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ABSTRACT

Downy mildew (Plasmopara), apple scab (Venturia inaequalis), and Alternaria leaf blight are endemic diseases that affect crops
worldwide. The diseases can cause severe losses in grapes, apples and carrots when not detected and treated in an early stage.
The European Union Horizon 2020 OPTIMA project aimed to improve disease detection in the open field with an automated
detection system as part of an integrated pest management (IPM) system. In this research, we investigated the automated
detection of downy mildew in grape, apple scab in apple and Alternaria leaf blight in carrot, using a deep convolutional neural
network (CNN) on RGB color images. Detections from the CNN served as input to a Decision Support System (DSS), to precisely
locate and quantify the disease, so that appropriate and timely application of plant protection products could be recommended.
The focus of our study was on a smart camera implementation with integrated deep-learning processing in real-field conditions.
The question was whether the deep learning model, when trained on images of disease symptoms recorded in conditioned
circumstances, can also perform on images of disease symptoms recorded in field conditions. This type of evaluation is called
open-set evaluation, and so far it has received little attention in plant disease detection research. Therefore, the goal of our
research was to evaluate the performance of a deep learning model in an open-set evaluation scenario in commercial vineyards,
orchards, and open fields. The model's performance in the open-set scenario was compared to its performance in the closed-set
scenario, which involved evaluating the trained model on images similar to those used for model training. Our results showed
that the model's performance in the closed-set scenario with F1 scores of 66.3% (downy mildew), 45.1% (apple scab), and 42.1%
(Alternaria) was notably better than in the open-set scenario, with F1 scores of 34.8% (downy mildew), 5.5% (apple scab) and
4.2% (Alternaria). Uniform Manifold Approximation and Projection (UMAP) analysis proved the significant difference between
the open-set and closed-set data sets. Our result should encourage other researchers to carry out similar open-set evaluations to
get realistic impressions of their model's performance under field conditions. A subset of our image data set has been made
publicly available at https://doi.org/10.5281/zenodo.6778647.

This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly
cited.
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1 | Introduction

The global population is expected to reach 9.8 billion by 2050
(United Nations 2015). To feed this population, agricultural
production will need to increase heavily over current levels,
with an efficient use of resources. Furthermore, the total crop
yield reduction caused by all crop pests and diseases reaches
40% (Oerke et al. 1994), causing the global food security to be
undermined (Chandler et al. 2011). The use of traditional plant
protection products to protect crops against pests and diseases
unfortunately has negative impacts on the environment, bio-
diversity, and human health and should therefore be largely
reduced. Ways to make crop protection more sustainable are
required and integrated pest management (IPM) is promoted as
the best way forward making a difference in this effort. IPM
emphasizes the growth of a healthy crop with the least possible
disruption to agro-ecosystems (Lamichhane et al. 2016). In IPM
systems approach that combines different crop protection
practices is implemented. It discourages the development of
populations of harmful organisms and keeps the use of plant
protection products to levels that are economically and ecolo-
gically justified, resulting in reduction or minimization of risks
to human health and the environment. The EU Horizon 2020
OPTIMA project aimed to develop an advanced IPM framework
that consist of 4 main pillars (Prediction, Detection, Selection
and Application) (Balafoutis et al. 2019). The OPTIMA project
will focus on three plant diseases that require large quantities of
fungicides to be applied in numerous spraying applications.
These plant diseases are downy mildew (Plasmopara viticola) in
grapes, apple scab (Venturia inaequalis) in apples, and Alter-
naria leaf blight in carrot. All three diseases are endemic dis-
eases that affect fruits and vegetables across the world. The
diseases can cause severe losses in grapes, apples and carrots
when not detected and treated in an early stage. Treatment can
be done by spraying either copper sulfates or fungicides onto
the crop before the fungi have sporulated (Ash 2000;
Vaillancourt and Hartman 2000). However, excessive spraying
has led to a rise in disease resistance and has a negative impact
on the environment (Wightwick et al. 2012). Due to the large
field sizes, the visual inspection of each leaf is too labor
intensive, and instead machine vision could be useful. As part
of the OPTIMA project a plant disease detection system is de-
veloped (Polder et al. 2021), based on machine vision using RGB
color and spectral cameras (Peller et al. 2021). The detection
system involves the precise localization and quantification of
the infections. Predictive computer models implemented in a
Decision Support System (DSS) use the disease detection to
improve the disease pressure estimation to treat the diseases
timely and precisely. Combined with improved spraying tech-
nology (Grella et al. 2022; Zwertvaegher et al. 2022) and bio-
logical plant protection products (Natal-da Luz et al. 2019) a
novel environmentally friendly IPM framework is developed.

1.1 | Related Work

Automatic plant disease detection using traditional image pro-
cessing techniques has been explored for many years
(Lindow 1983). Due to the nature of machine vision cameras
with sensitivity that mimics the human eye, a lot of work has
been done on automatic detection of visible symptoms (Garcia

and Barbedo 2013). Kole, Ghosh, and Mitra (2014) presents a
technique for detection of downy mildew disease in grape leaves
based on fuzzy importance factor. The proposed technique uses
digital image processing operations and fuzzy set theory con-
cept with an 87.09% success rate. Using the advanced symptoms
of apple scab on fruits, Agarwal, Sarkar, and Dubey (2019) has
been able to use traditional machine vision to correctly identify
diseased fruits. A system based on texture features an a Random
Forest classifier achieved best classification accuracy of 86%,
while using images of grapes leaves with complex background
which are captured under an uncontrolled environment
(Sandika et al. 2016). Waghmare et al. (2016) proposed a fractal
based texture feature method combined with a multi class
Support Vector Machine classifier to detect downy mildew &
black rot in grapes with an accuracy of 96.6%. Recently, also
spectral imaging has been applied for disease detection using a
large number of smaller wavelength bands over a range larger
then the visible spectrum (Mahlein et al. 2018; Mishra, Polder,
and Vilfan 2020).

