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A B S T R A C T

Energy Storage Systems (ESS) represent capital-intensive technologies set to play a pivotal role in the future
energy landscape. In competitive markets, ESS rely heavily on cross-temporal energy arbitrage within day-
ahead markets and across multiple segments, such as day-ahead to real-time markets. However, their revenue
potential is heavily reliant on the accuracy of renewable energy generation forecasts, such as wind forecasts,
which can influence market prices. This dependence can hinder the integration and development of ESS
technologies. To address this challenge, this study presents a novel investment planning and participation
strategy framework for ESS market engagement. The framework formulates the problem as a distributionally
robust chance-constrained program, approximating it as a deterministic mixed-integer second-order cone
program. To mitigate the impact of imperfect wind forecast uncertainties, we introduce two innovative block
orders that facilitate ESS order clearing based solely on price spread, preserving convexity and computational
efficiency. Numerical findings demonstrate the effectiveness of the proposed block orders in enabling energy
arbitrage in the day-ahead and real-time markets in the presence of imperfect wind forecasts. The proposed
model can identify the optimal investment and operational strategy, hedging system operators against wind
power generation uncertainty while offering ESS investors a safety margin on the recovery of their investment.
1. Introduction

1.1. Background and motivation

The energy landscape is undergoing a transformative shift driven
by the urgent need for sustainable and resilient power systems [1].
With the growing penetration of Renewable Energy Sources (RES) and
the increasing electrification of various sectors, the efficient storage of
energy has emerged as a critical component in meeting the demands
of a rapidly evolving market [2]. Energy Storage Systems (ESS) hold
the key to overcoming the intermittency and variability of renewable
energy generation while offering flexible, reliable, and clean power
supply solutions [3].

The integration of ESS in the power network offers a means to store
excess energy generated from RES during periods of high production
and release it back into the system during periods of high demand
or low RES availability [4]. The stored energy can be dispatched and
utilized to stabilize grid frequency and voltage, ensuring the stability
and reliability of the power network [5]. This capability enhances the
overall flexibility of the power system, enabling better balancing of
electricity supply and demand and mitigating the effects of intermittent
energy generation from RES [6]. Moreover, the integration of ESS
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provides opportunities for Demand Response (DR) programs, where
consumers can actively adjust their electricity consumption patterns
based on pricing or other incentive mechanisms [7,8]. This demand-
side flexibility, combined with ESS, enables more efficient utilization
of energy resources and further enhances the overall reliability and
resilience of the power system [9].

However, ESS are capital-intensive technologies. Private sector in-
vestments are crucial to achieving the level of ESS integration that
is needed in the future. In a competitive market environment, cross-
temporal and/or cross-segment energy arbitrage in Day-Ahead (DA)
and/or across DA and Real-Time (RT) markets are considered as the
main market participation strategies ESS implement [10]. The problem
is, that such participation strategies are highly sensitive to imperfect
price forecasts [11]. The problem is, the market prices are becoming
increasingly volatile (and therefore harder to forecast), as the share
of RES is growing in the power systems. Consequently, the economic
viability of ESS through energy arbitrage has become increasingly chal-
lenging and associated with higher risks [12]. This, in turn, undermines
the financial justification for investment by private entities, leading
to heightened hesitation among private investors to commit to new
ventures in this sector [13]. This in turn can impede private investment
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Nomenclature

Abbreviations

𝐵 𝑂 𝑠 Block orders
𝐶 𝑉 𝑎𝑅 Conditional value-at-risk
𝐷 𝐴 Day-ahead
𝐷 𝐵 𝑂 Day-ahead block order
𝐷 𝑅 Demand-response
𝐷 𝑅𝐶 𝐶 Distributionally robust chance-constraints
𝐷 𝑅𝐶 𝐶 𝑃 Distributionally robust chance-constrained

program
𝐷 𝑅𝑂 Distributionally robust optimization
𝐸 𝑆 𝑆 Energy storage system
𝐹 𝐵 𝑂 Flexibility block order
𝑀 𝐼 𝑄𝑃 Mixed-integer quadratic program
𝑀 𝐼 𝑆 𝑂 𝐶 𝑃 Mixed-integer second-order cone program
𝑀 𝑂 Market operator
𝑅𝐸 𝑆 Renewable energy sources
𝑅𝑇 Real-time
𝑆 𝐵 𝑆 𝑂 Scenario-based stochastic optimization
𝑆 𝑂 𝐶 Second-order cone
𝑉 𝑃 𝑃 Virtual power plant
Number sets
R Real numbers
 Power lines
 Conventional power generators
 Conventional power loads
 Power buses
 Energy storage units
 Number of time slots
 Wind power generators
 Number of random variables
𝛱 Ambiguity set
Parameters

𝜖 Violation probability level for individual
DRCCs

𝜖′ Confidence level for SOC approximation of
DRCCs

𝜂𝑐 ℎ𝑠 , 𝜂𝑑 𝑐𝑠 Charging and discharging efficiencies of
storage 𝑠

𝛾𝑡 Aggregated wind forecast error at time 𝑡
𝑞𝑊𝑤,𝑡 Forecast of wind generator 𝑤 at time 𝑡
𝜇𝛱 Mean vector of forecast errors
𝜙𝑇 Transpose of a vector of ones
𝛴 Covariance matrix of forecast errors
𝛴𝑡 Diagonal sub-matrix 𝑡 of 𝛴
𝜆𝑡 Day-ahead price forecast at time 𝑡
𝑓
𝑛,𝑚

, 𝑓 𝑛,𝑚 Lower and upper flow limits for line (𝑛, 𝑚)
𝑄𝐺

𝑔
, 𝑄

𝐺
𝑔 Lower and upper power bounds for gener-

ator 𝑔
𝑄𝐿

𝑙 ,𝑡, 𝑄
𝐿
𝑙 ,𝑡 Lower and upper power bounds for load 𝑙

at time 𝑡
𝑄𝑊

𝑤,𝑡
, 𝑄

𝑊
𝑤,𝑡 Lower and upper power bounds for wind

generator 𝑤 at time 𝑡
𝐵𝑛,𝑚 Susceptance of line from bus 𝑛 to bus 𝑚
2 
𝐶𝐴𝑣
𝑔 , 𝐶𝐴𝑣

𝑠 Energy-to-flexibility spread for generator 𝑔
and storage 𝑠

𝐼0𝑠 , 𝐼𝐸𝑠 , 𝐼𝑄𝑠 Cost factors for initial investment, energy
rating, and power rating of storage 𝑠

𝑀 Big-M factor
𝑝𝐺𝑔 Marginal production cost of generator 𝑔
𝑝𝐿𝑙 ,𝑡 Bid price for load 𝑙 at time 𝑡
𝑝𝑠𝑝𝑟𝑠 Minimum price spread for DBO activation
Variables

𝛼𝑔 ,𝑡, 𝛽𝑠,𝑡 Flexibility offered by generator 𝑔 and
storage 𝑠 at time 𝑡

�̆�𝑠,𝑡 Uncertainty-dependent state of energy of
storage 𝑠 at time 𝑡

𝑞𝑐 ℎ,𝐷→𝑅
𝑠,𝑡 Uncertainty-dependent FBO charging factor

for storage 𝑠 at time 𝑡
𝑞𝑐 ℎ𝑠,𝑡 Real-time charging factor for storage 𝑠 at

time 𝑡
𝑞𝑑 𝑐𝑠,𝑡 Uncertainty-dependent FBO discharging

factor for storage 𝑠 at time 𝑡
𝛥𝑡 Random forecast error vector at time 𝑡
�̂�𝑛,𝑡, �̆�𝑛,𝑡 Nominal and uncertainty-dependent voltage

angle at bus 𝑛 at time 𝑡
𝑒𝐷→𝑅
𝑠,𝑡 Nominal state of energy for storage 𝑠 at time

𝑡 (FBO)
𝑒𝐷𝑠,𝑡 Nominal state of energy for storage 𝑠 at time

𝑡 (DBO)
𝑓𝑛,𝑚,𝑡, 𝑓𝑛,𝑚,𝑡 Nominal and uncertainty-dependent power

flow from bus 𝑛 to bus 𝑚 at time 𝑡
𝑞𝐺𝑔 ,𝑡, 𝑞𝐺𝑔 ,𝑡 Nominal and uncertainty-dependent power

output of generator 𝑔 at time 𝑡
𝑞𝐿𝑙 ,𝑡 Power demand of load 𝑙 at time 𝑡
𝑞𝑐 ℎ,𝐷→𝑅
𝑠,𝑡 Nominal FBO charging for storage 𝑠 at time

𝑡
𝑞𝑐 ℎ,𝐷𝑠,𝑡 DBO charging for storage 𝑠 at time 𝑡
𝑞𝑐 ℎ𝑠,𝑡 Total day-ahead charging for storage 𝑠 at

time 𝑡
𝑞𝑑 𝑐𝑠,𝑡 DBO discharging for storage 𝑠 at time 𝑡
P Worst-case uncertainty distribution
𝜔𝑖,𝑡 Forecast error for renewable generator 𝑖 at

time 𝑡
𝐸𝑠 Maximum energy rating of storage 𝑠
𝑄𝑠 Maximum power rating of storage 𝑠
𝑒0𝑠 Initial state of energy of storage 𝑠
𝑈𝑠 Binary variable for storage investment deci-

sion

which can lead to flexibility shortage and from there, severe operational
issues in transmission and distribution networks [14]. To exploit the
full potential of ESS, an adequate mechanism that ensures investment
recovery needs to be put in place [15]. Such a mechanism provides a
steady and reliable revenue stream and ensures the economic prosperity
of such risky investments.

Efforts are made to hedge the investors and to ensure investment
ecovery from the inherent market risks ranging from introducing novel

storage policies (in terms of financial support schemes) to improving
forecasting accuracy [9,16]. The issue with support policies is that
they can easily lead to a large financial burden on the consumers.
Moreover, such policies can be affected by the political atmosphere
and therefore, are not considered financially sustainable in the long
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run [17]. Despite significant efforts by researchers to enhance the accu-
racy of predictions, forecast error remains unavoidable and cannot be
ntirely eliminated [18]. Consequently, the development of a robust in-

vestment promotion mechanism remains an unresolved challenge [19].
Addressing this gap is the primary objective of this research.

1.2. Research gaps

ESS technologies, such as batteries, pumped hydro storage, and hy-
drogen, differ significantly in terms of investment costs, capacity, life-
time, storage losses, efficiency, ramping rates, and reaction times [20,
21]. Studies show that there is no universally ideal ESS technology
ince the choice depends on the specific characteristics of the power

system and the availability of RES [22]. Determining the optimal
storage technology, location, and capacity is a complex and context-
dependent task due to the need to balance operating costs, investment
costs, and benefits while considering various short- and long-term
uncertainties. Consequently, decisions regarding the adequate ESS ca-
pacity to invest in, and the optimal operational strategy to participate
in a dynamic market environment, should be made with care. Such
complex decision-making problems can be well formalized and solved
using mathematical optimization [14,23,24].

Considering electricity market dynamics is critical in assessing op-
imal ESS investment and operational decisions [19]. In this con-

text, market dynamics refer to factors influencing price fluctuations,
supply–demand equilibrium, and the behaviour of producers and con-
sumers [15]. These dynamics manifest as price volatility and price
spikes, resulting from complex inter-temporal dependencies and strate-
gic market manipulation by participants [25]. Neglecting these dy-
namics can compromise the robustness of investment and operational
decisions. However, incorporating these dynamics presents challenges
ue to the computational complexity of considering a full temporal
orizon, typically spanning one year, within a stochastic programming
ptimization framework [26]. This complexity arises from the high-
imensional state space and the need to account for multiple sources

of uncertainty in a temporally coupled decision-making process.
Several studies have focused on optimizing ESS as flexible resources

for participating in various electricity market transactions [27]. Previ-
ous research has primarily addressed scheduling ESS paired with RES in
he electricity market, considering uncertainties such as prices, loads,

and RES [28]. A common technique to model these uncertainties is
Scenario-Based Stochastic Optimization (SBSO) [29]. For instance, [30]
roposed an SBSO model for ESS participation in the DA market under

different uncertainties, showing the potential for ESS integration and
its strategic behaviour in influencing prices. However, they did not
consider ancillary services in the RT market. Another study, [31],
introduced a bi-level programming framework optimizing DA prices
and RT imbalance costs, considering the coordination of price-making
Virtual Power Plants (VPPs) and ESS under RES uncertainty. They
demonstrated that ESS plays a significant role in reducing RT imbalance
costs, increasing RES integration, and enhancing system stability. One
possible limitation of the above studies is that uncertainty is modelled
using the SBSO approach. This approach can become computation-
ally expensive due to the need for numerous scenarios derived from
probability distributions, especially as the number of uncertain sources
increases or scenarios become more complex. This complexity makes it
difficult to consider complex market dynamics within the optimization
framework while maintaining computational efficiency. In such cases,
alternative uncertainty modelling techniques, such as Distributionally
Robust Optimization (DRO), can be considered [32,33].

