WAGENINGEN

UNIVERSITY & RESEARCH

An Empirical Study of the Impact of Test Strategies on Online
Optimization for Ensemble-Learning Defect Prediction

Proceedings - 2024 IEEE International Conference on Software Maintenance and
Evolution, ICSME 2024

Hamamoto, Kensei; Tsunoda, Masateru; Tahir, Amjed; Bennin, Kwabena Ebo; Monden,
Akito et al

https://doi.org/10.1109/ICSME58944.2024.00066

This publication is made publicly available in the institutional repository of Wageningen University
and Research, under the terms of article 25fa of the Dutch Copyright Act, also known as the
Amendment Taverne.

Article 25fa states that the author of a short scientific work funded either wholly or partially by
Dutch public funds is entitled to make that work publicly available for no consideration following a
reasonable period of time after the work was first published, provided that clear reference is made to
the source of the first publication of the work.

This publication is distributed using the principles as determined in the Association of Universities in
the Netherlands (VSNU) 'Article 25fa implementation' project. According to these principles research
outputs of researchers employed by Dutch Universities that comply with the legal requirements of
Article 25fa of the Dutch Copyright Act are distributed online and free of cost or other barriers in
institutional repositories. Research outputs are distributed six months after their first online
publication in the original published version and with proper attribution to the source of the original
publication.

You are permitted to download and use the publication for personal purposes. All rights remain with
the author(s) and / or copyright owner(s) of this work. Any use of the publication or parts of it other
than authorised under article 25fa of the Dutch Copyright act is prohibited. Wageningen University &
Research and the author(s) of this publication shall not be held responsible or liable for any damages
resulting from your (re)use of this publication.

For questions regarding the public availability of this publication please contact

openaccess.library@wur.nl

https://doi.org/10.1109/ICSME58944.2024.00066
mailto:openaccess.library@wur.nl

2024 IEEE International Conference on Software Maintenance and Evolution (ICSME) | 979-8-3503-9568-6/24/$31.00 ©2024 IEEE | DOI: 10.1109/ICSME58944.2024.00066

2024 IEEE International Conference on Software Maintenance and Evolution (ICSME)

An Empirical Study of the Impact of Test Strategies
on Online Optimization for Ensemble-Learning
Defect Prediction

Masateru Tsunoda
Kindai University
Higashi-osaka, Japan
tsunoda@info.kindai.ac.jp

Kensei Hamamoto
Kindai University
Higashi-osaka, Japan
2433340478s @kindai.ac.jp

Akito Monden
Okayama University
Okayama, Japan
monden@okayama-u.ac.jp

Koji Toda
Fukuoka Institute of Technology
Fukuoka, Japan
toda@fit.ac.jp

Abstract— Ensemble learning methods have been used to
enhance the reliability of defect prediction models. However, there
is an inconclusive stability of a single method attaining the highest
accuracy among various software projects. This work aims to
improve the performance of ensemble-learning defect prediction
among such projects by helping select the highest accuracy
ensemble methods. We employ bandit algorithms (BA), an online
optimization method, to select the highest-accuracy ensemble
method. Each software module is tested sequentially, and bandit
algorithms utilize the test outcomes of the modules to evaluate the
performance of the ensemble learning methods. The test strategy
followed might impact the testing effort and prediction accuracy
when applying online optimization. Hence, we analyzed the test
order's influence on BA's performance. In our experiment, we
used six popular defect prediction datasets, four ensemble
learning methods such as bagging, and three test strategies such as
testing positive-prediction modules first (PF). Our results show
that when BA is applied with PF, the prediction accuracy
improved on average, and the number of found defects increased
by 7% on a minimum of five out of six datasets (although with a
slight increase in the testing effort by about 4% from ordinal
ensemble learning). Hence, BA with PF strategy is the most
effective to attain the highest prediction accuracy using ensemble
methods on various projects.

Keywords—fault prediction,
overlooking, risk-based testing

multi-armed bandit problem,

I. INTRODUCTION

Owing to the limitations of human resources and
development duration, it can be challenging to dedicate
substantial resources to extensively test all modules within a
project, which can lead to an increase in testing effort. Defect
prediction aims to detect defects earlier, which can reduce
testing efforts [15][22].

There has been increased attention to using ensemble
learning-based methods to improve the prediction accuracy of
module-level defect prediction models [13]. Ensemble learning
combines the prediction from several models and generates new
predictions (e.g., when most models predict a module as
defective, the prediction for the module becomes “defective”).

