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The effective planning and allocation of resources in modern breeding programs is a complex task. Breeding program design and op-
erational management have a major impact on the success of a breeding program and changing parameters such as the number of se-
lected/phenotyped/genotyped individuals in the breeding program will impact genetic gain, genetic diversity, and costs. As a result, 
careful assessment and balancing of design parameters is crucial, taking into account the trade-offs between different breeding goals 
and associated costs. In a previous study, we optimized the resource allocation strategy in a dairy cattle breeding scheme via the com-
bination of stochastic simulations and kernel regression, aiming to maximize a target function containing genetic gain and the inbreeding 
rate under a given budget. However, the high number of simulations required when using the proposed kernel regression method to 
optimize a breeding program with many parameters weakens the effectiveness of such a method. In this work, we are proposing an op-
timization framework that builds on the concepts of kernel regression but additionally makes use of an evolutionary algorithm to allow for 
a more effective and general optimization. The key idea is to consider a set of potential parameter settings of the breeding program, 
evaluate their performance based on stochastic simulations, and use these outputs to derive new parameter settings to test in an iterative 
procedure. The evolutionary algorithm was implemented in a Snakemake workflow management system to allow for efficient scaling on 
large distributed computing platforms. The algorithm achieved stabilization around the same optimum with a massively reduced number 
of simulations. Thereby, the incorporation of class variables and accounting for a higher number of parameters in the optimization frame-
work leads to substantially reduced computing time and better scaling for the desired optimization of a breeding program.
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Introduction
With the rise of genomics, advancements in biotechnology, statis-
tical modeling, and shifting market demands, breeding programs 
have transformed substantially in recent decades. While these 
advancements help breeders refine their strategies, they also 
turn modern breeding programs into complex resource allocation 
problems, requiring a balance between short-term genetic gain 
and long-term sustainability (Henryon et al. 2014; Berry 2015; 
Hickey et al. 2017; Simianer et al. 2021). Breeding programs require 
significant resources and time, with the outcomes of a certain de-
cision often becoming apparent only after several years. As breed-
ing actions are interdependent, where changes in one step affect 
key characteristics like genetic gain, diversity, and cost simultan-
eously, breeders must consider risks and the trade-offs of each de-
cision, carefully evaluating the costs and benefits of every 
potential allocation of resources (Harris et al. 1984; Mi et al. 2014; 
Simianer et al. 2021; Jannink et al. 2024). A strategy that recently 
gained in popularity is to use stochastic simulation to assess 
breeding program design before practically implementing them 
(Henryon et al. 2014; Covarrubias-Pazaran et al. 2021). For this, a 

variety of software can be used, including MoBPS (Pook et al. 
2020), AlphaSim (Faux et al. 2016; Gaynor et al. 2020), Adam (Liu 
et al. 2018), and QMsim (Sargolzaei and Schenkel 2009).

However, the optimization of a breeding program design using 
stochastic simulation is complicated by the fact that the output of 

a simulation is only the realization of a stochastic process. Thus, 

multiple replicates are necessary to reliably estimate the expected 

outcomes of a breeding scheme (Bančič et al. 2024). Since breeding 

programs often involve numerous parameters, it is not feasible to 

simulate all possible breeding designs many times, as simulating 

a real-world breeding scheme can be computationally expensive. 

Therefore, analysis of breeding program designs using stochastic 

simulations is usually limited to a few potentially interesting 

scenarios and research studies focusing on very specific aspects 

of breeding design (Lorenz 2013; Henryon et al. 2014; Hickey et al. 

2014; Woolliams et al. 2015; Gorjanc and Hickey 2018; 

Moeinizade et al. 2019, 2022; Wellmann 2019; Allier et al. 2020; 

Büttgen et al. 2020; Duenk et al. 2021; Ojeda-Marín et al. 2021).
Recently, we introduced a framework for optimizing breeding 

program designs to address and generalize different aspects of 
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the breeding program more effectively (Hassanpour et al. 2023). In 
that study, the primary focus was not placed on employing specif-
ic breeding actions, instead, the emphasis was on providing a gen-
eral optimization framework that facilitates the simultaneous 
optimization of multiple design parameters within breeding 
schemes that significantly influence the efficiency of the program. 
These factors include the definition of breeding objectives, the 
available budget, and the number of individuals in each step of 
the breeding program, along with other relevant considerations.

The framework we suggested in Hassanpour et al. (2023) utilizes 
stochastic simulation to evaluate the outcomes of the breeding 
program and subsequently assess the scheme on an objective 
function/breeding goal. In the process of optimizing a breeding 
program, one begins with a random search algorithm to explore 
disparate areas of the search space to examine a broad range of 
parameter values and obtain a preliminary set of different breed-
ing programs for optimization. Subsequently, kernel regression is 
employed by fitting a local regression curve to the data points, 
which are essentially a weighted average in which more similar 
breeding schemes are weighted stronger. Kernel regression 
smooths the results derived from the initial stage to filter out 
the noise and create a more discernible understanding of the po-
tential regions where optimal solutions may be found. Following 
the application of kernel regression, the smoothed data provide 
an indication of the prospective ‘optima’ within the search space. 
The search is then concentrated on these narrowed-down regions, 
resulting in a substantial reduction of the overall search space. 
Finally, this entire process is performed iteratively with each suc-
cessive iteration using the refined results of the previous round.

While this approach has proven effective in improving opti-
mization results, its application is constrained to optimizing 
only a limited number of parameters. As the number of para-
meters for optimization increases, the computational demands 
for performing a sufficient number of simulations to obtain a 
broad coverage of the search space increases exponentially 
(Härdle and Müller 1997; Gutjahr and Pichler 2016). Additionally, 
we faced a challenge with a procedure that required manually 
narrowing down the search space through iterative steps and vis-
ual inspection. Recognizing these challenges, there is a need to 
create a new optimization framework that requires fewer simula-
tions and is fully automated.

