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Abstract— Ensemble learning methods have been used to 

enhance the reliability of defect prediction models. However, there 

is an inconclusive stability of a single method attaining the highest 

accuracy among various software projects. This work aims to 

improve the performance of ensemble-learning defect prediction 

among such projects by helping select the highest accuracy 

ensemble methods. We employ bandit algorithms (BA), an online 

optimization method, to select the highest-accuracy ensemble 

method. Each software module is tested sequentially, and bandit 

algorithms utilize the test outcomes of the modules to evaluate the 

performance of the ensemble learning methods. The test strategy 

followed might impact the testing effort and prediction accuracy 

when applying online optimization. Hence, we analyzed the test 

order's influence on BA's performance. In our experiment, we 

used six popular defect prediction datasets, four ensemble 

learning methods such as bagging, and three test strategies such as 

testing positive-prediction modules first (PF). Our results show 

that when BA is applied with PF, the prediction accuracy 

improved on average, and the number of found defects increased 

by 7% on a minimum of five out of six datasets (although with a 

slight increase in the testing effort by about 4% from ordinal 

ensemble learning). Hence, BA with PF strategy is the most 

effective to attain the highest prediction accuracy using ensemble 

methods on various projects.  

Keywords—fault prediction, multi-armed bandit problem, 

overlooking, risk-based testing 

I. INTRODUCTION 

Owing to the limitations of human resources and 
development duration, it can be challenging to dedicate 
substantial resources to extensively test all modules within a 
project, which can lead to an increase in testing effort. Defect 
prediction aims to detect defects earlier, which can reduce 
testing efforts [15][22]. 

There has been increased attention to using ensemble 
learning-based methods to improve the prediction accuracy of 
module-level defect prediction models [13]. Ensemble learning 
combines the prediction from several models and generates new 
predictions (e.g., when most models predict a module as 
defective, the prediction for the module becomes “defective”). 

Although various ensemble-learning methods are available (e.g., 
bagging, boosting, and stacking), the accuracy of those methods 
usually varies, depending on the training dataset used [5]. For 
instance, the accuracy of a model trained on some versions can 
vary on other versions. This is considered an external validity 
issue in defect prediction [3]. Therefore, identifying and 
selecting the accurate method can be challenging. 

To help select the ensemble-learning method with the 
highest accuracy, we apply an online optimization based on 
bandit algorithms (BA) [8] and evaluate the performance of BA. 
BA is often explained through an analogy with slot machines. 
Assume that a player has 100 coins to bet on several slot 
machines, and the player wants to maximize their reward. BA 
suggests that the player bets only one coin on each slot machine 
to seek the best chances. BA seeks sequentially best candidates 
(referred to as arms) whose expected rewards are unknown to 
maximize total rewards. For BA to select an ensemble-learning 
method, we regard slot machines as the methods and playing on 
a slot machine as testing a module. When the test outcome 
makes a prediction (i.e., defective or non-defective) on the 
module, we regard that a coin (reward) is acquired from the arm. 

Ensemble-learning methods and BA are similar regarding 
utilizing multiple prediction models; hence, it is not evident that 
BA also works well in selecting ensemble methods. 
Additionally, considering the nature of BA, test strategies such 
as “testing smaller modules first (SF)” could affect the BA's 
performance in selecting the highest accuracy ensemble-
learning model. For instance, it is probable that the accuracy (i.e., 
reward) of each ensemble-learning method (i.e., arm) is similar 
on smaller modules but different on larger modules. When SF is 
applied, it would be difficult to identify the best (i.e., the highest 
expected reward) method in the early testing stage. That might 
affect the accuracy of the prediction obtained by BA. Our study 
sheds light on such aspects of BA, which previous studies 
[1][8][19] did not consider. The aims of our study are: 

 Help to select ensemble-learning methods to enhance the 
accuracy of defect prediction. 