Palmerston North, New Zealand

Kwabena Ebo Bennin
Wageningen UR
Wageningen, Netherlands
kwabena.bennin@wur.nl

Amjed Tahir
Massey University

a.tahir@massey.ac.nz

Kenichi Matsumoto
NAIST
Ikoma, Japan
matumoto @is.naist.jp

Keitaro Nakasai
OMU College of Technology
Osaka, Japan
nakasai@omu.ac.jp

Although various ensemble-learning methods are available (e.g.,
bagging, boosting, and stacking), the accuracy of those methods
usually varies, depending on the training dataset used [5]. For
instance, the accuracy of a model trained on some versions can
vary on other versions. This is considered an external validity
issue in defect prediction [3]. Therefore, identifying and
selecting the accurate method can be challenging.

To help select the ensemble-learning method with the
highest accuracy, we apply an online optimization based on
bandit algorithms (BA) [8] and evaluate the performance of BA.
BA is often explained through an analogy with slot machines.
Assume that a player has 100 coins to bet on several slot
machines, and the player wants to maximize their reward. BA
suggests that the player bets only one coin on each slot machine
to seek the best chances. BA seeks sequentially best candidates
(referred to as arms) whose expected rewards are unknown to
maximize total rewards. For BA to select an ensemble-learning
method, we regard slot machines as the methods and playing on
a slot machine as testing a module. When the test outcome
makes a prediction (i.e., defective or non-defective) on the
module, we regard that a coin (reward) is acquired from the arm.

Ensemble-learning methods and BA are similar regarding
utilizing multiple prediction models; hence, it is not evident that
BA also works well in selecting ensemble methods.
Additionally, considering the nature of BA, test strategies such
as “testing smaller modules first (SF)” could affect the BA's
performance in selecting the highest accuracy ensemble-
learning model. For instance, it is probable that the accuracy (i.e.,
reward) of each ensemble-learning method (i.e., arm) is similar
on smaller modules but different on larger modules. When SF is
applied, it would be difficult to identify the best (i.e., the highest
expected reward) method in the early testing stage. That might
affect the accuracy of the prediction obtained by BA. Our study
sheds light on such aspects of BA, which previous studies
[1][8][19] did not consider. The aims of our study are:

e Help to select ensemble-learning methods to enhance the
accuracy of defect prediction.

e Help to select test strategy considering both accuracy and
effort when applying BA.

2576-3148/24/$31.00 ©2024 IEEE 642
DOI 10.1109/ICSMES58944.2024.00066
Authorized licensed use limited to: Wageningen UR. Downloaded on February 03,2025 at 10:47:02 UTC from IEEE Xplore. Restrictions apply.

II. BANDIT ALGORITHM

A. Procedure

As shown in Figure 1, we assume that module-level defect
prediction models are built using ensemble methods, and defects
of test target modules are predicted before applying BA. The
prediction of each model is treated as an arm. Modules are tested
sequentially, and BA selects arms based on the test outcomes of
the modules by following the procedure illustrated in Figure 1
[19]. In the procedure, the average reward represents each arm's
prediction accuracy (e.g., AUC). For instance, if one intends to
select the highest AUC model, AUC is used as the average
reward. Below are the steps followed to achieve our goals.

1. Select an arm based on the average reward (AUC) of arms.

2. Test a module based on the prediction of the arm selected
in step 1.

3. Recalculate the average reward of each arm, comparing the
prediction and the test outcomes (step 2).

4. Returnto step 1.

The steps are iteratively performed during testing. Initially,
the average reward of all arms is set to zero, and therefore, an
arm is selected randomly in the first instance. In step 2, when the
defect prediction result is “defective”, developers spend more
effort on testing. When the results show ‘“non-defective”,
developers then spend less effort to save resources [22].

For BA’s first iteration, from arms A and B, A is selected
randomly in step 1. In step 2, module t7 is tested with much
testing effort because the prediction result of the selected arm is
“defective.” In step 3, the prediction of t7 of arm A is evaluated
as true-positive, and that of arm B is evaluated as false-negative
(i.e., defects are found in t7). Based on this evaluation, we
calculate the AUC for each arm. In the second iteration, arm A
is still selected in step 1 as the average reward of arm A is higher
than B. In step 2, less testing effort for module t5 is spent
because the prediction on arm A turns out as “non-defective”. In
step 3, based on the test outcome, all arms' prediction up to t5 is
evaluated as true-negative.