Recently, deep learning has evolved as a new research direction
in the field of machine learning and has been widely applied to
various tasks such as computer vision, image classification,
object detection, video data analysis, speech recognition, and
multimedia retrieval, achieving excellent results (LeCun,
Bengio, and Hinton 2015). Also in the field of agriculture and
specifically plant disease detection a lot of research has been
done. Kamilaris and Prenafeta-Boldu (2018) performed a survey
of 40 research efforts that employ deep learning techniques,
applied to various agricultural and food production challenges.
Comparison with traditional machine learning methods indi-
cated that deep learning provides high accuracy, outperforming
existing commonly used feature-engineered image processing
techniques. From the 40 papers of this review, only 3 were on
disease detection (Amara, Bouaziz, and Algergawy 2017;
Mohanty, Hughes, and Salathé 2016; Singh et al. 2016) which
indicates that disease detection is a challenging task, compared
to other applications. Dhaka et al. (2021) performed a survey on
the prediction of plant leaf diseases using Convolutional Neural
Networks (CNNs), which are image-based deep learning models
(LeCun, Bengio, and Hinton 2015). The research of Dhaka et al.
(2021) focused on the use and size of the data sets, image pre-
processing techniques, CNN architectures, CNN frameworks,
performance metrics, and experimental results of different
models. The authors concluded that existing research focuses
on disease identification and classification at the image level,
but currently lack localization of the diseased regions in the
image. Ahmad, Saraswat, and El Gamal (2023) presents a
comprehensive overview of 70 studies on deep learning appli-
cations and the trends associated with their use for disease
diagnosis and management in agriculture, focusing on provid-
ing a detailed assessment for developing deep learning-based
tools in the form of seven key questions, helping to address
existing research gaps. Liu et al. (2018) propose an accurate
identifying approach for apple leaf diseases based on CNNs
using an initial data set of 1053 images of cut apple leaves
captured on a gray background.

A lot of research has been done utilizing the openly available
PlantVillage data set (Hughes and Salathe 2015), which consists
of 54,306 images of 14 crop species with 26 diseases (or healthy)
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(Mohanty, Hughes, and Salathé 2016; Too et al. 2019; Pradhan,
Kumar, and Mohan 2022). For the crops of interest to the
OPTIMA project, only apple leaves with scab and healthy are
represented in PlantVillage. Besides healthy grape images and
some other diseases, no downy mildew-infected grape leaf
images are available in PlantVillage and carrot is not present in
PlantVillage.

Due to the lack of grape downy mildew in public data sets,
limited work is done on its detection. Zhu et al. (2020) proposed
an automatic detection method for five grape leaf diseases,
including downy mildew, based on image analysis and back-
propagation neural networks, yielding a 90% classification
accuracy for downy mildew. Grapevine yellow disease was
detected in a data set of 322 images and six diseases, including
downy mildew, using a linear support vector machine (SVM)
that classified features from a pre-trained CNN with 95.23%
accuracy (Ampatzidis et al. 2020). Liu et al. (2020) developed
and trained a novel CNN-based model, from scratch. This
model had an overall accuracy of 97.22% on a total of 7669
images of grape leaves from which 910 showed downy mildew
symptoms. The lack of sufficient annotated images can also be
solved by using data augmentation using generative adversarial
networks (Chen and Wu 2022).

For detection of apple scab more work can be found in the
literature, initiated by the existence of scab infected and healthy
leaf images in PlantVillage. Furthermore, Kaggle provides a
public data set built for the Plant Pathology Challenge for the
CVPR 2020 FGVC7 workshop (Thapa et al. 2020). This data set
consists of 3651 high-quality annotated RGB images showing
symptoms of cedar apple rust and apple scab, as well as leaves
displaying complex disease symptoms and healthy apple leaves.
Ayaz et al. (2021) investigated different CNN applications to
apple disease classification using deep generative images to
obtain higher accuracy than existing models (i.e., ResNet,
SqueezeNet, and MiniVGGNet). They are using a subset of the
Kaggle data set of 319 images, from which 80 healthy and 79
apple scab. Yan et al. (2020) proposed an improved model based
on VGGI16 to identify apple leaf diseases. The experimental
results show that the overall accuracy of apple leaf classification
based on the proposed model can reach 99%. Compared with
the classical VGG16, the recognition accuracy is improved by
6.3%. The data set in this work is extracted from the “2008 ‘Al
Challenger’ Global Challenge” and includes 2446 pictures of cut
apple leaves imaged on a uniform background, where 1340 of
them are healthy and 411 are scab. Li, Jing, and Shi (2022)
proposed an apple disease recognition method based on mod-
ified CNNs, using the Inception module, global average pooling,
and a modified softmax classifier to improve the recognition
performance. A series of experiments were conducted on the
Kaggle and YangLing apple disease image data sets. The Yan-
gling data set contains 450 diseased leaf images of three kinds of
disease: Alternaria leaf spot, Mosaic, and Rust. Leaves were
picked in fields and imaged in the laboratory, with one leaf per
image, as flat as possible on a simple gray background. Detec-
tion accuracy is good on both data sets, but field application is a
challenging task, since contrary to this experiment field images
will contain a lot of background and noise, submerging the
disease spot features in the images, resulting in degradated
disease detection and recognition. Many other papers on scab