Traditional optimization techniques such as the steepest des-
cent method, conjugate gradient method, and quasi-Newton 
method (Kiefer and Wolfowitz 1952; Back et al. 2008; Burke et al. 
2020) tend to struggle in the settings of breeding planning with 
high dimensional search spaces and stochasticity in the evalu-
ation of an objective function. Stochastic optimization techniques 
(Fouskakis and Draper 2002) provide a framework to cope with 
exactly these challenges and include techniques such as genetic 
and evolutionary algorithm (Pierreval and Tautou 1997; Alberto 
et al. 2002), simulated annealing (Ahmed et al. 1997), and 
Bayesian optimization (Schonlau 1998).

Previous research in the field of breeding planning is however 
limited to the application of Bayesian optimization in simplified 
settings with a fixed budget and only use of continuous variables 
(Diot and Iwata 2022; Jannink et al. 2024). A further issue for the 
optimization is that the evaluation of the objective function is 
computationally very expensive. Therefore, the chosen optimiza-
tion technique should allow several evaluations to be carried out 
in parallel.

When optimizing complex problems with a high number of 
parameters and large search spaces, evolutionary algorithms 
(EAs) have gained popularity due to their ability to address the 

mathematical complexities inherent to real-world optimization 
problems, i.e. mixed class and continuous decisions, multiple ob-
jectives, uncertainty, computationally demanding simulations, 
etc. (Holland 1992; Bäck et al. 2000; Deb 2001; Michalewicz and 
Fogel 2004; Sivanandam and Deepa 2008; Eiben and Smith 2015; 
Katoch et al. 2021; Jeavons 2022).

In EAs, the terminology is borrowed from breeding, but it 
should not be confused with biological concepts. To ensure clar-
ity, we define the following terms used solely within the context 
of the EA and do not refer to breeding terminology throughout 
this manuscript. “Parameter settings” refers to the variations in 
the design parameters of a breeding scheme that are subject to op-
timization. The “population” refers to the set of parameter set-
tings. Each parameter setting in the population is evaluated 
using an “objective function,” which assigns a score based on 
the outcomes of the simulations, indicating how well a hypothet-
ical breeding program would perform. The best parameter set-
tings, or “parents,” are “selected,” producing new parameter 
settings (“offspring”) through different operators in each iteration. 
These operators combine and modify the selected best parameter 
settings to form new parameter settings, often involving “recom-
bination” (combining promising parameter settings) and “muta-
tion” (minor modification of a parameter settings).

Although many EAs exist, they are often problem-specific 
(Slowik and Kwasnicka 2020). Depending on the nature, complex-
ity, and dimensionality of the problem, different variations of re-
combination and mutation operators are employed for 
optimization (Sipper et al. 2018). Designing effective operators is 
a crucial aspect of EA development, as they directly impact the al-
gorithm’s ability.

For this reason, in this study, we introduce a novel EA frame-
work specifically designed to optimize the design parameters of 
breeding programs, using a dairy cattle breeding program as an 
example suggested in Hassanpour et al. (2023). Our proposed 
framework can optimize both continuous and class design para-
meters and is adaptable for any breeding scenario, regardless of 
the species, methodology, resources, or genetic traits involved, 
providing a versatile tool for a variety of breeding objectives and 
therefore applies to any plant or animal breeding program as 
long as it can be simulated/evaluated via stochastic simulations.

Materials and methods
In this study, we introduce a comprehensive framework for opti-
mizing breeding scheme designs using an EA. The EA is structured 
as an iterative process, wherein steps 2 to 5 are reiterated until a 
termination criterion is met. For illustrative purposes, we will out-
line the individual steps of the algorithm using the same dairy cat-
tle breeding program previously examined in Hassanpour et al. 
(2023). Figure 1 provides a schematic summary of the overall steps 
of our EA framework, representing key steps and their intercon-
nections within the optimization process.

Step 0: Definition of the optimization problem
Firstly, the breeding problem is formulated as an optimization 
problem, defining objectives, constraints, and decision variables. 
Two main types of decision variables are considered: class vari-
ables with a limited number of possible realizations (e.g. whether 
genomic selection is applied in a specific step of the breeding pro-
gram) and continuous variables that can take values from a con-
tinuous scale, or at least a large number of discrete realizations. 
(e.g. number of candidates selected, phenotyped, and genotyped, 
or weights in a selection index).
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Below, we present scenario 1, which serves as an example to il-
lustrate the formulation of a breeding program design for an opti-
mization problem as a baseline scenario. Subsequently, we 
showcase three additional examples to highlight the versatility 
of our EA framework, each representing a modification of scenario 
1. These alternative scenarios are detailed towards the end of this 
section.

Scenario 1—Traditional dairy cattle scheme
Here, we are considering a traditional dairy cattle scheme, illu-
strated schematically in Fig. 2 as suggested in our previous study 
Hassanpour et al. (2023). As performance traits of bulls cannot be 
directly measured, preselected test bulls (x2) must be mated with 
cows to produce test daughters (x1). Bulls are selected as sires (x3) 
based on the performance of their offspring. For simplification 
purposes, we are explicitly not considering the genotyping as 
commonly done in dairy cattle breeding in the last 15 years 

(VanRaden et al. 2009), and both bulls and cows are chosen based 
on pedigree breeding value estimates. We are considering here 
only a single quantitative trait (milk yield), with heritability (h2) 
of 0.30.

The three parameters we consider for optimization are: 

1) x1: number of test daughters
2) x2 : number of test bulls
3) x3: number of selected sires

As constraints, the breeding program at hand is limited by an 
annual budget of 10,000,000 Euros with housing costs of 3,000 
Euros per bull and 4,000 Euros per cow.

x1 + x2 + x3 ≥ 0

4, 000x1 + 3, 000x2 − 10, 000, 000 ≤ 0 

Note that, the initial bounds established during the initialization 
step are not constraints that are enforced throughout the opti-
mization process. Instead, they serve as a starting point, and the 
variables may deviate from these bounds as the optimization al-
gorithm iterates and refines the solution.