The work in [29] proposes a data-driven DRO method for schedul-
ing ESS. It considers ESS participation in both DA and RT markets,
addressing uncertainties in prices, demand, and generation. They use
he Wasserstein metric for risk-based portfolio optimization, reformu-

lating the problem as a finite convex problem based on Conditional
 d

3 
Value-at-Risk (CVaR). Results show improved out-of-sample perfor-
mance despite higher computational effort compared to moment-based
DRO. In [34], an uncertainty-aware DRO model for ESS in the intraday

arket is introduced. This study develops a novel algorithm to solve
the DRO problem and compares distance-based and moment-based
DRO. Their study demonstrates the effectiveness of their approach in
integrating ESS to mitigate the variability of RES while considering
operational constraints and market participation. However, the afore-
mentioned studies focus on the operational constraints and market
participation strategies of ESS without addressing optimal investment
planning, thereby overlooking the trade-offs between operational and
investment decisions.

In addition to the short-term scheduling and operational problems
reviously discussed, several studies have addressed long-term ESS
nvestment decisions. For instance, [35] proposed a robust planning-

operation decomposition methodology for optimal ESS location, se-
lection, and operation in mid-to-low voltage distribution networks,
demonstrating benefits such as grid congestion management and re-
duced energy losses. However, this approach did not account for uncer-
ainties in renewable generation, demand, and energy prices, limiting

its practical applicability. The work in [36] developed a distributionally
obust capacity sizing method for renewable generation, transmission,
nd storage using a Wasserstein distance-based ambiguity set to model
ES uncertainties. Their method balances robustness and computa-

tional efficiency compared to SBSO. Yet, it excluded ESS market partic-
pation, which may introduce additional computational complexity and
estrict applicability, especially for large-scale problems. Similarly, [37]

introduced a DRO model for ESS planning that utilizes a Wasserstein
etric to address worst-case supply and demand uncertainties. This

framework highlights the impact of market prices on ESS planning and
shows advantages over SBSO and Robust Optimization (RO). However,
it does not consider market participation, such as bidding behaviour
and ESS order clearing, which are crucial in a competitive market
structure. While these studies contribute significantly to the field of ESS
investment decision-making, they each exhibit limitations in addressing
uncertainties and market participation.

To bridge this gap, a promising solution for hedging various ESS
echnologies against market uncertainties is to utilize Block Orders
BOs). In the context of European markets, BOs are specialized order
ypes that encompass multiple orders. BOs make the acceptance of
ne order type dependent on another. They allow traders to combine
ultiple time units into a single order. If BOs are accepted, they are

xecuted on an all-or-none basis, meaning either all hours in the order
re executed at the determined price or the entire order is rejected.
here are four BO types: regular block orders (a single order that spans
ver multiple consecutive time steps, all at the same price and volume),
rofile block orders (where there are different volumes for each hour
ithin the block, with a minimum acceptance ratio), curtailable blocks

which allow traders to define a minimum acceptance ratio above
hich a block order is accepted), and loop blocks (a family of two
locks executed or rejected together) [38–40].

Due to their nature, the inclusion of complex BOs necessitates
he introduction of integer variables in the modelling of the opti-
ization algorithm used for market clearing. This, in turn, transforms

he original problem into a Mixed-Integer Quadratic Programming
MIQP) problem, which is computationally challenging to solve even
nder deterministic conditions [41]. The challenge intensifies when
ncertainties arising from imperfect forecasts are incorporated into

the decision-making process. Addressing these uncertainties typically
requires solving the MIQP problem [42] across a large number of
scenarios in SBSO or incorporating the uncertainties into constraints
n an RO formulation, both of which become particularly cumbersome
n the presence of binary variables. This highlights the need for an

alternative modelling approach that retains the benefits of binary or-
ders while enabling the seamless integration of uncertainty into the

ecision-making framework.
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As we demonstrate later in this paper, the new BOs introduced here
ddress this need by modelling loop orders using continuous variables.
otably, the proposed BOs are applicable to non-ideal energy storage

ystems with charging and discharging efficiencies below 100%. This
haracteristic ensures the avoidance of simultaneous charging and
ischarging without the need for introducing binary variables. It is

important to note that, assuming the proposed BOs are implemented,
the market clearing results will be the same as in the case where loop
orders are used. In this case, the binary variables first decide which
orders to accept, while the continuous variables determine the portion
of each order to be accepted. This is demonstrated in [43,44].

To summarize, previous works have examined ESS participation in
electricity markets, primarily focusing on short-term scheduling and
operational decisions, such as economic dispatch, while often neglect-
ing long-term investment considerations. When long-term investments
are addressed, as in [37], the model tends to oversimplify critical
operational aspects, including market clearing mechanisms, bidding
behaviour, and ESS order clearing. This simplification restricts the
model’s ability to capture the full dynamics of electricity markets.
One reason for this could be that, in most works, uncertainty is often

anaged using methods such as SBSO and distance-based DRO. These
pproaches can become computationally demanding as a larger set
f factors influencing the long-term investment and short-run opera-
ional decision are considered; hence, the state-space dimensionality
ncreases, particularly when integrating discrete investment decisions

with temporally coupled operational decisions [45,46].
As highlighted in [47], moment-based Distributionally Robust

hance-Constrained (DRCC) optimization offers potential advantages
ver SBSO and distance-based DRO. It accommodates diverse risk
references and reliability assessments of ESS under uncertainty with-
ut relying on specific probability distribution assumptions, while
aintaining computational efficiency across various problem types

nd sizes. This presents a research opportunity to develop a moment-
ased DRCC approach that integrates the investment and operational
ecisions of an ESS in a competitive market setup while maintaining
omputational efficiency.

1.3. Scope and contributions

This work proposes a novel DRCC optimization framework to eval-
ate the optimal investment planning and the optimal (dis)charging
ispatch of a generic ESS. The problem is formulated as a Mixed-Integer
econd-Order Cone Program (MISOCP) subject to RES generation un-
ertainty in a power transmission network. It aims to identify the
ptimal storage investment and operational strategy that ensures a
eturn on investment while maximizing the overall utility of the power
ystem by enhancing its flexibility, efficiency, and stability. The nov-
lty of this work lies in the development of a moment-based DRCC
ptimization framework that integrates long-term planning with day-
head scheduling and real-time operation in the electricity market. The
nvestment and operational decisions are considered interdependent
nd given equal emphasis because the economic viability of storage
nvestments is contingent upon trading revenues and the given market
tructure. To this end, this research introduces novel BOs, namely
ay-Ahead Block Orders (DBOs) and Flexibility Block Orders (FBOs),
esigned for flexible units such as ESS to engage in temporal and
ross-market energy-to-flexibility arbitrage.

To the best of the authors’ knowledge, this study represents the
first instance where a DRCC framework has been applied to evaluate
ESS investment planning and market participation incorporating such
BOs. This work provides valuable insights into optimizing both invest-
ment planning and operational strategies for ESS in the face of RES
uncertainty. The contributions of this study are threefold:
4 
1. proposes a novel energy storage investment planning framework
for non-ideal energy storage systems in both long-term invest-
ment planning and short-term (hourly) operation, formulated
as a DRCC-MISOCP, that integrates day-ahead and real-time
electricity market participation under wind power generation
uncertainty. The proposed modelling approach introduces binary
variables for long-term investment modelling while modelling
the short-term uncertainties using the novel BOs.

2. introduces novel block orders, namely DBOs and FBOs, which
enable storage units to engage in temporal and cross-market
energy to flexibility arbitrage. The BOs allow storage investors
to externalize their risk related to imperfect forecasts in terms
of the arbitrage spread within the DA market and across the DA
and RT markets without jeopardizing market competitiveness.
The introduction of these BOs eliminates the need for binary
variables in storage participation. From a modelling perspec-
tive, the proposed approach decouples the constraints involv-
ing binary variables related to long-term investment decisions
from those that include chance constraints to address short-term
uncertainties.

3. demonstrates the potential for recovering storage investments
through market participation while offering investors and system
operators a hedge against wind power generation uncertainty
under different risk preferences.

1.4. Organization

The rest of this paper is organized as follows. Section 2 introduces
he modelling framework for ESS investment and market participation
trategy, including the novel DBOs and FBOs proposed in this study.
dditionally, it details the modelling assumptions and formalizes the
RCC problem formulation, outlining the reformulation procedure that

eads to a tractable optimization problem. Section 3 presents the com-
plete tractable formulation of the DRCC-based long-term investment
planning for storage technologies participating in competitive market
environments through the specified block orders. Section 4 provides the
numerical results, demonstrating the effectiveness of the proposed ap-
proach. Finally, Section 5 concludes the paper and outlines avenues for
future research, highlighting potential enhancements and applications
of the proposed framework.

2. Storage investment and market participation

2.1. Novel block orders

The DA and RT are two distinct segments, each serving a different
urpose in the electricity market. Decisions made in the DA market
re based on forecasts, while the RT market serves to correct these
ecisions as new, real-time information becomes available. In Europe,
he DA market is operated by EPEX, while the RT market is managed
y the Transmission System Operator (TSO). In this context, storage

systems can participate in both markets, primarily making money
through arbitrage. This means they can buy electricity at lower prices
in the DA market and sell it at higher prices in the RT market, profiting
from the price differences between the two timeframes.

For energy storage systems, the situation can be more complex. ESS
may need to purchase energy in the DA market to deliver it to the
TSO in the RT market, especially if wind generation is overestimated
in the DA forecast. Conversely if wind generation is underestimated in
the DA market, the ESS should avoid charging in the DA market to
reserve capacity for charging in the RT market. However, this latter
scenario is not considered in the context of this work, as over-prediction
of wind (and thus underproduction in the RT market) typically results
in an aggregate generation deficit, creating an imbalance that flexibility
sources must address. Excess wind generation can be curtailed to

manage this imbalance.
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Fig. 1. Storage charging and discharging operations based on DBO and FBO working principle.
Therefore, as a follow-up to [43], here we examine two market
products: DBOs and FBOs. These orders are similar to loop orders
in that they allow the bundling of buy and sell block orders. That
is, given the complexity of modelling such decisions in an uncertain
environment, we propose introducing two novel market products to
facilitate such trades for the special case of non-ideal energy storage
systems: (1) DBO (a cross-temporal product within the DA market),
(2) FBO− (a cross-market product from DA to RT), and (3) FBO+ (a
cross-market and time product). These new products are designed to
enable more efficient decision-making and trading in the presence of
uncertainties, particularly for energy storage systems.

The difference is that these products are specifically designed to
hedge ESS investors against the risks associated with the mentioned
uncertainties, without compromising the competitiveness of the mar-
ket. The DBOs are similar to those introduced in [43]. What makes
them different from loop orders is the way they are designed; there
is no need to define a binary order associated with the acceptance
or rejection of buy and sell orders. These orders have been shown
to alleviate risks associated with DA price forecasts encountered by
price-taker storage units engaged in cross-temporal energy arbitrage
in the DA market [43]. Likewise, the FBOs are loop orders that span
various times. What makes them different from loop orders is that they
span different segments of the electricity market (i.e., DA and RT).
The FBOs enable price-taker storage units to participate in cross-market
and temporal energy-to-flexibility arbitrage. Essentially, FBOs allow a
flexible unit (such as storage) to procure energy in the DA market and
provide it as flexibility services in the RT and/or ancillary market at
the same or different time instances.

2.1.1. Working principle
To illustrate the working principle of the proposed DBOs and FBOs,

Figs. 1 and 2 visualize these two BOs from the ESS and the market
viewpoints. Consider a storage unit engaging in the DA market with
the objective of optimizing its participation in the RT market. Let us
simplify by assuming there are only two time instances, labelled as 𝑡1
and 𝑡2. We will also assume that the DA trades are solely financial, and
the final operational strategy will be determined by trades made in the
DA market and adjustments in the RT market based on real-time system
requirements.

Now let us examine 𝑡1. Suppose the storage plans to charge a certain
amount 𝑞𝑐 ℎ,𝐷 > 0 at time 𝑡1 to be traded exclusively in the DA market
later. Additionally, let us suppose the storage plans to charge 𝑞𝑐 ℎ,𝐷→𝑅 >
0 to be traded in the RT. The latter represents a flexibility service that
the storage unit commits to providing during the DA scheduling, to be
delivered in the RT market. Consider a scenario where, during real-time
operation, a deficit in total RES production is observed at time instance
𝑡 in the system, attributed to an imperfect forecast. In reaction, the
1

5 
storage system chooses to charge less than planned in the DA schedule.
This equates to discharging 𝑞𝑑 𝑐 in the RT. Hence, the actual charging
rate is determined by 𝑞𝑐 ℎ,𝐷→𝑅 − 𝑞𝑑 𝑐 ≥ 0. Under these circumstances, a
portion of the capacity reserved in the DA for RT is left unallocated,
resulting in a lower state of energy in the RT (�̆�). This is referred to as
negative flexibility block order (FBO−).

