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ABSTRACT
Objective: Data science and machine learning methodologies are essential to address complex scientific challenges across vari-
ous domains. These advancements generate numerous research assets such as datasets, software tools, and workflows, which are
shared within the open science community. Concurrently, computational notebook environments like Jupyter Notebook, along
with platforms like Google Colab and Kaggle Kernel, facilitate data science research and machine learning workflows, trans-
forming data analysis, model development, and knowledge sharing processes. The proliferation of computational notebooks has
further enriched the pool of valuable research assets. Researchers frequently require efficient access to these assets to advance their
work, yet current tools often require navigating multiple websites and portals, leading to inefficiency and information overload.
The challenge is compounded when relying on general web search engines that might not adequately highlight niche scientific
resources.
Methods: To address these issues, we propose the development of an innovative Multiple Research Asset Search (MRAS) system
designed to index diverse research assets from heterogeneous sources, offering a unified search interface for researchers. Our
system aims to significantly improve the discovery of computational notebooks and datasets, facilitating data-driven research.
Results: We developed a pipeline for data extraction and indexing, reviewed and applied state-of-the-art ranking algorithms,
enhanced indexing documents with content analysis, and created a Jupyter extension for asset discovery within the working
environment.
Conclusion: This work is structured to detail our approach, literature review, system development, empirical validation, results,
and conclusions, illustrating the potential impact of our MRAS system on scientific research efficiency.

1 | Introduction

Data science and machine learning (ML) approaches play a
pivot role in studying complex scientific problems, for example,

Abbreviations: AI, artificial intelligence; API, application interface; CERN, European Organization for Nuclear Research; JSON, JavaScript Object Notation; ML, machine learning; MRAS, Multiple
Research Asset Search; MVT, Model-View-Template; NaaVRE, Notebook-as-a-VRE; SERP, Search Engine Results Page.
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identifying cancer from pathological images [1], modeling
the evolution of ecosystems [2], and developing schedul-
ing policies for dynamic computing tasks [3]. As these fields
advance, a substantial amount of research artifacts—including
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datasets, software tools, and workflows—are created and shared
within the open science community, making them valuable
research assets.

Meanwhile, computational notebook programming environ-
ments like Jupyter Notebook provide powerful frameworks that
support data science research and ML workflows. Platforms such
as Google Colab1 and Kaggle Kernel2 offer hosted Jupyter Note-
book services, granting free access to computing resources, while
NaaVRE [4] offers a collaborative virtual research environment
based on Jupyter Notebook. These notebook-based solutions have
transformed how researchers analyze data, develop models, and
share knowledge. With widespread adoption, numerous compu-
tational notebooks have been generated and published, making
them another essential category of research asset.

Scientists often need to locate these assets to support their
research activities, demanding efficient tools and methods for
discovery and utilization. For instance, a researcher working
on developing a new ML model for medical image analysis
might require access to a specific dataset of annotated patholog-
ical images. Finding the right dataset and computational note-
books for data analysis can significantly expedite their research,
allowing them to design, train, and validate their models effec-
tively. However, with the current tools, researchers usually have
to navigate multiple websites and portals to collect necessary
research assets scattered across different data sources, which can
be time-consuming and ineffective. Besides, the sheer volume
of available research assets can lead to information overload,
making it challenging for them to efficiently identify relevant
resources. The situation worsens when researchers have to resort
to general-purpose web search engines but the desired resources
sit in the “long tail” of web content [5].

To address these challenges, we aim to develop an innovative
Multiple Research Asset Search (MRAS) system capable of index-
ing various types of research assets from diverse data sources,
enabling users to discover a wide range of research resources
through a single search interface. Our system primarily tar-
gets the science domain with a prominent goal of building
paradigm-shifting information software for scientific researchers.
Although the proposed system can handle various types of
research assets, this study specifically focuses on computational
notebooks and datasets. Computational notebooks align seam-
lessly with a Jupyter-based research environment, and datasets
are indispensable for data-driven studies.

Unlike many existing studies that primarily emphasize code
search using various enhancement techniques such as query
expansion [6], software repository mining [7], and code summa-
rization [8], our work focuses on delivering a holistic research
asset discovery solution. This approach not only includes source
code but also encompasses datasets and other valuable assets.
Additionally, while some previous works address research asset
management [4] and reproducibility [9], their emphasis is more
on computational processes rather than on improving asset
discoverability. To guide our research, we identify several key
research questions as listed below:

1. How can we extract and index diverse research assets across
multiple sources?

2. How to effectively rank research assets such that the most
relevant/useful assets will be presented on the top?

3. How can computational notebooks be effectively repre-
sented in retrieval systems, considering their task-oriented
nature and the combination of natural language and pro-
gramming language elements?

4. How to integrate this system effectively into the Jupyter
environment to support seamless research workflows?

For the first question, we developed a data extraction and index-
ing pipeline for each type of research asset to collect data from
various data providers and established a central knowledge base
to integrate different asset indexes. For the second question, we
reviewed related studies on ranking algorithms and exploited
state-of-the-art ranking algorithms for research asset retrieval.
For the third question, we enhanced the indexing documents
with important information extracted from the content of com-
putational notebooks through content analysis. For the fourth
question, we developed a Jupyter extension with a search inter-
face in the Jupyter environment that can communicate with our
MRAS system through RESTful API calls. It supports the discov-
ery of outside research assets inside researchers’ working space
without platform switching.

This article is organized as follows. Section 2 presents the litera-
ture study, in which we review the start-of-art work and related
work. Section 3 describes the proposed MRAS system to bridge
the gap between researchers’ needs for research asset discov-
ery and the inefficiency of current search tools. In Section 4,
we introduce the empirical evidence to demonstrate the appli-
cability of our system in various domains and usage scenarios.
Section 5 presents the results and analysis of our system. Finally,
in Sections 6 and 7, we summarize this work with discussions,
conclusions, and future work.

2 | Literature Study

Research asset discovery is a broad and interdisciplinary field
that requires a variety of knowledge and methodologies. Before
embarking on designing and developing a search system aimed at
aiding scientists in finding relevant research assets, it is essential
to first comprehend existing solutions and pinpoint discrepancies
between these solutions and our objectives. Another critical step
involves gaining a thorough understanding of prior work relevant
to constructing a research asset search system, empowering us
to leverage optimal algorithms and technologies. To accomplish
these objectives, a comprehensive literature review is conducted.
This section will outline state-of-the-art methods and tools for
research asset discovery, highlight their limitations, and examine
relevant studies on search techniques.

2.1 | State of the Art

This section will explore how researchers typically find existing
research materials. We will start by looking at common strategies
and the tools researchers exploit to locate relevant resources.
Then, we will focus on state-of-the-art methods applied specif-
ically for finding computational notebooks and datasets, which
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are the main type of research assets we are interested in for
this study.