Exactly as in our previous study (Hassanpour et al. 2023), the ob-
jective function (m) is a linear combination of the expected genetic 
gain (g) and the expected inbreeding level (f) after 10 generations 
(5 years of burn-in + 10 years of future breeding), to prioritize/ 
weigh between the genetic gain and diversity:

m(x) = g(x) − 50 × f (x).

Step 1: Initialize the first set of parameter settings
To initialize the evolutionary framework, it is necessary to gener-
ate a starting population of potential breeding program designs to 
consider. For this, we generally propose to use a generalized 

Fig. 1. Procedure proposed for optimization via evolutionary algorithm.

Fig. 2. A dairy cattle breeding scheme.
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Bernoulli distribution for class variables and a uniform distribu-
tion for continuous variables. It should however be noted that de-
pending on constraints a more sophisticated sampling procedure 
might be required, especially when the variables are interdepend-
ent, and logical dependencies for each decision may come from 
other decisions that share the same resources. For instance, if 
the maximum stable capacity is 3,000, allowing 500–1,000 males 
and 500–2,500 females, and 1,000 males are selected during the 
sampling, the number of females cannot exceed 2,000 to fulfill 
the overall stable capacity of 3,000. This adjustment should be ap-
plied during the first step of sampling and throughout the process 
of optimization.

As spending more budget is not penalized in the target func-
tion, we know a priori that an optima will make use of the full bud-
get, Hence, a scaling step is applied to variables x1 and x2 to meet 
the budget constraint. For example, if x1 = 1, 025, x2 = 300, and the 
total cost is 5,000,000 Euros, both values are doubled to match the 
budget of 10,000,000. If the budget cannot be exactly met due to 
rounding, the program cost is kept slightly below the maximum 
by rounding down and then increasing parameters as much as 
possible. To avoid unnecessary computations, unreasonable 
breeding program designs like the use of too many bulls or select-
ing just a single bull per year are excluded by additional 
constraints. These constraints are only enforced in the initializa-
tion step:

100 ≤ x2 ≤ 700

3 ≤ x3 ≤ 30.

Step 2: Evaluate new settings
In the next step, the suitability of all 600 breeding program designs 
needs to be evaluated regarding the breeding objective as given by 
the objective function m. For this evaluation, each respective 
breeding program is simulated via stochastic simulation. We 
here use the R package MoBPS (Pook et al. 2020) with scripts given 
in https://github.com/AHassanpour88/Evolutionary_Snakemake/ 
tree/main/scripts, but other simulation tools can be integrated 
seamlessly by the user.

Step 3: Select parameter settings
Based on the results from the previous step, we want to identify 
the most promising areas of the search space to investigate fur-
ther in later steps. For this, we select the most promising param-
eter settings to be uses as “parents” for the next iteration, 
considering three strategies. The number of selected parents 
based on each step varies based on the iterations of the EA with 
values given below for iteration 11 onwards (see Table 1). In these 
iterations, 30 out of 300 parameter settings are selected.

Step 3.1: Highest value of the objective function. In the first sub- 
step, 20 of the 30 most promising parameter settings are identified 
(“selected”) based on the value of the objective function that was de-
rived solely based on the simulation of the parameter settings itself. 
This guarantees that the best-performing parameter settings are 
prioritized in the reproduction process, subsequently enhancing 
the likelihood of generating successful parameter settings.

Step 3.2: Highest expected value of the objective function. In the 
second sub-step, seven parameter settings are identified based on 
the highest expected value of the objective function. For this, we 

are employing the kernel regression method suggested in 
Hassanpour et al. (2023). By this, instead of evaluating each par-
ameter setting individually, kernel regression computes a 
weighted average of performance values for multiple parameter 
settings. In contrast to step 3.1, this approach avoids bias towards 
region with more parameter settings tested overall. In contrast to 
Hassanpour et al. (2023), we are here proposing the use of an adap-
tive bandwidth by using the empirical standard deviation in the 
individual parameter in the current iteration.

Step 3.3: Highest value of the objective function from the previous 
iteration. In the third sub-step, three parameter settings from 
previous iterations are used. This typically refers to the best- 
performing parameter settings from the second-to-last iteration; 
however, if the expected performance of any previously suggested 
optima from any iteration based on kernel regression (see step 5) 
is higher than all parameter settings of the current iteration, these 
are added instead. Hereby, the risk of discarding potentially prom-
ising parameter settings due to stochasticity is reduced.

Management of parameter setting variability/ 
heterogeneity/value distribution
We implement a strategy to manage variation within the EA, ensur-
ing that highly similar parameter settings are not selected. For add-
itional details on this approach, refer to Supplementary File S1.

Step 4: Generate new parameter settings
Subsequently, the previously selected parameter settings are 
used to generate a set of new parameter settings that are evalu-
ated in the next iteration. This process involves applying various 
techniques to create a new set of parameter settings, drawing in-
spiration from the process of meiosis. In the next step, we will dis-
cuss these criteria and how they contribute to the overall success 
of the evolutionary process. The number of generated settings will 
again vary based on which iteration the algorithm is in (see 
Table 1). The values given below are for iterations 11 onwards 
with a total of 300 settings generated.

Step 4.1: Selected parameter settings
In the first sub-step, all 30 previously chosen parameter settings 
are considered again in the next iteration. This criterion facilitates 
assessing the same parameter settings using a new random seed 
in each iteration to reduce variance, resulting in a more robust 
evaluation of their performance.

Table 1. Number of parameter settings selected as parents (step 3) 
and generated settings (step 4) during the EA optimization 
process.