Now, let us examine 𝑡2. The electricity stored during 𝑡1 in the DA is
discharged (i.e., 𝑞𝑑 𝑐 > 0), leading to a reduction in the DA state of en-
ergy of the storage (𝑒𝐷). This phenomenon is known as cross-temporal
DA arbitrage (DBO). Suppose another RES deficit is observed at 𝑡2 in
real-time. As a response, additional energy is discharged (i.e., 𝑞𝑐 ℎ,𝐷→𝑅−
𝑞𝑑 𝑐 < 0), resulting in a decrease in the RT state of energy of the storage
(�̆�). Here, 𝑞𝑑 𝑐 represents a genuine discharging event in RT using the
energy stored in 𝑡1 (note that 𝑞𝑐 ℎ,𝐷→𝑅 = 0). This is referred to as positive
flexibility block order (FBO+).

Fig. 2 shows the positioning of the energy storage in the DA and RT
with a DBO, FBO+ and FBO−. From the market viewpoint, if the DBO
is accepted, it implies that the storage charges the energy at the 8–9
time slot and discharges it at 17–18 both in the DA market. Likewise,
if the FBO+ is accepted, it leads to a charging at 4–5 in the DA and a
discharge at 20–21 in the RT market. And if the FBO− is accepted, it
involves withdrawing a planned charging action that was committed in
the DA market, where the charged energy was intended to be used as
a flexibility service in the RT market.

The primary advantage of the proposed DBOs and FBOs lies in
the bidding process. For DBOs, the storage unit only requires knowl-
edge of the minimum price spread at which is willing to engage in
DA arbitrage. Conversely, for FBOs, the storage operator only needs
information about the minimum energy-to-flexibility spread. In the
following Section, 2.2, we provide the modelling assumptions used in
this study.

2.2. Modelling assumption

2.2.1. Market structure
This paper examines the optimal investment planning and market

participation strategy of an ESS participating in the market. We con-
sider a competitive market structure that is cleared in a centralized
manner by the global Market Operator (MO). The MO is assumed to
possess complete information and aims to clear the market efficiently.
The market clearing problem is formulated as an optimization algo-
rithm that aims to minimize the aggregated social cost of the market
while adhering to the operational constraints of the power system,
including the supply units (i.e., generators and wind producers), loads,
and storage systems. The upper/lower bounds of these constraints are
represented in the form of standard bid orders (for normal assets),
as well as the DBO and FBOs introduced earlier (for storage units).
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Fig. 2. Positioning of the ESS in the DA and RT markets, highlighting the working principles of DBOs and FBOs for cross-temporal and cross-market arbitrage.
It is important to note that, in addition to the market participation
strategy, the proposed framework seeks to identify the optimal storage
investment decision with respect to ESS capacity and its location within
the network. This is achieved by identifying the break-even point,
which is the investment capacity at which storage revenues from energy
arbitrage are equal to the investment cost of constructing the storage.
For simplicity, factors such as inflation and interest rates are considered
beyond the scope of this work and are therefore excluded.

2.2.2. Storage investment
Following the approach from [48,49], the investment cost of the

utility-scale ESS is calculated considering three cost terms: initial in-
vestment (𝐼0𝑠 ), energy rating (𝐼𝐸𝑠 ), and power rating (𝐼𝑄𝑠 ). 𝐼0𝑠 represents
the upfront capital required to cover expenses like site preparation,
equipment procurement, labour costs, engineering, permitting, and
other associated costs. 𝐼𝐸𝑠 refers to the cost for the energy components
determining the amount of energy that the system can store. This
term considers the cost per unit of energy, measured in AC /MWh.
It represents the cost of adding 1 MWh of energy storage capacity
to the system and is primarily influenced by the cost of the battery
modules or cells used. 𝐼𝑄𝑠 refers to the maximum power output that the
storage can provide and is expressed as the cost per unit of power in
AC /MW. This cost refers to increasing the power output of the energy
storage system by 1 MW. It takes into account factors such as power
conversion equipment, balance of system components, and electrical
infrastructure upgrades. Other cost factors, such as maintenance and
battery degradation, are left for future research.

2.2.3. Power system modelling
Let us consider a power system as a directional graph with  nodes

(i.e., buses) and  edges (i.e., connections). Index 𝑛 ∈  is used to refer
to every node where  is the set of all nodes in the system. Operator
𝑛(.) counts over the member of the set. Suppose that there is at least a
flexible and/or an in-flexible producer (𝑔 ∈ 𝑛) and a set of in-flexible
consumers (𝑙 ∈ 𝑛) at every node where 𝑛 (𝑛) is the set of generators
(consumers) in node 𝑛 and  () is the set of all generators (consumers).
Subscripts 𝑔 and 𝑙 respectively correspond to generation and demand.
In addition to conventional generators, we assume that there can be a
set of wind generators 𝑤 ∈ 𝑛 ⊆  where 𝑛 denotes the set of wind
generators in node 𝑛 and  is the set of all wind generators. In addition
to the supply and demand units, there can be storage units 𝑠 ∈ 𝑛 ⊆ 
placed in the node where 𝑠 counts over storage units and 𝑛 is the set
of all possible storage units that can be located at node 𝑛 and  is the
set of all possible storage units in the network. Tuple (𝑛, 𝑚) refers to
the line connecting node 𝑛 to node 𝑚 when power flows from 𝑛 to 𝑚.
Index 𝑡 ∈  refers to every instance in time and  is the set of all time
instances. Index 𝑖 ∈ [𝐷 , 𝑅] is used to refer to the day-ahead (𝐷) or the
real-time (𝑅) (i.e., ancillary service) market.
6 
2.2.4. Uncertainty modelling
The model focuses on wind power generation as the sole source

of uncertainty. The uncertainty associated with wind power is cap-
tured using a moment-based ambiguity set, which characterizes the
uncertainty arising from forecast errors in DA wind power predictions.
Inspired by previous studies [50,51], the model assumes that the errors
in wind power forecasts follow an unknown multivariate probability
distribution. To encompass the overall system uncertainty, a vector of
random variables 𝛥 = [𝜔1,1, 𝜔2,1,… , 𝜔𝑤,𝑡] ∈ R𝑍 is defined, where 𝑤 and
𝑡 represent the specific space and time dimensions. Consequently, the
moment-based ambiguity set encloses all possible probability distribu-
tions that share the same first and second-order moments, and it can
be expressed as follows:

𝛱 = {P ∈ 𝛱0(R𝑍 ) ∶ EP[𝛥] = 𝜇𝛱 , EP[𝛥𝛥𝑇 ] = 𝛴𝛱}.

This set, denoted as 𝛱 , contains all probability distributions de-
scribed by known parameters: the mean (𝜇𝛱 ) and covariance (𝛴𝛱 ) of
the wind forecast errors. The expectation is denoted by EP, and the
transpose operator is represented by 𝑇 . It is assumed that the mean
is zero and the covariance matrix can be estimated from empirical
data on wind forecast errors. The covariance matrix captures the spa-
tial correlation between wind forecast errors at a specific time in its
diagonal entries, while the off-diagonal entries describe the temporal
dependence. The total deviation from the DA forecast of all wind farms
at a given time is given by the dot product of the unit vector 𝜙𝑇 and the
wind forecast error vector 𝛥𝑡. A non-negative value of 𝜙𝑇 𝛥𝑡 indicates a
shortage of wind power during RT operation compared to the DA point
forecast.

In this study, we have chosen to adopt the moment-based DRCC
approach for the following reasons. Firstly, unlike SBSO and chance-
constrained optimization methods, the DRCC approach does not rely
on assumptions about the underlying probability distribution. This is
advantageous in our context, where errors from imperfect forecasting
algorithms may not follow a specific distribution, as discussed in [50].
Secondly, the DRCC approach is more computationally efficient than
SBSO and distance-based DRO, making it particularly suitable given
the high-dimensional state space from a one-year simulation and the
complex, temporally coupled decision-making process involved in de-
tailed ESS order clearing. Lastly, it offers greater adaptability and is less
conservative than traditional RO.

2.3. Mathematical formulation of the problem

In this section, we formulate the optimal energy storage invest-
ment and flexible unit participation in the DA and RT markets as
a Distributionally Robust Chance-Constrained Program (DRCCP). In
Section 2.3.1, we provide the general formulation of the proposed
DRCCP. In Section 2.3.2, we explain the procedure for reformulating
the probabilistic DRCC program as an equivalent deterministic SOCP.
Finally, in Section 3, we present the complete and tractable problem
for ESS storage investment and market participation, formulated as a
MISOCP.
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2.3.1. Generic DRCC problem
The uncertainty-aware energy storage investment and market par-

icipation problem, proposed here, is first introduced as a generic DRCC
rogram in Eqs. (1a)–(1d). The objective function (1a) employs a min–
ax structure, aiming to minimize the social cost of the market while
aximizing the worst-case expected cost due to wind power forecast

rrors observed in real time. This is modelled using the worst-case
robability distribution, which is the probability distribution leading to
he highest expected cost due to the worst-case uncertainty realization.

𝑀 𝑖𝑛𝑀 𝑎𝑥
𝛯 ,P∈𝛱 EP

[

∑

𝑡∈

∑

𝑢∈
𝐶(𝑞𝑢,𝑡)

]

(1a)

𝑠.𝑡.

𝑋(𝑞𝑢,𝑡) = 0 𝑢 ∈  , 𝑡 ∈  (1b)

(𝑞𝑢,𝑡) ≥ 0 𝑢 ∈  , 𝑡 ∈  (1c)

𝑖𝑛P
P∈𝛱

[𝑞𝑢,𝑡 ≤ 𝑄𝑢] ≥ (1 − 𝜖) 𝑢 ∈  , 𝑡 ∈  (1d)

𝛯 ∶= {𝑞𝑢,𝑡|𝑢 ∈  , 𝑡 ∈  } is the set of optimization decision
variables. The term 𝐶(𝑞𝑢,𝑡) in the objective function represents the
adjusted net aggregated social costs of the market. This is defined as the
sum of aggregated social costs and the cost of temporal and energy-to-
flexibility arbitrage. This results in an optimization problem where the
flexibility cost is externalized from the social cost, as further elaborated
in Section 3. Constraints (1b) and (1c) represent generic deterministic
equalities and inequalities. Variables 𝑞𝑢,𝑡 ∈ R represent generic power
r energy components associated with the power system under study,
here 𝑢 is the specific unit (e.g., wind producer, thermal power gen-

rator, load, storage unit, etc.) and 𝑡 is the time instance. Similarly,
𝑄𝑢 is a parameter representing the upper bound of the variable 𝑞𝑢,𝑡
(e.g., maximum generator output). The symbol tilde (i.e., ̃ ) indicates a
stochastic process, which signifies that the decision variable comprises
both its nominal and uncertainty-dependent components.

The inequalities (1d) are formulated as DRCCs. Each DRCC ensures
ulfilling the underlying constraint with the confidence level of 1 - 𝜖

under the worst-case distribution P. The violation probability 𝜖 is a
non-negative parameter. In this study, we adopt the individual chance
constraints formulation. This formulation provides the system operator
with a degree of freedom to adjust the violation probability for each
constraint separately. An alternative approach could be the utilization
of a joint chance-constrained framework, where the overall system
reliability is guaranteed with a high probability. In such a framework,
the system operator assigns a single violation probability for the entire
set of chance constraints.

Solving the DRCC program (1a)–(1d) presents substantial compu-
ational challenges due to its inherent complexity. DRCC optimization
roblems are inherently difficult to solve as they involve an unknown
et of probability distributions, resulting in a potentially infinite num-
er of variables and constraints. Despite this, computational tractability
or DRCC problems can be achieved across various ambiguity sets by
everaging affine control policies, convex approximations, and duality
heory for moment problems, as discussed in [52].