2.1.1 | Research Asset Search Practices

Currently, the search for research assets is mainly enabled by
three types of tools. The first type includes general-purpose
web search engines like Google Search3 and Microsoft Bing,4
which serve everyday users but lack specialization in scientific
domains. The second type consists of domain-specific catalogs,
such as ICOS5 for greenhouse gas datasets and LifeWatch6 cat-
alogs for software services. The third type is asset repositories
equipped with search functionalities. For instance, Kaggle sup-
ports search over computational notebooks and datasets that are
hosted on Kaggle. Zenodo7 allows search over publications, soft-
ware, datasets, images, presentations, and more that are pub-
lished through Zenodo. While web search engines are useful for
broad initial searches, they often fall short in locating the precise
resources needed for specific research tasks. On the other hand,
domain-specific catalogs excel in offering precise resource dis-
covery but are restricted to specific asset types. Although repos-
itories like Zenodo and Kaggle support multiple research assets,
they only allow platform-wise search and cannot access resources
from other platforms. Research activities typically require multi-
ple types of research assets that are hosted by different platforms,
and hence researchers often spend a significant amount of time
traversing different search engines, catalogs, and repositories to
collect sufficient resources. Therefore, it is essential to build a
well-integrated search system supporting searches across various
categories of research assets from different data sources.

2.1.2 | Computational Notebook Search

Regarding computational notebooks, web search engines remain
widely used. Computational notebooks are typically regarded as
open-source codes and thus code repositories such as GitHub and
Kaggle are also instrumental in discovering computational note-
books. However, these tools mainly facilitate indirect searches
for computational notebooks (e.g., web search engines) or within
specific data sources (e.g., code repositories). Recently, dedicated
studies for searching computational notebooks have emerged,
such as DeCNR [10] and CNSVRE [11]. DeCNR improves
computational notebook ranking accuracy by combining Best
Matching 25 (BM25) [12] and SBERT [13] methods. CNSVRE
enhances overall search efficiency through query reformula-
tion and notebook summarization. Other partially relevant tools
involve Nbsearch [14], JupySim [15], and EDAssistant [16].
Nbsearch and EDAssistant focus on code snippet search within
notebook collections, categorizing them as code search rather
than notebook search tools. JupySim, on the other hand, is a
content-based search system that retrieves notebooks based on
specified contents like codes, data, libraries, and output for-
mats, distinct from the natural language-based notebook search
problem addressed by CNSVRE and DeCNR.

2.1.3 | Dataset Search

There are two types of dataset search tools: vertical dataset search
engines and dataset repositories. Vertical dataset search engines

usually do not store datasets but rely on harvested dataset meta-
data to rank datasets. Examples are Google Dataset Search [5]
and Auctus [17]. Dataset repositories often support storing,
sharing, and searching datasets. Examples are Zonodo, Data.gov,
and Kaggle. Google Dataset Search [5] provides web-wide search
capabilities to discover publicly available datasets across differ-
ent Web locations, from governmental and community dataset
repositories to individual data providers. It employs Schema.
org and W3C DCAT markup to find datasets published on the
Web. Auctus [17] is an open-source dataset search engine for
structured data. It supports various queries, including keywords,
spatial and temporal information, and data integration queries.
Unlike Google Dataset Search, it does not collect datasets
through web documents but hooks up with dataset reposito-
ries, such as Socrata and Zenodo, via APIs. Zenodo is a digital
repository and open-access platform designed to facilitate the
sharing, preservation, and dissemination of scientific research
outputs and data. It was developed by European Organization for
Nuclear Research (CERN) and is now operated by the OpenAIRE
project. Data.gov is a comprehensive platform maintained by
the U.S. government that aggregates a vast collection of datasets
from various government agencies. It provides a user-friendly
interface for searching and accessing open data on topics rang-
ing from healthcare to environment and more. Kaggle dataset
offers a repository of datasets contributed by the data science
community.

In summary, researchers often rely on web search engines to
search for existing research assets. Despite the widespread use of
Jupyter Notebooks, a dedicated computational notebook search
software is lacking. While there are public vertical search engines
for dataset search, these are not integrated with other search func-
tions for different types of research assets, making them ineffi-
cient in building data analytic workflows.

2.2 | Related Work

We have identified deficiencies in the current search tools
available for various research resources, particularly for com-
putational notebooks and datasets. Our objective is to create a
unified search platform that includes all these assets and can
be integrated with a Jupyter Notebook environment to support
research activities. A critical component of any search sys-
tem is its result ranking mechanism. To enhance our system’s
performance, it is crucial to understand the different ranking
techniques used for each category. Therefore, we have studied
search methodologies specific to computational notebooks,
datasets, and those applicable across multiple categories of
research assets.

2.2.1 | Computational Notebook Search Methods

Computational notebooks essentially represent multi-modal data
that primarily include free text and source code, with optional
elements such as images and audio. They organize content
into segments called cells. There are two fundamental types of
cells: code cells, which contain code fragments, and Markdown
cells, which provide narrative descriptions. We present two
examples of computational notebooks in Figure 1 to illustrate
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FIGURE 1 | Computational notebook examples. (a) Simple linear regression model and assumptions. Source: https://www.kaggle.com/
code/jaepin/simple-linear-regression-model-assumptions. (b) Interphase vs. mitosis classification. Source: https://www.kaggle.com/code/
paultimothymooNey/interphase-vs-mitosis-classification.

their typical content structure. Computational notebooks can
be searched using metadata, the code within code cells, or the
textual descriptions in Markdown cells. This section will briefly
review the existing methods and technologies for searching
computational notebooks.

2.2.1.1 | Searching Computational Notebooks Via
Metadata. The necessity of providing metadata for com-
putational notebooks varies based on the publication platform.
Authors might need to include contextual information through
metadata when publishing on certain platforms. For instance,
Kaggle attaches metadata to each computational notebook, while
GitHub typically includes computational notebooks as part of
larger software projects and provides metadata for the entire
project. These metadata can be leveraged to build a computa-
tional notebook discovery system. High-quality metadata enables
users to conduct facet-based searches and more effectively find
relevant results. However, metadata does not convey as much
information as the actual content, such as the text and code
within the notebooks.

2.2.1.2 | Searching Computational Notebooks Via Mark-
down Cells. Markdown cells contain natural-language descrip-
tions of the experiment purpose, logic, or code functionality in the
computational notebooks. Searching computational notebooks
via Markdown cells can be seen as a text retrieval [18] problem,
which aims to find the most relevant documents concerning
given queries. Relevancy is measured by the similarity between
documents and queries. There are two main types of methods for
text retrieval: sparse retrieval and dense retrieval, distinguished by
the vector representations of text [18]. Sparse retrieval methods
use a sparse vector, for example, one-hot encoding (all vector
elements are 0 s except that one element is 1, and vector dimen-
sion depends on the vocabulary size), to represent a word. Term
Frequency-Inverse Document Frequency (TF-IDF) [19] and
BM25 are exemplar sparse retrieval methods and are usually used
as baseline methods for text retrieval. More specifically, BM25
ranks a set of documents based on the statistical information
of query terms appearing in the documents, disregarding gram-
mar and word order of queries and documents (bag-of-words
assumption). In contrast, dense retrieval methods [20] represent
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word/sentences/documents with learned dense low-dimensional
vectors, for example, DPR [21] and ColBERT [22]. Sparse
retrieval performs well on precise term matching, and dense
retrieval is better at measuring semantic similarities between
related words.