 Help to select test strategy considering both accuracy and 
effort when applying BA. 
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II. BANDIT ALGORITHM 

A. Procedure 

As shown in Figure 1, we assume that module-level defect 
prediction models are built using ensemble methods, and defects 
of test target modules are predicted before applying BA. The 
prediction of each model is treated as an arm. Modules are tested 
sequentially, and BA selects arms based on the test outcomes of 
the modules by following the procedure illustrated in Figure 1 
[19]. In the procedure, the average reward represents each arm's 
prediction accuracy (e.g., AUC). For instance, if one intends to 
select the highest AUC model, AUC is used as the average 
reward. Below are the steps followed to achieve our goals. 

1. Select an arm based on the average reward (AUC) of arms. 
2. Test a module based on the prediction of the arm selected 

in step 1. 
3. Recalculate the average reward of each arm, comparing the 

prediction and the test outcomes (step 2). 
4. Return to step 1. 

The steps are iteratively performed during testing. Initially, 
the average reward of all arms is set to zero, and therefore, an 
arm is selected randomly in the first instance. In step 2, when the 
defect prediction result is “defective”, developers spend more 
effort on testing. When the results show “non-defective”, 
developers then spend less effort to save resources [22]. 

For BA’s first iteration, from arms A and B, A is selected 
randomly in step 1. In step 2, module t7 is tested with much 
testing effort because the prediction result of the selected arm is 
“defective.” In step 3, the prediction of t7 of arm A is evaluated 
as true-positive, and that of arm B is evaluated as false-negative 
(i.e., defects are found in t7). Based on this evaluation, we 
calculate the AUC for each arm. In the second iteration, arm A 
is still selected in step 1 as the average reward of arm A is higher 
than B. In step 2, less testing effort for module t5 is spent 
because the prediction on arm A turns out as “non-defective”. In 
step 3, based on the test outcome, all arms' prediction up to t5 is 
evaluated as true-negative.  

B. Defect overlooking 

Type 1 overlooking: When a defect prediction model 
predicts a negative result (i.e., “non-defective”), developers will 
typically spend less testing effort writing for those modules to 
allocate testing resources [15][21] efficiently. As a result, the 
test overlooks defects, and the module might be regarded as 
“non-defective,” even if it includes defects [19]. This case is 
called Type 1 overlooking [6]. 

In Figure 2, the column “test outcome” considers only 
defects during testing, while “actual outcome after testing” also 
considers defects after testing is done. In the figure, we assume 
that defects are overlooked with high probability when the 
prediction is negative due to less testing effort. 

In Figure 2, arm B is randomly selected on the first iteration. 
The reward of arm B on modules t11 and t19 is true-negative 
based on the test outcomes. However, based on the actual 
outcome, this reward is a false-negative. Likewise, based on the 
test (not actual) outcome, arm A's reward is erroneously set as 
false-positive. As a result, the AUC value is inaccurate, and arm 
B, with a low accuracy, is erroneously selected [19]. 

Type 2 overlooking: Even when the prediction is positive 
(i.e., “defective”), defects are sometimes overlooked during 
testing [1][19]. This case is called Type 2 overlooking [6]. This 
could occur even when a defect prediction result properly 
informs the allocation of testing resources (i.e., extensive 
resources). Module t13 (shown in Figure 2) is an example of 
such a case. Based on large-scale data from cross-companies, 
about 17% of defects are overlooked during integration testing 
[9]. 

Handling Type 1 overlooking with BA: To suppress the 
influence of Type 1 overlooking, Tsunoda et al. proposed BANP 
(Bandit Algorithm to handle Negative Prediction) [19]. BANP 
regards prediction as positive during BA’s early iteration. In 
summary, BANP forcibly changed the prediction on about 10% 
of the modules. 

Figure 3 illustrates how BANP works. BANP sets “P” on the 
“Pred.-BANP” column for modules t11 and t19 (i.e., early 
iterations). As a result, t11 and t19 are regarded as positive-
prediction modules, and Type 1 overlooking is suppressed by 
testing because much testing effort is spent on the module. 
Although the “defect overlook” does occur on modules t11 and 
t19 in Figure 2, these modules are rewarded, and accurate AUC 
values are obtained in Figure 3. As a result, the proper arm (i.e., 
arm A in Figures 2 and 3) is selected. That enhances the 
accuracy of BA.  