Iteration Selected settings Generated new settings

Step 
3.1

Step 
3.2

Step 
3.3

Step 
4.1

Step 
4.2

Step 
4.3

2–3 70 30 0 100 200 0
4–10 30 15 5 50 170 80
11–40 20 7 3 30 180 90

Note: Step 3.1 presents individual simulations with the highest objective 
function value from the current iteration, step 3.2 presents individual 
simulations with the highest expected value of the objective function 
determined by kernel regression, and step 3.3 presents individual simulations 
with the highest objective function value from the previous iteration and 
previous optima. Step 4.1 represents the sum of steps 3.1, 3.2, and 3.3. Step 4.2 
represents the number of new settings (new breeding program designs) 
generated through a combination of selected parameter settings. Step 4.3 
represents the number of new parameter settings created through minor 
modifications of selected settings.
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Step 4.2: Combination of selected parameter settings
In the second sub-step, 180 parameter settings are generated by 
combining two randomly chosen parental parameter settings in 
step 3, denoted as X = (x1, x2, . . . ) and Y = (y1, y2, . . . ). The goal of 
this step is to fine-tune and explore the areas between two poten-
tial parameter settings. By using these parents, a new parameter 
setting Z = (z1, z2, . . . ) is created in each case.

For continuous variables, this is done by the use of a weighted 
average:

zi = wxi + (1 − w)yi with w ∼ U(0, 1).

For class variables, we randomly sample zi with an equal probabil-
ity of belonging to either the class of xi or yi. In our minimal ex-
ample, it is necessary to furthermore round and scale 
continuous variables to obtain integer numbers while fulfilling 
the budget constraint (see step 1).

Following the combination process, we introduce small 
changes to the combined parameter settings, inspired by the pro-
cess of allelic mutation in meiosis. For continuous parameters, the 
size of the mutation ti in parameter i is sampled from a uniform 
distribution with the range determined by the variance of the par-
ameter and a mutation occurring in each respective parameter 
with a probability of pactiv,i:

Zmut = (z1 + mactiv,1t1, z2 + mactiv,2t2, . . . )

with ti ∼ U( − 2σxi
, 2σxi

)

and mactiv,i ∼ B(0, pactiv,i) 

here σxi 
denotes the standard deviation and is derived based on 

the empirical variance of the parameter settings of the current 
iterations. In our algorithm, in the first iteration, pactiv,i is set to 

0.2, indicating a 20% chance of mutation for all parameters.
As the algorithm progresses, continuous decision variables are 

fine-tuned for specific class variables. To avoid the generation of 
new parameter settings with little promise, the likelihood of com-
bining settings with different class variables is reduced. By iter-
ation 2, this probability is reduced by 20% and continues to 
decrease by 10% per iteration, reaching an 80% reduction. 
Similarly, the mutation rate for class variables (pactiv,i) is reduced 
by 10% in iteration 2, and then by 5% per iteration until a reduc-
tion of 40% is reached.

Step 4.3: Minor modifications of selected parameter setting
In the third sub-step, we are refining all parameter settings that 
have already been selected, either from step 4.1 or step 4.2 by 
making additional small changes/mutations to them (see step 
4.2). These modifications not only fine-tune the current solutions 
but also allow exploration beyond the regions currently being in-
vestigated, helping to discover new, potentially promising areas of 
the parameter space. To avoid generating a setting already gener-
ated in step 4.1, mutation rates pactiv,i are increased to 0.3 and the 
sampling procedure is repeated in case no mutations are 
performed.

As a refinement to step 4, mutation rates can be adjusted based 
on the observed changes in each parameter during previous itera-
tions. For example, a binary parameter that consistently shows 
superior results with one of the parameter settings should under-
go less frequent mutation. For details on the approach used in our 
minimal example, the interested reader is referred to 
Supplementary File S2.

Step 5: Stabilization/optima/termination criteria
To derive the optima, we suggest to first employing a kernel dens-
ity estimation to determine which areas of the search space in-
clude sufficient coverage to reliably assess them. We here 
propose to only consider those settings from the last five iterations 
with a value for the kernel density estimation above the 20% 
quantile of these parameter settings, to avoid using parameter 
settings in sparsely sampled areas. For the estimation of the ker-
nel density estimation, only simulations from the last five itera-
tions are used.

f (y) =
1

np · h1 · · · hp



i

K
y1 − xi, 1

h1
, . . . ,

yn − xi, p

hp

 

with p being the number of decision variables and using the em-
pirical standard deviation in the last five iterations as the band-
width hj and the use of a multivariate Gaussian kernel for K:

K(y1, . . . , yp) = K1(y1) · · ·Kp(yp) 

with

Ki(x) =
1
���
2π
√ exp −

x2

2

 

Subsequently, the expected performance of all remaining param-
eter settings is estimated using a kernel regression (see step 3.2 in 
Hassanpour et al. 2023) using all simulations. The parameter set-
ting with the highest value based on the kernel regression is used 
as the optima.

In our example, we performed 40 iterations without any ter-
mination criteria accessed.

Step 6: Final assessment of the optima
After the optimum is identified, the finally obtained breeding 
scheme is analyzed in-depth, as the kernel regression will natur-
ally be biased in an extrema (Härdle 1990). For this, the suggested 
parameter setting is simulated a high number of times, e.g. in our 
case 100 replicates, to get an unbiased estimate for expected per-
formance but also assess variances.

Demonstrating alternative examples to scenario 1
Scenario 2—Reduced initial search space
In scenario 2, we consider the same breeding program and re-
source allocation problem as in scenario 1, so the optima should 
be the same. Only difference between the scenarios is that we 
use an initial search space (step 1) that excludes the optimal par-
ameter settings (2,368, 175, 19) identified in our previous study 
(Hassanpour et al. 2023). This setup allows us to assess the effect-
iveness of our EA algorithm in identifying the optimal parameters 
even when they are not part of the initial search space. The design 
parameters’ bounds are defined in the initialization (step 1) as fol-
lows:

300 ≤ x2 ≤ 500

15 ≤ x3 ≤ 25 

Scenario 3—Addition of class variable
For showcasing the optimization of a class variable with two pos-
sible outcomes (yes/no, or 0/1), we extend scenario 1 by 
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introducing a binary variable, x4. This variable represents a breed-
ing strategy that leads to improved phenotyping. For this study, 
we leave it open as to what this new breeding strategy is, but 
one could envision more uniform housing conditions, the use of 
electronic devices to measure physiological status, or large-scale 
collection of additional data like mid-infrared spectroscopy 
(Boichard and Brochard 2012; De Vries et al. 2015). This suggests 
that while the genetic variance remains constant, the residual 
variance decreases due to more precise measurements. 
Consequently, the heritability (h2) increases from 0.30 to 0.32 
when this binary variable is active.