2.2.1.3 | Searching Computational Notebooks Via Code
Cells. Searching computational notebooks based on code cells
is often formulated as a code search problem [23] which retrieves
code fragments from a large code corpus that most closely
matches users’ intents that are expressed in natural language
queries. The code search problem is mainly studied in the soft-
ware engineering field to improve software developers’ productiv-
ity by facilitating the reuse of existing codes. Existing code search
methods can be roughly classified into two groups: traditional
Information Retrieval (IR) based [24] and ML based [25–27]. Tra-
ditional IR-based code search methods usually treat code as text
and use statistical ranking algorithms such as TF-IDF [19] and
BM25 [12] to compute the similarity scores between queries and
code snippets. ML-based methods map both codes and queries to
real-valued vectors and measure the relevancy using cosine sim-
ilarity between vector representations [28]. Traditional IR-based
methods are easy to implement but highly rely on shared vocab-
ulary between queries and codes. On the other hand, ML-based
methods can reduce the semantic gap between queries and
codes but generally require a time-consuming model training
process.

2.2.1.4 | Summary. Searching computational notebooks
via metadata is the simplest way and is commonly adopted by
computational notebook catalogs and repositories. Metadata pro-
vides contextual information, for example, provenance of com-
putational notebooks but usually lacks details about the contents.
Searching via Markdown cells simplifies the problem into a text
retrieval problem which makes it possible to apply state-of-the-art
text retrieval algorithms. However, neglecting code contents may
cause high rankings of low-reusable computational notebooks,
for example, computational notebooks with rich text descriptions
but low-quality codes or no codes. Searching via code cells, on
the other hand, may cause ineffective ranking as text descrip-
tions are indispensable for users to find and comprehend the
computational notebooks, even though searching computational
notebooks often leads to the reuse of the codes. In summary,
we solve the computational notebook search problem by ana-
lyzing, indexing, and ranking the contents of the computational
notebooks including texts in markdown cells and codes in code
cells. Meanwhile, metadata remains and is used to present
search results.

2.2.2 | Dataset Search Methods

As pointed out by [29], “dataset search is largely keyword-based
over published metadata.” Given the variety of dataset contents,
utilizing structured metadata that contains textual descriptions
facilitates more efficient indexing and ranking. In this study,
we adopt the common practice in the dataset search domain
by focusing our search on metadata. Our innovation lies in the
integration and consolidation of metadata from various hetero-
geneous data sources.

3 | Multiple Research Asset Search System

3.1 | Requirements Elicitation

Developing an effective MRAS system requires the understand-
ing of scientists’ inquiries in order to help them find desirable
research resources. Consider Elena, an Artificial Intelligence (AI)
researcher specializing in histopathological image analysis, par-
ticularly focusing on mitosis segmentation. She intends to explore
the application of Conditional Generative Adversarial Network
(cGAN) in the mitosis detection task, starting with building a
data analysis workflow via Jupyter Notebook. This workflow
involves using cGAN to recognize mitotic cells within H&E
stained histopathological images. To accomplish this task, she
must gather all the necessary resources, including histopatho-
logical images, computational notebooks/codes for cGAN imple-
mentation, and descriptions of the data processing procedure. In
reality, one or more of these materials are often missing or insuffi-
cient, necessitating the search for external research assets. Elena’s
case serves as a prime example of how our MRAS system can be
utilized. To better assist researchers like Elena, we have outlined
key requirements for developing an effective MRAS system.

3.1.1 | The Source of the Requirements

The requirements are primarily derived from literature study,
interviews, and user surveys. The extensive review of existing
literature helps identify gaps between current search systems
and the goal of the MRAS system. Interviews are conducted
with scientists and stakeholders from the EU CLARIFY project
collaborators to gain insights into practical challenges faced by
researchers and the features they consider most critical for an
effective search system. CLARIFY, an EU Horizon 2020 initiative,
aims to create a robust automated digital diagnostic environment
using AI and cloud-based data algorithms to improve Whole Slide
Image (WSI) interpretation and diagnosis. The project includes
partners from three key backgrounds: AI scientists, data scien-
tists, and pathologists. The interviews took place through regular
meetings, informal gatherings, and other interactions during
one of the author’s 3-month visits to two collaborating research
groups. Specifically, discussions were held with researchers from
various fields, including medical image analysis and IR to learn
about their routine research workflows and explore how a MRAS
system could support their research activities. We also survey
needs, preferences, comments, and suggestions from internal
users, mainly consisting of researchers and software developers
within our research team. During the system development pro-
cess, these users actively participated in regular team discussions
to review progress and provide valuable feedback and input
for the system’s design and implementation. After analyzing
and consolidating the input from the participants, we identify
four functional requirements and two nonfunctional require-
ments. Functional requirements describe the specific behaviors,
functions, and operations that a system must perform, whereas
nonfunctional requirements describe the qualities, attributes,
and characteristics that the system must have.

3.1.2 | Functional Requirements

Functional requirements for the MRAS system include:
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A central knowledge base with a unified search interface.
A prominent feature appreciated by researchers is having a sin-
gle entry point to access a vast volume of research assets. To
achieve this, a central knowledge base capable of integrating
various types of research assets from multiple sources, along
with a unified search interface, is essential. The knowledge base
should be able to process assets in different formats, metadata
schemas, and access protocols. Meanwhile, the search interface
can simplify the discovery of relevant resources, thereby enhanc-
ing researchers’ productivity.

Effective ranking for research assets. Effective ranking algo-
rithms can alleviate the information overload resulting from the
enormous number of computational notebooks, datasets, and
other research materials in the search space. These algorithms
provide researchers with a ranked list of resources tailored to
their specific needs and interests. To achieve this, natural lan-
guage processing algorithms like word embedding and IR tech-
niques like dense retrieval can be leveraged.

Content analysis for computational notebooks. Researchers
emphasize the importance of sufficient descriptions of compu-
tational notebooks to assess their relevance and usability. The
descriptions should address aspects such as targeted tasks, uti-
lized algorithms, and other statistical details, allowing users to
quickly understand its purpose, methodology, and key findings.
This level of information can hardly be obtained from mere meta-
data, but can be extracted from computational notebooks’ con-
tents. So a content analysis process is necessary for the MRAS
system to facilitate the ranking efficiency and better result pre-
sentation for computational notebooks.

Integration with Jupyter Notebook. Researchers tend to stick
with familiar tools for their work. For many, Jupyter Notebook is
their primary environment for tasks like data exploration, prepro-
cessing, model development, and evaluation. Providing search
functionality within the Jupyter Notebook environment would
seamlessly embed search operations into their research routines.
Therefore, we aim to integrate the MRAS system with Jupyter,
enabling scientists to transition smoothly between the search
interface and their data pipeline.

3.1.3 | Nonfunctional Requirements

Nonfunctional requirements for the system include:

Comprehensive metadata for result display. In practice, the
search result page does not display the full content of the returned
research assets due to space constraints. Instead, it presents key
information, such as the title, a brief summary, and attributes
like author information, asset size, and license. This makes it
challenging for researchers to assess the quality and usability
of the assets. To address this issue, the MRAS system should
enhance its metadata with the necessary information for better
result presentations.