 
Fig. 1. Procedure of defect prediction based on BA 

 

Fig. 2. Type 1 and Type 2 defect overlooking 

 

Fig. 3. Procedure of BANP 

Test
module

Arm A Arm B BA
Test
outcomePred. Reward AUC Pred. Reward AUC

Select
arm

t7 P TP 1.00 N FN 0.00 A P

t5 N TN 1.00 N TN 0.50 A N

t3 P FP 0.75 P FP 0.25 A N

... ... ... ... ... ... ... ... ...

During software testing

P (Positive): Defective, N (Negative): Non-defective

1 23 3

Before software testing

Model A
(Bagging)

Model B
(Boosting)

Learning
Dataset

Test
module

Arm A Arm B BA
Test
outcome

Actual
outcome
after
testing

Pred. Reward AUC Pred. Reward AUC
Select
arm

t11 P FP 0.00 N TN 1.00 B N P

t19 P FP 0.00 N TN 1.00 B N P

t15 N TN 0.33 N TN 1.00 B N N

t13 P FP 0.20 P FP 0.80 B N P

… … … … … … … … … …
Type 2: Occur about 20% probabilityType 1: Occur in most cases

Test
module

Arm A Arm B BANP
Test
outcome

Actual
outcome
after
testing

Pred. Reward AUC Pred. Reward AUC
Select
arm

Pred.

t11 P TP 1.00 N FN 0.00 -- P P P

t19 P TP 1.00 N FN 0.00 -- P P P

t15 N TN 1.00 N TN 0.50 A - N P

t13 P FP 0.75 P FP 0.25 A - N P

… … … … … … … … … … …
Occur about 20% probability
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C. Testing effort 

Definition: Testing effort is known to increase as module 
size increases [11]. Additionally, as explained in Section B, 
testing resources (i.e., effort) vary depending on the prediction 
results. We define the ratio of testing effort on negative to 
positive-prediction modules as the test-effort ratio. Based on 
the assumptions, we regarded the testing effort as follows: 

������ =  � 	
�� ⋅ 
                 if ���� = 1,
	
�� ⋅ 
 ⋅ ���
�   if ���� = 0    (1) 

In the equation, size signifies module size, such as LOC 
(lines of code), c is constant, and pred denotes prediction results 
(1: positive, 0: negative). For instance, Figure 4 shows a case 
where c = 0.01 and the test-effort ratio = 0.1. 

Probability of Type 1 overlooking: If the ratio is 1.0, the 
effort of negative prediction modules is the same as positive 
ones, and the probability of Type 1 overlooking is 0%. When the 
ratio gets smaller, the probability conversely gets larger. 
Therefore, we assumed a proportional relationship between the 
effort and the probability, and when the ratio is n%, the 
probability is 1 - n%. For instance, as shown in Figure 4, when 
the ratio is 25%, the probability is 75% on module t55. 

D. Test strategy 

One of the significant test approaches is risk-based testing 
[10]. In software testing, this approach prioritizes risky modules 
that could have high-probability defects or include many 
functions (i.e., larger-size modules). When we focus on such 
aspects, a strategy for testing larger modules first (LF) is 

reasonable because they would have more functions and 
potentially more defects with an established relationship 
between the size and the number of defects [17]. 

However, when applying BANP, LF could increase testing 
efforts. In Figure 5 (a), the test-effort ratio is 0.1, and the effort 
for modules t21 and t29 is large because their size is also large. 
However, they are non-defective modules. That is, the testing 
efforts for the modules are regarded as excessive (i.e., great 
effort should not be allocated). If smaller modules are tested first 
(SF), such excessive effort becomes smaller, even if the 
prediction by BANP is incorrect, as shown in Figure 5 (b). 