Step 1 is accordingly adapted by sampling initial values for x4 

from a Bernoulli distribution x4 ∼ B(0.5). We are here considering 
two versions of the scenario (3a/3b) with varying additional 
costs of 1,000€/10€ per phenotyped cow if the improved pheno-
typed is used (x4 = 1), respectively. Resulting in a new budget 
constraints:

3a : x1(4, 000 + 1, 000x4) + 3, 000x2 − 10, 000, 000 ≤ 0

3b : x1(4, 000 + 10x4) + 3, 000x2 − 10, 000, 000 ≤ 0 

Snakemake
The EA algorithm is iterative, involving multiple interdependent 
steps, where the computational demands for executing some 
steps are notably high, particularly the resource-intensive simula-
tion of breeding programs in step 2. To effectively address this 
computational challenge, the implementation of parallel process-
ing in an efficient manner is crucial.

For this purpose, our optimization framework makes use of the 
automation provided by the Snakemake workflow management 
system (Mölder et al. 2021). An illustrative representation of the 
Snakemake workflow for our evolutionary optimization model is 
provided in Fig. 3. Our Snakemake process uses four rules, corre-
sponding to the steps of the algorithm, which are initialization 
(step 1), evaluation (step 2), evolutionary algorithm (steps 3, 4, 
and 5), and the final in-depth analysis of the obtain optima 
(step 6).

To clarify, the individual simulations within step 2 are com-
pletely independent of each other and can easily be run in parallel 
using the built-in capabilities of Snakemake to seamlessly inter-
act with various job scheduling systems (e.g. SLURM https:// 
slurm.schedmd.com/documentation.html) on distributed hard-
ware stacks, thus ensuring portability to a wide range of hardware 
setups. Those interested in configuring this setup can refer to the 
Snakemake plugin catalog at: https://snakemake.github.io/ 
snakemake-plugin-catalog/index.html. This catalog provides a 
starting point for configuring Snakemake to work with various 
cluster schedulers, ensuring optimal distribution and execution 
of multiple tasks across the computing cluster.

Computer hardware
All tests were executed on a server cluster with Intel Platinum 
9,242 (2X48 core 2.3 GHz) CPUs using Snakemake toolkit version 
7.21.0, which was configured to distribute single jobs via a 
SLURM scheduler to the backends of the cluster. Simulations 
were conducted on single nodes using a single core per simula-
tion, taking approximately 15 minutes, and peak memory 
usage of 5 GB RAM per simulation. The computing time of all 
other steps combined increases approximately linearly in the 
number of iterations, but even in iteration 40 only took a negli-
gible 7 s.

Results
Application of our evolutionary framework to the optimization 
problem formulated in scenario 1 suggests a final optimum of 
2,368 test daughters and 175 test bulls, of which 19 test bulls are 

Fig. 3. Example visualization of the Snakemake workflow. Shown are the 
rule names defined and their input–output relationships.
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selected (x1 = 2,368, x2 = 175, x3 = 19) with an expected outcome 
for the target function of 107.041, with a genetic gain of 9.07 gen-
etic standard deviations (Fig. 4a) and increase of the inbreeding le-
vel of 0.0426 (Fig. 4b) after 10 generations based on the averages of 
100 replicates of this scenario.

All three individual parameters very quickly reached values 
close to the finally suggested optima (Fig. 5a:5c). When evaluat-
ing the suggested optima per iteration based on all simulations 
conducted (to avoid effects of reduced bandwidth over iteration) 
even after seven iterations a value of 107.038 for the target 
function based on kernel regression was obtained (Fig. 4), despite 
kernel regression by design being downward biased in the 
optimum.

In scenario 2, we obtain an optimum very similar to those in 
scenario 1, with values x1 = 2,374, x2 = 167, and x3 = 19 after 40 
iterations. Even though the suggested optima in the first couple 
of iterations are performing slightly worse, the value for the target 
function is on par with the optima suggested in scenario 1 after se-
ven iterations (Fig. 6). For the individual parameters, more change 
can be observed with the initial iterations suggesting using more 
test bulls, due to limitations in the initial search space. 
Similarly, a higher number of sires are selected (x3) to use a similar 
selection intensity. In the first 10 iterations of scenario 2, the pri-
mary emphasis is on quickly bringing x2 into its optimal range due 
to the higher overall impact of x2 on the optimum. Overall, more 
change in the individual parameters is observed with x3 in iter-
ation 10 being as low as 15 (Fig. 5c). A detailed overview of the 
changes in x2 and x3 is given in Fig. 7.

Although parameter settings with smaller x2 values do exist in 
early iterations (Fig. 8b), these are not considered in deriving the 
optima (step 5) due to the low kernel density (red area). In later 
iterations, the area of solutions considered as the optima more 
and more shifts towards the area with the expected optima (green 
area, Fig. 8c:8i).

In scenario 3a, the optimum obtained is similar to those in 
scenarios 1 and 2, with the binary variable not being active 
(x = (2,365, 179, 20, 0)). In terms of how fast the algorithm ap-
proaches a stable solution, more variation in individual para-
meters is observed in early iterations, particularly with 
iterations 4 and 5 suggesting optima that are later identified as 
poor solutions (Figs. 5a–c and 6) caused by the stochasticity in 
the evaluation of the target function (step 2).