Continual improvement with user feedback. Contin-
uous improvement is one important characteristic of any
user-interactive system, and user feedback is a crucial com-
ponent for achieving it. To facilitate this, the system should

provide efficient tools for collecting user feedback on search
results, allowing users to influence the ranking algorithms.
Additionally, the system should be capable of analyzing user
interactions and feedback to continually enhance its algorithms,
creating a self-improving mechanism that refines the ranking
and presentation of research assets over time.

3.2 | Conceptual Framework

This section outlines the conceptual framework for a MRAS sys-
tem, introducing its main functional components and high-level
workflow, while avoiding excessive details such as software
design, infrastructure specifics, and ranking algorithms. The cur-
rent focus of research assets includes computational notebooks
and datasets, and therefore, we will describe each component in
relation to these two types of assets. However, our approach is
adaptable to other types of research assets such as scientific arti-
cles, multimedia materials, and web APIs.

Figure 2 depicts the proposed framework. The system is divided
into several key parts: The data processing and indexing pipeline
gathers, preprocesses, and indexes data from diverse sources. The
data integration module consolidates indexes of various research
assets and user data. The asset retrieval unit handles user queries
and ranks research assets based on the queries. The user interface
collects user input and displays the retrieved research assets.

3.2.1 | Data Processing and Indexing

The data extraction operation gathers computational notebooks
along with their metadata and dataset metadata from different
online sources using a web crawler that leverages platforms’
APIs. Major platforms hosting computational notebooks include
GitHub and Kaggle, while datasets are commonly found on plat-
forms like Kaggle, Zenodo, and Figshare. Computational note-
books and datasets obtained from various sources often adhere
to different metadata standards. To consolidate these resources,
preprocessing is necessary. This step transforms the raw records
downloaded from hosting repositories into a standardized for-
mat for each type of asset. Additionally, the preprocessing stage
can extract additional information from the contents of computa-
tional notebooks to enrich the indexes. The indexing process then
creates asset indexes based on the processed documents gener-
ated by the preprocessor, enabling efficient retrieval of assets.

3.2.2 | Data Integration

We implement tailored data extraction and indexing pipelines for
each individual data source. These pipelines are designed to han-
dle the specific characteristics and formats of data from different
sources. Upon completion of these pipelines, multiple indexes
are generated, each corresponding to the data retrieved from its
respective source. Subsequently, we utilize a knowledge base to
manage these indexes along with user data gathered from interac-
tions between users and the system. The knowledge base serves as
a central repository where these indexes are stored and managed,
allowing for efficient organization and retrieval of information
across various sources.
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FIGURE 2 | The conceptual framework of the Multiple Research Asset Search system.

3.2.3 | Asset Retrieval

The asset retrieval module processes user queries and returns
ranked lists of research assets, with items ordered by their
similarity scores (higher scores result in higher rankings). The
ranking is determined by comparing the queries to the content
in selected fields. Choosing retrieval methods involves balancing
ranking accuracy with system responsiveness. If the ranking is
inaccurate, irrelevant results may appear at the top, reducing
users’ confidence in the system. On the other hand, complex
ranking algorithms can cause expensive computation costs and
high system latency, diminishing usability. Therefore, system
designers must carefully weigh the trade-offs between accuracy
and responsiveness, considering the specific requirements and
resource constraints.

3.2.4 | User Interface

The user interface serves as the entry point for users to inter-
act with our system. We offer two types of interfaces. One is the
web-browser-based interface that allows manual manipulations
of the research assets, such as browsing and selecting. It features a
search bar for entering queries and a Search Engine Results Page
(SERP) for displaying the retrieval results. Another one is web
Application Interface (API) that enables programmable access
to the system. Unlike the browser-based interface, it does not
include web pages for result presentation. Instead, it focuses on
the comprehensiveness and programmability of the results, mak-
ing it suitable as a building block for other tools and web services.

3.3 | Technical Considerations

Besides the requirements for meeting user’s needs and expecta-
tions, implementing a MRAS system also involves various tech-
nical considerations to ensure its effectiveness, scalability, and
usability. Here are key technical considerations:

Ranking algorithm complexity vs. system responsiveness.
We have observed a common trade-off between implementing
sophisticated ranking algorithms and ensuring fast system
responses given computing resource constraints. Current
advanced retrieval methods for texts and codes heavily rely
on dense document representations, which involve transforming
documents into fixed-length high-dimensional vectors, also
known as embeddings, and measuring their similarities based on
these vector distances [21]. These methods impact system perfor-
mance in two main ways. Firstly, the models used for generating
embeddings are typically complex and computationally inten-
sive. While conducting the embedding generation process offline
can reduce the workload on the online system, these procedures
remain resource-intensive and challenging to maintain. Sec-
ondly, performing searches within a vector space often requires
in-memory computations to enhance search efficiency, posing
scalability challenges. Therefore, system designers must care-
fully balance algorithmic complexity and system responsiveness
to ensure a satisfactory user experience.

Metadata standardization vs. metadata informativeness.
As a MRAS system facilitates searches spanning heterogeneous
sources, the metadata associated with accumulated research
assets may conform to different schemas. Without standardiza-
tion, the system would need distinct indexes for each source,
leading to significant hindrances in database consistency and
management. However, developing a universal metadata format
that can accommodate diverse schemas and provide sufficient
information for asset indexing presents a considerable challenge.
To tackle this problem, we suggest implementing a foundational
metadata schema for each research asset specifically for indexing
and retrieval purposes, while preserving the original metadata for
users to access directly.

4 | Prototype

In our latest prototype, we have created and activated search func-
tionalities tailored for computational notebooks and datasets,
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fulfilling critical needs across multiple disciplines. The sys-
tem architecture, currently implemented for these two types of
research assets, can be easily extended to include other types
of research assets. Moreover, we envision our system evolving
into an online data platform to enhance research asset discovery.
We have developed a data collection mechanism accompanying
the main functionalities of the MRAS system. Specifically, we
designed several data models to organize essential information,
created input components on the user interface, and deployed a
user database to manage gathered data efficiently.

4.1 | Functionality Implementation

We obtain computational notebooks from GitHub and Kag-
gle using their public APIs. The source files of computational
notebooks are JavaScript Object Notation (JSON) objects that

follow a common schema, allowing us to efficiently digest com-
putational notebooks from different repositories. We gather
dataset metadata records from Kaggle, Zenodo, and Dryad.
However, the metadata schemas from these platforms vary
significantly. Figure 3 shows the subset of metadata from two
random datasets hosted on Kaggle and Zenodo, which have
few common field names even for those with similar contents.
For instance, the identifier of the dataset is named “ref” on
Kaggle and “conceptdoi” on Zenodo. Kaggle denotes creator
name simply as “creatorName” while Zenodo uses a nested
field “metadata.creators” to represent all the creator names. To
address this discrepancy in metadata schemas, we develop a
customized metadata parsing protocol for each data source.