To improve the computational tractability of the DRCC program,
we use affine decision rules to model flexible unit behaviour as linear
functions of wind forecast errors. These rules act as control actions,
managing system responses to uncertainty. We reformulate DRCCs
as deterministic Second-Order Cone (SOC) constraints, based on a
modified version of Chebyshev’s Inequality as explained in [53]. Our
hoice of SOC reformulation aligns with [33,54]. We exclude improved

approximations like those presented in [55] as they introduce higher
evels of mathematical complexity and necessitate auxiliary decision
ariables. This could potentially impact the scalability and computa-
ional efficiency of the problem. Hence, these enhancements are left as

future work. The reformulation procedure for the probabilistic DRCC
roblem is explained in Section 2.3.2.
7 
2.3.2. Reformulation of DRCC problem
As outlined above, the DRCC program (1a)–(1d) is computationally

intractable in its original form and requires reformulation for practical
mplementation. To address this, affine response policies are introduced
o manage the flexibility of assets such as power generators and storage
nits within the electricity network during the DA stage. These policies
llocate flexibility reserves in addition to the scheduled nominal DA
lan, considering the worst-case expected uncertainty realization dur-
ng the RT stage. A generic flexible unit 𝑢 can adjust its production or

consumption level in response to wind forecast errors. This is modelled
s follows:

𝑞𝑢,𝑡 = 𝑞𝑢,𝑡 + (𝜙𝑇 𝛥𝑡)𝑞𝑢,𝑡 𝑢 ∈  , 𝑡 ∈  , (2)

where 𝑞𝑢,𝑡 represents the stochastic power or energy component of unit
𝑢 at time 𝑡. It is comprised of two parts: the nominal component 𝑞𝑢,𝑡
denoted by the symbol ̂ ) and the uncertainty-dependent component
𝑞𝑢,𝑡 (denoted by the symbol ̆ ). The component 𝑞𝑢,𝑡 is the uncertainty
response factor which indicates the contribution of unit 𝑢 towards
compensating the total wind power mismatch 𝜙𝑇 𝛥𝑡 at time 𝑡. A compa-
rable methodology is employed to characterize the affine response to
uncertainty for all stochastic decision variables.

Following the approach in [33], we define the term (𝜙𝑇 𝛥𝑡)𝑞𝑢,𝑡 ∶=

(𝑞𝑢,𝑡)𝜇𝑡+
√

1−𝜖
𝜖 ‖𝑞𝑢,𝑡𝛴

1∕2
𝑡 ‖2, where 𝜇𝑡 is the mean forecast error at time

and 𝛴1∕2
𝑡 is the square root of the covariance matrix of wind forecast

errors at time 𝑡. For brevity, we rewrite this as (𝑞𝑢,𝑡)𝜇𝑡 + 𝜖′𝛾𝑡𝑞𝑢,𝑡, where
𝜖′ ∶=

√

1−𝜖
𝜖 and 𝛾𝑡𝑞𝑢,𝑡 ∶= ‖𝑞𝑢,𝑡𝛴

1∕2
𝑡 ‖2. Considering the incorporation of

the affine response policy to address uncertainty as described in (2),
nd assuming a zero mean forecast error (i.e., 𝜇𝑡 = 0), the DRCC (1d)

can be approximated by the following deterministic SOC constraint:

𝜖′𝛾𝑡𝑞𝑢,𝑡 ≤ 𝑄𝑢 − 𝑞𝑢,𝑡 𝑢 ∈  , 𝑡 ∈  , (3)

Constraint (3) ensures that the sum of nominal (𝑞𝑢,𝑡) and uncertainty-
dependent (𝜖′𝛾𝑡𝑞𝑢,𝑡) power (or energy) components stays within the
redefined upper bound (𝑄𝑢) with a confidence level of 1 − 𝜖. A similar
pproach is used to reformulate the DRCCs emerging in the complete
SS investment and market participation problem presented in Sec-

tion 3. For a more detailed explanation of the DRCC reformulation
procedure outlined above we refer to [32]. Finally, recall that the
mean of the forecast error uncertainty vector is assumed to be zero
(i.e., 𝜇𝑡 = 0). Consequently, the expectation operator in the objective
function (1a) can be omitted, simplifying it into a single minimization
function. For a detailed explanation and mathematical proof, we refer
he reader to [50,55].

3. Tractable problem formulation

In this section, we present the complete, tractable formulation of the
uncertainty-aware energy storage investment and market participation
problem. This formulation incorporates the proposed novel BOs, the
modelling assumptions, and the DRCC reformulation introduced in
Section 2.

3.1. Objective function

The objective function (4) aims to minimize the adjusted net ag-
gregated social cost of the power system over a one-year simulation
horizon considering hourly steps. This objective incorporates several
key components representing different aspects of the power system
scheduling, operation and flexibility procurement from generators and
storage units. The primary components of the objective function are as
follows: the aggregated social cost, the arbitrage cost of energy in the

A market, the cost of energy used for flexibility arbitrage from the DA
to the RT market, and the costs associated with procuring flexibility
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from generators and storage units. This translates into the objective
unction below:

𝑀 𝑖𝑛
𝛯 ,P∈𝛱

∑

𝑡∈

[ (
∑

𝑔∈
𝑞𝐺𝑔 ,𝑡𝑝𝐺𝑔 ,𝑡 −

∑

𝑙∈
𝑞𝐿𝑙 ,𝑡𝑝𝐿𝑙 ,𝑡 +

∑

𝑠∈
𝑝𝑠𝑝𝑟𝑠 𝑞𝑐 ℎ,𝐷𝑠,𝑡 −

∑

𝑠∈
𝜆𝑡𝑞

𝑐 ℎ,𝐷→𝑅
𝑠,𝑡

)

+
∑

𝑔∈
𝐶𝐴𝑣
𝑔 𝛼𝑔 ,𝑡 +

∑

𝑠∈
𝐶𝐴𝑣
𝑠 𝜂𝑑 𝑐𝑠 𝛽𝑠,𝑡

]

(4)

where 𝛯 ∶= 𝛯𝑔∪𝛯𝑓∪�̂�𝑠∪�̆�𝑠 is the set of optimization decision variables;
𝛯𝑔 ∶= { 𝑞𝐺𝑔 ,𝑡, 𝑞𝐺𝑔 ,𝑡, 𝑞𝐿𝑙 ,𝑡, 𝑞𝑊𝑤,𝑡, 𝛼𝑔 ,𝑡 | 𝑔 ∈  𝑙 ∈ , 𝑤 ∈  , 𝑡 ∈  }; 𝛯𝑓 ∶= {
�̂�,𝑚,𝑡, 𝑓𝑛,𝑚,𝑡, �̂�𝑛,𝑡, �̆�𝑛,𝑡 | 𝑛 ∈  , (𝑛, 𝑚) ∈  , 𝑡 ∈  }; �̂�𝑠 ∶= { 𝑒𝐷𝑠,𝑡, 𝑒𝐷→𝑅

𝑠,𝑡 , 𝑞𝑐 ℎ𝑠,𝑡 ,
̂𝑐 ℎ,𝐷𝑠,𝑡 , 𝑞𝑐 ℎ,𝐷→𝑅

𝑠,𝑡 , 𝑞𝑑 𝑐𝑠,𝑡 , 𝐸𝑠, 𝑄𝑠, 𝑈𝑠, 𝛽𝑠,𝑡 | 𝑠 ∈ , 𝑡 ∈  }; �̆�𝑠 ∶= { �̆�𝑠,𝑡, 𝑞𝑐 ℎ𝑠,𝑡 ,
𝑞𝑐 ℎ,𝐷→𝑅
𝑠,𝑡 , 𝑞𝑑 𝑐𝑠,𝑡 , 𝑞𝑠,𝑡 | 𝑠 ∈ , 𝑡 ∈  }.

The aggregated social cost is defined as the cost of production minus
he benefit of consumption. Specifically, it is given by the difference
etween the generation cost, 𝑞𝐺𝑔 ,𝑡𝑝𝐺𝑔 ,𝑡, and the load cost, 𝑞𝐿𝑙 ,𝑡𝑝𝐿𝑙 ,𝑡, for each
ime period 𝑡. The generation cost refers to the cost of producing en-
rgy, while the load cost reflects the benefit associated with consuming
nergy. The price terms, 𝑝𝐺𝑔 ,𝑡 and 𝑝𝐿𝑙 ,𝑡, represent the marginal production
ost of generator 𝑔 and the estimated bid price for conventional load 𝑙,
espectively, at time 𝑡.

In addition to the aggregated social cost, the objective function
includes the arbitrage cost of energy in the DA market. This term,
𝑝𝑠𝑝𝑟𝑠 𝑞𝑐 ℎ,𝐷𝑠,𝑡 , accounts for the cost associated with participating in DA
market arbitrage. The parameter 𝑝𝑠𝑝𝑟𝑠 represents the price spread, which
indicates the minimum price difference at which the ESS is willing to
engage in DA market arbitrage. Furthermore, the objective includes
the cost of energy flexibility arbitrage from the DA to the RT market,
represented by the term �̃�𝑡𝑞

𝑐 ℎ,𝐷→𝑅
𝑠,𝑡 . Here, �̃�𝑡 is the predicted market

clearing price at time 𝑡, and 𝑞𝑐 ℎ,𝐷→𝑅
𝑠,𝑡 represents the amount of energy

transferred for flexibility between the DA and RT markets. This term
models the costs incurred when energy is moved from the DA market
to the RT market in response to real-time wind power generation
deviations.

Finally, the objective function accounts for the costs of procuring
lexibility from both generators and storage units. The terms 𝐶𝐴𝑣

𝑔 𝛼𝑔 ,𝑡
nd 𝐶𝐴𝑣

𝑠 𝜂𝑑 𝑐𝑠 𝛽𝑠,𝑡 represent the flexibility procurement costs from flexible
enerators and storage units, respectively. The parameters 𝐶𝐴𝑣

𝑔 and 𝐶𝐴𝑣
𝑠

enote the energy-to-flexibility spreads for these units, which reflect the
price at which they are willing to provide flexibility in the RT market.
Parameter 𝜂𝑑 𝑐𝑠 denotes the discharging efficiency of the ESS. This
formulation leads to an augmented market clearing problem, where the
flexibility procurement costs in the RT market are externalized from the
DA social cost. By doing so, it captures the economic impact of flex-
ibility procurement and arbitrage while maintaining consistency with
market operations. It is important to note that wind power generation is
assumed to have zero marginal production cost, represented by 𝑞𝑊𝑤,𝑡 = 0
for all 𝑤 ∈  . Therefore, it is excluded from the objective function.

3.2. DA power network constraints

Constraints (5a) through (5f) represent the nominal power network
onstraints associated with the DA market. These constraints ensure
hat power generation, consumption, and transmission are balanced
ithin specified bounds, maintaining the integrity and feasibility of the
A market operation.

𝑄𝐿
𝑙
≤ 𝑞𝐿𝑙 ,𝑡 ≤ 𝑄

𝐿
𝑙 𝑙 ∈ , 𝑡 ∈ 

(5a)
𝐺
𝑔
≤ 𝑞𝐺𝑔 ,𝑡 ≤ 𝑄

𝐺
𝑔 𝑔 ∈ , 𝑡 ∈ 

(5b)
𝑊
𝑤

≤ 𝑞𝑊𝑤,𝑡 ≤ 𝑄
𝑊
𝑤 𝑤 ∈  , 𝑡 ∈ 
(5c)

8 
∑

𝑔∈𝐺𝑛

𝑞𝐺𝑒,𝑡 +
∑

𝑤∈𝑊𝑛

𝑞𝑊𝑤,𝑡 +
∑

𝑠∈𝑆𝑛

𝑞𝑑 𝑐𝑠,𝑡 𝜂𝑑 𝑐𝑠 =
∑

𝑙∈𝐿𝑛

𝑞𝐿𝑙 ,𝑡 +
∑

𝑠∈𝑆𝑛

𝑞𝑐 ℎ𝑠,𝑡 +
∑

𝑚∈𝛺𝑛

𝑓𝑛,𝑚,𝑡 𝑛 ∈  , 𝑡 ∈ 

(5d)
𝑓𝑛,𝑚,𝑡 = 𝐵𝑛,𝑚(�̂�𝑛,𝑡 − �̂�𝑚,𝑡) 𝑛, 𝑚 ∈  , 𝑡 ∈ 

(5e)
�̂�𝑛,𝑡 = 0, 𝑛 = 𝑟𝑒𝑓 , 𝑡 ∈ 

(5f)

Constraint (5a) establishes load limits. It ensures that the electricity
demand from loads (𝑞𝐿𝑙 ,𝑡) is within specified lower (𝑄𝐿

𝑙
) and upper (𝑄𝐿

𝑙 )
bounds for each load 𝑙 and time 𝑡. Note that his study assumes the
emand to be inelastic (i.e., 𝑄𝐿

𝑙
= 𝑄

𝐿
𝑙 ). However, this assumption can

be relaxed without loss of generality in our model. Constraint (5b)
sets conventional generator limits. It restricts the power produced by
conventional generators (𝑞𝐺𝑔 ,𝑡) between minimum (𝑄𝐺

𝑔
) and maximum

(𝑄
𝐺
𝑔 ) capacities for each generator 𝑔 and time 𝑡. Similarly, constraint

(5c) defines wind generation limits. It ensures that wind power gener-
ation (𝑞𝑊𝑤,𝑡) stays within lower (𝑄𝑊

𝑤
) and upper (𝑄𝑊

𝑤 ) bounds for each
ind generator 𝑤 and time 𝑡. Eq. (5d) represents the power balance

constraint. It ensures that at each bus 𝑛 and time 𝑡, the sum of power
from conventional generators, wind generators, and ESS discharging
quals the sum of load demands, ESS charging, and net power outflows.
he efficiency factors 𝜂𝑑 𝑐𝑠 and 𝜂𝑐 ℎ𝑠 account for energy losses during
ischarging and charging of ESS, respectively. Constraint (5e) defines

power flow using DC power flow approximation. It calculates the power
flow (𝑓𝑛,𝑚,𝑡) between buses 𝑛 and 𝑚 at time 𝑡 based on the voltage angle
difference and line susceptance (𝐵𝑛,𝑚). This approximation assumes that
all bus voltage magnitudes are equal to 1 per unit (p.u.), and that
voltage angle differences are small. Constraint (5f) sets the reference
bus. It fixes the voltage angle (�̂�𝑛,𝑡) at the reference bus to zero for all
time periods.