B. Defect overlooking

Type 1 overlooking: When a defect prediction model
predicts a negative result (i.e., “non-defective”), developers will
typically spend less testing effort writing for those modules to
allocate testing resources [15][21] efficiently. As a result, the
test overlooks defects, and the module might be regarded as
“non-defective,” even if it includes defects [19]. This case is
called Type 1 overlooking [6].

In Figure 2, the column “test outcome” considers only
defects during testing, while “actual outcome after testing” also
considers defects after testing is done. In the figure, we assume
that defects are overlooked with high probability when the
prediction is negative due to less testing effort.

In Figure 2, arm B is randomly selected on the first iteration.
The reward of arm B on modules t11 and t19 is true-negative
based on the test outcomes. However, based on the actual
outcome, this reward is a false-negative. Likewise, based on the
test (not actual) outcome, arm A's reward is erroneously set as
false-positive. As a result, the AUC value is inaccurate, and arm
B, with a low accuracy, is erroneously selected [19].

643

(‘Before software testing A
[P (Positive): Defective, N (Negative): Non-defective |
Model A Model B
(Bagging) (Boosting)
o | | J
Test ¥__AmA ¥ _AmB < eslgct Test
module | Pred. | Reward [AUC | Pred. | Reward | AUC 3 outcome
t7 P TP 1.00] N FN [0.00f A P
t5 N N 1.000 N TN |0508 A B N
3 P FP_10.75| P FP_ 1 0.25[¢ A u® u Ny u ¢
I) 3 1. 2|.
During software testin
Fig. 1. Procedure of defect prediction based on BA
Arm A Arm B BA Actual
Test Select Test outcome
module [Pred. |Reward |AUC | Pred.| Reward | AUC arm outcome | after
testing
t11 P FP_10.00] N TN 1.00] B N P
t19 P FP_10.00f N TN 1.00f B N P
t15 N TN |0.33] N TN 1.00] B N N
13 P FP_|0.20] P FP_080] B/ N I .P..

_|“ Type 1: Occur in most casesl__|Type 2: Occur about 20% probabilityl’

Fig. 2. Type 1 and Type 2 defect overlooking

Arm A Arm B BANP Actual
Test Select Test outcome
module |Pred. [Reward [AUC |Pred. |Reward |AUC arm Pred. |outcome [after
testing
t11 P TP_11.00] N FN_[0.00 P P P
t19 P TP_11.00] N FN_[0.00] -- P P P
t15 N TN _11.00] N TN _|0.50] A - N P
t13 P FP_10.75]| P FP_[0.25| A N - e
- I Occur about 20% probability I/
Fig. 3. Procedure of BANP

Type 2 overlooking: Even when the prediction is positive
(i.e., “defective”), defects are sometimes overlooked during
testing [1][19]. This case is called Type 2 overlooking [6]. This
could occur even when a defect prediction result properly
informs the allocation of testing resources (i.e., extensive
resources). Module t13 (shown in Figure 2) is an example of
such a case. Based on large-scale data from cross-companies,
about 17% of defects are overlooked during integration testing

[9].

Handling Type 1 overlooking with BA: To suppress the
influence of Type 1 overlooking, Tsunoda et al. proposed BANP
(Bandit Algorithm to handle Negative Prediction) [19]. BANP
regards prediction as positive during BA’s early iteration. In
summary, BANP forcibly changed the prediction on about 10%
of the modules.

Figure 3 illustrates how BANP works. BANP sets “P” on the
“Pred.-BANP” column for modules t11 and t19 (i.e., early
iterations). As a result, t11 and t19 are regarded as positive-
prediction modules, and Type 1 overlooking is suppressed by
testing because much testing effort is spent on the module.
Although the “defect overlook™ does occur on modules t11 and
t19 in Figure 2, these modules are rewarded, and accurate AUC
values are obtained in Figure 3. As a result, the proper arm (i.e.,
arm A in Figures 2 and 3) is selected. That enhances the
accuracy of BA.

Authorized licensed use limited to: Wageningen UR. Downloaded on February 03,2025 at 10:47:02 UTC from IEEE Xplore. Restrictions apply.

