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ntroduction 

any organisms are prolific producers of small molecules
nown as specialized or secondary metabolites (SMs). These
olecules often show a diversity of potent biological activi-

ies, which have been leveraged for the development of numer-
us drugs ( 1 ,2 ). SMs are generally hypothesized to increase
he fitness of the producing organism or its host. In microbes,
he biosynthetic genes required for the production of an SM
re co-regulated and frequently physically clustered in the
enome, in a so-called biosynthetic gene cluster (BGC), and
ften transferred horizontally ( 3 ). BGCs, which by definition
onsist of two or more genes, encode the proteins / enzymes
sed in biosynthesis, resistance and regulation of SMs and are
he object of ‘genome mining’ strategies that leverage anal-
sis of genome sequence data for the discovery of (novel)
etabolites ( 4 ). 
Over the last decades, various methods using manually cu-

ated detection rules based on prior knowledge ( 5–7 ), and
ore recently, machine learning-based tools for genome min-

ng have been developed ( 8–12 ). These tools rely on accurately
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rigin, often showing potent biological activities with applications in
 natural products is go v erned b y sets of co-regulated and ph y sically
rmation about BGCs in a standardized and machine-readable way, the
dard and repository was initiated in 2015. Since its conception, MIBiG
ate with inno v ations in natural product research. Here, we describe
nderlying dat a st andard. In a massive communit y annot ation effort,
difying 590 existing entries, resulting in a new total of 3059 curated
t y, with automated data validation using a ne wly de v eloped custom
iG 4.0 also tak es steps to w ards a rolling release model and a broader
 https:// mibig.secondarymetabolites.org/ . 

curated and machine-readable experimental data for anno-
tation, rule definition and training purposes. Unfortunately,
machine-readable data are neither readily available from the
scientific literature nor universally required by journals to be
directly deposited in databases. While there are efforts to mine
data from the literature using computational methods ( 13 ,14 ),
these approaches currently often come with limitations when
compared with human curators and may not be compatible
with copyright laws. Therefore, manual data curation per-
formed by researchers remains the gold standard for the gen-
eration of machine-readable data. 

The largest manually curated resource on SM BGCs is
the Minimum Information about a Biosynthetic Gene Clus-
ter (MIBiG) data repository ( 15 ). Initiated in 2015 and based
on the MIBiG Data Standard, it now holds over 2500 hand-
curated entries of experimentally validated BGCs and their
products, alongside additional information such as biolog-
ical activities and gene annotations. In rare cases, a sin-
gle gene may be responsible for the biosynthesis of a nat-
ural product, such as a large non-ribosomal peptide syn-
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stract 

cialized or secondary metabolites are small molecules of biologica
iculture, engineering and medicine. Usually, the biosynthesis of thes
tered genes known as biosynthetic gene clusters (BGCs). To share in
imum Information about a Biosynthetic Gene cluster (MIBiG) data sta
 been regularly updated to expand data co v erage and remain up to
iG version 4.0, an extensive update to the data repository and the
 contributors performed 8304 edits, creating 557 new entries and m
ries in MIBiG. Particular attention was paid to ensuring high dat a qu
mission portal prototype, paired with a no v el peer-re vie wing model. M
lv ement of the scientific community. MIBiG 4.0 is accessible online 
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thases; these standalone genes are also entered into MIBiG 

due to their relevance to specialised metabolism. Conceptu- 
alized as an open data repository curated by and for the 
SM community, the MIBiG repository has seen three itera- 
tions of online community-driven data annotation and cura- 
tion hackathons (also known as ‘annotathons’), with > 250 

participants from 33 countries ( 16 ,17 ). Despite its size, the 
MIBiG repository still only describes a part of the contin- 
uously growing known biosynthetic space, which motivates 
further efforts in curating and systemizing information on 