3.3. RT power network constraints

Constraints (6a) through (6i) represent the uncertainty-dependent
power network constraints associated with the RT market. These con-
straints ensure the safe and reliable operation of the power network in
RT by accounting for adjustments in generation, storage (dis)charging
operations, and power flows to accommodate the worst-case deviations
in wind power generation.

𝜖
′
𝛾𝑡𝑞

𝐺
𝑔 ,𝑡 ≤ 𝑄

𝐺
𝑔 − 𝑞𝐺𝑔 ,𝑡 𝑔 ∈ , 𝑡 ∈  (6a)

′
𝛾𝑡𝑞

𝐺
𝑔 ,𝑡 ≥ 𝑄𝐺

𝑔
− 𝑞𝐺𝑔 ,𝑡 𝑔 ∈ , 𝑡 ∈  (6b)

∑

𝑔∈
𝑞𝐺𝑒,𝑡 +

∑

𝑠∈
𝑞𝑑 𝑐𝑠,𝑡 𝜂𝑑 𝑐𝑠 −

∑

𝑠∈
𝑞𝑐 ℎ𝑠,𝑡 = 1 𝑡 ∈  (6c)

∑

𝑔∈𝐺𝑛

𝑞𝐺𝑒,𝑡 +
∑

𝑠∈𝑆𝑛

𝑞𝑑 𝑐𝑠,𝑡 𝜂𝑑 𝑐𝑠 =
∑

𝑠∈𝑆𝑛

𝑞𝑐 ℎ𝑠,𝑡 +
∑

𝑚∈𝛺 𝑛
𝑓𝑛,𝑚,𝑡 𝑛 ∈  , 𝑡 ∈  (6d)

′
𝛾𝑡𝑓𝑛,𝑚,𝑡 ≤ 𝑓 𝑛,𝑚 − 𝑓𝑛,𝑚,𝑡 𝑛, 𝑚 ∈  , 𝑡 ∈  (6e)

′
𝛾𝑡𝑓𝑛,𝑚,𝑡 ≥ 𝑓

𝑛,𝑚
− 𝑓𝑛,𝑚,𝑡 𝑛, 𝑚 ∈  , 𝑡 ∈  (6f)

𝑓𝑛,𝑚,𝑡 = 𝐵𝑛,𝑚(�̆�𝑛,𝑡 − �̆�𝑚,𝑡) 𝑛, 𝑚 ∈  , 𝑡 ∈  (6g)

�̆�𝑛,𝑡 = 0 𝑛 = 𝑟𝑒𝑓 , 𝑡 ∈  (6h)

𝛼𝑔 ,𝑡 ≥ 𝜖
′
𝛾𝑡𝑞𝑔 ,𝑡 𝑔 ∈ , 𝑡 ∈  (6i)

Constraints (6a) and (6b) define the upper and lower bounds of
power generation for flexible generators. They ensure that the sum of
nominal power generation (𝑞𝐺𝑔 ,𝑡) and uncertainty-dependent generation
adjustments (𝜖′𝛾𝑡𝑞𝐺𝑔 ,𝑡) remains within the operational limits defined by
𝑄

𝐺
𝑔 and 𝑄𝐺

𝑔
, respectively. Constraint (6c) specifies the total uncertainty-

dependent response in the system. It ensures that the uncertainty-
dependent adjustments from generators (𝑞𝐺𝑔 ,𝑡), storage discharging (𝑞𝑑 𝑐𝑠,𝑡 ),
and storage charging (𝑞𝑐 ℎ) collectively sum to 1, which represents
𝑠,𝑡
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the normalized total wind power deviation. Constraint (6d) maintains
power balance at each bus, ensuring that uncertainty-dependent ad-
justments from generation and storage match the adjustments required
by power flows in connected transmission lines (𝑓𝑛,𝑚,𝑡). Constraints
(6e) and (6f) define the upper and lower bounds for the uncertainty-
ependent power flows through transmission lines. These constraints

ensure that the sum of nominal flows (𝑓𝑛,𝑚,𝑡) and uncertainty-dependent
flow adjustments (𝜖′𝛾 𝑡𝑓𝑛,𝑚,𝑡) remains within the specified limits, 𝑓 𝑛,𝑚
and 𝑓

𝑛,𝑚
. Constraint (6g) relates uncertainty-dependent power flows

o voltage angle differences (�̆�𝑛,𝑡 − �̆�𝑚,𝑡) across buses through the line
usceptance 𝐵𝑛,𝑚. This constraint represents the DC power flow approx-
mation for the RT adjustments. Constraint (6h) sets the reference bus

voltage angle in RT to zero. Finally, constraint (6i) relates the flexibility
of generators in real units (i.e., MW), represented by the auxiliary
variable 𝛼𝑔 ,𝑡, to the normalized uncertainty-dependent adjustment 𝑞𝐺𝑔 ,𝑡.
The right-hand side 𝜖′𝛾𝑡𝑞𝐺𝑔 ,𝑡 represents the actual flexibility required in
response to wind power deviations, where 𝜖′𝛾𝑡 scales the normalized
adjustment to real units. This constraint, though relaxed, becomes exact
as the objective function minimizes 𝛼𝑔 ,𝑡, ensuring 𝜖′𝛾𝑡𝑞𝐺𝑔 ,𝑡 = 𝛼𝑔 ,𝑡.

3.4. DA storage system constraints

Constraints (7a) to (7i) represent the nominal storage constraints in
he DA market. These constraints model the ESS operations during the

DA stage, ensuring that charging, discharging, and energy states are
managed effectively while respecting the assigned energy and power
ratings.

̂𝑐 ℎ𝑠,𝑡 = 𝑞𝑐 ℎ,𝐷𝑠,𝑡 + 𝑞𝑐 ℎ,𝐷→𝑅
𝑠,𝑡 𝑠 ∈  , 𝑡 ∈  (7a)

≤ 𝑞𝑐 ℎ𝑠,𝑡 ≤ 𝑄𝑠 𝑠 ∈  , 𝑡 ∈  (7b)

≤ 𝑞𝑑 𝑐𝑠,𝑡 ≤ 𝑄𝑠 𝑠 ∈  , 𝑡 ∈  (7c)

𝑒𝐷𝑠,𝑡 = 𝑒𝐷𝑠,𝑡−1 + 𝜂𝑐 ℎ𝑠 𝑞𝑐 ℎ,𝐷𝑠,𝑡 − 𝑞𝑑 𝑐𝑠,𝑡 𝑠 ∈  , 𝑡 ∈  (7d)

𝑒𝐷→𝑅
𝑠,𝑡 = 𝑒𝐷→𝑅

𝑠,𝑡−1 + 𝜂𝑐 ℎ𝑠 𝑞𝑐 ℎ,𝐷→𝑅
𝑠,𝑡 − 𝛽𝑠,𝑡 𝑠 ∈  , 𝑡 ∈  (7e)

𝑒𝐷𝑠,𝑡 = 𝑒0𝑠 𝑠 ∈  , 𝑡 ∈  24 (7f)

𝑒𝐷→𝑅
𝑠,𝑡 = 𝑒0𝑠 𝑠 ∈  , 𝑡 ∈  24 (7g)

0 ≤ 𝑒𝐷𝑠,𝑡 + 𝑒𝐷→𝑅
𝑠,𝑡 ≤ 𝐸𝑠 𝑠 ∈  , 𝑡 ∈  (7h)

𝑒𝐷𝑠,𝑡 + 𝜂𝑐 ℎ𝑠 𝑞𝑐 ℎ,𝐷→𝑅
𝑠,𝑡 ≤ 𝐸𝑠 𝑠 ∈  , 𝑡 ∈  (7i)

Constraint (7a) defines the total energy charged by the ESS, 𝑞𝑐 ℎ𝑠,𝑡 , as
he sum of the energy charged for the DA market, 𝑞𝑐 ℎ,𝐷𝑠,𝑡 , and the portion
eserved for flexibility services in the RT market, 𝑞𝑐 ℎ,𝐷→𝑅

𝑠,𝑡 . Constraints
7b) and (7c) ensure that the charging and discharging powers, respec-

tively, remain within the maximum power rating, 𝑄𝑠, for all periods.
Note that 𝑄𝑠 is a decision variable in our problem. Constraint (7d)
epresents the energy balance for the DA market. It ensures that the

energy stored at time 𝑡, 𝑒𝐷𝑠,𝑡, equals the previous energy state at time
− 1 plus the energy charged, 𝜂𝑐 ℎ𝑠 𝑞𝑐 ℎ,𝐷𝑠,𝑡 , minus the energy discharged,
̂𝑑 𝑐𝑠,𝑡 . Constraint (7e) ensures energy balance for the portion of storage
apacity reserved for cross-market arbitrage. 𝑒𝐷→𝑅

𝑠,𝑡 is updated based on
he charging in the DA market for the RT market and the discharging
n the RT market, denoted by 𝛽𝑠,𝑡. Constraints (7f) and (7g) require that

the state of energy in both the DA and RT markets returns to the initial
value, 𝑒0𝑠 , at the end of the day (i.e., 𝑡 ∈  24). This ensures the closure of
he daily cycle and maintains consistency with the DA market structure.
onstraint (7h) ensures that the combined energy state for both markets

remains within the storage’s maximum energy rating, 𝐸𝑠, which is
also treated as a decision variable. Finally, constraint (7i) limits cross-
market arbitrage by ensuring that the energy charged in the DA market
for the RT market, 𝑞𝑐 ℎ,𝐷→𝑅

𝑠,𝑡 , respects the available storage capacity. This
constraint prevents situations where the ESS commits to charging more
than its available capacity in the DA market for the RT market, by
9 
exploiting its ability to reduce the charging amount in the RT market.
he role of this constraint is to enforce the non-anticipativity conditions
nd effectively prevent overcharging scenarios in DA for the RT market.

3.5. RT storage system constraints

Constraints (8a) to (8j) represent the uncertainty-dependent storage
constraints in the RT market. They model the uncertainty-dependent
behaviour of the ESS in the RT market by taking into account the
changes in charging and discharging operations of the ESS in response
to uncertainty in wind power generation.

