differences in the micro-
bial community composition of spinach seed lots correlate with the levels of damping-off suppressiveness of each seed lot. Here,
we show that a large proportion of variance in seed-associated bacterial (16S) and fungal (Internal Transcribed Spacer 1) amplicon
sequences was explained by seed lot identity, while 9.8% of bacterial and 7.1% of fungal community variance correlated with disease
suppression. More specifically, a higher relative abundance of basidiomycetous dimorphic yeasts such as Vishniacozyma, Filobasidium,
and Papiliotrema and of the bacterial genus Massilia was a key feature of suppressive seed microbiomes. We suggest that the abundance
of these genera is indicative of seed lot suppressive potential. Seed processing and treatment can become more targeted with indica-
tor taxa being used to evaluate the presence of beneficial seed-associated microbial functions. This process, in turn, could contribute
to the sustainable management of seedling diseases. Finally, this study highlights the ubiquity of yeasts in spinach seed microbiota

and their potential beneficial roles for seed health.
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Introduction

Recent research has highlighted the role of seed microbiota on
plant health and crop yield (Simonin et al. 2022, Verma and White
2019). With plant pests and diseases leading to substantial yield
losses yearly (Mesterhézy et al. 2020), understanding how seed mi-
crobiota can mitigate such losses offers a promising new asset for
the production of healthy seeds and, consequently, for global food
security (Husenov et al. 2021, Mcguire and Sperling 2011). This is
of particular interest especially as several chemical seed-applied
plant protection products are expected to be phased outin the EU.

A large-scale screening of 260 seed lots from seven different
crops recently demonstrated that the seed microbiome of cer-
tain spinach (Spinacia oleracea) and beetroot (Beta vulgaris) seed lots
can harbour beneficial microorganisms able to suppress seedling-
stage disease (Diakaki et al. 2022). The pathogen against which
suppressiveness was detected was Globisporangium ultimum, pre-
viously known as Pythium ultimum. This is an oomycete able to in-
fect crops of high importance such as maize, soybean and wheat
as well numerous vegetable crops, including members of the
Solanaceae, Brassicaceae, and Cucurbitaceae families (Rai et al. 2020).
With G. ultimum able to cause damping-off, plants are confronted
with this pathogen during a vulnerable stage in plant growth,

namely, the onset of germination, when seeds are still mainly col-
onized by seed microbiota. The process of germination is initiated
when water is taken up by the seed (imbibition), after which the
embryo physiologically prepares for emergence, before finally the
embryonic axis (typically the radicle) protrudes from the struc-
tures surrounding it (Bewley et al. 2013). While germination repre-
sents an opportunity for infection (Rai et al. 2020), itis also a turn-
ing point for the assembly of plant microbiota (Barret et al. 2015,
Chesneau et al. 2020). Evidence suggests that despite the impor-
tance of soil-derived microbiota (Rochefort et al. 2021, Wolfgang et
al. 2020), seed-associated bacteria and fungi are also transmitted
to young plants (Johnston-Monje et al. 2021, Nelson 2018) and can
be essential for plant health (Jack and Nelson 2018, Matsumoto
et al. 2021). Our previous research gave further support to the ev-
idence of the importance of seed-associated microbiota for seed
health, especially during germination (Diakaki et al. 2022).

To better understand the characteristics of seed microbiota
that are suppressive to G. ultimum, we focused on eight spinach
seed lots differing in damping-off suppressiveness and performed
a second spinach—G. ultimum bioassay, confirming our previous
findings (Diakaki et al. 2022). We amplified and sequenced micro-
bial DNA extracted from seeds and analysed the relative abun-
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dance and taxonomical composition of the bacterial and fungal
fractions of seed microbiota based on 16S rRNA gene and Internal
Transcribed Spacer 1 (ITS1) amplicons, respectively. We hypoth-
esized that the microbial communities of the eight seed lots in-
cluded in this study differ in taxonomical composition and that
these differences correlate with the levels of damping-off sup-
pressiveness of each seed lot. Consequently, we addressed the fol-
lowing research questions: (i) How do the seed microbiota of dif-
ferent spinach seed lots differ in taxonomical composition? (ii) Do
these differences correlate with seed microbiome suppressive po-
tential against G. ultimum? And, lastly, (iii) are there specific taxa
which are differentially abundant in highly suppressive seed lots?
Determining the key taxa of a suppressive seed microbiome could
assist the seed industry to develop indicators for suppressiveness
and safeguard them during seed production and processing.

Materials and methods

Seed lots

This study focused on eight spinach seed lots coded A, B, C, D, E,
F, G, and H, with each seed lot representing a unique genotype
(cultivar). Seed lots were provided by Nunhems Netherlands B.V.
(BASE), Pop Vriend Seeds B.V,, Bejo Zaden B.V,, and Sakata Vegeta-
bles Europe S.A.S. They were selected by these companies directly
after harvest and were stored under uniform conditions (12°C,
40% RH). Seed lots A, B, C, D, E, and F were produced in Loca-
tion 1, while seed lot G in Location 2 and seed lot H in Location
3, with each location representing a different country and fields
of production being at least 3 km distant from one another for
all seed lots. The seed lots have been selected based on the re-
sults of the spinach—G. ultimum bioassay reported by Diakaki et al.
(2022) in which 40 spinach seed lots were tested for microbiome-
associated suppressiveness. The eight seed lots represent a di-
verse range of microbiome-associated suppressiveness and have
been coded consecutively, with seed lot A being the most suppres-
sive and seed lot H the least. We created the grouping factor ‘per-
formance’ to describe the suppressiveness of these seed lots. We
considered seed lots A, B, C, and D to have a high level of suppres-
sive potential (high performance) and seed lots E, F, G and H a low
level (low performance).

Spinach—Globisporangium ultimum bioassays

Avyear after completing the spinach—G. ultimum bioassay reported
by Diakaki et al. (2022), a second bioassay was performed to con-
firm the reproducibility and persistence of our findings for a sub-
set of 16 seed lots. The set-up of the two bioassays was identical,
with the exception of the first including four replicates of 62 seeds
each, while the second had three replicates of 48 seeds per treat-
ment. Detailed information can be found in the supplementary
materials and methods of Diakaki et al. (2022).