In contrast, the binary is active in scenario 3b which allows for a 
higher overall value of the target function of 107.200 that repre-
sents a statistically significant improvement based on a t-test 
(Student 1908) (P < 0.00663). Due to the higher overall housing 
costs, the number of cows and bulls is slightly decreased with a fi-
nally suggested optimum of x = (2361, 175, 20, 1).

Regarding the binary parameter, mutation rates in scenario 3a 
are reduced to half from iteration 17 onwards, while for scenario 
3b mutation rates remain high for the entire 40 iterations. In 
both scenarios, the share of the favorable binary in the selected 
parameter settings (step 3) is higher than in the overall population 
but both cases are considered over the entirety of the simulations 
with 18%/25% of the parameter settings of the respective alterna-
tive binary setting (Fig. 9a and b).

Discussion
In this study, we present a novel EA framework developed to opti-
mize breeding program design with both class and continuous de-
sign variables that are suitable for the joint optimization of 
multiple design parameters of breeding programs in a computa-
tionally efficient matter. Given the dynamic nature of breeding 
programs, which constantly face new genetic information, envir-
onmental factors, technologies, and market demands, regular op-
timization of breeding programs is essential for maintaining 
efficiency. By continuously monitoring the program’s perform-
ance, areas for improvement can be identified, allowing for timely 
adjustments to prevent any negative effects on the overall effect-
iveness of the breeding program. Insights from the results high-
light six key points for discussion:

Evaluating the performance of the framework
The here-developed framework represents a much-enhanced ver-
sion of the kernel regression pipeline suggested in Hassanpour 
et al. (2023). The iterative nature of the EA, where each iteration 
produces more data (simulations) for kernel regression allows 
for more reliable and efficient identification of suitable parameter 
settings for a breeding scheme, with the kernel regression still 
used as a core element to cope with the challenges of optimization 
problems that involve stochastic noise in the evaluation of the tar-
get function, a common issue when utilizing stochastic simula-
tions (Hart and Belew 1996; Liang et al. 2000).

Fig. 4. Realization of expected outcome for scenario 1 based on 100 replicates in a) for genetic gain (σa), b) for average kinship (based on IBD). The red 
dashed line represents the mean value, while the blue shaded area shows the probability density.
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The developed framework provides a lot of flexibility to easily 
adapt parts of the algorithm to improve its efficiency but also 
the breeding program design itself. Nonetheless, models also pro-
vide robustness, as shown in scenarios 1, 2, and 3a with independ-
ent runs obtaining very similar final optima. Note here that the 
obtained optimum across the iterations of the EA can gradually 
change with decreasing bandwidth as the algorithm approaches 
a stable solution. Therefore, the suggested “optimum” will most 
likely not be the exact optimum but at least be very close to it 
and the suggested optimum in scenario 1 exactly matches the op-
timum from Hassanpour et al. (2023) should therefore mostly be 
seen as a coincidence. Note that the stochasticity in the evalu-
ation of the target function will naturally cause minor deviations 
between runs and although differences in solutions will exist, 
practically, suggested optima between the three scenarios that 
should have the same optimum all were very similarly.

Assessing EAs’s performance in terms of speed and computa-
tional effort is broadly defined to include various sensible metrics, 
such as the number of iterations, CPU time, or more general the 
resulting financial cost for running the full pipeline (Eiben and 
Smit 2011), with the number of simulations required being the 

main driver of computational load in our framework. The efficacy 
of our EA framework in reducing computational resources is high-
lighted through its performance across all scenarios. For example, 
in scenario 1 only 2,400 simulations were required to achieve simi-
lar results as compared to our previous kernel regression ap-
proach which relied on more than 100,000 simulations 
(Hassanpour et al. 2023). This demonstrates a considerable reduc-
tion in computational load, with the algorithm achieving a more 
than 40-fold decrease compared to the kernel regression method.

Robustness is particularly highlighted by scenario 2, demon-
strating that the EA algorithm can find optimal solutions even out-
side of the initial search space. This is an advantage over our 
previously established kernel regression method (Hassanpour 
et al. 2023), which relies on predefined parameter bounds and can-
not dynamically adapt its search space. As such, it falls short in 
terms of automation and efficiency.

Jannink et al. (2024) reported high variability in the outcomes of 
different runs of the Bayesian optimization framework depending 
on small changes such as input genotypes and therefore lacking 
the ability to draw general conclusions from the obtained results. 
In our case, input genotypes and trait architecture were randomly 

Fig. 5. Suggested optima for the individual design parameters of the breeding program design for the number of test daughters a), test bulls b), and 
selected sires c), as well as the binary variable (d). The black horizontal line represents the estimated optima through comprehensive exploration, 
achieved by conducting over 100,000 simulations utilizing kernel regression (Hassanpour et al. 2023). a) Number of test daughters (x1), b) number of test 
bulls (x2), c) number of selected sires (x3), and d) binary variable (x4).
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sampled for each simulation. Very similar optima were obtained 
in the scenarios that should have the same optimum (scenarios 
1, 2, and 3b), even with a less-than-ideal initial search space or 
when adding a binary decision variable. This serves as a strong in-
dicator of the generality and stability of the approach. 
Additionally, scaling for a higher number of parameters should 
be greatly improved, as traditional kernel regression scales expo-
nentially with the number of assessed parameters. This empha-
sizes the practical advantages of evolutionary algorithms in 
optimizing large-scale breeding program designs.

In this study, we examined the implementation of an evolu-
tionary algorithm within a simplified breeding scheme to 

maintain focus on the method itself. The applicability of our ap-
proach, as well as the practical advantages of evolutionary algo-
rithms in optimizing complex, large-scale breeding program 
designs involving up to 20 parameters for optimization, will be ad-
dressed in a companion study that is currently in preparation 
(Hassanpour et al. 2024).