 Additionally, as shown in Figure 6, after sorting by their 
module size, positive-prediction modules are tested first (PF), 
which is also reasonable, considering both effort and quality. 
This is because PF could avoid test modules with low 
probability defects. A similar strategy is mentioned in [1][20]. 
In the figure, modules t48, t44, and t49 are predicted as defective 
by one of the arms, and the modules are sorted by size. 

III. EXPERIMENT 

A. Setup 

Dataset: We used six projects from the NASA [7] and 
PROMISE [2] repositories, which have been widely used in 
ensemble-learning studies [12][14][16][18]. The NASA dataset 
contains a set of metrics and defect data collected from several 
NASA projects. The PROMISE defect data was collected from 
open-source projects. We selected three datasets from each 
repository, considering the diversity of each dataset's size and 
the ratio of defective modules. Table 1 shows details of the 
datasets used in the experiment. 

Evaluation criteria: We used AUC to evaluate the accuracy 
of the prediction models- a widely used metric in previous defect 
prediction studies [12][14][16][18]. The maximum value of 
AUC is 1. When the value of a prediction model is large, it 
means that the model's prediction accuracy is high. We only 
used AUC as a criterion because BA optimizes defect prediction 
based on AUC, as explained in Section II.A. 

We also used testing effort as one of the evaluation criteria. 
In formula (1), we set the constant c to 1 because the constant 
can be omitted when comparing the effort among methods. 

We also defined RDIFF (relative difference) to compare a 
criterion as follows: 

����� =  1 − ��� !�
"�#!$%&!     (2) 

 

Fig. 4. Relationship between test-effot ratio and probability of Type 1 

ovelooking 

 
(a) Applying LF strategy 

 
(b) Applying SF strategy 

Fig. 5. Testing effort of BANP 

 

Fig. 6. Example of PF strategy 

 

Test
module

LOC
Test
effort

Test-
effort
ratio

Arm B
Test
result

Actual
outcome
after

testing

Probability
of Type 1Pred. Reward

t56 1000 10.00 100% P TP P P 0%

t55 1000 2.50 25% N TN N P 75%

Test
module

LOC
Test
effort

Arm A BANP
Test
outcomePred. Reward AUC

Select

arm
Pred.

t21 3300 33.00 N TN 1.00 -- P N

t29 2900 29.00 N TN 1.00 -- P N

… ... ... … … … … … …
Sum of excessive effort = 62.00 

Test
module

LOC
Test
effort

Arm A BANP
Test
outcomePred. Reward AUC

Select

arm
Pred.

t31 180 1.80 N TN 1.00 -- P N

t35 200 2.00 N TN 1.00 -- P N

… ... ... … … … … … …
Sum of excessive effort = 3.80 

Test
module

LOC

Arm A Arm B BANP
Test
outcomePred. Reward AUC Pred. Reward AUC

Select
arm

Pred.

t48 2742 P TP 1.00 N FN 0.00 - P P

t44 1964 N TN 0.75 P TP 0.50 - P P

t49 1523 P TP 0.90 N FN 0.33 - P P

... ... ... ... ... ... ... ... ... ... ...
Sort by sizePredicted “defective” by arms

TABLE I.  USED DATASETS 

(a) Number of modules on Promise repository 

Software Ver. 
Learning dataset 

Ver. 
Test dataset 

All Defective All Defective 

ant 1.6 351 92 (26.2%) 1.7 745 166 (22.3%) 
prop 5 8516 1299 (15.3%) 6 660 66 (10.0%) 
synapse 1.1 222 60 (27.0%) 1.2 256 86 (33.6%) 

(b) Number of modules on NASA repository 

Project All Defective 

KC4 125 61 (48.8%) 
MW1 403 31 (7.7%) 
PC4 1458 178 (12.2%) 
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For instance, when comparing the effort of LF and SF, the 
effort of SF is set to baseline, and that of LF is set to target. 