We follow the data preprocessing procedure depicted in Figure 4
to enhance the indexing content of computational notebooks and
to standardize the metadata of datasets obtained from various

FIGURE 3 | Different metadata schemas utilized by different dataset hosting platforms. (a) Dataset metadata example from Kaggle.
Source: https://www.kaggle.com/datasets/harmaNdeepsinghpadam/clips-with-annotation. (b) Dataset metadata example from Zenodo. Source:
https://zenodo.org/records/818934.

FIGURE 4 | Preprocessing pipelines for datasets (top), and for computational notebooks (bottom).
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hosting repositories. For computational notebooks and their
associated metadata files, the preprocessor first analyses the
raw contents of computational notebooks by parsing the source
files to extract useful information. For instance, it extracts the
textual contents from all Markdown cells as the “description” of
the computational notebook and utilizes the T5 model [30] for
summarization [11]. It also produces several statistical metrics,
such as the number of code cells, the number of Markdown cells,
and the programming language. Then it gathers administra-
tive information such as “name,” “full_name,” and “html_url”
from the corresponding metadata files. Finally, it aggregates
all the information generated within the above procedures into
one single structured document called computational notebook
summary document. For dataset preprocessing, a key operation is
metadata mapping, which is essential for consolidating datasets
from heterogeneous sources [31]. The processor first extracts
a subset of fields and values from the dataset metadata. These
field-value pairs are then mapped to a common dataset meta-
data schema yielding a dataset summary document to facilitate
indexing and retrieval.

Considering the system’s computing overhead, we employ
inverted indexes for indexing and the BM25 algorithm for
ranking. Inverted indexes facilitate efficient search queries by
mapping terms to their respective documents, optimizing both
search speed and storage. BM25 is a simple yet highly effective
ranking method, which considers term frequency, document
frequency, and length normalization to ensure highly relevant
search results. The combination of inverted indexes and BM25
allows for efficient retrieval of research assets in a vast search
space. We leverage Elasticsearch during deployment to achieve
the production system level. It integrates these technologies into
a scalable and responsive solution that can handle large datasets
and high query loads.

The backend of the MRAS system is developed as a Django web
application. It handles retrieval for various types of research
assets, generates SERPs for web browsers, and offers RESTful
API services. The application connects with Nginx, Elasticsearch,
and PostgreSQL for necessary data exchange. Django enforces a
clear separation of concerns between different components of a
web application, often referred to as the Model-View-Template
(MVT) architectural pattern. In this pattern, templates handle
the presentation layer, views manage the application logic and
data processing, and models deal with the database and data
storage. To facilitate data exchange with relational databases and
API calls, we use models and serializers to define data structures
and generate structured data. Models represent the structure and
behavior of database tables, defining fields, relationships, and
methods for working with data. Serializers convert complex data
types, such as querysets and model instances, into JSON or other
content types. For example, we define a NotebookResult model
to represent the search results of computational notebooks,
comprising context information and a list of retrieved records.
This model works together with the serializer NotebookResultSe-
rializer to serialize the data for inclusion in an API response.

4.2 | Content Management

Effective data management is key to minimizing system latency
and enhancing the usability of a MRAS system. This section
describes the content management procedure within our sys-
tem, as illustrated in Figure 5. The process incorporates three
storage options: disk storage, index database, and user database.
With a primary focus on the online search system rather than
offline processes, data management during crawling and prepro-
cessing is simplified. The crawler stores downloaded source files
of research assets along with their metadata files in disk storage.

FIGURE 5 | Content management procedure.
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FIGURE 6 | Infrastructure and network setups for system deployment.

Subsequently, the preprocessor reads raw data from the disk, pro-
cesses it, and writes summarized documents of research assets
back to disk storage. This approach is optimized for high-volume,
low-frequency tasks, such as batch processing of research assets.
The indexing pipeline generates indexes from the summary doc-
uments of each research asset and stores them in the index
database. The index database’s main role is to facilitate fast docu-
ment retrieval by structuring and organizing data in an index for-
mat, allowing quick access to specific records without full-table
scans. Alongside the asset ranking module, which fetches rel-
evant records from the indexes, the query processing unit logs
users’ queries and feedback into the user database when neces-
sary. We use Elasticsearch as the index database due to the need
to process free-form data and handle large data volumes in near
real-time. The user database manages structured data rather than
unstructured text and primarily functions as storage with less
emphasis on frequent searches, for which we employ PostgreSQL.

4.3 | System Deployment

We present the infrastructure architecture utilized by our cur-
rent prototype in the deployment environment, as depicted in
Figure 6. The infrastructure is divided into several layers to
clearly define the responsibilities of each module. Each module

is implemented either as a server or a database. A web server
manages web traffic, an application server implements the core
system functionalities described in Section 3.2, an index database
handles various indexes, and a user database stores interac-
tive data.

To enhance the portability and scalability of our system, all
servers and databases are run within Docker containers. Docker
offers a containerization platform for application deployment,
enabling developers to package an application and its depen-
dencies into a container for consistent, isolated, and portable
deployment across diverse environments. To manage commu-
nication between servers and between servers and databases,
an efficient mechanism is required to allow them to share data
and collaborate on different tasks. We use two communication
methods: TCP port mapping and a custom bridge network. TCP
port mapping, or port forwarding, maps ports from a container
to the host, making services running inside a Docker container
accessible from the host system and, when necessary, from
external networks. Docker also offers custom bridge networks
for inter-container communication.

Users access the system through the public IP address of the
host. Users’ requests are received by port 80 of the host system
and redirected to port 80 inside the Nginx container (where a
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web server is deployed) via port mapping. For security purposes,
port 443 can be employed with the Hypertext Transfer Proto-
col Secure (HTTPS) protocol. Behind the web server are the
application server, the index database, and the user database,
each containerized separately. We launch all containers using
the Docker Compose tool, which creates a custom bridge net-
work to connect them. This ensures that each container can be
accessed by other containers on the network using the container
name as the hostname and the port number designated for the
corresponding servers.

4.4 | Data Collection Mechanism

Research asset search presents a valuable yet challenging
research problem that requires ongoing efforts. However, they
always encounter significant data challenges, such as the
scarcity of comprehensive queries and high-quality relevance

assessments, as highlighted in prior research [10]. One approach
to address these challenges is through the construction of anno-
tated datasets using crowd-sourcing. However, this method can
be time-consuming, expensive, and sometimes unreliable, as par-
ticipants may not necessarily be the target users—researchers
and scientists. Alternatively, a promising strategy is to build
datasets dynamically online, gathering user feedback during
their interaction with the system. Over time, this approach accu-
mulates queries and relevance judgments from users, resulting
in a comprehensive and realistic dataset tailored to specific
domains and user expertise.

In order to accomplish this objective, we have created several
data models that are encompassed by the user database of MRAS,
and utilizing the Jupyter interface for collecting data. Figure 7
presents a list of these registered data models within the database,
along with the relevance judgments collected from users through
the NaaVRE interface. Figure 8 illustrates two data model

FIGURE 7 | Registered data models for data collection and relevance judgment records.

FIGURE 8 | Data models for computational notebook search history and relevance judgments.
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examples, that is, notebook_search and relevancy_feedback. The
notebook_search table records user search history, capturing
details such as client ID, search timestamp, and query content.
This information is valuable for analyzing user queries. The rel-
evancy_feedback is designed for gathering relevancy feedback,
including fields of the query, the ID of annotated computational
notebooks, and the user-rated stars indicating the notebook’s use-
fulness. These human-produced relevancy judgments for query
and computational notebook pairs will pile up over time and can
be used to expedite computational notebook search studies.