detection also use images from Kaggle or PlantVillage (Subetha,
Khilar, and Christo 2021; Khan et al. 2020; Darshan 2020;
Bansal, Kumar, and Kumar 2021; Kodors et al. 2021). In con-
trast, Singh et al. (2022) acquired a database of 50,000 images of
leaves from apple farms of Himachal Pradesh (H.P) and Ut-
tarakhand (India). In this research work, a CNN with 19 con-
volutional layers has been proposed for effective and accurate
classification of Marsonina Coronaria and apple scab from
apple leaves.

Presumably due to the lack of Alternaria leaf blight infected
carrot leaf images in public data sets, no research could be
found on imaging-based disease detection methods with tradi-
tional or deep learning based machine learning methods.

Although many of the papers mentioned above show prom-
ising results on images from public data repositories, care
needs to be taken when interpreting the results. Recently, it
has been demonstrated that images in the PlantVillage data
set suffer from background and capture bias. A model trained
on only eight background pixels achieved 49.0% accuracy,
well above the random guessing accuracy of 2.6%
(Noyan 2022). Performance of trained networks based on this
data when implemented in real-time field detection systems
will certainly drop notably.

1.2 | Goal of This Paper

Although that significant advances have been made in the field
of image-based plant disease detection, it must be acknowl-
edged that in previous studies the disease detection was per-
formed on fixed-sized data sets with limited variation. Besides
that, in previous studies, the evaluation was done in a so-called
closed-set evaluation scenario. A closed-set evaluation means
that the images used during model testing are similar to the
images used during model training (Stinderhauf et al. 2018). A
risk when testing in a closed set evaluation scenario, is that it is
not known whether the trained model can perform on new
types of images taken with different hardware under different
field conditions. Therefore, this study examines whether a
model trained on images of disease symptoms recorded in
conditioned circumstances can also perform on images of dis-
ease symptoms recorded in field conditions. This type of eva-
luation is called open-set evaluation. To date, open-set
evaluation has received little attention in plant disease detection
research. The goal of this research was to evaluate the plant
disease detection performance of a deep learning model in a
closed-set and open-set evaluation scenario in commercial
orchards, vineyards, and open fields. Our research focused on
using a smart camera system for detecting downy mildew in
grapes, apple scab in apples, and Alternaria leaf blight in car-
rots. The smart camera system consisted of an RGB camera with
an embedded processing unit that could directly process an
image after it was acquired. In our research, the smart camera
was equipped with a deep learning object detection model.
Besides the smart camera, the integrated system was equipped
with a Global Navigation Satellite System (GNSS) for localiza-
tion and a cloud connection to a Decision Support System (DSS)
for follow-up actions (such as spot-specific spraying). In sum-
mary, our paper contributes the following:
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1. A description of the development of a smart camera-based
plant disease detection system on leaf-level, with GNSS
localization and cloud connection to a decision support
system.

2. A performance evaluation of this integrated smart camera
system in closed-set and open-set evaluation scenarios in
three realistic food production environments, including an
outline of the challenges that this system faces in such
complex and challenging environments.

3. The public release of three subsets of our data sets
(including annotations): https://doi.org/10.5281/zenodo.
6778647.

This paper is organized as follows: the overall system, hardware
and software components of the smart camera system are
described in Section 2. Section 3 describes the setup for the field
evaluation. Section 4 describes the performance of the system in
the commercial vineyards, orchards, and fields. Section 6 con-
cludes this work with the research conclusions and recom-
mendations for future research.

2 | System Architecture
2.1 | Overall Smart Sprayer System Overview

The smart camera system was part of a larger IPM approach, as
shown in Figure 1. In phase one, images are acquired and
analyzed by the smart camera. The outputs are sent to the DSS.
In phase two, the DSS creates a prescription map for the smart
sprayer, based on the outputs of the smart camera system, and
the historical and meteorological data. In phase three, the
prescription map is uploaded onto the on-board computer of the
smart sprayer, so that the spraying action can be executed. In
IPM, variable-rate sprayers, which adjust the application rates
using flow controllers based on information from real-time or
sensor-guided canopy detection systems, or disease detection
systems either using a DSS or in real time as described in this
paper, are able to precisely spray only spots where needed
(Grella et al. 2022).

The innovative agriculture smart sprayer integrates advanced
vision systems with precise actuation mechanisms to optimize

pesticide application. Utilizing either CANBUS messages or
custom serial messages, this system facilitates seamless data
exchange between the sprayer's electronic control unit (ECU)
and the embedded processing unit of the vision system. Before
each spraying session, prescription maps, detailing areas of
infestation, are uploaded to the ECU. As the spraying operation
commences, real-time GPS data is harnessed to pinpoint the
sprayer's location relative to these infestation zones. Whenever
the sprayer's GPS coordinates align with these predefined
infestation areas, the sprayer ECU administers the maximum
prescribed rate. This targeted application is achieved by sending
actuation commands ranging from 0% to 100% duty cycle to the
pulse width modulation (PWM) system for grapevines and
electric solenoid valves for apples. When the sprayer traverses
outside infestation zones, different application strategies are
selected, depending on the epidemiological severity and agro-
nomic conditions, for example spraying 80% of the maximum
application outside the infestation zones, or even shutting off
the nozzles outside the diseased parts. Crucially, the final pes-
ticide dosage rate is not solely based on infestation data; it is
also influenced by ultrasound real-time foliage estimation sen-
sors, which both sprayers are equipped with, ensuring an
optimal balance between efficacy and conservation.