BGCs. 
Here, we present version 4.0 of the MIBiG data standard 

and repository. Besides a thorough update of the underlying 
MIBiG data standard, we have substantially grown the num- 
ber of available entries by initiating a large-scale community 
curation effort. In the first half of 2024, 267 contributors cre- 
ated 557 new entries and modified 590 existing entries in 

the scope of eight community annotathons (six general open 

events and two final data curation sessions with a more ded- 
icated team). In this version of MIBiG, we focused on main- 
taining and further improving data quality in terms of com- 
pleteness and accuracy. We encouraged contributors to fully 
complete entries before submission, which has significantly 
decreased the number of so-called minimum entries (entries 
with only the minimally required information) in the database. 
We also introduced a new peer-review model where modifica- 
tions to entries are examined and approved by one or more 
volunteer expert reviewers, who can request corrections from 

data submitters. Additionally, we have established an initial 
prototype for efficient and standardized data submission, and 

during the annotathons we utilized a web interface (MIBiG 

Submission Portal) that allows for parallel, distributed data 
input featuring automated input validation. The latter refers 
to the tests that are performed by the submission portal it- 
self to ensure the correct data types and formats are filled in. 
Together, these efforts further consolidate MIBiG as the lead- 
ing database on experimentally characterized BGCs and pre- 
pare for the transition to a dynamic, rolling-release curation 

model. 

Materials and methods 

Rework of the MIBiG Data Standard 

The MIBiG Data Standard (from here onwards, Data Stan- 
dard) is the ‘blueprint’ of all allowed data in the MIBiG repos- 
itory. It defines mandatory and optional data fields, allows 
the use of controlled vocabularies and automated validation 

and enables the organization of complex data in a consistent, 
human- and machine-readable way. In this update, we exten- 
sively revised the Data Standard to accommodate advances in 

SM research and to extend the scope and ease of (re-)use of 
covered (meta)data. 

Literature references and evidence qualifiers 
Previously, all literature references associated with a MIBiG 

entry were collected in a single block, making it difficult to 

locate the origin of specific experimental data. In this update, 
we reorganized the Data Standard such that each data cat- 
egory (e.g. biosynthetic information, compound details, etc.) 
has its own list of literature references. Furthermore, evidence 
qualifiers can be selected from a controlled vocabulary (e.g. 
‘heterologous expression’) that concisely summarizes the ex- 

perimental support for the claims. While newly added entries 
adhere to these changes, entries added in previous versions 
of MIBiG still follow the legacy format, and will be updated 

gradually over time. To summarize the data quality of an en- 
try concisely, we also introduced a ‘Quality’ identifier, and it 
is possible to filter entries based on high, medium or question- 
able quality of data. Note that this label only reflects the pre- 
sumed data quality of an MIBiG entry and does not address 
the quality of the underlying literature. 

Biosynthesis information, multiple loci and class updates 
Biosynthetic information is now organized in a ‘biosynthe- 
sis’ section, tracking biosynthetic types, modules, operons 
and newly introduced ‘biosynthetic path’, which allows con- 
tributors to describe cases where a single BGC can lead to 

multiple products or describe sub-clusters of genes that pro- 
duce building blocks. The ‘multiple loci’ system has been re- 
introduced, allowing the specification of satellite genes or 
gene clusters that are involved in the biosynthesis but are 
not clustered with the ‘main’ BGC. Nevertheless, we still re- 
quire that multiple biosynthetic genes are clustered in the 
same genomic region, to exclude non-clustered pathways. 
Furthermore, it is now possible to mark genes that are lo- 
cated within the boundaries of a BGC but do not partake 
in the biosynthesis, such as pseudo-genes or transposable ele- 
ments. Additionally, we have separated biosynthetic classifica- 
tion from compound classification (e.g. we removed ‘alkaloid’ 
as a biosynthetic class) and introduced a custom biosynthesis- 
inspired chemical ontology for SMs ( Supplementary Data 
1 , section 3.4) based on the work by Dewick ( 1 ). Fur- 
thermore, we have newly defined the non-ribosomal pep- 
tide synthetase Type VI (modular, non-condensation-domain 

peptide-bond-forming), extending the current classification 

( 18 ). 