Class variables
In the process of optimizing breeding scheme design, Jannink et al. 
(2024) showed that there are difficulties when using Bayesian op-
timization to allocate budgets effectively in breeding schemes. 
One of the limitations faced in this investigation and our previous 

Fig. 6. Performance of the suggested optima after each iteration assessed using kernel regression based on all simulations in scenario 1. The black 
horizontal line shows the estimated optima obtained from Hassanpour et al. (2023).

Fig. 7. Suggested optima across iterations for scenario 2. Red labels denote iteration numbers, while the blue line illustrates the iterative pathway. The 
dashed segment zooms in on the overlapping iterations within the optimal range from iteration 30 to 40. The black circle denotes the reference point for 
optimal parameter settings obtained through kernel regression, involving over 100,000 simulations in our previous study (Hassanpour et al. 2023).
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work (Hassanpour et al. 2023) is the lack of support for class vari-

ables. Our EA strategy helps addressing the computational inten-

sity associated with continuous optimization problems involving 

class variables. To further test the robustness of our optimization 

algorithm, we intentionally introduced a binary decision variable 

into the problem formulation. Adding a binary decision variable to 

the optimization problem introduces an additional layer of com-

plexity, making the search for the optimal solution more challen-

ging, as it allows for the inclusion of less favorable options that the 

algorithm must evaluate. This was demonstrated in scenario 3a, 

where the search space became larger due to the inclusion of 

less desirable options with a high cost of phenotyping when 

x4 = 1. However, despite this increased difficulty due to the wider 

search space created by less favorable parameter settings, the al-

gorithm demonstrated robust performance and effectively con-

verged to the same optimal solution as without the binary 

variable being active.
However, the use of class variables should be approached with 

caution. These problems can be computationally intensive not 
only due to their combinatorial nature but also due to the increase 
in the number of possible outcomes (Pelamatti et al. 2018). 
Particularly with a high number of class variables, the total 

number of combinations will rapidly increase to kn for n class vari-
ables that all can take k values. If possible, we would therefore 
strongly recommend using as low a number of class variables as 
possible, e.g. in the here-considered scenario 3b the additional 
cost of improved phenotyping was extremely low which from a 
human side makes it quite obvious to spend this additional 
money. However, as the resulting improvement for the target 
function is low, the overall upside is low, and high overall stochas-
ticity in the evaluation is observed, the EA for all 40 iterations con-
sidered both binary settings. On the contrary, more substantial 
differences, such as an increase in the costs of phenotyping of 
1,000 Euro for a marginal improvement in precision, are more eas-
ily detectable by the algorithm to be unsuitable. Therefore, we rec-
ommend that if such a design decision seems straightforward 
based on quantitative genetic theory or intuition, it might be ad-
visable to simplify the optimization process by fixating such a 
class variable from the beginning or running separate optimiza-
tion frameworks for both binary settings.

Modified parameter settings
Within our suggest EA framework a design choices (e.g. mutation 
rates, how many parameter settings to simulate etc.) are made. 

Fig. 8. Estimates of the optimum values in scenario 2: a) initial population, b) iteration 5, c) iteration 10, d) iteration 15, e) iteration 20, f) iteration 25, g) 
iteration 30, h) iteration 35, and i) iteration 40. The black points in the illustration represent simulations from more than five iterations back that are not 
considered as potential optima. Red points represent simulations that were excluded as optima due a low kernel density estimation. Green points 
represent parameter setting optima from the kernel density estimation with the blue dot representing the finally chosen parameterization.
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Although some of these choices seem arbitrary, most of these 
choices were extensively evaluated by use for optimization with 
much simplified evaluation of the target function (to save com-
puting time) and a known optimum. The presented design choice 
in our method section represent settings that should represent a 
good baseline model that works on a broad range of optimization 
problems. Nonetheless, the choice of even more suited para-
meters and design space in the EA can make stabilization of the 
optimum both quicker and more reliable (Rahnamayan et al. 
2007; Kazimipour et al. 2014). As these choices are highly depend-
ent on the optimization problem at hand, no automatic adaption 
of the parameters is included. Hence, the following sections is in-
tended to offering intuition on when and whether to deviate from 
the presented default choices and in which direction.

Regarding the initial population size (step 1), the goal should be 
to obtain good coverage of the initial search space (Zaharie and 
Micota 2017). Therefore, with more parameters or larger search 
intervals, it can make sense to increase the size of the initial set 
of parameter settings to a couple of thousand. In our example, 
even scenario 1 could have easily been improved in terms of re-
quired computations by not considering cases of more than 250 
test bulls in the initialization step. In case simulations require a 
high computational load (Pelikan et al. 2000; Piszcz and Soule 
2006), it might be necessary to reduce the initial set of parameter 
settings. However, one should be aware that this will increase the 
risk of running into a local maximum (Bajer et al. 2016).

To assess parameter settings more effectively, it may be advan-
tageous to evaluate scenarios with multiple replicates within a 
single iteration (step 2). This approach is particularly relevant 
for extremely small breeding programs and short time horizons 
where stochasticity can be a major factor in the evaluation. 
However, even for our small minimal example, such extensive 
replication was not necessary. Replication can also be employed 
as a strategy to estimate the variability of the outcome of the 
simulation and then be integrated into the objective function to 
provide a more robust and accurate optimization solution.

In our approach, replication is achieved indirectly through ker-
nel regression, which efficiently aggregates results by averaging 

similar settings. This relies on the fact that parameter settings 
with comparable values can be treated as replicates, as small dif-
ferences between them do not significantly affect outcomes. 
Additionally, we implement a repeat mechanism for the best- 
performing parameter settings. The performance of these settings 
from previous iterations is re-evaluated in subsequent iterations 
using different random seeds, thus accounting for stochastic 
variability.

