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Abstract
The energy sector's digital transformation brings mutually dependent communication and
energy infrastructure, tightening the relationship between the physical and the digital
world. Digital twins (DT) are the key concept for this. This paper initially discusses the
evolution of the DT concept across various engineering applications before narrowing its
focus to the power systems domain. By reviewing different definitions and applications,
the authors present a new definition of DTs specifically tailored to power systems. Based
on the proposed definition and extensive deliberations and consultations with distribu-
tion system operators, energy traders, and municipalities, the authors introduce a vision of
a standard DT ecosystem architecture that offers services beyond real‐time updates and
can seamlessly integrate with existing transmission and distribution system operators'
processes while reconciling with concepts such as microgrids and local energy commu-
nities based on a system‐of‐systems view. The authors also discuss their vision related to
the integration of power system DTs into various phases of the system's life cycle, such as
long‐term planning, emphasising challenges that remain to be addressed, such as man-
aging measurement and model errors, and uncertainty propagation. Finally, the authors
present their vision of how artificial intelligence and machine learning can enhance
several power systems DT modules established in the proposed architecture.
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1 | INTRODUCTION

The introduction of the supervisory control and data acquisi-
tion (SCADA) system and the wide area monitoring system
(WAMS) are perfect examples of how digitalisation in power
systems has led to an increase in system reliability over the past
decades.1 Enabled by the digital paradigm shift, investments in
information and communication technology (ICT) have
enabled power system operators to install advanced metring
infrastructure (AMI), perform real‐time (partial) network
monitoring, and enhance simulation accuracy.2 Consequently,
facilitating more precise predictions of the system response
and thus enhancing operational efficiency.3 However, the
increasing size and complexity of power systems, the surge in
distributed energy resources (DERs), and the transformation

towards flexible and controllable loads require the management
of immense data pools, advanced simulation and modelling
efforts, and the development of more complex operation and
planning approaches. A digital twin (DT) can provide a holistic
approach to data processing, modelling, simulation, and service
validation,4 thereby playing an essential role in bridging the gap
between physical and digital models.5

The DT concept was initially imagined over 3 decades ago
in Ref. 6 and adapted to product life cycle management several
years later.7,8 As a concept, NASA matured DTs for space
exploration using remote‐controlled vehicles.9 At that time, a
DT was defined as “an integrated multiphysics, multiscale,
probabilistic simulation of an as‐built vehicle or system that
uses the best available physical models, sensor updates, fleet
history etc., to mirror the life of its corresponding flying
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twin”.10 In this definition, the DT's main features comprise an
ultra‐high‐fidelity physical model, real‐time monitoring of
health and performance, and data mining. With such features,
NASA's DT can self‐adapt, forecast future states, predict sys-
tem responses, and mitigate damages.

Since then, the DT concept has been adapted to the power
systems domain to evolve into a twin‐centric digital control
centre architecture4,11 in which the physical system and the
dynamic simulation‐based digital world are interlinked by a
real‐time automated data flow. The capabilities of such a sys-
tem include anomaly detection and threat mitigation, self‐
adaptation, and prediction of the system response, similar to
the capabilities first envisioned in Ref. 12. Despite years, the
general DT concept in the power systems domain remains
vague and surrounded by misconceptions, as exemplified in
Figure 1.13 For instance, digital models and shadows are often
portrayed as DTs. A simplified schematic representation of
both a digital model and a digital shadow is presented in
Figure 1a,b, respectively. These representations lack one of the
fundamental features of the DT concept, namely a bidirec-
tional real‐time automated data exchange between a physical
entity (or system) and its digital counterpart. In a digital model,
once created, modifications to the physical system do not
affect the digital model. Similarly, in a digital shadow, changes
in the physical system influence the digital shadow, but not vice
versa.13 Moreover, the key features of DTs are domain‐specific
and can have different levels of sophistication. In this context,
the need for a customised power system DT definition has
already been recognised in the literature.14 Furthermore, re-
searchers acknowledge the importance of DTs without
achieving consensus on a universal approach, underlining the
development of a standard ecosystem architecture to advance
DT research and implementation.15