2.2 | Hardware Design Overview

The smart camera consisted of an RGB camera, an 8-mm
C-mount lens, and an embedded NVIDIA Jetson TX2 GPU unit
in a small IP67 enclosure. Two types of smart camera were used
in our research: a NEON-201B-JT2-X with a 1.2 Mpix global
shutter camera (1280 X 960 pixels) and a NEON-202B-JT2-X
with a 1.9 Mpix global shutter camera (1600 X 1200 pixels). The
size and industrial specifications of the two smart cameras
make them ideal for installation on a tractor or trolley. The
network connection with the DSS and GNSS was established
with a RUTX11 router and puck 5 antenna. The router was
programmed to use a wired connection or WIFI when available
and switched to mobile data when needed. As a result, the
detections were uploaded in real time if there was a mobile
network available or uploaded at a later time when WIFI
became available. Other key features were the GALILEO loca-
tion system and online platform for remote support. An
ARCDIS-110APRG 10" capacitive touchscreen was added to

Phase 1 Phase 2 Phase 3
Data collection Creating prescription Spraying
map

s
1

Smart camera

a

g

FIGURE 1 | General overview of the proposed system. [Color figure can be viewed at wileyonlinelibrary.com]
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control the system and give the operator visual feedback of the
status. All internal connections were done through a HyperD-
rive HD-G218 USB-C HUB, with an 2TB Solid State Disk (SSD)
to store the images for retraining of the deep learning models.
The smart camera system consumed 42 W (12V/3.5A) without
screen and 48 W (12 V/4 A) with screen. This meant that a car
battery with 60Ah capacity could power the system for a
full day. To protect against power surges of starting an engine a
wide input 9-18VDC to 12VDC power converter and car char-
ger was used to power the system. Figure 2 shows a schematic
overview of the smart camera design, Figure 3 shows the
components placed on a trolley that can be attached to a tractor,
for real-time field measurements.

%

\
Smartcamera Touchscreen \

Y

s U
//WIRED/WIFI

- S/ /46
ﬂ! = =
12 - 24V 7 ,\L“ ®
i \\//

DC/DC ' WLt N
convertor L @
SSD USB hub Rutx11

Control unit

FIGURE 2 | Hardware overview, the USB hub in the center con-
nects the smartcamera to all the peripherals: the SDD for storage,
touchscreen for the user interaction and wireless connectivity and
GNSS through the RUTX11. [Color figure can be viewed at
wileyonlinelibrary.com]

2.3 | Software Design

The smart camera ran under the Linux operating system
(Ubuntu 18.04 LAT with Jetpack 4.4 (R32.4.3)). The image
acquisition and analysis software was activated by double-
clicking a program icon on the main screen. Configuration was
done with YAML config files (Oren, Clark, and Ingy 2021). The
measurement protocol was that the smart camera scanned and
processed the entire field in real time. To accomplish this, a
multi-thread software architecture was used to speed the pro-
cessing pipeline up as much as possible (Table 1). Multi-
threading enabled to execute several threads at the same time,
making optimal use of the CPU capacity of the smart camera.
The software threads included image acquisition, image pro-
cessing, storing GNSS locations and sending the system's output
to the DSS. With this multi-threading, driving speeds of up to
5km/h could be achieved.

The required time for the image analysis varied slightly from
image to image. The image acquisition and storing of GNSS
locations were executed at fixed intervals. The GNSS locations
were stored in a ring buffer together with a timestamp. The
location-timestamp fusions were used to compute the direction
and speed of the trolley. With this information the current
position was extrapolated to achieve more accurate localization
between the GNSS pulses. Reliability of the GNSS coordinates
was determined from the GNSS FIX parameter and the number
of available satellites whose values were transferred by the
GNSS receiver. The camera thread acquired images at a higher
rate than the deep learning thread could process them. There-
fore, a deque was used as buffer. The deep learning thread
processed the images in a first in, last out fashion: this guar-
anteed that it always processed the most recent image. The
deque had a fixed size and automatically removed the oldest
image when it was full. For the analysis of the deep learning
performance, it was important to save all results, therefore a

FIGURE 3 | The smart camera system deployed on a trolley that can be attached to a tractor. (a) Side view. (b) Front view. [Color figure can be

viewed at wileyonlinelibrary.com]
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TABLE 1 | Overview of software threads.

Thread Task Description

1 GNSS Receive GNSS coordinates

2 Camera Acquire images from camera

3 Decision Run classification or detection model

4 Postprocessing Group classification results and store the results on the SSD

5 Upload to DSS This thread is activated once every 15 min to upload data to the DSS, batch uploads are used to

lower the server load on the DSS

DSS

|

GPS location Upload results
Synchronized
Th h SSD
ringbuffer TOUEITSS [
Camera — Deeplearning —— Save results
Deque Queue
FIGURE 4 | Overview of the software structure. [Color figure can

be viewed at wileyonlinelibrary.com]

queue was used as buffer. The queue increased in size when
new items were added and shrunk again when items were re-
moved. At a configurable interval, all results and locations were
transmitted to the DSS through an application programming
interface (API).