Briefly, a part of the spinach seeds was treated with steam vac-
uum pasteurization by Bejo Zaden B.V. as a proxy for partially
eliminating the seed microbiota. Seeds were treated a few weeks
before the onset of each bioassay. Subsequently, treated and non-
treated spinach seeds were challenged with G. ultimum. The bioas-
says used field top soil that was collected in the area of Breda, The
Netherlands, from a field that was naturally infected with G. ulti-
mum. Every replicate comprised an individual container. The seeds
were sown on the naturally infected soil and covered by a 1-cm
layer of potting soil. The bioassays were done in the same grow-
ing chamber (50% humidity, 20°C day/15°C night, 12 h light/12 h
darkness) and treatments were randomized. The number of ger-
minated seedlings as well as the number of seedlings presenting

post-emergence infection symptoms were scored 6 and 7 days af-
ter sowing.

Germination and emergence tests confirmed that no physio-
logical side-effects were induced in the seeds of the selected seed
lots due to steam vacuum pasteurization. The germination test
conducted along with the first bioassay followed the protocols
established by the International Seed Testing Association (ISTA
2020) as described in the supplementary materials and methods
of Diakaki et al. (2022). The emergence test conducted along with
the second bioassay was done by sowing seeds (three replicates
of 48 seeds per seed lot) in the same naturally infected soil after
a 3-h steaming pasteurization period at 70°C, to eliminate G. ulti-
mum, followed by a ‘recovering period’ of 3 weeks at 15°C in plas-
tic breathable bags, in the dark. The number of emerged seedlings
was then recorded 6 and 7 days after sowing.

DNA metabarcoding

Seed samples used for metabarcoding were placed and subse-
quently stored in the freezer (—20°C) at the time when the first
bioassay was taking place. For every seed lot, DNA extraction and
PCR was conducted for ten samples of ~70-80 mg of non-treated
seeds. The samples were pooled in pairs after PCR to make up the
five biological replicates that were sequenced per seed lot. Sam-
ples were processed and sequenced in two sets: samples from
seed lots A, C, G, and H were processed first (set 1), followed by
seed lots B, D, E, and F (set 2).

Sample preprocessing prior to DNA extraction followed the pro-
tocol of K6hl et al. (2024). The Precellys Evolution (Bertin Technolo-
gles) was used to bead-beat ~70-80 mg of seeds with a 6.35 mm
steel bead (BioSpec) inside reinforced 2 ml screw-cap tubes at
5,000 r/m for 30 s, followed by a 20-s pause and bead-beating for
30 s a second time. Bead-beating for 30 s took place a third time
when seeds remained partially intact to ensure producing ho-
mogenously powdered samples. Samples were then freeze-dried
overnight, followed by transferring ~15 mg of lyophilized powder
per sample to a well of a 96-well block. The block was placed in
liquid nitrogen for 30 s followed by adding 90 mg of 1.0 mm sil-
icon carbide beads (BioSpec) to each well and bead-beating the
samples using TissueLyser II (Qiagen) at 30 Hertz for 30 s, invert-
ing the block and bead-beating a second time at 30 Hertz for 30 s.
DNA extraction then took place using the PurePrep Seed Kit (Mol-
gen), the Kingfisher Flex robot (Thermofisher) and following the
respective manufacturer protocols. DNA extraction included five
negative controls for set 1 and three for set 2. We had initially used
the sbeadex™ maxi plant kit (LGC) for DNA extraction but needed
to discard the samples generated with this. This kit is commercial-
ized for conducting plant DNA extractions and after repeatedly
finding remnants of bacterial DNA in its reagents, we discourage
its use for microbiome studies.

The Q5 Hot Start High-Fidelity DNA polymerase (New England
Biolabs) PCR kit was used for DNA amplifications. Two sets of
primers were used, namely primers for the V4 region of the 16S
TRNA gene: 515F (Parada) 5'- GTGYCAGCMGCCGCGGTAA -3’ and
806R (Apprill) 5- GGACTACNVGGGTWTCTAAT -3’ and primers
for ITS1: ITS1F 5'- CTTGGTCATTTAGAGGAAGTAA -3’ and ITS2 5'-
GCTGCGTTCTTCATCGATGC -3' (Apprill et al. 2015, Gardes and
Bruns 1993, Parada et al. 2016, White et al. 1990). Amplifying the
16S rRNA gene and ITS1 aimed at assessing the bacterial and fun-
gal fractions of the seed microbiota, respectively. Amplification
of plant DNA in the 16S rRNA gene PCR was blocked with the
use of PNA clamps, namely the anti-mitochondrial PNA (mPNA)
5-GGCAAGTGTTCTTCGGA-3' and the anti-plastid PNA (pPNA) 5'-
GGCTCAACCCTGGACAG-3' (PNA Bio) (Lundberg et al. 2013). DNA
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extracts were diluted 1:5 and ~20 ng DNA were used per 50 ul PCR
assay for both the 16S rRNA gene and the ITS1 PCRs.

For the 16S rRNA gene PCR of sample set 1, every assay com-
prised 2.5 ul (1:5 diluted) DNA extract, 2.5 ul per primer (10 uM),
2 pl dNTPs (5 mM), 0.5 ul Q5 High-Fidelity DNA polymerase, 5 pl
mPNA (50 pM), 5 pl pPNA (50 puM), 20 pl water, and 10 pl Q5 Re-
action buffer (5x). The thermal cycling started with heating the
samples at 98°C for 3 min, followed by 26 cycles of 95°C (30's), 75°C
(10s),50°C (30 s), and 72°C (30 s), before final elongation phase of
1 min at 72°C. For the ITS1 PCR of set 1, every assay comprised
2.5l (1:5 diluted) DNA extract, 2.5 pl per primer (10 pM), 2 pl
dNTPs (5 mM), 0.5 pl Q5 High-Fidelity DNA polymerase, 30 pl wa-
ter, and 10 pl Q5 Reaction buffer (5x). The thermal cycling started
with heating the samples at 98°C for 3 min, followed by 28 cycles
of 95°C (30 s), 75°C (10's), 52°C (30 s), and 72°C (30 s), before a final
elongation phase of 1 min at 72°C. The PCRs of sample set 2 only
differed in the assay composition by including 4 pl (1 : 5 diluted)
DNA extract and 18.5 pl water (16S rRNA gene) or 28.5 pl water
(ITS1). Each PCR included a negative control sample amounting
to four negative PCR control samples in total.