This paper begins by examining the evolution of the DT
concept across various engineering domains before narrowing
its focus to the power systems domain. Then, it identifies and
highlights key features that we consider fundamental for the
future development of DTs in power systems. By reviewing
different definitions and capabilities, we propose a new stan-
dard definition of DTs specifically tailored to power systems.
Building on the proposed definition, a vision of a standard DT
ecosystem architecture designed to offer services beyond real‐
time monitoring, control, and operation is proposed. Later, we
elaborate on our vision for DTs in advanced power system life
cycle phases (i.e. long‐term planning), highlighting challenges
that remain, such as managing measurement and model errors,
and uncertainty propagation. Finally, we present our vision of
how artificial intelligence (AI) and machine learning (ML) can
enhance several power systems DT components and modules
established in the proposed standard ecosystem architecture. In
summary, the main contributions of this paper are as follows:

� Tailored power systems DT definition: A new standard
definition of DTs in power system is proposed. The pro-
posed DT definition extends beyond NASA's DT defini-
tion, represented in Figure 1c, including a long‐term

planning component, among others, as depicted in
Figure 1d. It underscores the importance of integrating
advanced data management and high‐fidelity models for
power system operation and planning, thereby aiming to
consolidate DT definitions across domains to establish a
standard definition for future DT implementation.

� Standard power systems DT architecture: A standard DT
ecosystem architecture is proposed to collect the author's
vision on such developments aiming to offer services
beyond real‐time monitoring, control, and operation. The
proposed ecosystem architecture can seamlessly integrate
with existing transmission system operator (TSO) and dis-
tribution system operator (DSO) processes while reconciling
with concepts such as microgrids (MGs) and local energy
communities (LECs) based on a system‐of‐systems view.
This architecture resulted from extensive deliberations and
consultations with DSOs, energy traders, and municipalities
and aims to address their primary enquiries regarding the
use of DTs to support their wide range of primary objec-
tives. While empirical validations through case studies are
crucial, the current paper serves to set forth a conceptual
foundation and roadmap for the development and imple-
mentation of the proposed architecture.

� Addressing power systems DTs as a large‐scale software
development challenge: Our proposed envisioned architec-
ture addresses the large‐scale software development chal-
lenges often overlooked by existing DT platforms,
advocating for a standardised approach to manage the
complexity and scale of modern power systems. The pro-
posed power system DT ecosystem architecture integrates
advanced data management capabilities to address mea-
surement and model errors and uncertainties, enhancing the
accuracy and reliability of the DT for robust decision‐
making support. Moreover, we adopt a system‐of‐systems
perspective, allowing for integrating DTs developed at

F I GURE 1 Common misconceptions found in literature, based on a
review by authors in Ref. 13. Dashed arrows represent manual data
exchange and solid arrows represent real‐time automated data exchange
between a physical system and its digital counterpart. Digital models and
shadows are misconceived as DTs even if they miss such real‐time
automated data exchange between the physical and digital systems.
Expectations of the DT concept go beyond real‐time monitoring services.
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various levels, ensuring scalability and flexibility in more
complex systems.

� Future‐oriented DT vision: Our proposed DT architecture
incorporates AI and ML to enhance data processing, pre-
dictive maintenance, operational optimisation etc., offering
advanced predictive capabilities and operational efficiencies
as envisioned enhanced features of future power systems
DTs platforms.

2 | DIGITAL TWINS AND POWER
SYSTEMS

The prospective capabilities of DTs depicted in the NASA
papers9,10 laid the foundation for extensive research on the
application of DTs and their widespread adoption in different
industries. Variants of NASA's definition have been proposed
for both generic purposes and specific domains, especially in
applications for manufacturing and mechatronics. The Inter-
national Academy for Production Engineering (CIRP) pro-
poses a DT definition for generic purposes that encompasses
similar features to NASA's definition. However, these features
can be tailored for specific purposes.16 By delineating a DT as a
system with a wide range of tailorable features, it allows for
systems ranging from a static human‐triggered simulation tool
to a dynamic fully autonomous forecasting tool to be labelled
as a DT. Therefore, the tailorable DT definition provided by
CIRP comes at the expense of the fundamental paradigm of
twinning, that is, a bidirectional real‐time automated data ex-
change between a digital and physical entity.17

2.1 | Digital twin definitions and features

In general, NASA's and CIRP's definitions highlight three key
DT features: a physical entity (or system), a digital entity (or
system), and their data exchange, as can be seen in Figure 2.
Although the CIRP definition recognises the importance of a
physical‐to‐digital connection, that connection need not
necessarily be bidirectional, real time, and automated. Recog-
nising these as the main features enables DTs to offer their
well‐known real‐time monitoring services. Nevertheless,
driven by the increased complexity of engineering systems and
the involved ICT infrastructure required to handle large
amounts of data, additional features have been gaining more
attention. The additional features outside the power systems
domain are summarised in the first seven entries of Table 1 and
elaborated on in Section 2.1. They include services and mod-
ules that go beyond real‐time monitoring, encompassing tasks
such as scenario simulation, system optimisation, diagnostics,
and performance predictions.9,10,18 Indeed, the deployment of
these advanced services and modules requires standardised
ways of sharing data using data interfaces as well as more
complex data storage and data visualisation capabilities. As a
result, these data capabilities are now recognised as important
DT features,19 as shown in Figure 2.