�̆�𝑠,𝑡 = �̆�𝑠,𝑡−1 + 𝜂𝑐 ℎ𝑠 𝑞𝑐 ℎ,𝐷→𝑅
𝑠,𝑡 + 𝜂𝑐 ℎ𝑠 𝑞𝑐 ℎ𝑠,𝑡 − 𝑞𝑑 𝑐𝑠,𝑡 𝑠 ∈  , 𝑡 ∈  (8a)

�̆�𝑠,𝑡 = 𝑒0𝑠 𝑠 ∈  , 𝑡 ∈  24 (8b)

≤ 𝜖
′
𝛾𝑡�̆�𝑠,𝑡 ≤ 𝐸𝑠 − 𝑒𝐷𝑠,𝑡 𝑠 ∈  , 𝑡 ∈  (8c)

0 ≤ 𝜖
′
𝛾𝑡(𝑞𝑐 ℎ𝑠,𝑡 + 𝑞𝑐 ℎ,𝐷→𝑅

𝑠,𝑡 ) ≤ 𝑄𝑠 − 𝑞𝑐 ℎ,𝐷𝑠,𝑡 𝑠 ∈  , 𝑡 ∈  (8d)

≤ 𝜖
′
𝛾𝑡𝑞

𝑐 ℎ,𝐷→𝑅
𝑠,𝑡 ≤ 𝑞𝑐 ℎ,𝐷→𝑅

𝑠,𝑡 𝑠 ∈  , 𝑡 ∈  (8e)

≤ 𝜖
′
𝛾𝑡𝑞

𝑑 𝑐
𝑠,𝑡 ≤ 𝑄𝑠 − 𝑞𝑑 𝑐𝑠,𝑡 𝑠 ∈  , 𝑡 ∈  (8f)

𝑠,𝑡 ≥ 𝜖
′
𝛾𝑡𝑞𝑠,𝑡 𝑠 ∈  , 𝑡 ∈  (8g)

𝑞𝑠,𝑡 = 𝑞𝑑 𝑐𝑠,𝑡 − 𝑞𝑐 ℎ𝑠,𝑡 𝑠 ∈  , 𝑡 ∈  (8h)

𝑞𝑐 ℎ𝑠,𝑡 = 0 𝑠 ∈  , 𝑡 ∈  (8i)
∑

𝑔∈𝐺
𝛼𝑔 ,𝑡 +

∑

𝑠∈𝑆
𝜂𝑑 𝑐𝑠 𝛽𝑠,𝑡 ≤ 𝜖

′
𝛾𝑡 𝑡 ∈  (8j)

Eq. (8a) ensures the uncertainty-dependent state of energy at time 𝑡
�̆�𝑠,𝑡) equals the previous state plus the charging factor from DA to RT
𝑞𝑐 ℎ,𝐷→𝑅
𝑠,𝑡 ), RT charging (𝑞𝑐 ℎ𝑠,𝑡 ), minus RT discharging (𝑞𝑑 𝑐𝑠,𝑡 ). This equation

reflects how the ESS responds to charging and discharging actions,
accounting for the uncertainty in the RT market. Eq. (8b) ensures the
uncertainty-dependent state of energy at the end of each day (i.e., 𝑡 ∈
 24) matches the initial state, effectively closing the energy cycle
for the day. Constraint (8c) ensures that the combined energy state,
including the nominal energy state (𝑒𝐷𝑠,𝑡) and the uncertainty-dependent
energy state (𝜖′𝛾𝑡�̆�𝑠,𝑡), does not exceed the storage’s maximum capacity
(𝐸𝑠). This enforces the capacity limit of the storage system in the real-
time market. Constraint (8d) enforces that the sum of nominal and
uncertainty-dependent charging rates (𝑞𝑐 ℎ𝑠,𝑡 and 𝑞𝑐 ℎ,𝐷→𝑅

𝑠,𝑡 ) remains within
the maximum power rating of the ESS (𝑄𝑠), ensuring that the storage
system operates within its power limits. Constraint (8e) ensures that
the uncertainty-dependent charging factor (𝑞𝑐 ℎ,𝐷→𝑅

𝑠,𝑡 ) remains between
zero and the DA to RT charging rate (𝑞𝑐 ℎ,𝐷→𝑅

𝑠,𝑡 ), enforcing the limits
on cross-market charging. Constraint (8f) enforces the RT discharging
capacity limit by ensuring that the uncertainty-dependent discharging
rate (𝑞𝑑 𝑐𝑠,𝑡 ) stays within the storage’s power rating. Constraint (8g) sets
n upper bound on the flexibility offered by the ESS in the RT market,

denoted by 𝛽𝑠,𝑡. The relaxed form of this constraint ensures that the
lexibility provided by the ESS in the RT market is bounded by the
ncertainty-related term 𝜖′𝛾𝑡𝑞𝑠,𝑡. Since the objective function minimizes
𝑠,𝑡, this relaxed constraint holds exactly, meaning 𝜖′𝛾𝑡𝑞𝑠,𝑡 = 𝛽𝑠,𝑡. Eq. (8h)

defines the net uncertainty-dependent power rate of the ESS as the
ifference between the discharging rate (𝑞𝑑 𝑐𝑠,𝑡 ) and the charging rate
𝑞𝑐 ℎ𝑠,𝑡 ). Eq. (8i) ensures that the uncertainty-dependent charging rate
𝑞𝑐 ℎ𝑠,𝑡 ) in the RT market is zero. This constraint implies that no ad-
itional charging is permitted in the RT market beyond what was
cheduled in the DA market. Finally, Eq. (8j) ensures that the total
lexibility provided by both generators (𝛼𝑔 ,𝑡) and storage units (𝜂𝑑 𝑐𝑠 𝛽𝑠,𝑡)
oes not exceed the worst-case wind power deviation, represented by
he uncertainty term 𝜖′𝛾𝑡. This constraint guarantees that the total
lexibility provided matches the maximum expected fluctuation in wind

generation, ensuring balance and stability in the power system.
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3.6. Storage investment constraints

Constraints (9a) through (9e) model the investment decisions for
the ESS. They ensure that the power and energy ratings of the ESS meet
operational requirements, while also making the ESS investment finan-
cially viable. This is achieved by balancing the ESS capital expenditure
against returns from DA market arbitrage and RT market flexibility
services.
∑

𝑡∈
(𝑝𝑠𝑝𝑟𝑠 𝑞𝑐 ℎ,𝐷𝑠,𝑡 + 𝐶𝐴𝑣

𝑠 𝛽𝑠,𝑡) ≤ 𝑈𝑠𝐼
0
𝑠 + 𝐼𝐸𝑠 𝐸𝑠 + 𝐼𝑄𝑠 𝑄𝑠 𝑠 ∈  (9a)

∑

𝑡∈
(𝜆𝑡𝑞𝑑 𝑐𝑠,𝑡 − 𝜆𝑡𝑞

𝑐 ℎ,𝐷
𝑠,𝑡 + 𝐶𝐴𝑣

𝑠 𝛽𝑠,𝑡) ≥ 𝑈𝑠𝐼
0
𝑠 + 𝐼𝐸𝑠 𝐸𝑠 + 𝐼𝑄𝑠 𝑄𝑠 𝑠 ∈  (9b)

≤ 𝐸𝑠 ≤ 𝑈𝑠𝑀 𝑠 ∈  (9c)

0 ≤ 𝑄𝑠 ≤ 𝑈𝑠𝑀 𝑠 ∈  (9d)

𝑄𝑠𝜂
𝑐 ℎ
𝑠 ≤ 𝐸𝑠 𝑠 ∈  (9e)

Constraints (9a) and (9b) ensure that the ESS is only deployed if
it can generate sufficient revenue to cover its investment costs, repre-
sented by the right-hand side of these constraints. The total investment
cost includes the initial investment (𝐼0𝑠 ) as well as the costs for energy
apacity (𝐼𝐸𝑠 𝐸𝑠) and power capacity (𝐼𝑄𝑠 𝑄𝑠). Specifically, constraint

(9a) sets a lower bound for the ESS investment cost. It requires that
he total investment cost be at least as large as the sum of the mini-
um revenue from DA market arbitrage (𝑝𝑠𝑝𝑟𝑠 𝑞𝑐 ℎ,𝐷𝑠,𝑡 ), based on the price

pread, and the revenue from RT market flexibility services (𝐶𝐴𝑣
𝑠 𝛽𝑠,𝑡).

onstraint (9b) sets an upper bound for the ESS investment cost. It
ensures that the total investment cost does not exceed the expected
revenue, which is defined as the difference between ESS discharging
revenue and charging cost (based on the DA price forecast, 𝜆𝑡) plus
he revenue from RT flexibility services (𝐶𝐴𝑣

𝑠 𝛽𝑠,𝑡). Constraints (9c) and
(9d) determine whether the ESS should be deployed, with 𝑈𝑠 serving
as a binary decision variable. If the model opts to invest in storage
𝑈𝑠 = 1), the energy rating 𝐸𝑠 and power rating 𝑄𝑠 are activated,

allowing them to take values up to a sufficiently large constant 𝑀 .
onversely, if 𝑈𝑠 = 0, both ratings are set to zero, indicating that no
SS is deployed at that location. Finally, constraint (9e) ensures that
he energy rating of the ESS is sufficiently large to handle the maximum
ower rating multiplied by the charging efficiency, 𝜂𝑐 ℎ𝑠 . This guarantees
hat the storage system can fully utilize its power rating for at least one

hour of operation.

3.7. Complete problem

Considering the variables and constraints previously described, the
complete uncertainty-aware ESS investment and market participation
problem (10) takes the following form:

Minimize: (4)
s.t.

A Power Network Constraints: (5a) − (5f)
RT Power Network Constraints: (6a) − (6i)
DA Storage System Constraints: (7a) − (7i)
RT Storage System Constraints: (8a) − (8j)
Storage Investment Constraints: (9a) − (9e)

(10)

The inequalities (6a), (6b), (6e), (6f), (6i), (8c), (8d), (8e), (8f)
nd (8g) are formulated as DRCCs. This formulation ensures that at

the optimal solution, the probability of satisfying each constraint is
modelled with a violation probability of no more than 𝜖, or equiv-
alently, a confidence level of at least (1 - 𝜖). Note that 𝜖 can take
different values for the individual chance constraints. The resulting
DRCC problem (10) is a MISOCP that can be efficiently solved with
ff-the-shelf optimization solvers such as Mosek and Gurobi.
 c

10 
4. Results and discussion

4.1. Case study

The power transmission network utilized in this research is obtained
y adapting the IEEE 24-Bus Reliability Test System [56]. The power

network consists of 12 conventional generators, 2 wind farms with a
aximum capacity of 500 MW each, 17 loads, and 2 potential storage
nits requiring investment decisions situated at buses 5 and 7. The
ifferent buses are connected with a set of 34 power transmission
ines. The assumed initial cost (𝐼0𝑠 ) for installing the utility-scale ESS is
00,000 AC . The cost per unit of energy (𝐼𝐸𝑠 ) is 200,000 AC /MWh. The
ost per unit of power (𝐼𝑄𝑠 ) is set at 200,000 AC /MW. The price spread
𝑝𝑠𝑝𝑟) is fixed at 4 AC /MWh. The average lifetime of the ESS is 10 years.
he storage investment costs are obtained from [49]. The energy-to-

flexibility spread is set to 10 AC /MW for both flexible generators (𝐶𝐴𝑣
𝑔 )

and storage units (𝐶𝐴𝑣
𝑠 ). The data on power network parameters, asset

characteristics, and wind uncertainty modelling are available in the
nline appendix [57].

The selected period for the simulation is one year with a time
resolution of one hour. The DA market-clearing price forecast �̃�𝑡 is
based on historical data for the Netherlands obtained from [58] for
the year 2022. To estimate the covariance matrix of wind forecast
errors, a set of 1000 wind forecast scenarios is used for each day of the
year, based on empirical data for the Netherlands obtained from [59].
The violation probability level (𝜖) is set to 0.1 for DRCCs (6a), (6b),
6e) and (6f), concerning the power network, and to 0.2 for DRCCs

(8c), (8d), (8e) and (8f), concerning the storage system. It is important
to note that 𝜖 is set to 0.5 for constraints (6i), (8g) and (8j). These
onstraints are used to map RT variables, expressed as a function of

wind power deviation, back to DA units (i.e., MW). We choose to set
𝜖 to 0.5 in these constraints to prevent worst-case uncertainty back-
ropagation from RT to DA units. Note that when 𝜖 is set to 0.5, 𝜖′ is
qual to 1. This implies that 𝜖′𝛾𝑡 = ‖𝛴1∕2

𝑡 ‖2. This approach guarantees
 resilient solution for the power network while preventing excessive
onservatism in flexibility policies and storage investment decisions.

4.2. Numerical results

The problem is implemented in Julia v1.6.7, utilizing JuMP v1.14.1
nd Mosek v9.3.22. The problem is solved using a laptop equipped
ith 32 GB RAM and an Intel(R) Xeon(R) processor with 6 cores

unning at 2.80 GHz. The average solution time is approximately one
hour. The solution to the problem provides the nominal DA sched-
le, uncertainty-dependent decisions that account for variability in
ind power generation in RT, and investment decisions related to the

nstallation of the storage system.

4.2.1. Economic analysis and investment recovery
Table 1 presents the optimal energy storage investment decision.

The results indicate that the optimal choice is to build a single utility-
cale ESS located at bus 5 (denoted as S1). This storage system has
n energy rating of 145.98 MWh and a power rating of 160.41 MW.

In line with the problem formulation, we observe that the power
ating is affected by charging and discharging efficiencies, set at 0.91
nd 0.89 respectively. Considering the efficiency losses, the energy-
o-power ratio of the storage system is approximately 1:1. The total
nvestment for S1 is 61.4 MAC. The storage system is expected to recover
ts investment over a 10-year lifetime with zero interest, resulting in
n annualized capital cost of 6.14 MAC/year. Notably, the ESS located
t bus 7 (denoted as S2) was not selected for investment in the current
etting. Since both storage systems have identical cost parameters, the
esults suggest that the decision is driven by the specific location of the
SS. The location of S1 in the network makes it a more suitable option
ompared to S2, considering the distribution of loads, generation, and
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Table 1
Optimal energy storage investment decision. S1 and S2 represent storage
units located at buses 5 and 7, respectively.

Metric S1 S2 Unit

Energy rating 145.98 0.00 MWh
Power rating 160.41 0.00 MW
Total investment 6.14 ⋅107 0.00 AC

Table 2
Economic performance metrics at system, generator, and storage levels.