The PCRs of set 2 also included positive control samples in three
replicates. For bacteria, the commercial ZymoBIOMICS™ Micro-
bial Community Standard (D6300) (Zymo Research) was used.
This commercial DNA standard includes equimolar amounts of
DNA from Listeria monocytogenes, Pseudomonas aeruginosa, Bacillus
subtilis, Escherichia coli, Salmonella enterica, Lactobacillus fermentum,
Enterococcus faecalis, and Staphylococcus aureus. For fungi, a DNA
standard was prepared in-house by mixing purified full-length
ITS DNA amplicons from six known pure fungal isolates. This
DNA standard included DNA ~ 2 x 108 amplicon copies/ul per
isolate from Monographella nivalis, Verticillium dahliae, Cladosporium
cladosporioides, Vishniacozyma victoriae, Sporobolomyces roseus, and
Agaricus bisporus. Amplification of the ZymoBIOMICS™ Microbial
Community Standard (D6300) replicates followed the 16S rRNA
gene PCR settings, with a total input of 20 ng DNA per 50 pl PCR
assay. Replicates of the in-house DNA standard mixture were am-
plified following the ITS1 PCR settings with the exception of com-
prising 21 cycles and using 1.5 ng DNA as input per 50 pl PCR
assay. To verify that the preparation of sample sets 1 and 2 was
comparable, one biological replicate per seed lot from set 1 was
also amplified and sequenced along with the samples of set 2.

After PCR, amplicons from every seed lot were pooled in pairs
to make up five biological replicates for sequencing. These pooled
samples and the control samples were sent to IGA Technology
Services Srl, with the exception of the four negative PCR control
samples, all of which resulted in no amplification. The sequenc-
ing company purified the samples using 2x XP Beckman beads
(Beckman Coulter), and sequenced them using Illumina MiSeq (2
x 300 PE). After purification, the negative controls of set 1 con-
tained insufficient amounts of DNA and could not be sequenced.
The negative controls of set 2 were pooled into a single sample of
150 pl per library (16S rRNA gene and ITS1) prior to purification
and were sequenced. Information on the controls of the study can
be found in Supplementary File S1.

Sequencing data processing (QIIME2)

Sequenced reads were processed using QIIME2 (version 2021.8)
(Bolyen et al. 2019). Reads that were shorter than 100 bp were re-
moved using the cutadapt plugin (Martin 2011) after which the re-
maining reads were demultiplexed, merged (16S reads only) and
quality-filtered using the DADA2 plugin (Callahan et al. 2016).
They were then classified as amplicon sequence variants (ASVs)
and taxonomically annotated using the feature-classifier of QI-
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IME?2 based on Naive Bayes algorithm (Bokulich et al. 2018). The
annotation for the 16S rRNA gene amplicons was based on the
Silva database (v.132) (Quast et al. 2012), while for the ITS1 ampli-
comns, it was based on the UNITE database (version 8, May 2021)
(Nilsson et al. 2019). Taxa classified as Archaea and Eukaryota
were removed from the bacterial dataset. For both the bacterial
and the fungal datasets, taxa being represented by 10 reads or
less in the entire ASV table were removed, together with taxa
that were not identified at the phylum level. The resulting bac-
terial and fungal ASV tables were then imported in R using the
giime?2R (Bisanz 2018) and phyloseq (McMurdie and Holmes 2013)
R packages.

Statistical analysis and data visualization

All further data handling and the statistical analysis of the
datasets were performed with R version 4.2.1 (R Core Team
2024). Data were visualized with the ggplot2 R package (Wickham
2016). All data recorded in the bioassays and germination tests
were count data (number of germinated, emerged or diseased
seedlings) and were analysed using generalized linear models (« =
0.05) with the glm function of the multcomp R package (Hothorn
et al. 2008). The dispersion of count data was examined using the
testDispersion function of the DHARMa R package (Hartig 2019).
In order to account for data over- or under-dispersion, a quasib-
inomial distribution was used in the generalized linear models.
False discovery rate (FDR) was controlled using the Benjamini-
Hochberg procedure (BH) at level « = 0.05, given that the analysis
comprised multiple comparisons. While in Diakaki et al. (2022) the
number of pre- and post-emergence damped-off seedlings were
treated as two separate disease variables, here they were summed
per replicate and analysed as a single variable.

The results of the first bioassay were used as metadata in the
analysis of the sequencing data, since the seed samples used for
metabarcoding were placed in the freezer (—20°C) at the time
when that bioassay was taking place.

With regards to the sequencing data, the rarefy_even_depth
function of the phyloseq R package (McMurdie and Holmes 2013)
was used for normalizing the ASV tables by rarefaction at a sam-
pling depth of 12717 reads (bacterial dataset) and 23979 reads
(fungal dataset). This resulted in the bacterial dataset being re-
duced to 37 samples, after the removal of samples which failed to
meet the selected sampling depth threshold (two samples of seed
lot E and one of seed lot G). All 40 samples of the fungal dataset
were conserved. Rarefied ASV tables were used for calculating al-
pha diversity metrics, namely species richness and Shannon di-
versity index. For all other types of analyses, read counts per ASV
were transformed into proportions (relative abundance), as a nor-
malization method to adjust for unequal library size and retain
all ASVs, using the transform function of the microbiome R pack-
age (Lahti and Shetty 2018). One of the five replicates of seed lot
E was excluded from all analyses due to its low library size (num-
ber of reads). The following steps of the statistical analysis were
completed for both datasets separately. Where necessary, FDR was
controlled using the Benjamini-Hochberg procedure (BH) at level
a =0.05. Where possible, the factor location was constrained since
itis known that terroir is a major component shaping seed micro-
biota (Klaedtke et al. 2016, Morales Moreira et al. 2021b) and as
such, was expected to mask the factors of interest, namely seed
lot, disease suppression and performance.

Species richness and Shannon diversity index were calculated
per seed lot using the estimate_richness function of the phyloseq
R package (McMurdie and Holmes 2013). The Kruskal-Wallis test
of R (BH; @ = 0.05) was then used to test whether these two diver-
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Figure 1. Disease suppression per seed lot in spinach—Globisporangium ultimum bioassays. The y-axis (disease suppression %) represents the mean
difference in damping-off infection % between treated and non-treated seed samples per seed lot. Seed lots for which this difference is significant
(generalized linear model, @ = 0.05) appear in blue. Data are shown for the first [A; based on data from Diakaki et al. (2022)] and second bioassay (B).
False discovery rate (FDR) was controlled using the Benjamini-Hochberg procedure (« = 0.05). For seed lot C in the second bioassay, 100% of treated
seeds were diseased in all replicates; the colour of the respective bar has been manually adjusted to blue since the lack of variation interfered with the

statistical analysis.

sity metrics differed per seed lot. The Pearson’s correlation test
(BH; o = 0.05) of R was used to evaluate the correlation between
each of the diversity metrics and disease suppression.