Biological activity and resource integration 

MIBiG also accepts additional BGC-related data. In this up- 
date, we have reworked fields registering the biological ac- 
tivity of BGC-associated SMs: activities are now considered 

properties of a specific assay, and a controlled vocabulary 
( Supplementary Data 1 , section 3.3) is available for defin- 
ing bioactivity in a reproducible way . Additionally , we have 
included an optional ‘Concentration’ field, allowing submis- 
sion of both qualitative and quantitative bioactivity data. At 
the same time, additional metadata parameters increase the 
scope of the already extensive Data Standard, and as such 

MIBiG references external resources where possible. Newly 
introduced links include references to the Minimum Infor- 
mation about a Tailoring Enzyme (MITE) data repository 
for annotation of tailoring enzyme-encoding genes ( 19 ), and 

CyanoMetDB for compound information on cyanobacterial 
SMs ( 20 ). 

Community mobilization and data curation 

Inspired by the contributions made to MIBiG 3.0, we again 

sought participation from the scientific community. Follow- 
ing calls on social media, 398 researchers signed up to par- 
ticipate in a series of eight 3-h online annotation sessions, ac- 
commodating different time zones (Figure 1 ). This enormous 
interest posed organizational challenges in terms of coordi- 
nation and communication, prompting us to develop a new 

model for community participation. Individual contributors 
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& Scoring

Figure 1. General w orkflo w of the MIBiG annotation process. Data are submitted by annotathon contributors (organized by expertise into Interest 
Groups) or independent submitters to the database from new experimental data or existing / recent literature. The entries are then assessed by 
re vie w ers and revised when needed. Finally, they end up in the online MIBiG repository and become accessible by querying them online on the MIBiG 

web page or via interoperable tools. 

were part of one or more Interest Groups that communicated 

using the MIBiG Slack ( https:// mibigannotathons.slack.com/ ) 
channel and were headed by Interest Group Coordinators: 
topic matter experts responsible for answering biosynthesis- 
and chemistry-related questions. Kanban-style boards (free 
version of Trello, https:// trello.com/ ) were employed to co- 
ordinate work on entries. Data submission was performed 

using a MIBiG Submission Portal prototype, a bespoke 
web interface that uses validated fields for data processing 
(code available at https:// github.com/ nlouwen/ submission- 
prototype ). Several curators with relevant expertise volun- 
teered to take Reviewer roles, focusing on assessing the quality 

of newly generated or modified entries using the newly intro- 
duced peer review system. Aimed towards further improving 
the quality and confidence of entries, Reviewers could lever- 
age the Kanban-style boards (Figure 2 ) to request revisions of 
entries if errors were found. To facilitate data curation, we pre- 
pared extensive online documentation ( Supplementary Data 
1 ) and instructional videos, and trained Interest Group Co- 
ordinators and Reviewers for their roles in online meetings. 
Participants who made a significant contribution (defined as 
participating in at least two 3-h sessions or an equivalent 
time investment) were invited to be co-authors in the present 
publication. 
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Figure 2. Architecture of the Kanban board used for the MIBiG annotathons. Every BGC would have its own ‘card’, where annotators with specific 
expertise could fill in and then c hec k a specific part of its annotation. Once the c hec klist was complete, the card would move to review and, potentially, 
revision to repair any issues identified by the reviewers. 

Results and discussion 

Advancing the MIBiG data repository 

In this iteration of the MIBiG annotathons, we put a greater 
emphasis on self-organization and facilitating motivated con- 
tributors to act independently and confidently when curating 
data. During the call for participation, researchers not only 
signed up to participate, but also contributed to assembling 
a list of recent publications associated with the biosynthesis 
of SMs. This initial effort yielded 552 publications supporting 
new entries and 266 publications for improvements of existing 
entries, which were used as a starting point for the curation 

process. Over the course of the annotathons, 267 contribu- 
tors made a total of 8304 edits (e.g. adding an entirely new 

entry, adding biological activity to an existing entry, etc.), re- 
sulting in 557 new and 590 modified existing entries. With the 
present update, MIBiG now contains a total of 3059 entries, 
a 22% increase in comparison to MIBiG 3.0. Of these, 1655 

entries are now associated with 3604 biological activities, and 

2634 entries have 5002 associated chemical structures. How- 
ever, 672 entries still lack chemical structures; hence, future 
efforts will include attention to improving this aspect, espe- 
cially with regard to structural information for ribosomally 
synthesized and post-translationally modified peptides. Addi- 
tionally, 7677 references and 8582 evidence qualifiers were 
provided, 171 biosynthetic paths were described for 110 en- 
tries and cross-references to 173 MITE and 93 CyanoMetDB 

entries were established. A summary of the changes in com- 
parison to MIBiG version 3.1 can be seen in Figure 3 . 