Test Arm B Actual
Test LoC Test offort Test |outcome |Probability
module effort ratio Pred. |Reward |result [after of Type 1
testing
t56 _|1000| 10.00 [100%| P TP P P 0%
t55 11000 2.50 | 25% | N TN N P 75%
Fig. 4. Relationship between test-effot ratio and probability of Type 1
ovelooking
Test Loc Test Arm A SeIeBc/-t\NP Test
module effort [Pred.|Reward |AUC arm Pred. |outcome
t21 [3300m 33.00 # N [TN [1.00 P N
29 [2900F 29.00.4 N [TN [1.00 P N
1
—{Sum of excessive effort = 62.00 |
(a) Applying LF strategy
Test Loc Test Arm A Selfgt\\lp Test
module effort |Pred.|Reward [AUC arm Pred. joutcome
t31 [180L 1.80 % N TN]1.00] - P N
t35 [200p 2.%0 N TN]1.00 P N
N
H Sum of excessive effort=3.80 |
(b) Applying SF strategy
Fig. 5. Testing effort of BANP
Test Loc Arm A Arm B S IB,?NP Test
module Pred. |Reward [AUC |Pred. [Reward |[AUC afmec Pred. |outcome
b 148 §27428 P TP [1.00{ N FN 10.00f - P P
t44 319645 N TN |0.75| P TP _]0.50| - P P
. 140 815238 P TP [0.90] N FN]0.33] - P P

Predicted “defective” by arms [Sort by size |

Fig. 6. Example of PF strategy

C. Testing effort

Definition: Testing effort is known to increase as module
size increases [11]. Additionally, as explained in Section B,
testing resources (i.e., effort) vary depending on the prediction
results. We define the ratio of testing effort on negative to
positive-prediction modules as the test-effort ratio. Based on
the assumptions, we regarded the testing effort as follows:

size - ¢ ifpred =1,

effort = {size -c-ratio ifpred =0 M

In the equation, size signifies module size, such as LOC
(lines of code), c is constant, and pred denotes prediction results
(1: positive, 0: negative). For instance, Figure 4 shows a case
where ¢ = 0.01 and the test-effort ratio = 0.1.

Probability of Type 1 overlooking: If the ratio is 1.0, the
effort of negative prediction modules is the same as positive
ones, and the probability of Type 1 overlooking is 0%. When the
ratio gets smaller, the probability conversely gets larger.
Therefore, we assumed a proportional relationship between the
effort and the probability, and when the ratio is n%, the
probability is 1 - n%. For instance, as shown in Figure 4, when
the ratio is 25%, the probability is 75% on module t55.

D. Test strategy

One of the significant test approaches is risk-based testing
[10]. In software testing, this approach prioritizes risky modules
that could have high-probability defects or include many
functions (i.e., larger-size modules). When we focus on such
aspects, a strategy for testing larger modules first (LF) is

644

TABLE L.

(a) Number of modules on Promise repository

USED DATASETS

Learning dataset Test dataset
Software | Ver. All | Defective Ver. All | Defective
ant 1.6 351 92(262%)| 1.7| 745| 166 (22.3%)
prop 5| 8516 1299 (15.3%) 6| 660| 66(10.0%)
synapse 1.1] 222 60 (27.0%)| 12| 256| 86(33.6%)

(b) Number of modules on NASA repository

Project All Defective

KC4 125 61 (48.8%)
MW1 403 31 (7.7%)
PC4 1458 178 (12.2%)

reasonable because they would have more functions and
potentially more defects with an established relationship
between the size and the number of defects [17].

However, when applying BANP, LF could increase testing
efforts. In Figure 5 (a), the test-effort ratio is 0.1, and the effort
for modules t21 and t29 is large because their size is also large.
However, they are non-defective modules. That is, the testing
efforts for the modules are regarded as excessive (i.e., great
effort should not be allocated). If smaller modules are tested first
(SF), such excessive effort becomes smaller, even if the
prediction by BANP is incorrect, as shown in Figure 5 (b).

Additionally, as shown in Figure 6, after sorting by their
module size, positive-prediction modules are tested first (PF),
which is also reasonable, considering both effort and quality.
This is because PF could avoid test modules with low
probability defects. A similar strategy is mentioned in [1][20].
In the figure, modules t48, t44, and t49 are predicted as defective
by one of the arms, and the modules are sorted by size.

III. EXPERIMENT

A. Setup

Dataset: We used six projects from the NASA [7] and
PROMISE [2] repositories, which have been widely used in
ensemble-learning studies [12][14][16][18]. The NASA dataset
contains a set of metrics and defect data collected from several
NASA projects. The PROMISE defect data was collected from
open-source projects. We selected three datasets from each
repository, considering the diversity of each dataset's size and
the ratio of defective modules. Table 1 shows details of the
datasets used in the experiment.