For categorizing genera as core or rare, the tax_glom function
of phyloseq R package (McMurdie and Holmes 2013) was first
used to agglomerate taxa at the genus level. The core_members
and rare_members functions of the microbiome R package (Lahti
and Shetty 2018) were then used to extract core and rare taxa,
respectively. The same was done for ASVs without an agglomer-
ation step. Similarly to Kim et al. (2023), we defined taxa as core
when being present in at least 80% of the samples and rare when
being present in no more than 20% of the samples. Prevalence
was calculated per ASV as the percentage of samples in which
the ASV is present.

Ordination analysis was performed based on the Bray—Curtis
and the Jaccard dissimilarity matrices (non-metric multidimen-
sional scaling; NMDS), using the ordinate function of the phy-
loseqg R package (McMurdie and Holmes 2013). The Bray-Curtis
distance metric accounts for presence/absence and relative abun-
dance data, while the Jaccard distance metric only for pres-
ence/absence data. Permutational multivariate analysis of vari-
ance (PERMANOVA) was performed using the adonis2 function of
the vegan R package (Oksanen 2012) to explore the percentage of
variance explained by the factors seed lot and disease suppres-
sion; the factor location was constrained in the models.

Relating to the identification of differentially abundant taxa be-
tween high and low-performing seed lots, three different meth-
ods were used, namely, a log-linear (natural log) model (ancombc2
function of the ANCOMBC R package) (Lin et al. 2022, Lin and Ped-
dada 2020), a Wilcoxon rank-sum test (compare_groups function

of the metacoder R package) (Foster et al. 2017) and a Wald test
(DESeq function of the DESeqg2 R package) (Love et al. 2014) (BH; «
= 0.05). This was decided since it has been shown that the num-
bers and sets of differentially abundant taxa can vary significantly
when using different tools to identify them (Nearing et al. 2022).
We especially highlight the results of the ANCOM-BC2 model over
the other two, since we consider it more robust and suitable based
on literature (Lin and Peddada 2024, Nearing et al. 2022). Addition-
ally, the ANCOM-BC2 model, allowed the inclusion of the factor lo-
cation, while the other methods could only incorporate one factor,
namely performance. Lastly, the R package indicspecies was used
to perform an indicator species analysis for the two performance
groups (De Caceres and Legendre 2009).

All datasets, including the raw sequencing data and scripts
used for their analyses can be found in the 4TU database with doi
10.4121/03e9e2af-904e-4949-ac10-c5721fd6e0f1, which can be ac-
cessed at https://www.data.4tu.nl. The raw sequencing data used
are also publicly available via the European Nucleotide Archive
under project accession PRJEB77602.

Results

Spinach—Globisporangium ultimum bioassays

The eight seed lots selected for this study are characterized by dif-
ferent levels of suppressive potential, a trait that was evident and
consistent in the results of both the first (Diakaki et al. 2022) and
second bioassay. Globisporangium ultimum inoculum density and
infectivity were not the same in the two bioassays since naturally
infested soil was collected a year apart to be used as substrate.
Seeds had also aged by one year. Fig. 1 presents the mean differ-
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Figure 2. Top 20 bacterial (A) and fungal (B) genera across samples. The barplots show the relative abundance (%) of the 20 most abundant bacterial

(A) and fungal (B) genera across samples.

ence in damping-off infection % between treated and non-treated
seed samples per seed lot. Figure S1 (Supplementary File S2)
presents the disease incidence in treated and non-treated seed
samples separately. The larger the difference, the higher the sup-
pressive potential of the seed microbiome of a seed lot. These dif-

ferences were significant (generalized linear model, « = 0.05) with
the exception of seed lot H in both bioassays and seed lots E, F,
and G in the second bioassay. This metric will be referred to as
‘disease suppression’ and is based on the values derived from the
first bioassay. With regards to the grouping factor ‘performance’,
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Figure 3. Pearson’s correlation between alpha diversity metrics and seed lot disease suppression (%). (A) species richness for bacterial communities, (B)
species richness for fungal communities, (C) Shannon diversity index for bacterial communities and (D) Shannon diversity index for fungal

communities.

the disease suppression characterising high-performing seed lots
ranged from 39% to 66%, while for low-performing seed lots, it
ranged from 4% to 11%.

For seed lots A and B disease suppression was the highest in
both the first (>65%) (Diakaki et al. 2022) and second (>36%) bioas-
say, while it was the lowest for seed lots E, F, G, and H (<14% in
both bioassays). Disease suppression for seed lots C and D was
53% and 39%, respectively, in the first bioassay (Diakaki et al. 2022)
and 15% in the second bioassay. It should be noted that neither lo-
cation of cultivation nor company of production correlated with
disease suppression (Kruskal-Wallis rank sum test, & = 0.05); this
was tested based on the results from all 40 seed lots in the first
and all 16 seed lots in the second bioassay.

Sequencing data

Taxonomic profiling of the spinach seed microbiota

The bacterial dataset was described by an average of 27 770 high-
quality reads per sample and a total of 343 ASVs, while the fun-
gal dataset contained an average of 62 261 high-quality reads per
sample and 273 ASVs.

For bacteria, most ASVs belonged to the class Gammapro-
teobacteria (70.39%), with smaller proportions belonging to Bacilli
(14.37%) and Actinobacteria (10.98%) (Supplementary File S2: Figs.
S2 and S3; Supplementary File S3). At the genus level, Pantoea
(37.42%) and Pseudomonas (27.96%) were the most abundant gen-
era (Fig. 2, Supplementary File S2: Fig. S3; Supplementary File
S3). For fungi, most ASVs belonged to the class Dothideomycetes
(67.10%), followed by Tremellomycetes (19.73%) and Sordariomycetes

(9.17%) (Supplementary File S2: Figs. S2 and S3; Supplementary
File S4), while Alternaria (40.88%) and Vishniacozyma (11.50%) were
the most abundant genera (Fig. 2, Supplementary File S2: Fig. S3;
Supplementary File S4).

For computing alpha diversity metrics, the number of reads
was rarefled to 12717 and 23979 for the bacterial and fungal
datasets, respectively. The number of ASVs retained was 333 bac-
terial and 273 fungal ASVs.