Of the total 1147 contributed entries (557 new, 590 

modified), 464 (40%) have been reviewed at the time of 
manuscript preparation. While all entries are available, those 
that are reviewed are highlighted in the MIBiG repository 
website to reflect the additional confidence. For applica- 
tions using the MIBiG data where a high confidence level 
is required (e.g. machine learning applications), we recom- 
mend the use of reviewed entries only (the website facilitates 
filtering / sorting on this). We expect the ‘reviewed’ part of 

the MIBiG repository to grow continuously once we have 
transitioned to the MIBiG rolling release model, and over 
time, we aim to formally review all entries in the MIBiG 

repository. 

Initiating the MIBiG rolling release model 

The aforementioned efforts demonstrate the value of lever- 
aging large community initiatives such as the MIBiG anno- 
tathons. We estimate that contributors volunteered ∼4000 h 

in curating and reviewing entries, an effort in time and ex- 
pertise that could not be raised by any single research group. 
Besides expanding the MIBiG repository, the annotathons 
were appreciated for their community-building aspect, foster- 
ing communication and exchange of ideas in the SM research 

community. In addition, the interaction with other resources 
prompted improvements to these databases as well, e.g. when 

curators could not find matching entries for a structure in 

the NP Atlas, thus encouraging wider cooperation beyond 

MIBiG itself. The broad interest of the community motivated 

the planning of a ‘rolling release’ model of MIBiG. In addi- 
tion to the biennial efforts that will lead to ‘major’ releases of 
MIBiG (e.g. the current v4.0, or the next major release v5.0), 
curators will be able to contribute new or modify existing en- 
tries on an ad hoc basis, leading to quarterly ‘minor’ releases 
(i.e. 4.1 and 4.2). Contributors will be able to correct bugs and 

add references at any time, instead of waiting for the ‘major’ 
release cycle to perform all edits at once. This new system is 
currently under development, and we invite the scientific com- 
munity to participate in the discussion on how to structure 
contributions and governance (i.e. by communicating with the 
corresponding authors of this publication or using the MIBiG 

Slack Workspace https://mibigannotathons.slack.com ). Fur- 
thermore, to facilitate future MIBiG updates and curation we 
encourage authors to release BGC sequence data during the 
publication submission and peer review process, or immedi- 
ately thereafter, and to provide the respective accession details 
in the manuscript text. 
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Figure 3. Quantitative overview of updates to the MIBiG database.in comparison with the previous version 3.1. Numbers in panel ( a ) refer to MIBiG 

entries, while numbers in panel ( b ) refer to individual compounds (a single MIBiG entry may contain more than one compound). 

In summary, we have conducted a large-scale community 
effort to make experimental data on SM BGCs freely accessi- 
ble and machine-readable. As a resource created for and by the 
scientific community, the MIBiG repository is freely accessed 

on an entry-by-entry basis or can be downloaded and parsed 

in bulk. MIBiG 4.0 also serves as the stepping stone for cre- 
ating the infrastructure to establish a Wikipedia-like model 
of continuous community curation. Such a decentralized or- 
ganization will guarantee continuous development of MIBiG 

and help in including the next generations of scientists in the 
annotation and development process. 

Data availability 

The MIBiG repository is available at https://mibig. 
secondarymetabolites.org/. Files in JSON format follow- 
ing the MIBiG data standard ( https:// github.com/ mibig- 
secmet/mibig-json ) can be found on the MIBiG web- 
page ( https:// mibig.secondarymetabolites.org/ download ) 
and on the MIBiG Zenodo Community page ( https: 
// doi.org/ 10.5281/ zenodo.13367755 ). Further materials are 
available on GitHub ( https:// github.com/ mibig-secmet ). All 
data are freely available with no restrictions for academic and 

commercial reuse under the OSI-approved CC BY 4.0 Open 

Source license ( https:// creativecommons.org/ licenses/ by/ 4.0/ ). 

Supplementary data 

Supplementary Data are available at NAR Online. 
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