Evaluation criteria: We used AUC to evaluate the accuracy
of the prediction models- a widely used metric in previous defect
prediction studies [12][14][16][18]. The maximum value of
AUC is 1. When the value of a prediction model is large, it
means that the model's prediction accuracy is high. We only
used AUC as a criterion because BA optimizes defect prediction
based on AUC, as explained in Section II.A.

We also used testing effort as one of the evaluation criteria.
In formula (1), we set the constant ¢ to 1 because the constant
can be omitted when comparing the effort among methods.

We also defined RDIFF (relative difference) to compare a
criterion as follows:

target
baseline

RDIFF = 1—

)

Authorized licensed use limited to: Wageningen UR. Downloaded on February 03,2025 at 10:47:02 UTC from IEEE Xplore. Restrictions apply.

TABLE II. AVERAGE AUC OF TEST STRATEGIES ON SIX DATASETS
Strategy SF LF PF
Test-effort ratio 0.1 0.25 0.5 0.1 0.25 0.5
£=0 46 (0.638) 45 (0.640) |31 (0.646) 26 (0.651) F11(0:655) 19 (0.653) 20 (0.653)
£=0.1 44 (0.640) 38 (0.643) 34 (0.645) 25(0.651) 18 (0.653)
£=02 42 (0.640) 41 (0.641) 33 (0.646) 23 (0.652) 27 (0.650) 24 (0.652) 16 (0.654)
€=03 39 (0.642) 37 (0.644) 32(0.646) 29 (0.650) 30 (0.649) 21 (0.653) 15 (0.654)
UCB 43 (0.640) 35(0.644) 36 (0.644) 28 (0.650) 22 (0.652) | 17 (0.654)

TABLEIV AUC AND ITS RANK OF EACH PREDICTION METHOD

TABLEIIL. RDIFF OF TESTING EFFORT (BASELINE: SF)
Strategy LF PF
Test-effort BA: e=0
ratio 0.1 025 05| 0.1 025 05 BA: UCB
RDIFF (%) |48 25 08|122 57 21 Bagging
RF

Stacking
XGBoost

3(0.696) 6 (0.752) 6 (0.542) 5 (0.683)
5(0.686) 5 (0.779)

KC4

MW1

PC4

6 (0.589) | 3 (0.655)

For instance, when comparing the effort of LF and SF, the
effort of SF is set to baseline, and that of LF is set to target.

Prediction models: We employed four widely known
ensemble-learning methods: bagging, XGBoost, random forest
(RF), and stacking. To perform stacking, we made prediction
models using linear discriminant analysis, random forest, and
generalized boosted models and merged the prediction results
using random forest. The method is sometimes called blending

[5].

We used two BA methods, e-greedy and UCB method. We set
the parameter ¢ as 0, 0.1, 0.2, and 0.3 because the values are
often used to set & [21].

Procedure: When we used the NASA datasets, we applied
the hold-out method to evaluate the prediction accuracy. The
dataset was randomly separated into learning and testing sets,
and the ratio of learning to testing sets size is 3:1. With the
PROMISE repository, we selected datasets collected from
different software versions to perform cross-version defect
prediction. When evaluating BA, we applied it 20 times on each
dataset and calculated the average AUC from the 20 repetitions.
This is because e-greedy randomly selects one of the arms (i.e.,
prediction models) with a probability of 1 - ¢; hence, we tried to
align the influence of the randomness.

To analyze the influence of the test-effort ratio on defect
prediction, we set the ratio at 10%, 25%, and 50%. Therefore,
the probability of Type 1 overlooking was 90%, 75%, and 50%,
respectively, as explained in Section II.C. We set the probability
of Type 2 overlooking at 20% and artificially turned the reward
as inaccurate at 20% because about 17% of defects are
overlooked during integration testing [9]. When an ensemble-
learning method is randomly selected from candidates of
methods, the expected performance is the average of the
candidates. For instance, the expected AUC is the average AUC
of the four methods. We set such an average as the benchmark,
and when the performance of BA was higher than that, BA was
regarded as effective.

B. Result

Influence of test strategy on AUC: We analyzed the
difference in prediction accuracy among test strategies on BA.
Table 2 shows AUC and their overall rank on the three strategies

645

and three patterns of test-effort ratio. In the table, AUC is shown
in parentheses. Due to page limitations, we only present the
average AUC from six datasets. For a better visual display of the
rank, we used shading in the table (darker cells represent higher
ranks). We included the benchmark (i.e., the average AUC of
four ensemble-learning methods) in the ranking. The rank of the
benchmark was 40.