Level Metric Value Unit

System
Utility 6.21 ⋅109 AC/year
Social welfare DA 6.22 ⋅109 AC/year
Flexibility cost RT 7.40 ⋅106 AC/year

Generators Revenue DA 4.65 ⋅109 AC/year
Revenue RT 2.31 ⋅106 AC/year

Storage Revenue DA 1.04 ⋅106 AC/year
Revenue RT 5.10 ⋅106 AC/year

transmission line limits. These results highlight the critical role of
network constraints in determining the optimal location for ESS.

Next, we analyse the system’s economic performance metrics, as
presented in Table 2. The total system utility amounts to 6.21 BAC/year,

ith the majority coming from DA social welfare, which is 6.22
AC/year. In contrast, the cost of procuring RT flexibility is much
maller, at 7.40 MAC/year. Conventional generators obtain most of their
evenue from DA power dispatch, amounting to 4.65 BAC/year, while
T revenue is significantly lower, at 2.31 MAC/year. For the storage
ystem, Table 2 shows that revenue from DA arbitrage is 1.04 MAC/year,
hile RT arbitrage generates a higher revenue of 5.10 MAC/year. These

evenues demonstrate the dual role of the storage system in con-
ributing to both DA and RT market operations. Importantly, the total
evenue from the storage system matches its annualized capital cost
f 6.14 MAC/year, ensuring investment recovery. Most of this recovery
omes from RT arbitrage (83.1%), with DA arbitrage contributing a
maller but significant portion (16.9%). These findings underscore
he effectiveness of the proposed DBOs and FBOs in facilitating ESS
nvestment recovery. They also highlight the importance of both DA
nd RT arbitrage revenues in ensuring the financial viability of ESS,
ith the RT market playing a particularly critical role. The results
emonstrate that the proposed methodology enables ESS to capitalize
n revenue opportunities across multiple market segments, ensuring
he recovery of ESS investments.

4.2.2. Day-ahead dispatch
To illustrate the working principle of our model, we focus on a

representative operational day. Fig. 3 shows the daily aggregated DA
chedule for the system. The load varies throughout the day between
 minimum of about 2.2 GW and a maximum of 3.1 GW, following
 typical duck curve. We note that conventional generators contribute
ignificantly to the total power supply at all times, as shown by the grey
rea. Wind production, depicted in green, is higher between hours 1–8
nd relatively lower afterwards. The storage system charges between
ours 4–7, during the low demand period indicated by the red area,
nd discharges during peak demand at hour 10 as well as between
ours 18–20, as indicated by the orange area. Additionally, the storage
ystem charges a significant amount of energy for RT market arbitrage
t all times, as shown by the black dotted area. Hourly Market Clearing
rices (MCPs) are generally high, ranging between 470–550 AC∕MWh.
owever, the absolute price difference of 80 AC∕MWh is comparable to
ther days of the year. MCPs are derived from the dual variable of the
ower balance constraint (5c). It must be noted that since our model
s a mixed-integer problem, it does not directly yield MCPs. Therefore,
 two-step simulation process is conducted. Firstly,the full simulation
 o

11 
is executed. Secondly, the model is run with fixed binaries (i.e., 𝑈𝑠 is
fixed) to retrieve the MCPs.

4.2.3. Block order analysis
Fig. 4 illustrates the detailed ESS charging and discharging opera-

ions, along with the associated state of energy of the ESS associated
with the DA and RT markets. During hours 1–2, the state of energy
n the DA market (𝑒𝐷), depicted by the blue line, is nearly zero. It
radually increases between hours 3–7 due to DA charging events
𝑞𝑐 ℎ,𝐷), reaching 115 MWh. This stored energy is then discharged at
ours 10 and 18–20 (𝑞𝑑 𝑐) through temporal DA arbitrage, indicating
hat DBO had been accepted at those hours. Furthermore, the storage
ystem consistently engages in RT temporal and energy-to-flexibility
rbitrage throughout the day (i.e., FBO). Notably, the ESS charging
ate from DA to RT (𝜂𝑐 ℎ𝑠 𝑞𝑐 ℎ,𝐷→𝑅) is larger than the discharging rate in

RT (𝛽) at hours 1, 2, 4, 6, 7, and 10, as well as hours 15–16 and 18.
Under these conditions, 𝛽 represents a virtual discharging event (or a
reduced scheduled charging rate), indicating that an FBO− type block
rder had been accepted at these hours. Simultaneously, part of the

energy may still be charged, leading to an increase in the energy state
of the battery reserved for RT flexibility services (𝑒𝐷→𝑅), depicted by
the green line. The charged energy is then discharged in RT at hours 3,
5, 8, 11–14, and 21–24, resulting in a decrease in the state of energy
f the ESS, which indicates that an FBO+ type block order had been
ccepted at those hours. Furthermore, we note that FBO+ is mostly

accepted alongside FBO−, meaning that flexibility can be delivered
through a combination of reducing the charging rate and discharging
previously accumulated energy in RT. Hour 5 stands out as the only
time when the flexibility mechanism is solely FBO+, indicating that the
only available flexibility source in RT is the discharge of previously
accumulated energy. These findings underscore the effectiveness of the
roposed DBOs, FBOs and their combination in enhancing flexibility
ithin the power system.

4.2.4. Flexibility reserves allocation
Fig. 5 shows the flexibility reserves provided by flexible generators

(blue) and storage (orange). The bars represent the amount of flexibility
ontributed by each asset. Generation reserves signify increased power
roduction, while storage reserves represent the flexibility obtained
hrough FBOs. The combined flexibility from generators and storage

must always equal the total expected wind power deviation, indicated
by the green line. In this study, we consider a 50% probability (with
= 𝜖′ and 𝜖 = 0.5) as the most likely wind power deviation. Thus, the

ystem is scheduled according to the orange and blue bars, representing
he aggregated flexibility from storage and generators respectively. The

results indicate that both generators and storage provide comparable
flexibility during hours 1–10, when the wind deficit is most severe,
peaking at 125 MW at hour 5. In contrast, between hours 11–24,
the storage predominantly compensates for the wind power deficit.
urthermore, recall that DRCCs ensure that adequate capacity is left
vailable for flexible units to accommodate worst-case wind deviations
ith a predefined confidence level, determined by the chosen value
f 𝜖. The red and grey bars illustrate the maximum capacity that
an be offered by storage units and generators under the worst-case
cenario considering the specified values of 𝜖 (i.e., 0.1 for generators
nd 0.2 for storage). The results indicate that the system maintains
ufficient capacity to manage worst-case wind deficits at all times with
 violation probability level of 0.2, as indicated by the orange line.
otably, as the violation probability level is further reduced to 0.1,
epicted by the black line, the worst-case wind deviation increases and
he system becomes unable to address the imbalances. This aligns with
he assumptions made regarding the choice of 𝜖 for individual chance
onstraints. To ensure a higher confidence level in mitigating worst-
ase wind deviations, the system operator should opt for smaller values
f 𝜖. However, this may lead to a more conservative solution.
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Fig. 3. DA schedule: total load (blue line), conventional generators (grey area), wind point forecast (green area), storage charging (red) and discharging (yellow) for DA arbitrage,
charging for RT arbitrage (dotted area), and market clearing prices (black dashed line). (For interpretation of the references to colour in this figure legend, the reader is referred
to the web version of this article.)
Fig. 4. Charging and discharging operations and state of energy of the ESS for DA (𝐷) and DA to RT (𝐷→𝑅) market segments. 𝛽 indicates discharging in RT.
4.2.5. Annual charging and discharging frequency

The histograms in Fig. 6 depict the frequency of charging and dis-
charging events in DA and RT (y-axis) and their respective magnitude
ranges in MW (x-axis) over the entire year of simulation. Notably,
the frequency of DA charging/discharging events is relatively lower
compared to RT operations, in line with the lower DA revenue com-
pared to RT revenue as observed in Table 2. The frequency of charging
events decreases as the magnitude increases, while the frequency of
discharging is higher in the 0–20 MW range, as well as in the 70–80 MW
range and the 140–150 MW range. This indicates that discharging
occurs more frequently in single large events as opposed to charging.
Additionally, we note that the frequency of both charging and discharg-
ing events in RT increases with magnitude, approaching 4000 charg-
ing occurrences and 2800 discharging occurrences in the 80–90 MW
12 
range. Moreover, beyond the 80–90 MW range, no RT occurrences
are observed, demonstrating the cumulative impact of considering the
worst-case wind generation deviation throughout the year. Individual
chance constraints ensure that the storage response does not exceed a
designated maximum safety limit, taking into account the maximum
installed capacity. Consequently, the storage system will never charge
or discharge at its maximum capacity, as additional capacity must be
reserved to respond to more challenging and unforeseen conditions.
While this safety limit may reduce ESS revenue, it also ensures system
reliability under unforeseen circumstances.

4.2.6. Impact of FBOs over the year
The box plot in Fig. 7 illustrates the share of storage flexibility as

a percentage of the total wind power mismatch for each hour of the
day, segmented by cross-market energy-to-flexibility FBO+ and FBO−.
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Fig. 5. Allocation of flexibility reserves: flexible generators (blue), flexible generators worst-case (grey), storage (orange), and storage worst-case (red). Green, orange and black
lines represent the worst-case wind deviation in RT under different 𝜖. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version
of this article.)
Fig. 6. Histogram showing the frequency of charging and discharging events in DA and RT (y-axis) and their magnitude (x-axis) for the whole year.
The light blue boxes represent FBO+, indicating intertemporal arbi-
trage, while the green boxes represent FBO−, indicating cross-market
arbitrage within a single time instance. The boxes capture the middle
50% of the data (25th to 75th percentiles). The whiskers extend to the
10th and 90th percentiles, providing a sense of the data distribution
and variability.

Results show that the distribution and variability of storage flexi-
bility shares differ significantly between FBO+ and FBO−. The green
boxes for FBO− indicate higher percentages and greater variability,
with shares often exceeding 90%. In contrast, the light blue boxes
for FBO+ display lower values and less variability, suggesting that
intertemporal energy-to-flexibility arbitrage is relatively less common
and less substantial. The share of storage flexibility for FBO+ typically
remains below 20%, with some hours showing shares close to zero.
13 
Hours 4, 5, 14, and 23 are notable exceptions, with higher shares
of flexibility from FBO+ reaching above 20% and some extreme oc-
currences approaching up to 80%, as indicated by the whiskers. The
red lines within the boxes indicate the median values. For FBO−, the
median values are consistently high, reaching levels between 60%–
85%. In contrast, median values for FBO+ remain significantly lower,
often below 10%. Bear in mind that a large gap between the mean
and median is an indication of the existence of outliers, which can
significantly skew the data distribution and affect the overall analy-
sis. The black triangles represent the mean values for each hour. In
FBO+, the means generally exceed the medians and are more widely
spread, indicating a right-skewed distribution with occasional high
values pulling the mean upwards. Conversely, in FBO−, the means are
generally lower and closer to the medians, suggesting fewer outliers



A. Belmondo Bianchi et al. Journal of Energy Storage 110 (2025) 115197 
Fig. 7. Box plot illustrating the distribution of percentage share contributions of FBO+ and FBO− in compensating the total wind power mismatch, derived from annual data
displayed for 24 h.
in revenues. This also shows a slight left skewness due to occasional
lower values pulling the mean downwards. Results indicate that the
storage system is more actively involved in single-time cross-market
arbitrage (FBO−). In contrast, inter-temporal arbitrage in the RT market
(FBO+) is relatively less frequent but still significant. This reaffirms
the effectiveness of the proposed FBOs in enabling ESS to capitalize
on revenue opportunities in the RT market while effectively managing
power imbalances throughout the year.

4.3. Sensitivity analysis

A one-factor-at-a-time sensitivity analysis is conducted to gain
deeper insight into the model’s behaviour under different hyperparam-
eter settings. We examine the influence of varying constraint violation
probability levels (𝜖) and energy-to-flexibility spreads (𝐶𝐴𝑣

𝑔 and 𝐶𝐴𝑣
𝑠 )

on the investment and operational strategy of the ESS. By varying
𝜖, we demonstrate the impact of different levels of conservativeness
in the individual chance constraints. Higher (lower) conservativeness
in this context reflects the system’s ability to respond to more (less)
challenging conditions concerning wind power generation deviations in
RT. On the other hand, varying the energy-to-flexibility spreads reflects
the impact of different market conditions on optimal investment and
operational decisions.

4.3.1. Constraint violation probability
Fig. 8 shows the impact of varying the constraint violation proba-

bility 𝜖 on storage revenue from both DBO (top) and FBO (bottom). A
higher (lower) 𝜖 value implies a higher (lower) level of conservative-
ness of the solution. The violation probability level is varied between
0.1 and 0.4 for the DRCCs (6a), (6b), (6e), and (6f) concerning the
power network denoted by 𝜖𝑝 (or just 𝑝), and for the DRCCs (8c), (8d),
(8e), and (8f) concerning the storage system denoted by 𝜖𝑠 (or just 𝑠).
The top chart of Fig. 8 illustrates the storage revenue from DBO for
various combinations of 𝜖 values. The baseline scenario refers to the
parameter settings used in the main case study.