Despite the comprehensive list of features now recog-
nised as fundamental for a DT, DTs are domain‐specific and
can have different levels of sophistication. They are generally
designed to be embedded into domain‐specific processes
within a broader system's life cycle (i.e. conceptualisation and
design, operation, and planning).20–22 From an engineering
system's perspective, DTs are expected to provide services
and support beyond real‐time updates and monitoring. For
instance, they can be implemented in the design phase and
guide planning decisions in the long‐term planning phase.23

Due to the range of requirements in the different engineering
system's life cycle phases, we argue that the inclusion of (long‐
term) planning services is crucial in the DT definition, and as
such, it must be included in Figure 2. This is supported by
authors in Ref. 24 that state that incorporating DTs at
advanced life cycle phases (i.e. long‐term decision‐making)
guides the design of the DT itself. Moreover, a mature DT
definition facilitates the integration of such an ecosystem into
already established operation and planning frameworks of any
engineering system. Nevertheless, industrial applications of
DTs at advanced life cycle phases remain limited or are in
their conceptual phase.

F I GURE 2 Key features recognised as part of the proposed DT
definition. Although the CIRP definition recognises the importance of a
physical‐to‐digital connection, that connection need not necessarily be
bidirectional, real time, and automated. The original NASA definition
recognised the first three features (a physical system with a digital
representation and a bidirectional real‐time automated data exchange),
enabling real‐time monitoring and short‐term state prediction. Updated
definitions recently recognise the need for new features, such as those
supporting more advanced data sharing, storage, and visualisation. We
argue for the inclusion of (long‐term) planning as a new feature, expanding
DT services beyond real‐time monitoring and their deployment within the
power systems domain. The features in the figure follow a colour coding
that will be used throughout this paper.
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2.2 | Power system digital twins

In the power systems domain, DT architectures highlight
similar features described in the general DT definition, that is, a
physical system, a digital system, and their interconnection.25

See, for example, the CIRP and NASA definitions in Figure 2.
The DT definitions and features found in this domain are
summarised in the last eleven entries of Table 1 and elaborated
on in Section 2.2. At the TSO level, such DT features are
straightforward to identify, with SCADA systems, energy
management systems (EMSs), and WAMSs supporting the
bidirectional data connection of assets and resources with their
digital counterparts,4,11 enabling real‐time monitoring as a base
for several modules. At the DSO level, the massive deployment
of Internet of things (IoT) sensors and smart metres facilitates
data exchange, enabling real‐time response for large networks26

and advanced DER management deployment.27 At the
component level,28,29 developed a DT for medium voltage
(MV) to low voltage (LV) transformers and dc‐dc power
converters, respectively. By combining high‐fidelity simulation
models of transformer and converter components with mea-
surement devices, the number of measurement devices needed
to support accurate real‐time monitoring was minimised. The
DT presented in Ref. 30 analyses operational data in order to
increase the transformer's lifespan by ensuring safety under
future operating conditions. To improve anomaly detection

and maintenance scheduling, Ref. 31 develops a DT for a
power plant, implementing an architecture comprised of a
continuous data stream from sensors and physics‐based dy-
namic models. In a similar power plant application, Ref. 32
develops a DT for real‐time monitoring and control. Unlike
Refs. 31 and 32, highlights the importance of data visualisation
to facilitate monitoring and control by the power plant oper-
ator, although only limited visualisation capabilities (i.e. in-
dustrial charts) are considered. Exploiting a more software‐
based architecture, Ref. 33 proposed using DTs as cloud bat-
tery management systems (BMSs) to replace the onboard BMS.
This improves the computational capabilities of these systems
and enables big data storage, advanced visualisation, and reli-
able system prediction and optimisation. Contrary to the
perspective presented in Ref. 33, even though data storage,
visualisation, and interfaces are deemed necessary, they are not
universally acknowledged as inherent to the DT concept, which
underpins the development of the aforementioned features.
Moreover, applications of DTs in long‐term system planning
are scarce.34

From the deployment perspective, two issues remain un-
clear: (1) how DTs can be embedded into the power system's
life cycle and (2) how the power system DT definition can
reconcile with similar DTs developed on smaller scales (e.g.
component level DTs),35 as well as new concepts such as
microgrids (MGs) and local energy communities (LECs).