Alpha diversity differs per seed lot and correlates with
disease suppression

For bacterial communities, species richness ranged from 24 to
113 ASVs per seed lot and differed significantly between lots
(Kruskal-Wallis rank sum test, FDR-adjusted P = 0.001), while
Shannon diversity index did not (Kruskal-Wallis rank sum test,
FDR-adjusted P = 0.106) (Supplementary File S2: Fig. S4). Ad-
ditionally, there was a moderate negative correlation between
species richness and disease suppression (Pearson’s correlation,
R =-0.42, P =0.009; Fig. 3). For fungal communities, species rich-
ness ranged from 25 to 70 ASVs per seed lot and differed signifi-
cantly between lots (Kruskal-Wallis rank sum test, FDR-adjusted
P = 0.002) (Supplementary File S2: Fig. S4). Shannon diversity in-
dex also differed significantly between seed lots (Kruskal-Wallis
rank sum test, FDR-adjusted P = 0.0003) and ranged from 1.68 to
2.76 (Supplementary File S2: Fig. S4). Both species richness (R =
0.39, P = 0.012) and Shannon diversity index (R = 0.47, P = 0.002)
correlated positively with disease suppression (Fig. 3). These Pear-
son’s correlations were also moderate.
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Figure 4. Relative abundance (%) and prevalence of bacterial (A) and fungal (B) ASVs. Prevalence represents the number of samples where a taxon is
found. Each point represents an ASV. There are 39 samples in the bacterial dataset and 40 samples in the fungal dataset. Rare taxa (prevalence <20%)
are found on the left of the black dashed line. When multiple points overlap, they appear darker. Point colour designates the phylum an ASV belongs

to. Note: the y-axis is presented on a logyo scale.

Most taxa are rare while the seed lots also share core
microbiota

The majority of the bacterial and fungal ASVs could be consid-
ered as rare based on their low prevalence (number of samples in
which the ASV is present) and low relative abundance. From the
total of 343 bacterial ASVs, 81% (280 ASVs) were rare (prevalence
< 20%), with 32% (111 ASVs) only present in a single sample, while
only 5% (16 ASVs) were found in >80% of the samples. At the same
time, 85% of ASVs (290 ASVs) had a relative abundance of <0.1%,
while 5% (16 ASVs) had a relative abundance >1% (Fig. 4). Simi-
larly, from the 273 fungal ASVs, 79% (216 ASVs) were rare (preva-
lence < 20%), with 52% (141 ASVs) only present in a single sample,
while only 7% (18 ASVs) were found in >80% of the samples. In ad-

dition, 82% of ASVs (224 ASVs) had a relative abundance of <0.1%,
while 7% (19 ASVs) had a relative abundance >1% (Fig. 4). Lastly,
we calculated that 56% of bacterial and 58% of fungal genera are
only present in one seed lot.

A set of spinach seed core microbiota was identified. These
were taxa that were present in 80% of the samples and were
also present in at least one sample per seed lot. At the genus
level, there were 11 core bacterial and 13 core fungal genera.
The core bacterial genera in order of highest relative abundance
were: Pantoea, Pseudomonas, Paenibacillus, Curtobacterium, Massilia,
Sphingomonas, Advenella, Sanguibacter, Rhizobium, Methylobacterium,
and Rubrobacter (Supplementary File S2: Fig. S5). The core fun-
gal genera in order of highest relative abundance were: Alternaria,
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Figure 5. Bacterial (A) and fungal (B) community composition dissimilarity for spinach seed microbiota. Ordination plots based on non-metric
multi-dimensional scaling (NMDS), using the Bray—Curtis distance metric. Samples of the eight seed lots are depicted using different shapes, while the
colours blue and yellow are used to depict which seed lots are high- and low-performing, respectively.

(A) Bacteria (B) Fungi
4 4
[ Posttive LFC
. Negative LFC
2 i
o
o
C
5]
<
]
o
Ke]
> 0-
g0 g
_l !
-2
$ q?—) S & $ \@‘ T T T T T T T T
Ny § N S S Ny 9 @ @ @ & @ % @
& & £ ¢ & 9 & & N & S § & & §
& S & & » & S & & » S S g 8
S N 3 & < S S S I 2 & S S >
S Q o S S N ' G O Q N Q & @
1) Q N N > S S 12 N; S 3 § N F
& N N & . Q ¥ N Q 9 8 S
N Q < § O o N IS N G N
&g & s & S & & & & 2
S & s ~ 2

Figure 6. Differentially abundant bacterial (A) and fungal (B) genera. The depicted genera were identified as differentially abundant between the two
seed lot performance groups (high/low performance). Results of the ANCOM-BC2 framework (« = 0.05; P-values adjusted using the
Benjamini-Hochberg procedure). The y-axis plots the (natural) log fold change (LFC), with negative values (blue bars) indicating that a genus is found
in higher relative abundance in high-performing seed lots and positive values (red bars) indicating that a genus is found in higher relative abundance
in seed lots of low performance. The colour-coding of the genera names indicates whether a genus successfully passed the sensitivity analysis for
pseudo-count addition (bold green) or not (grey).
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Vishniacozyma, Mycosphaerella, Stemphylium, Cladosporium, Holter-
manniella, Neoascochyta, Filobasidium, Papiliotrema, Bulleromyces,
Botrytis, Sporobolomyces, and Dioszegia (Supplementary File S2:
Fig. S5).

Seed microbiota composition differs per seed lot and level of
disease suppression

Out of the total variance in bacterial communities, 26.7% of vari-
ance is explained by the factor seed lot and 7.6% by the fac-
tor disease suppression when using the Jaccard distance (NMDS;
PERMANOVA « = 0.05). These proportions were 30.5% and 9.8%,
respectively, when using the Bray-Curtis distance (NMDS; PER-
MANOVA « = 0.05) (Fig. 5). Out of the total variance in fungal
communities, 41.4% of variance is explained by the factor seed lot
and 6.2% by the factor disease suppression (NMDS; PERMANOVA
a = 0.05). These proportions were 50.7% and 7.1% respectively
when using the Bray-Curtis distance (NMDS; PERMANOVA o« =
0.05) (Fig. 5).

Differentially abundant taxa across performance groups

Detailed information on results presented in this section are doc-
umented in Supplementary File S5 for all three statistical meth-
ods used, namely the ANCOM-BC2 framework, a Wald test us-
ing the DESeq2 R package and a Wilcoxon rank-sum test using
the metacoder R package. The results of the ANCOM-BC2 frame-
work are presented in Fig. 6 for bacterial and fungal genera, while
the results of metacoder and DESeq2 can be found in the supple-
mentary information (metacoder-Supplementary File S2: Fig. S6;
DESeq2-Supplementary File S2: Fig. S7). The heatmaps of Fig. 7
include all bacterial and fungal genera that were identified as dif-
ferentially abundant by any of the three methods used.