Prediction models: We employed four widely known 
ensemble-learning methods: bagging, XGBoost, random forest 
(RF), and stacking. To perform stacking, we made prediction 
models using linear discriminant analysis, random forest, and 
generalized boosted models and merged the prediction results 
using random forest. The method is sometimes called blending 
[5]. 

We used two BA methods, ε-greedy and UCB method. We set 
the parameter ε as 0, 0.1, 0.2, and 0.3 because the values are 
often used to set ε [21]. 

Procedure: When we used the NASA datasets, we applied 
the hold-out method to evaluate the prediction accuracy. The 
dataset was randomly separated into learning and testing sets, 
and the ratio of learning to testing sets size is 3:1. With the 
PROMISE repository, we selected datasets collected from 
different software versions to perform cross-version defect 
prediction. When evaluating BA, we applied it 20 times on each 
dataset and calculated the average AUC from the 20 repetitions. 
This is because ε-greedy randomly selects one of the arms (i.e., 
prediction models) with a probability of 1 - ε; hence, we tried to 
align the influence of the randomness. 

To analyze the influence of the test-effort ratio on defect 
prediction, we set the ratio at 10%, 25%, and 50%. Therefore, 
the probability of Type 1 overlooking was 90%, 75%, and 50%, 
respectively, as explained in Section II.C. We set the probability 
of Type 2 overlooking at 20% and artificially turned the reward 
as inaccurate at 20% because about 17% of defects are 
overlooked during integration testing [9]. When an ensemble-
learning method is randomly selected from candidates of 
methods, the expected performance is the average of the 
candidates. For instance, the expected AUC is the average AUC 
of the four methods. We set such an average as the benchmark, 
and when the performance of BA was higher than that, BA was 
regarded as effective. 

B. Result 

Influence of test strategy on AUC: We analyzed the 
difference in prediction accuracy among test strategies on BA. 
Table 2 shows AUC and their overall rank on the three strategies 

and three patterns of test-effort ratio. In the table, AUC is shown 
in parentheses. Due to page limitations, we only present the 
average AUC from six datasets. For a better visual display of the 
rank, we used shading in the table (darker cells represent higher 
ranks). We included the benchmark (i.e., the average AUC of 
four ensemble-learning methods) in the ranking. The rank of the 
benchmark was 40. 

As shown in Table 2, SF was ranked lower, and PF was 
higher. When the test-effort ratio was 0.1, SF's ranks were lower 
than the benchmark except for ε = 0.3. Therefore, BA should not 
be used when SF is applied, and the test-effort ratio is 0.1. 
Meanwhile, when PF was applied, and the test-effort ratio was 
0.1, the rank was higher than the benchmark and most other 
ratios. Therefore, when we prioritize prediction accuracy, PF 
can be applied. 

Influence of test strategy on effort: To analyze the relative 
difference in testing effort among strategies, we calculated 
RDIFF, as shown in Table III. The table shows the average 
RDIFF, stratifying by test-effort ratio. (we limit this to a test-
effort ratio due to space limitations). As shown in the table, 
when the test-effort ratio was larger, RDIFF was smaller. 
RDIFF of PF was larger than LF, and PF increased the effort by 
12.2% when the test effort ratio was 0.1. As explained later, 
there was a positive relationship between prediction accuracy 
and effort. Hence, considering the accuracy, the larger testing 
effort is not a severe drawback of PF. 

 Comparison of AUC of BA with ensemble learning: We 
compared the prediction accuracy of BA with ensemble learning. 
Based on Table II, we picked up ε-greedy (ε = 0) and UCB when 
test-effort ratio = 0.1 as representatives of BA methods. Table 
IV shows each method's AUC and rank on each dataset. Unlike 
Table II, the rank in Table IV was settled on each dataset. The 
average rank across the datasets is shown on the rightmost 
columns. As shown in the table, the average AUC and rank of ε-
greedy were the highest among the methods. UCB was the 
second highest. Additionally, the rank of ε-greedy was higher 
than the two ensemble methods, at least on each dataset (except 
for the prop dataset). This suggests that the accuracy of ε-greedy 
is stable among datasets, and our approach mitigates the external 
validity issue in defect prediction compared with the 
conventional ensemble-learning approach. 