TABLE 1 DT key features in available definitions and system architectures.

Ref.
Physical
system

Digital
system

Data
exchange*

Monitoring
(real‐time)

Services and
modules

Data
storage

Data
visualisation

Data
interfaces

Planning
(long‐term) Domain

9,10 ✓ ✓ ✓ ✓ ✓ Manufacturing

16 ✓ ✓ □ □ □ Manufacturing

18 ✓ ✓ ✓ ✓ ✓ Manufacturing

19 ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ Manufacturing

20–
22

✓ ✓ ✓ ✓ ✓ ✓ ✓ Mechatronics

23 ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ Mechatronics

24 ✓ ✓ □ □ □ MBSE

25 ✓ ✓ ✓ ✓ ✓ Power system

4,11 ✓ ✓ ✓ ✓ ✓ Control centre

26 ✓ ✓ ✓ ✓ Control centre

27 ✓ ✓ ✓ ✓ ✓ Control centre

28 ✓ ✓ ✓ ✓ Component

29 ✓ ✓ ✓ ✓ Component

30 ✓ ✓ ✓ ✓ ✓ Component

31 ✓ ✓ ✓ ✓ ✓ Component

32 ✓ ✓ ✓ ✓ ✓ ✓ Component

33 ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ Component

34 ✓ ✓ ✓ ✓ ✓ ✓ Microgrid

Note: * bidirectional, real‐time, and automated; ✓, included; □, tailorable feature.
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Considering this, and as most of the current DT applications in
the power systems domain overlook several established DT
features, a proper power system DT definition is missing. This
definition must consider all recognised features in Figure 2 and
integrate the specific modules and models used to control,
operate, and plan power systems. We propose a new DT
definition tailored to power systems to address this limitation.

2.3 | A new power system digital twin
definition

The typical DT definition, that is, a physical system with a
digital representation and a bidirectional real‐time automated
data exchange, does not fully represent the range of services
and modules in the power systems domain. Furthermore, this
definition poses challenges in terms of effectively integrating
DTs into the established frameworks governing TSOs and
DSOs across control (real time, at the seconds horizon),
operation (at the minutes, days, and weeks horizon), and
planning (at the years horizon) tasks. Although customised
power system DT architectures have been developed based on
application‐oriented definitions (see Table 1), they disregard
that (1) the deployment of DTs is mainly a large‐scale software
development problem that requires a standardised approach,
(2) the non‐stationary environment inherent to power systems
requires self‐adapting models (without this representing a
challenge), (3) power systems are composed of the intercon-
nection of different assets (e.g. transmission lines and trans-
formers) that can also be modelled via complex and detailed
simulation models or DTs, and (4) measurement and model
errors and uncertainties propagate through the entire life cycle.
Considering such features, we propose a new DT definition
customised to power systems and aligned with system opera-
tors' perspective. We define a power system DT as a collection
of modules and models (based on multiphysics simulation)
integrated into a single software ecosystem with advanced
data management and visualisation capabilities aimed at
mirroring the real‐time operation of the power system and
supporting its long‐term planning.

The aforementioned definition underscores the necessity
of considering several (software) modules (e.g. voltage control
and security assessment) and models (e.g. power flow and state
estimation) used in power system operation and control as well
as software modules that enable data processing and storage,
data generation, forecasting, and data visualisation. Moreover,
it incorporates leveraging the DT for tasks that go beyond the
operation framework, such as assessing future operational
scenarios (e.g. utilising the power flow model and forecasted
data) and supporting long‐term infrastructure upgrades.
Defining a power system DT as a collection of integrated
modules within a single (software) ecosystem facilitates the
further incorporation of DTs developed at different scales (e.g.
at the component level), provided that a proper interface is
deployed. To complement the presented definition and facili-
tate its integration into TSOs' and DSOs' processes, a stand-
ardised architecture is still needed. In the next section, we

present and discuss our vision of a power system DT
ecosystem architecture while highlighting undressing technical
challenges to deploy such architecture.