For selecting the best parameter settings (step 3), we recommend 
selecting more parameter settings in the first couple of iterations, as 
there is still more diversity present and to avoid the loss of poten-
tially promising settings. In our example, we selected 100 param-
eter settings in the first two iterations, 50 parameter settings in 
iterations 3–9, and 30 parameter settings afterward with similar 
splits between steps 3.1, 3.2, and 3.3 (Table 1).

For generating new parameter settings (step 4), the same num-
ber of new parameter settings (300) in each iteration is generated. 
However, as step 4.3 is mostly intended for fine-tuning already 
promising settings, this is not applied in the first few iterations, 
and more focus is given to steps 4.1 and 4.2.

To avoid running into local optima, one could for example ex-
tend the generation of new parameter settings in this step by ran-
domly sampling parameter settings similar to the initialization. 
Note that most of the simulations generated this way will be high-
ly explorative with a low likelihood of providing good solutions. 
Hence, greatly increasing computational load which at least in 
this relatively simple breeding scheme was not deemed necessary 
by us.

Practical considerations in optimization 
of breeding programs
In some instances, even if the value of the objective function re-
mains relatively stable, there might be variation in individual par-
ameter settings across iterations (Moscato 1989). This has 
practical implications in real-world scenarios, and it enables bree-
ders to potentially allocate resources differently or achieve the 
same outcome through alternative scenarios, which might be lo-
gistically more feasible. In this regard, the definition of a suitable 

Fig. 9. Share of binary variable to increase heritability of phenotyping being active in each iteration in a) for scenario 3a with green being the share of 
parents and darkgreen being the share of population, b) for scenario 3b with yellow being the share of parents and darkorange being the share of 
population.
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target function is of major importance, as from practical experi-
ence defining such an objective function is practically not easy 
to put all inputs and outcomes of the breeding program in a gen-
eral equation. Here, visual manual human assessment can also 
help to check if the suggested optimum from the EA is not only 
in the defined search space but also in the realm of solutions a 
breeder would grant reasonable/doable.

For practical breeding, it would also be conceivable to run the 
EA framework multiple times, potentially with different target 
functions to then perform an in-depth analysis to calculate key 
characteristics (genetic gain, inbreeding, etc.) from these optima 
and pick the preferred solution. By this, the abstract concept of 
a target function can be replaced with a practical choice between 
which combination of genetic gain/inbreeding is the most desir-
able. Different target functions could for example be generated 
by using different weightings of genetic diversity and short-/long- 
term genetic gain.

Computational setup for optimizing a specific 
breeding program
In the context of economic considerations for optimization strat-
egies, a crucial aspect involves evaluating the costs against poten-
tial benefits. For our minimal example, with a cloud computing 
service charging around 0.012€ per CPU core hour and 0.012€ per 
6 GB of memory/hour https://hpc.ut.ee/pricing/calculate-costs, 
the total per-job cost, combining core hours and RAM usage, is 
0.55 cent per simulations. Running 40 iterations with 12.300 simu-
lations would therefore result in a cost of 67.65€. In most commer-
cial industrial practices, the focus of optimization lies in finding 
the best solution within a specific operating region or parameter 
space of interest that meets cost-effectiveness criteria and gener-
ates profits within a specified timeframe. In scenarios where a 
breeding program has limited prospects for improvement, allocat-
ing a substantial budget for optimization, may not be economical-
ly justified, particularly as the required computing time for larger 
breeding program simulation will be substantially higher.

Termination criteria
Although the use of a fixed termination criterion and assessment 
of the state of the framework is desirable for computational pipe-
lines, we strongly recommend also relying on manual human as-
sessment, at least in support, given the time-consuming nature of 
simulating real-world breeding programs. Visual inspection of the 
change in target function and individual parameters is a common 
practice with evolutionary algorithms (Almeida et al. 2015). In 
many cases, fine-tuning the parameters associated with termin-
ation criteria relies often on an iterative, trial-and-error approach 
(Jain et al. 2001).

To define general termination criteria, we propose to assess the 
optima from all previous iterations using a kernel regression of all 
simulations. If users observe no substantial changes or improve-
ments over successive iterations in both parameter settings and 
the objective function’s value but also the computational cost 
arising from the algorithm, they may consider stopping the opti-
mization process earlier. The user can also specify a threshold 
for improvements if the results over ten iterations fall below a cer-
tain level. This threshold needs to be chosen depending on the 
specific optimization problem and is highly dependent on the de-
sired precision of results (Jain et al. 2001; Ghoreishi et al. 2017).

A possible alternative approach could be, to only run a small 
number of iterations and increase it if the need arises after further 
evaluation. By integrating Snakemake into our EA framework, we 
enhanced the flexibility in determining when to stop the 

algorithm without the need to rerun initial iterations. This is pos-
sible because a Snakemake process can be paused and then re- 
evaluated, deciding independently which steps need to be rerun, 
run additionally, or which results can be reused.

Conclusion
In conclusion, our study presents an innovative optimization 
framework using an EA that integrates a local search approach 
based on a kernel regression model. Our framework shows 
superior optimization efficiency to existing approaches and 
applies to both classes and continuous variables, hereby, enab-
ling breeders to explore a wider range of scenarios compared to 
traditional methods (Bančič et al. 2024). The results across all 
problems indicate that our proposed framework shows great 
promise by robustly estimated optima while significantly 
reducing computation time. This study demonstrates that the 
EA algorithm consistently converges towards a common 
optimal solution, showcasing its robustness and ability to iden-
tify globally optimal or near-optimal configurations. The 
algorithm’s superior speed in terms of how quickly it stabilizes 
the optima, along with its solution diversity, balance between 
exploitation and exploration, and robustness to stochasticity, 
highlights its potential for larger breeding optimization tasks. 
The adaptable nature of our proposed framework makes it not 
only suitable for various future projects but also ensures flexibil-
ity in accommodating different breeding program designs. Users 
can easily modify, extend, or replace steps and adjust parameter 
choices as necessary. Thus, our framework supports optimiza-
tion strategies that adjust to changing needs in breeding 
programs.
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