Figure 4 shows a block diagram of the software structure.
Figure 5 shows the screen of the smart camera system with the
camera image, the disease detections and other useful
information.

2.4 | Deep Learning

The three smart camera systems were equipped with an open-
source object detection deep learning network, called You Only
Look Once version 5 (YOLOv5) (Jocher 2020). Deep learning
networks are currently evolving at a rapid pace. There are
currently improved versions of YOLO available, but at the time
our field experiments were conducted, YOLOvV5 was the state-
of-the-art network provided by Ultralytics, and therefore inte-
grated on the smart camera. Object detection combines
localization and classification of individual diseases in an
image. We chose to use object detection instead of image clas-
sification because in real scenarios, an image may contain a mix
of healthy and diseased regions or regions of multiple diseases.
Image classification would struggle to provide detailed infor-
mation when multiple diseases are present in an image, while
object detection can handle such situations. Therefore, we
considered object detection as a more scalable technique for
future extension to other diseases within a crop.

YOLOVS5, an extension of YOLO (Redmon et al. 2015), is a fast
and robust one-staged object detection model that spatially
separates bounding boxes and associated class probabilities. The
entire detection pipeline is implemented as a single network

and can be optimized end-to-end directly based on the detection
performance. An advantage is that YOLOVS is less likely to
predict false positives in the background, which our application
takes great advantage of.

The YOLOVS software was deployed in Python (version 3.6). For
the deep learning functionalities, the Pytorch library was used
(version 1.7.0), together with Torchvision (version 0.8.1). TensorRT
(version 7.1.3.1) was used to further speed up the image analysis.
With TensorRT, the average image analysis time was 0.45 s on both
types of smart cameras (based on analyzing rescaled images of
640 x 640 pixels). The YOLOV5 object detection's were done in real
time on the smart cameras. YOLOvV5 was trained on images where
the diseased leaves were annotated with an enclosing bounding box.
The image annotation was performed by crop experts who used the
open-source Labellmg program (Tzutalin 2020).

3 | Field Evaluation
3.1 | Field Campaign

Three smart camera systems were deployed in 2021 in Italy,
Spain, and France. An commercial grape vineyard, apple
orchard, and carrot field where used to ensure realistic field
conditions. During the image acquisition there was no rain, but
there was dew as the operators started to work in the early
morning. The details of the field campaign can be found in
Table 2 and Figures 6 and 7.

3.2 | Open-Set and Closed-Set Evaluation

From the acquired field images (Table 2), three smaller subsets of
images were selected by the crop experts. These subsets were
selected from the most diverse images of the total data set; hence, it
is expected to be a good representation of a vast variety of field
conditions. On these subsets, both the open-set and closed-set
evaluations were performed. In the open-set evaluation, YOLOV5
was trained on images taken with different types of cameras in
different cultivation conditions and different years (Figure 8a). In
this evaluation scenario, the trained model was tested on images
taken with the smart camera during the 2021 field campaign
(Section 3.1). This type of evaluation enables us to test how a model
trained on images taken under different conditions would perform
when deployed on a smart camera. In the open-set evaluation, the
transfer learning was executed with the network weights of a YO-
LOv5 network that was pretrained on the Microsoft COCO data set
(Lin et al. 2014).
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Optima - Early detection system

MAXN Ty B = ) 1053 I
GPS, disk, image info:
Time: 10:53:44
GPS time: 08:53:43.095874
GPS quality: fixed
Latitude: 45.064965
Longitude: 7.591326
Moving: False
Hdop: 0.7
satellites: 7
Free mem (Jetson): 9.9 gb
Free mem (hdd): 1912.1 gb
Image analysis time: 0.17s
Detected class: downy milde
Hits: 2
Probability: 0.56

Stop program

FIGURE 5 | Screen of the smart camera system during deployment. The purple-colored boxes are the disease detections from the deep learning

model. [Color figure can be viewed at wileyonlinelibrary.com]

TABLE 2 | Details of the field campaign.

Grape (Downy Mildew)

Apple (Apple Scab) Carrot (Alternaria)

Location
Acquisition days
Runtime (min)
Smart camera
Resolution (pixels)
Camera perspective
Distance to crop (m)
Field of view (m)

Images acquired

Canelli (Italy)
14
1594
NEON-201B-JT2-X
1280 X 960
Side view
0.7
0.5%0.4
217,090

Epila (Spain) La Barp (France)
5 3
217 91
NEON-202B-JT2-X NEON-201B-JT2-X
1600 x 1200 1280 % 960
Side view Top view
0.6 0.8
0.4x%0.3 0.6 0.4
21,378 16,736

FIGURE 6 | Smart camera system deployed in an Italian grape
vineyard for the detection of downy mildew. [Color figure can be

viewed at wileyonlinelibrary.com]

In the closed-set evaluation, YOLOvV5 was trained on images
that were taken with the smart camera during the 2021 field
campaign (Figure 8b). For equal comparison, the test images
were the same as the test images used during the open-set

FIGURE 7 | Smart camera system deployed in a Spanish orchard
for the detection of apple scab. [Color figure can be viewed at
wileyonlinelibrary.com]
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evaluation (refer to Figure 8a,b). For practical reasons, in the
closed-set evaluation, the transfer learning was executed with
the weights of the model that was trained in the open-set eva-
luation, which was initially pre-trained on the COCO data set.
This pre-training method contributes to the generalization
performance of the closed-set evaluation.