4.5 | Ensuring Implementation Correctness

We use the following methods and tools to ensure the accuracy
and correctness of our implementation.

• Unit testing: We divide the system into distinct modules and
test each independently. Dedicated testing scripts are devel-
oped to validate components such as crawling, preprocess-
ing, indexing, and retrieval.

• API testing: We simulate specific API calls based on prede-
fined data exchange protocols to verify correct implemen-
tation. This includes evaluating input/output constraints
and ensuring data formats adhere to standards through API
responses and server-side state changes.

• Database inspection tools: We employ a variety of tools to
monitor and inspect database status, such as availability,
index aliases, and the number of stored documents. For
example, database indexes are reviewed and validated each
time indexed documents are modified.

• Manual semantic-level review: System designers conduct
manual checks to ensure the implemented system aligns
with its design. This includes validating proper functionality
implementation, verifying the relevance of ranking results
for specific queries, and ensuring correctness in site naviga-
tion and transitions.

4.6 | Summary

Our prototype primarily focuses on achieving key functionalities
in a relatively simple environment. To transition from a prototype

to a production-ready system, several critical features should be
enhanced. First, the system must possess robust error handling
and recovery mechanism. In a production environment, the
system must be resilient to failures, which demands compre-
hensive error handling, fault tolerance, automatic recovery,
and data backup to ensure the system remains operational in
the event of crashes or failures. Second, it is critical to incor-
porate security features. Production systems must adhere to
stringent security practices, such as data encryption, secure
authentication/authorization mechanisms, and protection
against vulnerabilities like SQL injection or XSS attacks. Lastly,
production-ready systems must comply with legal standards such
as data privacy laws (GDPR, CCPA) or sector-specific regulations
(HIPAA for healthcare, PCI DSS for financial data). This includes
data protection, user consent management, and ensuring the
system passes regular audits.

5 | Empirical Evidences

The proposed MRAS system is versatile and applicable across
many domains. It can be accessed within a Jupyter Notebook
environment through our Jupyter integration solution or uti-
lized as a standalone search engine. We demonstrate its usability
through three use cases: First, as a standalone search engine in
digital pathology within the CLARIFY project and in environ-
mental sciences in collaboration with the ENVRI-FAIR project.
Second, through the integration of the MRAS system with Jupyter
within the Notebook-as-a-VRE (NaaVRE) framework [4], sup-
porting an effective virtual research environment. For each use
case, we created a deployment instance of our MRAS system.
Given the diverse architecture of interacting systems, we have
three different deployment modes. Figure 9 summarizes the
deployment variants under different use cases.

5.1 | Case 1: Digital Pathology

The first use case highlights the application of MRAS in digital
pathology, specifically within the CLARIFY project. The success
of CLARIFY depends on collaboration among three roles—AI
scientists, data scientists, and pathologists—to develop AI
solutions for pathological analysis. Given the project’s resource
constraints and the exploratory nature of research, AI scientists

FIGURE 9 | The system deployment variants in three different use cases.
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TABLE 1 | Queries collected from researchers studying histopatho-
logical image analysis using machine learning methods.

Index Query

Returning
results

from Kaggle?

1 Segmentation of epidermis in
histopathological images

✗

2 Whole slide images classification
TensorFlow code

✓

3 Deep Kernel Learning ✓
4 Mitosis detection in histological

images
✗

5 Weakly supervised ✓
6 Prostate gland segmentation via

encoder-decoder neural network
✓

7 GAN for image synthesis ✓
8 Conditional GAN for mitosis

segmentation
✓

9 Multiple instances learning
GitHub code with Pytorch

✓

10 Histological Image
Preprocessing

✓

frequently require external research assets to advance their stud-
ies. MRAS fulfills this need by assisting researchers in searching
computational notebooks related to digital pathology and AI
algorithms, thereby accelerating their development process.

To understand users’ needs in searching computational note-
books, we designed a questionnaire to collect queries from the
partners of the CLARIFY project. Participants were asked to write
down at least five natural language queries used to search for
codes that are related to their research. We collected 37 queries
from seven researchers who work on histopathological image
analysis using ML methods. Table 1 lists some examples of the
collected queries.

To align the system’s knowledge base with the end users’ infor-
mation needs, we utilize the collected queries as keywords
to gather computational notebooks in public code repositories
from the web. We use Kaggle8 since it is reported that the
most voted computational notebooks published on Kaggle are
well-documented [32]. We sent the collected queries to Kaggle
and collected a total of 1710 computational notebooks (also called
“kernels”) using Kaggle API.

For some queries, Kaggle did not return any computational
notebooks, as detailed in Table 1. The statistics of the collected
notebooks are presented in Table 2. Notably, 99.6% of the note-
books are written in Python. The average and median numbers
of code cells and Markdown cells are comparable. However, the
average and median text length (measured by the number of
characters) within Markdown cells vary significantly, with the
average length being 17,358 characters and the median length
only 6252 characters. To expand the search space, we included
computational notebooks retrieved using other common
keywords. Each computational notebook is accompanied by

TABLE 2 | Distributions of collected computational notebooks from
Kaggle.

# code
cells

# MD
cells

Len.
MD text

Average 33 25 17,358
Median 24 17 6252
Standard Deviation 31 27 54,518

Abbreviation: MD: Markdown.

metadata describing contextual information such as “id,” “title,”
“language,” “kernel_type,” “dataset_sources,” and more.

Given an aligned search space with researchers’ interests, we
provide CLARIFY partners with a customized search system
for computational notebook search within the digital pathology
domain. Figure 10 illustrates the SERP of returned computational
notebooks using the query “cell segmentation.” The computa-
tional notebooks are ranked by the relevance to the query. When
users click on one item, the webpage will be directed to the source
page of the computational notebook, where users can acquire
more contextual information and download the source files.

5.2 | Case 2: Environmental Science

In the second use case, we illustrate the application of our system
in the environmental science domain through our collaboration
with the EU-funded ENVRI-FAIR project. The European Envi-
ronmental and Earth System Research Infrastructure (ENVRI) is
a community of environmental Research infrastructures work-
ing together to observe the Earth as one system. It provides
high-quality digital assets like research data and services. The
ENVRI-FAIR project aims to implement the findability, accessi-
bility, interoperability, and reusability (FAIRness) of these assets
in the ENVRI community and connect them to the European
Open Science Cloud (EOSC).

Unlike the solutions provided to CLARIFY, ENVRI-FAIR has its
own search engine9 for discovering resources in environmental
science, including web pages, datasets, web APIs, and images.
However, it lacked the capability to search for computational
notebooks. To address this, they collaborated with us to integrate
a computational notebook search feature specifically for environ-
mental science. This integration is enabled by RESTful APIs pro-
vided by the MRAS system. The MRAS system is first deployed
as a web application with full-ledge RESTful APIs, By calling
these APIs, the ENVRI-FAIR search platform can forward users’
queries to the MRAS system and incorporate the ranked results
into its search results page. Figure 11 shows the computational
notebook search results within the ENVRI-FAIR search engine.