TABLE II.      AVERAGE AUC OF TEST STRATEGIES ON SIX DATASETS 

Strategy SF LF PF 

Test-effort ratio 0.1 0.25 0.5 0.1 0.25 0.5 0.1 0.25 0.5 

ε = 0 46 (0.638) 45 (0.640) 31 (0.646) 26 (0.651) 11 (0.655) 19 (0.653) 1 (0.659) 2 (0.658) 20 (0.653) 
ε = 0.1 44 (0.640) 38 (0.643) 34 (0.645) 25 (0.651) 18 (0.653) 6 (0.656) 4 (0.656) 14 (0.654) 10 (0.655) 
ε = 0.2 42 (0.640) 41 (0.641) 33 (0.646) 23 (0.652) 27 (0.650) 24 (0.652) 13 (0.655) 16 (0.654) 12 (0.655) 
ε = 0.3 39 (0.642) 37 (0.644) 32 (0.646) 29 (0.650) 30 (0.649) 21 (0.653) 5 (0.656) 9 (0.655) 15 (0.654) 
UCB 43 (0.640) 35 (0.644) 36 (0.644) 28 (0.650) 22 (0.652) 17 (0.654) 3 (0.657) 7 (0.656) 8 (0.655) 

 

TABLE III.      RDIFF OF TESTING EFFORT (BASELINE: SF) 

Strategy LF PF 

Test-effort 

ratio 
0.1 0.25 0.5 0.1 0.25 0.5 

RDIFF (%) 4.8 2.5 0.8 12.2 5.7 2.1 
 

 

 

TABLE IV      AUC AND ITS RANK OF EACH PREDICTION METHOD 

 ant KC4 MW1 PC4 prop synapse 
Avg. 

AUC 

Avg. 

rank 

BA: ε= 0 2 (0.700) 2 (0.825) 2 (0.584) 2 (0.731) 4 (0.498) 4 (0.614) 1 (0.659) 2.7 
BA: UCB 1 (0.700) 3 (0.822) 2 (0.584) 3 (0.723) 5 (0.498) 3 (0.615) 2 (0.657) 2.8 

Bagging 6 (0.662) 1 (0.829) 4 (0.546) 6 (0.679) 2 (0.500) 5 (0.601) 5 (0.636) 4.0 
RF 4 (0.694) 4 (0.802) 4 (0.546) 4 (0.689) 6 (0.493) 2 (0.616) 4 (0.640) 4.0 
Stacking 3 (0.696) 6 (0.752) 6 (0.542) 5 (0.683) 2 (0.500) 1 (0.619) 6 (0.632) 3.8 
XGBoost 5 (0.686) 5 (0.779) 1 (0.588) 1 (0.780) 1 (0.508) 6 (0.589) 3 (0.655) 3.2 
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Comparison of BA effort with ensemble learning: There 
was a positive relationship between testing effort and AUC and 
between AUC and the number of positive predictions. The 
correlation coefficient of the former one was 0.76, and the latter 
one was 0.90. More testing effort is assigned to modules 
predicted as positive, as explained in Section II.B. As a result, 
more significant effort is assigned when there are more positive-
prediction modules. This is why there is a positive relationship 
between AUC and effort. 

 Based on the observation, instead of testing the benchmark's 
effort (i.e., the average effort among ensemble-learning 
methods), we picked up that of XGBoost, which is the highest 
accuracy among ensemble-learning methods. Table V shows 
RDIFF, setting the effort of XGBoost as the baseline. In the 
table, the average RDIFF was 0.9%, and the median was 4% 
(i.e., BA increased the effort by 4% on average). 