3.3 | YOLOvVS5 Training Details

YOLOVS5 was trained on the images of the open-set and closed-
set data set. The YOLOVS5 training parameters were identical
between the data sets. YOLOVS5 was trained with three types of
data augmentation to improve the generalization performance.
The following default YOLOv5 augmentation techniques were
used: color adjustments (random changes to the Hue, Satura-
tion, and Value of the images), image flips (right, left, up, down)
and image mosaicking (merge multiple images in 1 image). The
training was done using RGB images that were resized to
640 X 640 pixels. This resolution was found to be the best
compromise between detection performance and inference
speed on the smart camera. YOLOvV5 was trained with a batch
size of 24 images for a maximum of 300 epochs. Because YO-
LOvVS5 is equipped with a software procedure that automatically
saves the weights with the best performance on the validation
data set, this software procedure guaranteed that the best-
performing model weights were eventually used for model
deployment.

3.4 | Evaluation Metrics

The evaluation metrics for the open-set and closed-set scenario,
were calculated using thresholds on the YOLOV5 confidence
level, the non-maximum suppression (NMS), and the Intersec-
tion over Union (IoU). The confidence level gives an impression
of how confident YOLOVS5 is in localizing and classifying the

Train Val Test Train Val Test
[310] [as | § ] 35| 235 | [ 35 | §[35]
‘. |1250| ’122‘ ‘48‘ . ‘409| |47‘ |48l
o (o] [ ] i[aa] J 2] [a3]i[a]
® [ 9 a8 %

2019 2020 2021 2021 2021

(a) (b)

FIGURE 8 | (a) Open-set evaluation. (b) Closed-set evaluation.

The numbers in the boxes represent the number of images. Note that
the test images in the open-set and closed-set evaluation were the
same. The corresponding image acquisition devices and years are
expressed in the lower part of the figure. [Color figure can be viewed
at wileyonlinelibrary.com]

TABLE 3 |

object. NMS is a filtering technique to select the most appro-
priate bounding box from a group of overlapping bounding
boxes. IoU is the evaluation metric for the overlap between the
ground truth bounding box (Bg) and the predicted bounding
box (B,), Equation 1. The IoU varies between zero (no overlap)
and one (full overlap), and it highlights the classification and
localization accuracy of the YOLOvS5 model.

tou = Je N By

= : 1
By UB, W

For both open-set and closed-set evaluation, the thresholds for
the IoU and NMS were, respectively, 0.5 and 0.3. The NMS
threshold of 0.3 meant that YOLOV5 could output overlapping
bounding boxes up to a maximum of 0.3 IoU. The confidence
threshold values were obtained from the precision-recall curve
of the individually trained YOLOv5 models. By inspecting the
precision-recall curve, it was possible to choose the most
appropriate confidence threshold by choosing the best point on
the PR curve. This way we prevent too skewed behavior (either
too many false positives or too many false negatives), and
therefore evaluate the trained models in the best possible way
on the test images of the smart camera. The used confidence
thresholds are summarized in Table 3.

With the three thresholds, the total number of true positives
(TP), false positives (FP), and false negatives (FN) were deter-
mined. A true positive (TP) is a diseased leaf that is detected as
diseased leaf. A false positive (FP) is background that is detected
as diseased leaf. A false negative (FN) is a diseased leaf that is
not detected. With the total number of true positives, false po-
sitives, and false negatives, the precision (Equation 2) and recall
(Equation 3) were calculated. The precision is the percentage of
correct detections. The recall measures how well YOLOVS5 can
detect all diseased leaves. The harmonic mean between the
precision and recall is expressed by the Fl-score (Equation 4).

Precision = L, )
TP + FP
Recall = L, 3)
TP + FN

F1 — score — 2 - Prfe(fision . Recall. @
Precision + Recall

4 | Results

The next three sections describe the performance for detecting
downy mildew in grapes (Section 4.1), apple scab in apples
(Section 4.2) and Alternaria leaf blight in carrots (Section 4.3)
for the open-set and closed-set evaluation.

YOLOVS5 confidence thresholds that were used to obtain the evaluation metrics.

Open-set evaluation

Closed-set evaluation

Grape (Downy Mildew)
Apple (Apple Scab)

Carrot (Alternaria)

0.5

0.05

0.4

0.4
0.3
0.4
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TABLE 4 | YOLOVS5 performance for detecting downy mildew in grapes in the open-set and closed-set evaluation scenario.

Open-set evaluation

Closed-set evaluation

Ground truth Downy mildew Healthy Recall Downy mildew Healthy Recall
Downy mildew 47 58 44.8% 61 44 58.1%
Healthy 118 a a 18 a a

Precision 28.5% @ 34.8%" 77.2% 2 66.3%"

*With a one-class object detector, this comparison is not possible.
®Fl-score.