The bacterial genera, Massilia (2.49%), Saccharibacillus (2.01%),
and a Myxococcales genus (0.02%), were found in higher relative
abundance in high-performing seed lots as indicated by two of
the three methods used while Advenella (1.56%), Phyllobacterium
(0.08%), Chryseobacterium (0.07%), and Sediminibacterium (0.02%)
were found in higher relative abundance in low-performing seed
lots by two of the three methods used (Table 1). The fun-
gal genera, Vishniacozyma (11.40%), Filobasidium (1.64%), Papil-
iotrema (1.54%), Itersonilia (0.15%), Dioszegia (0.10%), Bullera (0.06%),
Wallemia (0.02%), Symmetrospora (0.02%), and Bensingtonia (0.01%)
were identified as more abundant in high-performing seed lots,
by at least two of the three methods, while the genera Neoas-
cochyta (2.34%), Didymella (0.47%), and Plectosphaerella (0.01%) were
found in higher relative abundance in low-performing seed lots
by two of the three methods used (Table 1). Differentially abun-
dant bacterial and fungal taxa identified at the species level are
presented in Supplementary File S5. Finally, genera that were
either only present in high- or only present in low-performing
seed lots are presented in Supplementary File S2: Table S1, with
most of these taxa being of low relative abundance and low
prevalence.

Indicator taxa per performance group

A set of bacterial and fungal genera were identified as indicators
of high- and low-performing seed lots (BH; & = 0.05). For bacteria,
Massilia, Frigoribacterium, and a Myxococcales genus were indicators
associated with high-performing seed lots, while Advenella, Mar-
moricola, Rubrobacter, Brevundimonas, Microbacterium, Nocardioides,
Sediminibacterium, Xanthomonas, Phyllobacterium, and Rhodococcus
were associated with low-performing seed lots (Supplementary
File S6). For fungi, Vishniacozyma, Filobasidium, Papiliotrema, Diosze-

gia, Itersonilia, Bullera, Wallemia, Bensingtonia, and Symmetrospora
were indicators associated with high-performing seed lots, while
Didymella with low-performing seed lots (Supplementary File S6).

Discussion
The composition of the spinach seed microbiota

In agreement with our hypothesis, we confirmed that part of the
variance in microbial community composition was explained by
the factor seed lot. This is in line with multiple studies highlight-
ing the importance of plant genotype (Chen et al. 2020, Davies et
al. 2024, Morales Moreira et al. 2021a), as well as terroir (Klaedtke
et al. 2016, Morales Moreira et al. 2021b) and seed processing (Ab-
delfattah et al. 2023) in shaping the seed microbiota. Apart from
exploring these differences, we used our dataset to describe core
spinach seed microbiota and explore the ubiquity of rare taxa
in our samples. To our knowledge, there is, at present, only one
other study specifically focusing on spinach seed microbiota. Kan-
del et al. (2022) used DNA samples recovered from the pericarp of
spinach seeds to report on the taxonomical composition of seed
epiphytes using different seed lots. Similarly to their findings, our
results reinforce the prevalence of Pantoea, Pseudomonas, Curtobac-
terium, Massilia, Sphingomonas, and Sanguibacter as core bacterial
taxa and of Alternaria and Botrytis as core fungal taxa of spinach
seed microbiota (Fig. 2; Supplementary File S2: Fig. S5). The thor-
ough DNA extraction method we developed, allowed us to extract
both epiphytic and endophytic microbial DNA from our samples.
This may be the reason why, unlike Kandel et al. (2022), we de-
scribe numerous yeast genera as core fungal taxa of spinach seed
microbiota, some of which may reside in the seeds endophytically.
We used and recommend the same DNA extraction method for
other plant species. Specifically, we verified its suitability for ex-
tracting (bacterial) DNA from red fescue, perennial ryegrass and
beetroot seeds (Supplementary File S7).

On a broader level, similarly to our findings in spinach, the Seed
Microbiota Database (Simonin et al. 2022) reports Pantoea, Pseu-
domonas, Paenibacillus, Sphingomonas, Rhizobium, and Methylobac-
terium (bacterial genera) as well as Alternaria, Vishniacozyma, Cla-
dosporium, Filobasidium, and Sporobolomycetes (fungal genera) as
core seed microbiota across multiple plant hosts. Interestingly, Si-
monin et al. (2022) highlight the prevalence of Alternaria metachro-
matica, which was also the most prevalent fungal species in our
study.

Although seed microbiome studies do not distinguish between
yeasts and filamentous fungi, we noticed the prevalence of multi-
ple yeast genera. We expect that the presence of yeasts in seeds is
facilitated by their ubiquity in the phyllosphere and more specif-
ically the anthosphere, where seeds develop (Aleklett et al. 2014,
Kemler et al. 2017).

Apart from the identity of core microbiota and the distinct
presence of yeast taxa, all samples included numerous rare taxa.
Ecosystems of all dimensions are characterized by the dichotomy
of having few dominant (core) and a multitude of rare taxa. While
rarity is linked to stochastic events, rare taxa are thought to be
crucial for stable ecosystem functioning based on the insurance
theory of biodiversity, especially in the presence of a stressor
(Jousset et al. 2017, Van Nes et al. 2024). Similarly to many other
ecosystems, seed microbiomes are also largely shaped by rare taxa
(Johnston-Monje et al. 2022) and there is evidence to suggest that
such taxa confer community robustness in seed microbiota as
well (Kim et al. 2023). We calculated that an overwhelming 81%
of the bacterial and 79% of the fungal taxa of our study were rare.
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Table 1. Bacterial (A) and fungal (B) genera identified as differentially abundant. The depicted genera were identified as differentially
abundant between the two seed lot performance groups (high/low performance), using three statistical methods: the ANCOM-BC2 frame-
work (ANCOMBC R package), a Wald test (DESeq2 R package) or a Wilcoxon rank-sum test (metacoder R package) (« = 0.05; P-values
adjusted using the Benjamini-Hochberg procedure). Genera were present in higher relative abundance either in high- or low-performing
seed lots. An asterisk (*) designates which genera are part of the core microbiota and genera in bold were reported by more than one
method. The table also includes relative abundance (percentage of reads per genus per performance group) and prevalence (percentage
of samples where a genus is found per performance group).