5.3 | Case 3: Integration With Jupyter Notebook

The third use case demonstrates the integration of our system
with a Jupyter Notebook. Notebook programming environ-
ments, such as the Jupyter Notebook, receive increasing
popularity among data scientists to prototype and execute
computational experiments attributed to their interactivity
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FIGURE 10 | The computational notebook search results in the CLARIFY search engine.

FIGURE 11 | The computational notebook search results in the ENVRI-FAIR search engine.

and flexibility. NaaVRE utilizes Jupyter Notebook to create a
cloud-based collaborative platform for scientists to carry out
research activities [4]. Integrating search functions for research

assets can significantly enhance the efficiency of finding and
reusing existing assets in the research workflow composition
process.
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FIGURE 12 | The user interface for computational notebook search in NaaVRE.

Since Jupyter Notebook is a web application with both a frontend
interface and a backend server, our integration strategy is simi-
lar to the one used for the ENVRI-FAIR search platform. Specif-
ically, we modify the Jupyter Notebook kernel to manage the
application logic and the communication with the MRAS system
through API calls. For integration with the NaaVRE framework,
the MRAS system is deployed as a web application with compre-
hensive RESTful APIs that interact with the Jupyter backend via
API calls. However, the Jupyter Notebook interface does not nat-
urally support search functionality. To address this, we customize
the Notebook interface to include search bars and result pages
and establish corresponding data transfer channels between the
interactive elements and the backend data variables.

Figure 12 displays NaaVRE’s computational notebook search
interface, functioning as an extension within the Jupyter Note-
book environment. By clicking the search icon in the sidebar, a
search window appears adjacent to the user’s active notebook,
enabling real-time searches across external computational note-
books. Users can navigate through search results and click on
items to obtain detailed information. As depicted in Figure 13,
users can examine the raw content of these computational note-
books to determine their relevance. If a computational notebook
proves useful, users can easily download its source file to their
workspace, establish a Jupyter kernel for executing code, and
seamlessly integrate it with other computational notebooks. This
is possible because all the computational notebooks within the
search space have been downloaded and stored in the MRAS sys-
tem’s database beforehand, such that they can be directly fetched
with document identities during the search process. Moreover,
the Jupyter interface incorporates a rating system for assessed
computational notebooks. Ratings utilize a five-star scale, with
higher ratings indicating greater utility for the current task. These

ratings are transmitted to the computational notebook search
system’s backend and stored in the user database. This data
contributes to refining the search engine’s ranking algorithms,
thereby enhancing its effectiveness over time.

6 | Results and Analysis

6.1 | Requirement Fulfillment

The proposed MRAS system effectively meets all outlined
requirements, serving as an efficient solution for discovering a
wide range of research materials.

We developed specialized preprocessing and indexing pipelines
to unify datasets and computational notebooks sourced from
diverse formats and origins. These consolidated indexes are
integrated into our central knowledge base, providing a unified
access point for searching diverse resources. This integration
significantly enhances researcher productivity by enabling
simultaneous exploration of multiple relevant assets. The sys-
tem prioritizes effective ranking and swift retrieval of research
assets. While advanced algorithms like dense retrieval are avail-
able, we chose BM25 and inverted index technologies for their
superior efficiency, albeit with a slight trade-off in ranking
precision. MRAS also performs content analysis specifically
tailored for computational notebooks, which often contain
detailed task descriptions, methodologies, and key findings in
Markdown cells. Extracting and enriching this information in
our indexes allows users to quickly understand each compu-
tational notebook’s purpose and content, facilitating informed
decision-making. Seamless integration with Jupyter Notebook
is another prominent feature of MRAS. By extending NaaVRE
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FIGURE 13 | Inspecting a retrieved computational notebook.

with MRAS’s computational notebook search capabilities, users
experience a smooth transition between external research asset
discovery and their research environment.

Addressing nonfunctional requirements, MRAS excels in
presenting comprehensive metadata for each research asset,
including names, sizes, and data source details. This trans-
parency enables users to evaluate resource quality and suitability
effectively. Additionally, the system incorporates user feedback
mechanisms such as search logs and relevance feedback, empow-
ering users to influence search result rankings and continuously
enhance system relevance and effectiveness based on analyzed
interactions.

6.2 | System Responsiveness

We deployed the system on a virtual machine with an 8-core
CPU, 8GB memory, and 64GB disk storage capacity to evaluate
its responsiveness. To simulate multiple users, we sent 30 distinct
queries simultaneously to the notebook search API, which han-
dles the queries and returns ranked computational notebooks.
This process was repeated for five rounds to minimize variability
in the testing procedure. Figure 14 shows the latency of the API
calls in box-plots. The network latency is around 0.02 s, which is
negligible compared to the latency caused by system processing
overhead. On average, the API responded to all users in under
0.25 s, demonstrating strong responsiveness.

6.3 | Usability Test

We conducted a usability test for the proposed MRAS system.
We recruited five active researchers (two female and three male)
from different fields. Their ages are between 23 and 38. Their

background includes data science, computer science, AI, and
cloud computing, while their research interests include IR; elec-
tronic design automation; ML; optimization and intelligent net-
work; anomaly detection, workflow adaptation, digital twin.

We ask the participants to finish two tasks using our system and
fill in a questionnaire targeting their usage experiences of the sys-
tem. Task 1 requires them to find a desired computational note-
book while task 2 a desired dataset. The concrete instructions are
as follows:

1. Use queries related to your research/project to search for
notebooks.

2. Go through the returned results and find the most desired
notebooks for your needs.

3. Change your query if necessary.

4. Switch to the datasets panel (left part) and search for
datasets.

5. Go through the returned results and find the most desired
datasets for your needs.

6. Change your query if necessary.

6.3.1 | Search Effectiveness

In the computational notebook search, two participants utilized
two queries, while three participants employed three queries.
Four participants successfully located the computational note-
books they were searching for, while one was unable to find the
intended ones. For the dataset search, one participant used a sin-
gle query, three participants used three queries, and one partici-
pant used six queries. Ultimately, three participants successfully
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FIGURE 14 | The latency of API calls of the deployed system.

FIGURE 15 | Reported time spent on tasks.

found their desired datasets, whereas two were unsuccessful. Par-
ticipants reported the time they spent on finishing each task, as
depicted in Figure 15. The time spent on tasks varied significantly.
While some participants completed each task relatively quickly,
in just 2 or 3 min, others took much longer, spending 10–15 min
on both tasks.

We ask them for the possible reasons behind the failure to dis-
cover desired research assets. The results reported by participants
are summarized in Table 3. These results highlight some key
factors of an effective search system. These include an appro-
priate search space, sufficient result display, and an advanced
query understanding module that may assist in users’ query
reformulation.

6.3.2 | Result Presentation

We assess the usefulness of descriptions and metadata in
the result presentation by asking participants to answer

two questions with a 5-scale score (1–5, higher meaning more
useful):

• How much do you think the descriptions help you to judge
the relevance of the computational notebooks/datasets?