()

(b)

FIGURE 9 | Object detection outputs of YOLOVS5 on the same test image with two downy mildew infected leaves. (a) In the open-set evaluation, YOLOvV5
detected both infected leaves, however it also produced two detections on healthy leaves (false positives). (b) In the closed-set evaluation, YOLOv5 detected
both infected leaves, without false positives. TP and FP are abbreviations of respectively true positive and false positive. [Color figure can be viewed at

wileyonlinelibrary.com]

4.1 | Downy Mildew Detection in Grapes

Table 4 summarizes the YOLOVS performance for detecting downy
mildew in grapes in the open-set and closed-set evaluation. In the
open-set evaluation, the precision was 28.5% and the recall was
44.8%, resulting in an F1-score of 34.8%. In the closed-set evaluation,
the Fl-score increased to 66.3%. The biggest performance
improvement was due to an increased precision score (77.2%), as
the number of false positives decreased by 100 (18 instead of 118).
The number of true positives increased from 47 to 61, resulting in a
recall of 58.1%. Note that Table 4 lacks information on the true
negative rate and negative predictive value, because YOLOvV5 was
trained as a one-class object detector for downy mildew (and not
healthy). Figure 9 visualizes the performance difference between
open-set and closed-set evaluation on the same test image from the
smart camera.

4.2 | Apple Scab Detection in Apples

Table 5 summarizes the YOLOvS5 performance for detecting apple
scab in apples in the open-set and closed-set evaluation. In the
open-set evaluation, the precision was 7.1% and the recall was
4.5%. The Fl-score was 5.5%. This low performance was caused by
a combination of leaf occlusion, different illumination conditions,
motion blur, and the application of liquid copper sulfate onto the
apple leaves to prevent the spread of the apple scab fungi (in the
previous years, there was no application of copper sulfate). Copper
sulfate caused the apple leaves to have a reflective coating and this
caused more reflections of sunlight, a situation the open-set

detection model was not trained on. By retraining the model on
these images in the closed-set evaluation, the F1l-score considera-
ble improved to 45.1%. Although this value is still suboptimal, it is
probably closer to the maximum performance that could have
been achieved given the complexity of the image scenes. In the
closed-set evaluation, the precision was 45.5% and the recall was
44.8%. Figure 10 visualizes the performance difference between
open-set and closed-set evaluation on the same test image from the
smart camera.

4.3 | Alternaria Detection in Carrot

Table 6 summarizes the YOLOv5 performance for detecting Alter-
naria in carrot in the open-set and closed-set evaluation. In the
open-set evaluation, the precision was 3.6% and the recall was 5.1%.
The Fl-score was 4.2%. The low performance was caused by the
inability of the open-set model to detect the very tiny and subtle
Alternaria lessions in the carrot leaves. Retraining on similar
symptoms in the closed-set scenario, increased the Fl-score to
42.1%. The precision was 47.9% and the recall was 37.6%. Figure 11
visualizes the performance difference between open-set and closed-
set evaluation on the same test image from the smart camera.

5 | Data Set Differences

Given the poor performance of the open-set evaluation compared to
the closed-set evaluation, we examined the differences between the
data sets using Uniform Manifold Approximation and Projection
(UMAP). UMAP (McInnes, Healy, and Melville 2020) is a nonlinear
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TABLE 5 | YOLOVS performance for detecting apple scab in apples in the open-set and closed-set evaluation scenario.
Open-set evaluation Closed-set evaluation
Ground truth Apple scab Healthy Recall Apple scab Healthy Recall
Apple scab 6 128 4.5% 60 74 44.8%
Healthy 78 @ a 72 a a
Precision 7.1% a 5.5%° 45.5% @ 45.1%"

*With a one-class object detector, this comparison is not possible.
b F1-score.

FIGURE 10 | Object detection outputs of YOLOV5 on the same test image with four apple scab infected leaves. Due to the application of copper
sulfate, there was a higher reflection of sunlight, making it harder to detect the apple scab. (a) In the open-set evaluation, YOLOVS5 detected none of
the infected leaves, and it produced four detections on healthy leaves (false positives). (b) In the closed-set evaluation, YOLOVS5 detected three of the
four infected leaves, without false positives. TP, FP, FN are abbreviations of respectively true positive, false positive, and false negative. [Color figure
can be viewed at wileyonlinelibrary.com]

TABLE 6 | YOLOVS performance for detecting Alternaria in carrot in the open-set and closed-set evaluation scenario.
Open-set evaluation Closed-set evaluation
Ground truth Alternaria Healthy Recall Alternaria Healthy Recall
Alternaria 9 169 5.1% 67 111 37.6%
Healthy 238 @ a 73 a a
Precision 3.6% 2 4.2%" 47.9% 2 421%°

*With a one-class object detector, this comparison is not possible.
®Fl-score.

FIGURE 11 | Object detection outputs of YOLOVS5 on the same test image with five Alternaria infected leaves. (a) In the open-set evaluation,
YOLOVS did not detect any of the infected leaves, and it also produced three detections on healthy leaves (false positives). (b) In the closed-set
evaluation, YOLOV5 detected three of the five infected leaves. There were no false positives. TP, FP, FN are abbreviations of, respectively, true
positive, false positive, and false negative. [Color figure can be viewed at wileyonlinelibrary.com]
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FIGURE 12 | UMAP image embedding visualization for the grape downy mildew data set. The colored points represent the image embeddings
for each year. Purple = 2019 (open set), gray = 2020 (open set), red = 2021 (closed set). The images next to the clusters are example images from these

data sets. [Color figure can be viewed at wileyonlinelibrary.com]

FIGURE 13 | UMAP image embedding visualization for the apple scab data set. The details of the clusters are similar as the ones from Figure 12.