As shown in Table 2, SF was ranked lower, and PF was
higher. When the test-effort ratio was 0.1, SF's ranks were lower
than the benchmark except for € = 0.3. Therefore, BA should not
be used when SF is applied, and the test-effort ratio is 0.1.
Meanwhile, when PF was applied, and the test-effort ratio was
0.1, the rank was higher than the benchmark and most other
ratios. Therefore, when we prioritize prediction accuracy, PF
can be applied.

Influence of test strategy on effort: To analyze the relative
difference in testing effort among strategies, we calculated
RDIFF, as shown in Table III. The table shows the average
RDIFF, stratifying by test-effort ratio. (we limit this to a test-
effort ratio due to space limitations). As shown in the table,
when the test-effort ratio was larger, RDIFF was smaller.
RDIFF of PF was larger than LF, and PF increased the effort by
12.2% when the test effort ratio was 0.1. As explained later,
there was a positive relationship between prediction accuracy
and effort. Hence, considering the accuracy, the larger testing
effort is not a severe drawback of PF.

Comparison of AUC of BA with ensemble learning: We
compared the prediction accuracy of BA with ensemble learning.
Based on Table II, we picked up e-greedy (¢ = 0) and UCB when
test-effort ratio = 0.1 as representatives of BA methods. Table
IV shows each method's AUC and rank on each dataset. Unlike
Table II, the rank in Table IV was settled on each dataset. The
average rank across the datasets is shown on the rightmost
columns. As shown in the table, the average AUC and rank of ¢-
greedy were the highest among the methods. UCB was the
second highest. Additionally, the rank of e-greedy was higher
than the two ensemble methods, at least on each dataset (except
for the prop dataset). This suggests that the accuracy of e-greedy
is stable among datasets, and our approach mitigates the external
validity issue in defect prediction compared with the
conventional ensemble-learning approach.

Authorized licensed use limited to: Wageningen UR. Downloaded on February 03,2025 at 10:47:02 UTC from IEEE Xplore. Restrictions apply.

Comparison of BA effort with ensemble learning: There
was a positive relationship between testing effort and AUC and
between AUC and the number of positive predictions. The
correlation coefficient of the former one was 0.76, and the latter
one was 0.90. More testing effort is assigned to modules
predicted as positive, as explained in Section II.B. As a result,
more significant effort is assigned when there are more positive-
prediction modules. This is why there is a positive relationship
between AUC and effort.

Based on the observation, instead of testing the benchmark's
effort (i.e., the average effort among ensemble-learning
methods), we picked up that of XGBoost, which is the highest
accuracy among ensemble-learning methods. Table V shows
RDIFF, setting the effort of XGBoost as the baseline. In the
table, the average RDIFF was 0.9%, and the median was 4%
(i.e., BA increased the effort by 4% on average).

C. Threat to the validity

Internal validity: In Table IV, the difference of AUC
between greedy (¢ = 0) with XGBoost was 0.004. Such a
difference is considered marginal. As shown in Table 4, most of
the modules are non-defective; hence, AUC did not reflect the
difference in the true-positive rate. Table VI shows the number
of true positive (i.e., found defects by prediction methods) and
RDIFF of BA (e-greedy), setting the average ones of ensemble
methods (i.e., the benchmark) as the baseline.

In Table VI, although the average RDIFF was 1%, this was
affected by the difference in the prop dataset. Most ensemble
learning did not find any defects that affected the performance
of BA. Except for the prop dataset, RDIFF was at 7% at
minimum, and the average was 10.2%. The result indicates that
BA can find more defects, thus improving software quality.
Therefore, considering the influence of BA on effort (i.e., 4% on
average), BA is expected to be effective in optimizing ensemble-
learning defect prediction.

External validity: We used two datasets in our experiment,
containing data from open-source and proprietary software. The
open-source datasets were used for cross-version defect
prediction. It is possible that the ratio of defective modules could
affect the performance of BA and defect prediction. Considering
that, we selected the MW 1 and prop datasets, which both include
fewer defective modules, and the synapse and KC4 datasets,
which both include a higher number of defective modules.
Given the datasets' diversity, we believe this has minimized the
threats to external validity.