C. Threat to the validity 

Internal validity: In Table IV, the difference of AUC 
between greedy (ε = 0) with XGBoost was 0.004. Such a 
difference is considered marginal. As shown in Table 4, most of 
the modules are non-defective; hence, AUC did not reflect the 
difference in the true-positive rate. Table VI shows the number 
of true positive (i.e., found defects by prediction methods) and 
RDIFF of BA (ε-greedy), setting the average ones of ensemble 
methods (i.e., the benchmark) as the baseline. 

In Table VI, although the average RDIFF was 1%, this was 
affected by the difference in the prop dataset. Most ensemble 
learning did not find any defects that affected the performance 
of BA. Except for the prop dataset, RDIFF was at 7% at 
minimum, and the average was 10.2%. The result indicates that 
BA can find more defects, thus improving software quality. 
Therefore, considering the influence of BA on effort (i.e., 4% on 
average), BA is expected to be effective in optimizing ensemble-
learning defect prediction. 

External validity: We used two datasets in our experiment, 
containing data from open-source and proprietary software. The 
open-source datasets were used for cross-version defect 
prediction. It is possible that the ratio of defective modules could 
affect the performance of BA and defect prediction. Considering 
that, we selected the MW1 and prop datasets, which both include 
fewer defective modules, and the synapse and KC4 datasets, 
which both include a higher number of defective modules. 
Given the datasets' diversity, we believe this has minimized the 
threats to external validity. 

IV. RELATED WORK 

 Ensemble-learning: Several studies used ensemble 
learning for defect prediction [12][14][16][17]. Matloob et al. 
[13] conducted a systematic literature review of ensemble 
learning on software defect prediction and clarified the studies' 
tendencies, such as frequently used techniques (e.g., random 
forest, boosting, and bagging) and evaluation criteria, such as 
AUC. However, to our knowledge, no study has applied online 
optimization to ensemble learning on software defect prediction. 

Bandit algorithms: BA has been applied to optimize 
software defect prediction. For instance, Asano et al. [1] used 
BA to optimize learning data on cross-project defect prediction. 

Tsunoda et al. [19] applied BA to select feature reduction 
techniques.  Similarly, Hayakawa et al. [8] used BA to optimize 
prediction methods such as logistic regression and decision trees 
and compared the accuracy of BA to majority voting. However, 
past studies did not treat the optimization of ensemble learning, 
testing effort, test-effort ratio, and testing strategies. 

Both BA and ensemble learning use several models to make 
their predictions. However, BA is an online optimization 
approach that utilizes test outcomes during the testing phase. In 
contrast, ensemble learning is not an online optimization or 
learning approach and does not utilize test outcomes. 

V. CONCLUSION 

We apply and analyze the performance of online 
optimization based on Bandit Algorithms (BA) to ensemble 
learning defect prediction to attain stable prediction accuracy of 
ensemble learning on various datasets. BA compares actual test 
outcomes (i.e., defective or not) of modules with the prediction 
of ensemble learning methods to evaluate the accuracy of each 
method. The evaluation sequence depends on the test strategy 
followed (i.e., which modules are tested preferentially), which 
could, in turn, affect the prediction accuracy and testing effort. 
We analyzed the impact of three test strategies (i.e., LF: testing 
larger modules first, SF: testing smaller modules first, and PF: 
testing positive-prediction modules first) on BA. In the 
experiment, we changed the test-effort ratio (i.e., the ratio of 
testing effort on negative to positive-prediction modules). Our 
findings show that: 

 The test strategy affects both BA’s prediction accuracy and 
testing effort. PA showed the highest accuracy but required 
the most extensive testing effort. 

 Even when the test-effort ratio was set to 0.1, PA still 
showed the highest accuracy. 

 BA steadily improved the prediction accuracy of ensemble 
methods but slightly increased testing efforts. 

Our result suggests that BA with PA is the best approach to 
enhance the prediction accuracy of online learning, and setting 
a test-effort ratio of 0.1 is sufficient to achieve high prediction 
accuracy. Those findings are preliminary. To enhance the 
reliability of the results, we plan to conduct experiments that 
consider modules’ complexity (alongside size) with various 
datasets in the future. 
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