[Color figure can be viewed at wileyonlinelibrary.com]

dimensionality reduction technique that reveals complex patterns in
high-dimensional data by constructing a graphical representation of
the underlying data structures in lower dimensions. In these visu-
alizations, clusters of data points that are closer together share
common characteristics, unlike the more distant clusters. By
applying UMAP to the three data sets, we can graphically visualize
whether YOLOv5 might struggle with data from different data sets.
This UMAP analysis implicitly explains why the open-set evaluation
results are significantly worse than the closed-set evaluation results.

We used the FiftyOne software library to produce the UMAP
visualization (FiftyOne 2023). Figures 12-14 visualize the data
set differences for grape downy mildew, apple scab, and carrot

Alternaria, respectively. What is prominent in the three figures
is that the open-set data sets (the purple- and gray-colored
clusters) are considerably farther away in the UMAP than the
closed-set data set (red-colored cluster). From the UMAP
analysis, it is clear that the visual difference between the images
of the open-set and closed-set data sets was notably (also con-
sidering the example images in Figures 12-14).

6 | Conclusions and Future Work

The fact that there were no hardware and software malfunc-
tions during the combined 31-h test period, shows that the
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FIGURE 14 | UMAP image embedding visualization for the carrot Alternaria data set. The details of the clusters are similar as the ones from

Figure 12. [Color figure can be viewed at wileyonlinelibrary.com]

proposed smart camera system has the potential for robust
disease detection in commercial vineyards, orchards, and fields.
What this study also demonstrated is that testing in so-called
open-set evaluation can produce worse results than testing in
closed-set evaluation. A possible explanation is that the data
sets were so different, because different cultivation methods and
image acquisition methods were used. The primary differences
in the images include variations in leaf color and size, infected
region color and size, and background color and contrast. These
differences are caused by the use of different cameras (cell
phone vs. smart camera), the orientation of the camera due to
various cultivation methods, the distance of the camera from
the crop, and differing lighting conditions, such as sunlight
from the front, top, or back. This observation was also clearly
supported by our UMAP analysis.

Despite the poorer results, an open-set evaluation can give more
realistic indications on how a deep learning model would per-
form when it was trained in conditioned circumstances and
deployed in the field without retraining. This probably also
applies to models trained on publicly available data sets such as
PlantVillage. Although literature shows good performances on
datasets like PlantVillage, implementation of the trained models
in real field applications will certainly decrease the perform-
ance, due to changes in field conditions, where acquired images
suffer from leaf occlusion, different illumination conditions and
motion blur. In field conditions, shadows and highlights are
caused by the position of the camera with respect to the sun
which differs with the position of the crop and during the day.
Also the color of the sunlight is different over the day and the
season and depends on the weather conditions. The placement
of our camera on a moving platform will lead to the occurrence
of motion blur in cases where there is a disparity between the
camera shutter speed and the speed of the platform. In sum-
mary, real field images usually differ considerable from images
of conditioned data sets that often only contains images of
detached leaves against a fixed background, acquired using

controlled illumination in the lab, something that was also
clearly demonstrated by our UMAP analysis. Furthermore, care
need to be taken when selecting a public data set for training, as
these data sets can suffer from bias. For instance 49% accuracy
was reached by training a machine learning model using only 8
pixels from the PlantVillage image backgrounds (Noyan 2022).
Our study will hopefully encourage other researchers to also
test their deep learning models in similar open-set evaluation
scenarios for field application.

After retraining the model on the images from the smart cam-
era, the performance notably improved. Especially for detecting
downy mildew in grapes, the YOLOvVS5 performance in the
closed-set scenario was promising. For detecting apple scab in
apples and Alternaria leaf blight in carrot, the YOLOVS5 per-
formance was suboptimal, and this was mainly due to the
reduced visibility of the disease symptoms due to the applica-
tion of copper sulfate and because the disease symptoms were
very subtle. Two practical considerations can make the appli-
cation of even these suboptimal models feasible. First, false
negative detections in one image frame can turn into true
positive detections in the next image frame. Second, the reso-
lution of the image analysis is much higher than the resolution
of the final spray application. This implicitly means that the
missed detections (false negatives) that are close to true posi-
tives, will be sprayed as well. Although, this approach is far
more preferable than preventively spraying the entire orchard,
future research should focus on evaluating the performance of
the smart camera system as part of the IPM system.

A final note is that our smart camera system only used RGB
color information. It has been demonstrated that the perception
of diseased leaves in carrot and apple can be improved by using
infrared information (Peller et al. 2021). Therefore, future
research should investigate the use of multi-spectral cameras
with channels in the infrared part of the spectrum for detecting
the three diseases.

12 of 14

Journal of Field Robotics, 2025

85U8017 SUOWILLOD 3A1IE.1D) 8|qedt dde auy Aq peuob 81e Saiie YO ‘8sh JO 'S8l 10j Aeiq1T 8UIUO A8]1M UO (SUONIPUOD-pUe-SUBILD" A3 1M AeIq 1 Ul |UO//SdnY) SUORIPUOD pue swie 1 84} 885 *[5202/20/T0] U0 Ariqiauluo 48| eeuyioljaig Yoreesay pue AiseAlun usbuiuefep Aq 0TSZZ G0./Z00T 0T/I0p/W0d A8 | im Afeiq1jpul|uoy//sdny wo.y papeojumod ‘0 ‘29679SST


http://wileyonlinelibrary.com

In a future field application, the smart camera system should
also be equipped with a smart sampling method. Such a smart
sampling method can automatically sample diverse images
during model deployment about which the neural network is
most uncertain. This can potentially allow for a faster network
optimization in the open-set detection scenario (Blok
et al. 2022).
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