IV. RELATED WORK

Ensemble-learning: Several studies used ensemble
learning for defect prediction [12][14][16][17]. Matloob et al.
[13] conducted a systematic literature review of ensemble
learning on software defect prediction and clarified the studies'
tendencies, such as frequently used techniques (e.g., random
forest, boosting, and bagging) and evaluation criteria, such as
AUC. However, to our knowledge, no study has applied online
optimization to ensemble learning on software defect prediction.

Bandit algorithms: BA has been applied to optimize
software defect prediction. For instance, Asano et al. [1] used
BA to optimize learning data on cross-project defect prediction.

646

TABLE V. RDIFF (%) OF TESTING EFFORT OF E-GREEDY (BA)
(BASELINE: XGBOOST)

ant KC4 MWI1 PC4 prop synapse | Avg. | Median
74 2.6 54 26 247 12.5 0.9 4.0
TABLE VL. RDIFF OF FOUND DEFECTS OF E-GREEDY (BA)
(BASELINE: AVERAGE OF ENSEMBLE-LEARNING)

:fct?::; defects) Bagging RF Stacking XGBoost glvlf BA ZI‘Z)IFF
ant (166) 66 81 82 81| 77.5|852 9.9
KC4 (20) 16 14 12 14| 14.0|16.3 16.1
MWI (10) 11 1 21 13] 20| 600
PC4 (59) 23 23 22 35| 25.8|27.6 7.0
prop (66) 0 0 0 3 0.8 0| -96.7
Synapse (166) 24 29 26 26| 26.3|28.7 9.1

Tsunoda et al. [19] applied BA to select feature reduction
techniques. Similarly, Hayakawa et al. [8] used BA to optimize
prediction methods such as logistic regression and decision trees
and compared the accuracy of BA to majority voting. However,
past studies did not treat the optimization of ensemble learning,
testing effort, test-effort ratio, and testing strategies.

Both BA and ensemble learning use several models to make
their predictions. However, BA is an online optimization
approach that utilizes test outcomes during the testing phase. In
contrast, ensemble learning is not an online optimization or
learning approach and does not utilize test outcomes.

V. CONCLUSION

We apply and analyze the performance of online
optimization based on Bandit Algorithms (BA) to ensemble
learning defect prediction to attain stable prediction accuracy of
ensemble learning on various datasets. BA compares actual test
outcomes (i.e., defective or not) of modules with the prediction
of ensemble learning methods to evaluate the accuracy of each
method. The evaluation sequence depends on the test strategy
followed (i.e., which modules are tested preferentially), which
could, in turn, affect the prediction accuracy and testing effort.
We analyzed the impact of three test strategies (i.e., LF: testing
larger modules first, SF: testing smaller modules first, and PF:
testing positive-prediction modules first) on BA. In the
experiment, we changed the test-effort ratio (i.e., the ratio of
testing effort on negative to positive-prediction modules). Our
findings show that:

e The test strategy affects both BA’s prediction accuracy and
testing effort. PA showed the highest accuracy but required
the most extensive testing effort.

Even when the test-effort ratio was set to 0.1, PA still
showed the highest accuracy.

BA steadily improved the prediction accuracy of ensemble

methods but slightly increased testing efforts.

Our result suggests that BA with PA is the best approach to
enhance the prediction accuracy of online learning, and setting
a test-effort ratio of 0.1 is sufficient to achieve high prediction
accuracy. Those findings are preliminary. To enhance the
reliability of the results, we plan to conduct experiments that
consider modules’ complexity (alongside size) with various
datasets in the future.

REFERENCES

Authorized licensed use limited to: Wageningen UR. Downloaded on February 03,2025 at 10:47:02 UTC from IEEE Xplore. Restrictions apply.

[10]

[11]

T. Asano, M. Tsunoda, K. Toda, A. Tahir, K. Bennin, K. Nakasai, A.
Monden, and K. Matsumoto, “Using Bandit Algorithms for Project
Selection in Cross-Project Defect Prediction,” Proc. of International
Conference on Software Maintenance and Evolution (ICSME), pp.649-
653, 2021.

B. Caglayan, E. Kocaguneli, J. Krall, F. Peters, and B. Turhan, The
PROMISE repository of empirical software engineering data, 2012.

M. D’ Ambros, M., Lanza, and R. Robbes, “Evaluating defect prediction
approaches a benchmark and an extensive comparison,” Empirical
Software Engineering, vol.17, no.4-5, pp.531-577, 2012.

X. Dong, Y. Liang, S. Miyamoto, and S. Yamaguchi, "Ensemble learning
based software defect prediction," Journal of Engineering Research,
vol.11, no.4, pp.377-391, 2023.