3 | ENVISIONED STANDARD POWER
SYSTEM DIGITAL TWIN ECOSYSTEM
ARCHITECTURE

We conceive the implementation of power system DTs as a
comprehensive software ecosystem development and deploy-
ment challenge, necessitating a holistic approach. As a result, a
standardised ecosystem architecture is needed that acknowl-
edges the DT's main features already discussed and presented
in Figure 2 while enabling seamless integration into one soft-
ware ecosystem. The envisioned and proposed DT ecosystem
architecture, shown in Figure 3, is developed from the oper-
ators' perspective and aligned with their operation frameworks.
Nevertheless, it is general enough to be easily extended to
other applications. The envisioned architecture in Figure 3 is
composed of five main components: (1) High‐Fidelity Simu-
lation Models, (2) Operation and Planning, (3) Grid as a
Service, (4) Data Engineering, and (5) Data Analytics. The
former components aim for an autonomous power system
operation, enabling operators to meet their objectives from
everyday system operation to long‐term planning, as well as
supporting external businesses and stakeholders, while the
latter components are the backbone, allowing bidirectional
real‐time automated data exchange between the digital and
physical world, as well as between the different components,
modules and models via proper data interfaces. The envisioned
ecosystem architecture interfaces (with appropriate data in-
terfaces) with the TSOs' and DSOs' control centres. In this
view, we do not foresee that such a power system DT will
replace the operators' centres. Nevertheless, we envision it to
evolve to be a crucial support tool.

3.1 | High‐fidelity simulation models

Multiphysics, multiscale, probabilistic simulation models
compose the heart of DTs and support all the capabilities of
the different DT modules. From the power systems' perspec-
tive, the High‐Fidelity Simulation Models component com-
prises simulation models such as Power Flow Models for
steady‐state analysis, EMT Models for electromagnetic tran-
sients (EMT), Thermal Models for heat analysis, and Dynamic
Phasor Models for analysis based on phasor measurement units
(PMUs).37 These models are used to increase the system op-
erators' observability and control capabilities of their networks.
Advanced simulation models can also be incorporated, such as
Hardware‐in‐the‐Loop (HiL) Models using real‐time digital
simulators. The literature on power system modelling and
simulation tools is vast,38 and detailed taxonomies per model
application are already available.39 Due to the non‐stationary
environment in which a power system operates, a continuous
update process is expected to be in place. This can be
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implemented using the Simulation Models Management
module, in charge of keeping track of infrastructure (e.g. new
assets) or operation changes (e.g., network topology change).
Moreover, it ensures time synchronisation among the different
simulation models, enabling them to cooperate and simulate
using data with varying time resolutions. Proper model version
documentation must also be deployed with the support of the
Data Engineering component, as detailed in Section 3.3.

3.2 | Bidirectional real‐time automated data
exchange

Digital infrastructure serves as the foundation for the digital‐
to‐physical connection. To be fed into the DT, data is
collected by field measurements, IoT devices, and smart metres
from several power system assets (e.g. lines, switches, and
transformers), large generation plants (e.g. nuclear plants and

hydroelectric plans), customers, and DERs (e.g. solar panels,
batteries, and electric vehicles). Furthermore, relevant infor-
mation (e.g. meteorological data, energy market prices, and
states of adjacent interconnected systems) composes a set of
contextual data and is also collected and stored. In Figure 3,
although a direct data connection and exchange is depicted by
the DT linking to the power system assets, such data can in
practice be transferred via the proper data interface from the
TSOs' and DSOs' WAMSs and SCADA systems, located at the
operators' premises. In addition to measured data, information
in the form of control commands and maintenance recom-
mendations can also flow from the DT to power system assets,
generation plants, customers, and DERs. However, handling
large volumes of data, including structured, unstructured, and
semi‐structured data from various sources with different
spatio‐temporal resolutions, formats, and qualities, poses a
challenge.34 Proper data management is the core function of
the Data Engineering and Data Analytics components.