• How much do you think the metadata helps you to judge the
relevance of the computational notebooks/datasets?

The average usefulness score for the description of computational
notebooks is 4.2, and the metadata is 4.4, whereas the average
usefulness score for both the description and the metadata of
datasets is 4.2. These scores indicate a high usefulness of the
metadata in judging the relevance of returned research assets.

6.3.3 | User-Friendliness

We asked participants to scale 1–5 for the following statements:

• I found the system unnecessarily complex.
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TABLE 3 | Reasons provided by participants regarding the inade-
quacy of search results.

Reasons for computational
notebooks Reasons for datasets

The result page doesn’t
provide sufficient
information.

I can’t formulate a proper
query to find my desired

contents.
The search space doesn’t
cover my topic.

The search space doesn’t cover
my topic.

The search space doesn’t
cover my topic.

The result page doesn’t provide
sufficient information.

I partially found relevant
notebooks.

I partially found relevant
datasets.

I believe the development
trends of datasets and research
directions are closely related to

their level of community
involvement. Some are

relatively new, some are more
commercially oriented, and

others have lower popularity
within the open-source

community.

• I would imagine that most people would learn to use this
system very quickly.

The average score for the first statement is 1.8, meaning that the
system is not over-complex for its intended purpose. The average
score for the second statement rated by participants is 4.4, sug-
gesting their positive attitude toward the user-friendliness of our
system.

7 | Discussion

This work focuses on addressing four primary research ques-
tions. First, to extract and integrate diverse research assets from
multiple sources, we developed a data extraction and indexing
pipeline to collect data from various providers and used a central
knowledge base to merge asset indexes and user data. Second,
to effectively rank research assets, we reviewed related studies
on asset retrieval methods and utilized indexing tools to enhance
ranking efficiency and effectiveness. Third, for representing com-
putational notebooks, we performed content analysis to extract
key information and explored various representation methods.
Lastly, we integrated the proposed MRAS system into the Jupyter
Notebook environment to support seamless research workflows.

The usability tests are conducted with a small set of users, and it
can limit the generalizability of the results, as the findings might
not fully represent the experiences or behaviors of a larger, more
diverse audience. However, small-scale usability tests are still
valuable for identifying major usability issues and trends. These
tests often follow the principle that a few users can uncover the
most critical problems, but additional testing with larger or more
varied groups may be needed for comprehensive insights.

We provide some lessons learned from this study. First, gather-
ing research assets is crucial. Research assets, such as datasets
and computational notebooks constitute a small fraction of web
content. One way is crawling web pages and filtering research
assets from enormous web pages. This requires advanced crawl-
ing techniques and web markup standards such as Schema.org.10

Alternatively, we can collect a list of data sources, such as reposi-
tories, catalogs, and data portals from the community, and build
customized crawlers for registered data sources. This approach
is easy to implement and provides community-recognized
resources. However, it depends on active community participa-
tion and might miss less popular sources. Secondly, it is impor-
tant to properly define the offline and the online processes to
improve the search system’s usability. The online components
handle real-time user interactions, whereas the offline com-
ponents gather, process, and prepare data for online services.
For instance, conducting indexing during online operations can
introduce significant delays in returning search results, which
can impair the user experience.

We also share some practical challenges encountered during the
system implementation process.

Request limitation from data sources. Kaggle and GitHub,
which serve as primary sources for acquiring computational note-
books, enforce strict API request limits. Consequently, we are
compelled to download notebooks in a largely sequential man-
ner, leading to significant time consumption during the collection
process. In addition, to mitigate issues caused by request block-
ing, we employed a “sleep-and-restart” strategy to resume down-
loads once access restrictions were triggered.

Irrelevant content in computational notebooks. Computa-
tional notebooks sometimes contain excessive content, such as
embedded HTML, URLs, and static images that clutter the docu-
ment without contributing value. This can significantly increase
the size of the document and adversely affect the indexing and
ranking process. Therefore, it is essential to clean the computa-
tional notebooks prior to further use.

8 | Conclusion and Future Work

With the growing demand for the reuse of research assets like
datasets and codes, there is a need for a system that offers search
capabilities for various research resources. However, commonly
used search tools, such as general-purpose search engines like
Google Search, or code and dataset repositories like Kaggle and
Github, are inadequate in meeting the specific search require-
ments of researchers. To bridge this gap, we propose a MRAS sys-
tem. This system allows users to search for diverse research assets
to support scientific research activities throughout the entire data
science lifecycle.

In this article, we focus on two important categories of research
assets, that is, computational notebooks and datasets. We
reviewed the state of arts pertinent to computational notebook
search and dataset search and identified the gaps. We analyzed
the requirements, both functional and nonfunctional, for build-
ing an effective MRAS system. We introduced the conceptual
framework of the proposed system and provided great details
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on the implementation of the system, disclosing the underlying
technologies of the main building blocks, the data processing
process, and the data collection mechanism. We demonstrated
the system’s usefulness through three different use scenarios:
as a full-stack search engine for histopathological image anal-
ysis; embedded with external search engines via API services;
and integrated with a Jupyter environment for efficient in-site
research asset discovery and reuse.

Search behavior occurs frequently at multiple stages in the
research lifecycle. The presented MRAS system can significantly
enhance the efficiency of research activities, particularly those
involved in constructing a data analytic pipeline. By providing a
central search platform, our system can save researchers valuable
time in finding relevant research assets across different platforms
and services. Additionally, our study promotes the reusability of
research resources. With increased search efficiency, researchers
are encouraged to use existing resources instead of starting from
scratch for new projects. This not only reduces redundant efforts
but also supports the accumulation of knowledge over time. As
the MRAS system evolves and gains traction within the research
community, it has the potential for long-term impact. By con-
tinuously improving the discovery quality of research assets and
fostering a culture of resource sharing and reuse, our work can
contribute to the sustainability and growth of scientific research.

Throughout the research journey of building a MRAS system,
we have come to realize that tackling a MRAS challenge goes
beyond just a IR problem. The primary goal of such a search is
to compile various research assets into a cohesive workflow to
address scientific questions. This requires evaluating the usability
of the acquired resources and ensuring their compatibility with
different types of research assets. These insights highlight the
open issues of the research on MRAS. First, quantitative mea-
surements and metrics need to be established for assessing the
quality and reusability of research assets, which should be inte-
grated into retrieval methods to rank resources more effectively.
For example, the quality of a dataset can be evaluated based on
the completeness of its documentation, the reliability of its data
source, and internal quality indicators such as anomaly, con-
sistency, bias, and fairness. Similarly, the quality of computa-
tional notebooks can be assessed through the clarity of the textual
description, the readability and correctness of the code, and the
documentation of data sources and dependencies. Second, it is
essential to map out how different types of research assets are
related. For example, showing that dataset A is utilized by compu-
tational notebook B or that they are both used for the same task.
Understanding these connections will help researchers select the
best combination of resources for their specific research objec-
tives, ultimately improving the efficiency of their work.

In line with Open Science principles, the source code will be
made accessible on public platforms like GitHub. Our research
team includes dedicated software developers who will manage
and improve the system. Additionally, the system will continue
to evolve as new research findings emerge.
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