For 𝜖𝑠 = 0.1, storage revenue is zero across all 𝜖𝑝 values, indicating
that ESS investment is not viable. For all other 𝜖𝑠 values, positive
storage revenues are observed, indicating feasible ESS investments. The
baseline scenario yields a storage revenue of 1.04 MAC/year, which
decreases as 𝜖 increases. For instance, with 𝜖 = 0.1, revenue declines
𝑠 𝑝

14 
from 1.04 MAC/year at 𝜖𝑠 = 0.2 to 0.86 MAC/year at 𝜖𝑠 = 0.4. This
decreasing trend persists for higher 𝜖𝑝 values, suggesting that more
conservative solutions on the storage system constraints (lower 𝜖𝑠) yield
higher revenues from executing DBOs in the DA market.

The bottom chart of Fig. 8 shows storage revenue from FBO+ and
FBO− under various 𝜖 combinations. Similar to DBO revenue, when
𝜖𝑠 = 0.1, FBO revenue is zero across all 𝜖𝑝 values, indicating unprof-
itable scenarios. In all profitable scenarios, FBO+ revenue consistently
contributes less than FBO− to the total revenue, ranging from about
10% at 𝜖𝑠 = 0.2 to 20% at 𝜖𝑠 = 0.4. Additionally, as 𝜖𝑠 increases, the
total FBO revenue rises. For example, considering the scenarios with
𝜖𝑝 = 0.1, the FBO revenue increases from 5.10 MAC/year at 𝜖𝑠 = 0.2 to
5.48 MAC/year at 𝜖𝑠 = 0.3 and 5.45 MAC/year at 𝜖𝑠 = 0.4. This increase
is mainly due to higher FBO+ revenue while FBO− revenue remains
relatively constant. Similar trends occur for higher values of 𝜖𝑝. Finally,
considering combined revenues from DBOs and FBOs, smaller 𝜖𝑝 values
(greater conservativeness in power network constraints) generally lead
to higher revenues, while smaller 𝜖𝑠 values (greater conservativeness in
storage system constraints) reduce revenues.

The results reveal a clear trade-off between conservativeness levels
in the power network and storage system constraints. As 𝜖𝑝 decreases,
the power network requires larger safety margins to mitigate uncer-
tainty, which increases flexibility demands and enhances ESS revenue
opportunities. In contrast, decreasing 𝜖𝑠 forces the ESS to reserve a
larger capacity buffer, limiting its ability to exploit energy arbitrage
opportunities, thereby reducing its revenue and, consequently, its in-
vestment potential. Thus, the sensitivity of revenues to 𝜖 highlights
the important role of ESS in maintaining operational reliability when
participating in market-driven arbitrage. Smaller 𝜖𝑝 values increase
demand for ESS flexibility within the power network, which boosts
its economic value. Conversely, overly conservative storage constraints
(𝜖𝑠 too low) limit ESS operational potential, emphasizing the need for
balanced risk management in constraint settings.

The synergy between DBO and FBO revenue is particularly notable.
For instance, in scenarios like 𝑝0.1 − 𝑠0.2, when DBO revenue is rel-
atively high, FBO revenue tends to be relatively lower. This suggests
complementary interactions, where higher DBO revenues partially off-
set lower FBO revenues. Specifically, as conservativeness in storage
constraints becomes relatively higher, the ESS’s ability to recover its
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Fig. 8. Sensitivity of ESS revenue from DBOs (top) and FBOs (bottom) to constraint violation probability levels (𝜖) for power network (p) and storage system (s).
investment through RT market arbitrage via FBOs is reduced. Conse-
quently, the system prioritizes further optimizing storage flexibility in
the DA market through DBOs. This synergy takes place up to the point
where the conservativeness of the ESS constraints becomes too large
compared to the revenue potential, making it impossible to recover the
investments as shown by the scenarios with 𝜖𝑠 = 0.1. These results
highlight the importance of jointly optimizing DBO and FBO strate-
gies to maximize total system utility under worst-case wind deviation
scenarios while protecting ESS investors from incurring excessive risks
in overly conservative settings that could hinder the recovery of their
investments.

Lastly, these findings demonstrate the flexibility of the proposed
optimization framework, enabling stakeholders to evaluate various 𝜖
levels and their impact on ESS investment viability and operation. By
tailoring the conservativeness of constraints, stakeholders can better
align risk tolerances with economic and reliability objectives, paving
the way for more effective decision-making in ESS deployment and
management.

4.3.2. Energy-to-flexibility spread
Table 3 presents the sensitivity analysis of ESS investments across

different configurations of energy-to-flexibility spreads for generators
(𝐶𝐴𝑣

𝑔 ) and storage (𝐶𝐴𝑣
𝑠 ).

Results show that the total installed ESS power and energy ratings
increase as 𝐶𝐴𝑣

𝑔 and 𝐶𝐴𝑣
𝑠 rise. When 𝐶𝐴𝑣

𝑠 increases from 10 to 50 AC/MW
with 𝐶𝐴𝑣

𝑔 held constant at 10, the total power and energy ratings grow
from 160.41 MW and 145.98 MWh to 243.78 MW and 246.75 MWh,
15 
Table 3
Sensitivity of ESS investment to different energy-to-flexibility spreads for generators
(𝐶𝐴𝑣

𝑔 ) and storage (𝐶𝐴𝑣
𝑠 ); S1 and S2 denote Storage 1 and Storage 2, respectively.

Metric 𝐶𝐴𝑣
𝑔 - 𝐶𝐴𝑣

𝑠 [AC/MW]

10–10 10–50 50–10 50–50

Power rating [MW]
S1 160.41 122.81 185.10 415.67
S2 0.00 120.97 0.00 352.27
Total 160.41 243.78 185.10 767.94

Energy rating [MWh]
S1 145.98 124.29 168.44 420.17
S2 0.00 122.46 0.00 356.14
Total 145.98 246.75 168.44 776.31

Annualized cost [MAC/year]
S1 6.14 4.95 7.08 16.73
S2 0.00 4.88 0.00 14.18
Total 6.14 9.83 7.08 30.91

Revenue [MAC/year]
S1 (DBO) 1.04 0.81 1.30 1.87
S1 (FBO+) 0.53 1.21 0.62 5.44
S1 (FBO−) 4.57 2.93 5.16 9.42
S2 (DBO) 0.00 0.81 0.00 1.69
S2 (FBO+) 0.00 1.14 0.00 4.10
S2 (FBO−) 0.00 2.93 0.00 8.39
Total 6.14 9.83 7.08 30.91
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respectively, reflecting increases of about 52% and 69%. In contrast,
increasing 𝐶𝐴𝑣

𝑔 from 10 to 50 AC/MW with 𝐶𝐴𝑣
𝑠 held constant at 10

results in only approximately 15% growth in power and energy ratings.
This indicates a relatively smaller impact of 𝐶𝐴𝑣

𝑔 compared to 𝐶𝐴𝑣
𝑠 .

However, when both 𝐶𝐴𝑣
𝑔 and 𝐶𝐴𝑣

𝑠 are set to 50 AC/MW, (i.e., scenario
50 − 50), the total power and energy ratings peak at 767.94 MW and
76.31 MWh, suggesting that their combined effect is greater than their

individual impacts. Examining the performance of S1 and S2 separately,
S1 consistently shows non-zero ratings, with values increasing as 𝐶𝐴𝑣

𝑔
rises. In contrast, S2 displays zero ratings when 𝐶𝐴𝑣

𝑔 is 10, regardless
of 𝐶𝐴𝑣

𝑠 , but shows significant capacity when 𝐶𝐴𝑣
𝑔 is 50 AC/MW. This

suggests that S1 is the preferred option unless economic incentives are
provided.

The annualized capital costs, calculated by dividing the total invest-
ent cost by the system lifetime, and the revenues from DBOs and

BOs exhibit trends consistent with those of the power and energy
atings. The lowest capital cost occurs in scenario 10 − 10, increasing to a
aximum of 30 MAC/year in scenario 50 − 50. DBO revenue consistently

rails behind FBO revenue, ranging from 11.5% in scenario 50 − 50 to
8.4% in scenario 50 − 10. Within FBO revenue, FBO+ is consistently
ower than FBO− across all scenarios. However, FBO+ revenue becomes
ignificantly higher when 𝐶𝐴𝑣

𝑠 is set to 50 AC/MW. This increase in FBO+

evenue can be attributed to the fact that as 𝐶𝐴𝑣
𝑠 rises, ESS revenue

lso grows, facilitating the installation of additional storage capacity.
onsequently, the greater storage capacity allows for enhanced ex-
loitation of temporal energy-to-flexibility arbitrage opportunities in
he RT market, leading to a higher revenue stream from FBO+.

Results indicate that the energy-to-flexibility spread significantly
influences ESS investment decisions. Generally, a higher 𝐶𝐴𝑣

𝑔 encour-
ages increased ESS investment because the higher cost of generator
flexibility makes storage a more attractive option. Similarly, a higher
𝐶𝐴𝑣
𝑠 promotes greater ESS participation. Although a higher 𝐶𝐴𝑣

𝑠 raises
the cost of flexibility from storage, this is offset by the benefits of using
SS as a flexibility provider instead of relying on generators. With
n effective pricing mechanism and sufficient ESS capacity installed,
he system can allocate more flexibility to storage in the RT market,
educing reliance on generator flexibility and optimizing generation
ispatch in the DA market. This results in enhanced social welfare
nd overall system resilience. However, this effect may diminish if the

energy-to-flexibility spread becomes too large relative to the DA market
rice. Ultimately, the results demonstrate that the proposed approach
nables investment recovery through revenues obtained from DBOs

and FBOs, highlighting the financial viability of ESS across various
cenarios. While the specific impact of different spread settings is
otable, the revenue stream from FBOs remains a crucial factor for ESS

investment recovery, highlighting the potential benefits of integrating
the proposed flexibility block orders into the current electricity market
structure.

5. Conclusion

In this paper, we consider a generic optimal energy storage planning
roblem for a power transmission system characterized by a high
enetration of wind power generation. The problem seeks to maximize
he utility of the power system while compensating for possible power
mbalances resulting from imperfect wind forecasts. The problem is
ormulated as a data-driven DRCC program. To facilitate renewable
nergy integration, the storage system acts as a flexibility provider in
oth the DA and RT market segments along with flexible generating
nits. The operation of the storage system is governed by two new
arket products, namely (1) DA Block Orders (DBOs) and (2) Flexibility
lock Orders (FBOs) designed to hedge ESS investors against uncertain-
ies without jeopardizing the competitiveness of the market. Extensive
umerical simulation allows us to draw the following conclusions:
16 
1. The proposed energy storage planning problem allows for the de-
velopment of a storage investment strategy that meets the needs
of system operators by addressing worst-case wind deviations
while ensuring investment recovery for investors.

2. The novel DBOs and FBOs introduced in this study demonstrate
their effectiveness in enabling the storage system to capitalize
on opportunities within the electricity market while mitigating
risks associated with forecast errors.

3. Through the adoption of the DRCC framework, different stake-
holders (i.e., regulators, and private investors) can assess various
violation probability levels to comprehend their impact on the
optimal storage capacity configuration. This enables informed
decision-making aligned with their specific requirements.

4. Under specified conditions, integrating a 146 MWh Energy Stor-
age System with a 1:1 energy-to-power ratio enhances system
utility by efficiently mitigating wind power mismatch. The to-
tal investment is 61.6 MAC, with 16.9% recovered through DA
arbitrage (DBOs) and 83.1% through RT arbitrage (FBOs), em-
phasizing the value of capitalizing on opportunities in the RT
market.

5. Sensitivity analysis reveals that the energy-to-flexibility spread
greatly affects the optimal strategy, with higher spreads enhanc-
ing ESS flexibility. Varying the constraint violation probability
(𝜖) shows a trade-off between robustness and economic perfor-
mance, highlighting the potential downsides of excessive conser-
vativeness on ESS decisions. Despite different hyperparameter
settings, the revenue from FBOs in the RT market remains a
crucial factor for ESS investment recovery.

In conclusion, our study emphasizes the need for flexible financial
nstruments to enhance investment in ESS. We show how customized

products, such as block orders, can overcome market limitations and
mitigate risks from forecasting errors. This approach has the potential
to increase revenue for ESS investors, thereby supporting renewable
energy integration, and improving grid stability. Future research should
refine these models by incorporating more detailed technology mod-
elling and exploring innovative market products to further stimulate
private investment, promoting the development of a more resilient and
efficient energy system.
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