Abundance % Abundance % Prevalence % in Prevalence % in

in high in low high low
performance performance performance performance

A. Bacteria ANCOM-BC2 DESeq2 Metacoder group group group group
Present in higher relative abundance in high-performing seed lots
Paenibacillus* X 5.88 2.4 100 95
Massilia* X X 4.22 0.81 100 100
Saccharibacillus X X 3.02 1.06 95 42
Frigoribacterium X 0.2 0.02 45 16
Rathayibacter X 0.062 0.08 45 47
Myxococcales genus X X 0.04 0.001 50 5
Present in higher relative abundance in low-performing seed lots
Advenella* X X 0.54 2.72 100 100
Rhizobium* X 0.26 1.54 80 84
Stenotrophomonas X 0.21 0.24 65 53
Methylobacterium* X 0.11 0.44 85 95
Rhodococcus X 0.05 0.98 60 84
Microbacterium X 0.04 0.32 35 58
Rubrobacter* X 0.02 0.1 80 89
Phyllobacterium X X 0.02 0.14 40 53
Chryseobacterium X x 0.02 0.12 35 47
Prauserella X 0.01 0.08 40 58
Sediminibacterium be x 0.01 0.04 40 53
B. Fungi ANCOM-BC2 DESeq2 Metacoder Abundance % Abundance %  Prevalence % in Prevalence % in

in high in low high low

performance performance performance performance

group group group group
Present in higher relative abundance in high-performing seed lots
Vishniacozyma* X X 16.24 6.56 100 100
Botrytis* X 4.26 1 80 90
Filobasidium* X X X 3.08 0.19 100 100
Papiliotrema* X X X 2.69 0.39 100 95
Bulleromyces* X 1.59 0.79 100 100
Itersonilia X X 0.27 0.02 85 30
Dioszegia* X X X 0.17 0.03 100 75
Bullera X X 0.12 0.003 80 10
Wallemia X X 0.03 0.0004 65 10
Symmetrospora X X 0.03 0.002 60 25
Bensingtonia X X 0.02 0.002 70 25
Present in higher relative abundance in low-performing seed lots
Alternaria* X 38.98 42.04 100 100
Cladosporium* X 4.69 4.83 100 100
Verticillium X 4.27 10.22 70 90
Sporobolomyces* X 1.022 0.96 100 100
Neoascochyta* X X 0.79 3.88 100 85
Gibellulopsis X 0.26 1.1 75 85
Epicoccum X 0.05 0.44 45 35
Cystofilobasidium X 0.05 0.6 80 80
Didymella X X 0.001 0.93 10 35
Plectosphaerella X X 0.001 0.02 5 40

@Note that the log-fold change generated by ANCOM-BC2, represents the difference in bias-corrected abundances between groups and does not directly reflect
relative abundance data. Similarly, log-fold change values generated by DESeq2 may not directly reflect relative abundance data due to the normalization procedure
that is inherent to this method.
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For fungi, species richness and Shannon diversity index positively
correlated with disease suppression (Fig. 4; Supplementary File S2:
Fig. S4), implying that an increase in fungal diversity may con-
tribute to disease suppression against G. ultimum, possibly due to
the occupation of more niches.

Yeasts and other seed microbiota are associated
with disease suppression

We also hypothesized and confirmed that differences in taxonom-
ical composition correlate with seed lot disease suppression. Level
of disease suppression was described per seed lot based on the
results of two spinach—G. ultimum bioassays. Together, the eight
seed lots provided us with a stable gradient of disease suppres-
sion against G. ultimum damping-off and allowed us to explore
the different seed microbiota for correlations between levels of
disease suppression per seed lot and seed microbiome character-
istics. We showed that 9.8% of bacterial and 7.1% of fungal com-
munity variance between samples correlated with disease sup-
pression (Fig. 5), thus, pointing at the possible contribution of seed
microbiota in disease suppression in this particular pathosystem.
Seed lot performance also correlated with differences in relative
abundance of certain taxa with multiple of those belonging to the
core microbiota we described (Table 1).

The suppressive effect of bacterial taxa mostly related to the
increased abundance of the genus Massilia in high-performing
seed lots. This genus was also part of the core microbiota and
found in all samples. Numerous studies have linked them to
suppressiveness against plant pathogens (Andreo-Jimenez et al.
2021, Lv et al. 2024, Siegel-Hertz et al. 2018). With regards to
fungi, biodiversity correlated positively with seed lot disease sup-
pression while numerous taxa were also found in higher rel-
ative abundance in high-performing seed lots. It was particu-
larly interesting to find Vishniacozyma, Filobasidium, Papiliotrema,
and Dioszegia as differentially abundant taxa since these are also
core taxa amongst the seed lots of our study. Together with the
genera Itersonilia, Bullera, and Bulleromyces which are also more
highly present in high-performing seed lots, the above genera be-
long to the Tremellomycetes class of dimorphic basidiomycetous
fungi.

Dimorphic species can be found in either a yeast state or hy-
phal form. Dimorphism is often observed in species with multi-
ple nutrient acquisition strategies, where the yeast state can be a
resting structure or represent a saprobic asexual state, while the
hyphal form associates with parasitism on either animals, plants
or other fungi (Begerow et al. 2017). Among others, the genera Pa-
piliotrema, Dioszegia, and Bullera are known for being able to par-
asitize other fungi (Begerow et al. 2017). Interestingly, although
yeasts are mostly known as members of the Ascomycota, the ma-
jority of known and potentially mycoparasitic yeasts belong to the
Basidiomycota phylum (Begerow et al. 2017).

Apart from mycoparasitism, there have been multiple other
traits reported in yeasts, which makes them efficient biologi-
cal control agents (BCAs). Different yeasts have been studied
and used as BCAs, particularly against post-harvest pathogens
given their ability to compete for space (niche occupation)
and nutrients, secrete polymer-cleaving enzymes which dam-
age the cell walls of pathogens, produce toxins, and volatile
organic compounds (VOCs), induce host resistance and as
previously mentioned parasitize other fungi (Freimoser et al.
2019). Our work indicates the possible importance of yeasts
in controlling early stage seedling diseases such as G. ultimum
damping-off.