J. Dou, A. Yunus, D. Bui et al., “Improved landslide assessment using
support vector machine with bagging, boosting, and stacking ensemble
machine learning framework in a mountainous watershed, Japan,”
Landslides, vol.17, pp.641-658, 2020.

N. Fedorov, Y. Yamasaki, M. Tsunoda, A. Monden, A. Tahir, K. Bennin,
K. Toda and K. Nakasai, “Building Defect Prediction Models by Online
Learning Considering Defect Overlooking,” arXiv:2404.11033, 2024.

D. Gray, D. Bowes, N. Davey, Y. Sun and B. Christianson, “The misuse
of the NASA metrics data program data sets for automated software
defect prediction,” Proc. of Annual Conference on Evaluation and
Assessment in Software Engineering (EASE), pp.96-103, 2011.

T. Hayakawa, M. Tsunoda, K. Toda, K. Nakasai, A. Tahir, K. Bennin, A.
Monden, and K. Matsumoto, “A Novel Approach to Address External
Validity Issues in Fault Prediction Using Bandit Algorithms,” IEICE
Transactions on Information and Systems, vol.E104.D, no.2, pp.327-331,
2021.

Information-technology Promotion Agency (IPA), Japan, The 2018-2019

White Paper on Software Development Projects, IPA, 2018. (in Japanese).

ISO/IEC/IEEE International Standard, Software and systems engineering
- Software testing - Part 2: Test processes, ISO/IEC/IEEE 29119-
2:2021(E) , 2021

Y. Kamei, E. Shihab, B Adams, A Hassan, A. Mockus, A. Sinha, and N.
Ubayashi, “A large-scale empirical study of just-in-time quality

647

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

assurance,” in IEEE Transactions on Software Engineering, vol. 39, no.
6, pp. 757-773, 2013.

I. Laradji, M. Alshayeb, and L. Ghouti, “Software defect prediction using
ensemble learning on selected features,” Information and Software
Technology, vol.58, pp. 388-402, 2015.

F. Matloob et al., "Software Defect Prediction Using Ensemble Learning:
A Systematic Literature Review," IEEE Access, vol.9, pp.98754-98771,
2021.

J. Petri¢, D. Bowes, T. Hall, B. Christianson, and N. Baddoo. “Building
an Ensemble for Software Defect Prediction Based on Diversity
Selection,” Proc. of International Symposium on Empirical Software
Engineering and Measurement (ESEM), article 46, p.10, 2016.

M. Shepperd, D. Bowes, and T. Hall, “Researcher Bias: The Use of
Machine Learning in Software Defect Prediction,” IEEE Transactions on
Software Engineering, vol.40, no.6, pp.603-616, 2014.

Z. Sun, Q. Song and X. Zhu, “Using Coding-Based Ensemble Learning
to Improve Software Defect Prediction,” IEEE Transactions on Systems,
Man, and Cybernetics, Part C (Applications and Reviews), vol.42, no.6,
pp.1806-1817, 2012.

A. Tahir, K. Bennin, X. Xiao, and S. MacDonell, "Does class size matter?
An in-depth assessment of the effect of class size in software defect
prediction,” Empirical Software Engineering, vol.26, no.106, 2021.

H. Tong, B. Liu, S. Wang, “Software defect prediction using stacked
denoising autoencoders and two-stage ensemble learning,” Information
and Software Technology, vol. 96, pp. 94-111, 2018.

M. Tsunoda, A. Monden, K. Toda, A. Tahir, K. Bennin, K. Nakasai, M.
Nagura, and K. Matsumoto, “Using Bandit Algorithms for Selecting
Feature Reduction Techniques in Software Defect Prediction,” Proc. of
Mining Software Repositories Conference (MSR), pp.670-681, 2022.

B. Turhan, T. Menzies, A. Bener, and J. Stefano, “On the relative value
of cross-company and within-company data for defect prediction,”
Empirical Software Engineering, vol.14, no.5, pp.540-578, 2009.

J. White, Bandit Algorithms for Website Optimization: Developing,
Deploying, and Debugging, O'Reilly Media, 2012.

T. Zimmermann, and N. Nagappan, “Predicting defects using network

analysis on dependency graphs,” Proc. of International Conference on
Software Engineering (ICSE), pp.531-540. 2018.

Authorized licensed use limited to: Wageningen UR. Downloaded on February 03,2025 at 10:47:02 UTC from IEEE Xplore. Restrictions apply.