From the Vishniacozyma genus, which we detected as most
prevalent in high-performing seed lots, V. victoriae represents an
example of successful biological control against post-harvest dis-
ease of fruits such as Penicillium expansum, Botrytis cinerea, and Cla-
dosporium sp. (Gorordo et al. 2022, Nian et al. 2023). This species
was also present in our dataset. The Papiliotrema genus also
contains BCAs, such as the patented P. terrestris strain PT22AV,
which is used against Penicillium expansum on apple post-harvest.
This BCA was also antagonistic against Botrytis cinerea, Rhizopus
stolonifer, Aspergillus niger and Monilinia spp. in other fruits (Ianiri
et al. 2024). Additionally, Papiliotrema flavescens inhibits Fusarium-
induced crown rot and head blight in wheat (Liu et al. 2021),
while evidence suggests it can promote plant growth and in-
duce systemic resistance via VOC production (Liu et al. 2024). An-
other mechanism through which the fungal fraction of the high-
performing spinach seed lots mitigates G. ultimum disease could
be niche occupation since suppressive seed lots have more di-
verse fungal communities. This would be in line with the fact that,
apart from outcompeting the pathogen for space and resources, it
has been shown that more diverse ecosystems are more capable
to maintain ecosystem equilibrium in the presence of a stressor
(Begerow et al. 2017, Kim et al. 2023, Van Nes et al. 2024).

The genera  Vishniacozyma,  Filobasidium,  Papiliotrema,
Bulleromyces, Dioszegia, Itersonilia, Bensingtonia, and Bullera are
all common phylloplane yeasts found in plants of temperate cli-
mates, with known adaptations to that habitat such as protective
pigment formation against high radiation (Buzzini et al. 2017).
The book that reports this information covers the topic of yeast
diversity in different natural ecosystems, such as the phylloplane,
soil, and decomposing plant material. However, seed-associated
yeasts are not mentioned (Buzzini et al. 2017). At the same time,
seed microbiome studies seem to make no distinction between
yeasts and filamentous fungi found in their samples. Our results
indicate that this may be an important research gap and we
recommend for studies to be shifted towards the presence and
function of yeasts in seed microbiomes.

Temporal dynamics of disease suppression and
relevance of seed microbiota

Apart from seed germination, the seedling stage is also critical
for plant health. Seedling microbiota assembly is a dynamic pro-
cess in which seed- and soil-derived microorganisms compete for
a share of carbon-rich seed exudates and for the possibility of se-
curing a niche inside or in close proximity to the new-born plant
(Barret et al. 2015, Torres-Cortés et al. 2018). Although certain
seed-derived taxa remain part of the microbiota of the emerg-
ing seedling, multiple studies suggest that seedling microbiota are
predominantly recruited from the soil (Escobar Rodriguez et al.
2020, Ofek et al. 2011, Rochefort et al. 2021). It would be coherent
to infer that the role of the seed microbiome in plant health is
more pronounced during germination, when external biotic con-
ditions cannot be as influential as later. While the experimental
setup of our study does not allow the validation of this, we hy-
pothesize that the yeasts we described are able to antagonize G.
ultimum during germination when seed exudation makes sugars
readily available, due to their known antagonistic effects and abil-
ity to multiply fast. This is particularly important to mitigating
infection by G. ultimum since this is a very fast pathogen, with
its sporangia being reported to respond to the release of seed
exudates within 30 min after exposure (Windstam and Nelson
2008). Lastly, since the zoospores of phytopathogenic oomycetes
are known to use seed and root exudates as chemical cues guid-

G20z Aenigad €1 Uo oSN JI8)ISIOAIUNMNOGPUET JOP %93Y10liqig Aq 26/G6./¥00/Z/L0L/aIo1E/DaSWaY/ W00 dno-ojwapese//:sdny Wwoly papeojumoq


https://academic.oup.com/femsec/article-lookup/doi/10.1093/femsec/fiaf004#supplementary-data
https://academic.oup.com/femsec/article-lookup/doi/10.1093/femsec/fiaf004#supplementary-data

ing them towards the host plant, the uptake of such compounds
by seed-associated yeasts possibly masks seed germination (Dea-
con 1996, Kasteel et al. 2023).

Multiple studies indicate that seed microbiota comprise above-
ground plant-associated or airborne taxa which colonize seeds
during flowering and seed maturation (Chesneau et al. 2020, Rezki
et al. 2018, Torres-Cortés et al. 2018). We observe this to be the
case for most of the taxa in our study that were associated with
high-performing seed lots. Therefore, since these organisms are
not adapted to living below-ground, we speculate that after an
initial surge in numbers, they are outcompeted and die off, while
young seedlings are colonized by neighbouring soil-dwelling mi-
croorganisms (Escobar Rodriguez et al. 2020, Rochefort et al. 2021).
This is why we speculate that seed-associated yeasts are of partic-
ular importance specifically for disease suppression against fast
pathogens when the onset of germination is a crucial timepoint.
We also expect pathogens using chemotaxis to be more vulner-
able to this means of microbiota-induced disease suppression.
This is also in line with our previous study, where seed microbiota
were able to confer disease suppression against G. ultimum but not
against pathogens attacking seedlings at a later stage or against
pathogens that do not utilize chemical cues during pathogenesis
(Diakaki et al. 2022).

Utilizing indicator taxa to ensure seedling health

The use of pathogen-free seeds is the first step in ensuring plant
health. This is the main reason why seed producing companies
occasionally need to disinfect seeds prior to commercialization.
Yet seed disinfection may inadvertently affect the seed microbiota
which, as we have demonstrated, may be an asset for seed and
seedling health during the onset of germination. We consider our
results to be a preliminary source of information for identifying
indicator taxa, which could be used for making informed deci-
sions on seed disinfection. Upon validation of our results, spinach
seed microbiota could be screened for the relative abundance of
certain taxa as a more efficient method of estimating vulnera-
bility to Globisporangium damping-off. When testing this further,
we recommend focusing on the core taxa that are differentially
abundant between high and low-performing seed lots, namely
Massilia, Vishniacozyma, Filobasidium, and Papiliotrema as potential
indicators of suppressive and Neoascochyta as indicator of non-
suppressive seed lots.

Conclusions

We were able to confirm our hypothesis and prove that the seed
microbiota of the eight spinach seed lots of our study differed
in taxonomic composition, while part of these differences corre-
lated with suppressiveness against G. ultimum damping-off. Our
results point at the ubiquity of basidiomycetous dimorphic yeasts
in spinach seed microbiota. We especially highlight the possi-
ble importance of these microorganisms in mitigating infection
by pathogens attacking plants during germination such us the
oomycete G. ultimum even though they are not adapted to below-
ground conditions. While many studies only focus on bacteria,
our findings support the importance of including fungi in stud-
ies exploring the benefits of seed microbiota in plant health. Fi-
nally, upon validation of these preliminary results, we consider
our findings to be applicable in the seed industry by pointing at
potential indicator taxa for making informed decisions on seed
disinfection.
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