F I GURE 3 Proposed DT ecosystem architecture based on the proposed DT definition in Section 2. This ecosystem architecture is developed from the
operators' perspective and aligned with their operation frameworks. Nevertheless, it is general enough to be easily extended to other applications. The white
blocks represent the most relevant physical systems, blue blocks represent data modules, orange blocks represent high‐fidelity simulation models, green blocks
represent some of the power system operation and planning modules, as described in,36 grey blocks represent some of the systems and processes at TSOs' and
DSOs' control centres, and arrows represent data (and information) flows. The components in the figure follow the same colour coding throughout the paper.
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3.3 | Data engineering

The Data Engineering component adds to the data processing
capabilities of the DT and enables it to collect, clean, integrate,
and store data from different sources previously described (see
Section 3.2), thereby ensuring that all data are well prepared,
accessible, and of high quality for all available modules within
the other components. The main modules of this component
are Data Collection, Data Formatting, Data Cleaning, Data
Integration, and Data Storage. Typically, power system oper-
ators maintain databases with detailed infrastructure informa-
tion, such as the parameters and locations of power system
assets, switching states, and network topology. The Data
Collection module consists of data systems and interfaces that
allow the DT to communicate with these databases and mea-
surement devices to retrieve historical and real‐time data on
power system assets. A critical aspect is the inclusion of spatio‐
temporal data, which encompasses time‐synchronised field
measurements from devices such as PMUs, smart metres, and
other measurement devices originating from the WAMSs and
SCADA systems. Time‐synchronisation of spatio‐temporal
data is vital for producing reliable simulation results. When
combined with geographic information system (GIS) data
from TSOs' and DSOs' databases, the data integration module
accurately maps all data to the corresponding power system
asset within the DT ecosystem. The general term data interface
is used as it refers to the point of interaction or communication
between different systems, components, modules, and models.
The definition of the proper data interface is application‐ and
use‐case‐specific, but it can include, for instance, a definition of
application programming interfaces (APIs), as well as security
requirements (e.g. authentication and encryption). The Data
Formatting module is in charge of properly formatting the
data (e.g. JSON, XML, CSV, binary, etc.) to support all DT
modules. For instance, the common information model (CIM)
is a widely used standard in power systems for defining a
common format to describe assets like generators, trans-
formers, and substations.40,41 Operators adhere to CIM stan-
dards for consistent asset naming, ensuring interoperability
across systems and modules. The Data Cleaning module
checks the veracity of the data and complements, corrects, or
discards data where needed, ensuring high data quality. For
instance, data cleaning algorithms may detect and remove
anomalies in power measurements, such as spikes or missing
values, to improve the reliability of analysis and decision‐
making. Moreover, in instances where sensors are malfunc-
tioning or absent, the module has the capability to identify and
estimate these values using historical measurement data and
proximate measurements to support simulations. The en-
hancements that AI and ML can provide in these scenarios are
detailed in Section 5. Power systems comprise various assets,
sensors, and control systems, producing vast amounts of het-
erogeneous data. The Data Integration module cohesively
consolidates data from diverse sources like SCADA systems,
smart metres, and weather sensors. This comprehensive inte-
gration enables the DT to analyse and optimise power systems
holistically. Finally, the Data Storage module enables the large

volume of raw and processed data to be stored efficiently for
further use in all DT modules. Operators typically employ
databases, data warehouses, and data lakes, including cloud‐
based storage.

3.4 | Data analytics

The Data Analytics component involves the exploration,
interpretation, and visualisation of data to derive meaningful
insights from the power system operators. In general, data
analytics operates across four levels, namely descriptive, diag-
nostic, predictive, and prescriptive. The first level describes
what happened in the past regarding a certain event or phe-
nomenon. The second level diagnoses why this happened. The
third and fourth levels, respectively, predict what will happen
and optimise operation based on the prediction. Within the
proposed ecosystem architecture, the first two levels of data
analytics are covered in the Data Analysis and Data Visual-
isation modules. These modules analyse processed data from
the data engineering component and output data from the
operation and planning component. For instance, detecting
anomalies, identifying system states, evaluating control actions,
and visualising performance indicators are among the capa-
bilities of the underlying models. This enables the DT to
describe and diagnose the entire system for its operators. The
third level of data analytics is handled by the Data Forecasting
and Scenario Generation modules, which predict future sys-
tem states on different timescales. The former operates from
multiple days ahead to the intraday timescale, while the latter
focuses on months to years ahead the timescale. Leveraging
historical, meteorological, and socio‐economic data, these ap-
plications employ statistical, ML, and heuristic models for
forecasting. The fourth level is covered by the modules in the
operation and planning component. It enables predictive
maintenance and optimised decision‐making, enhancing sys-
tem reliability, efficiency, and resilience.42 Additionally, pre-
dictive and descriptive analytics facilitate trend analysis, load
forecasting and risk assessment, empowering operators to
proactively manage grid operations and address emerging
challenges.43

3.5 | Operation and planning

The Operation and Planning component gathers all the
already established modules run and executed by the TSOs and
DSOs. Modules needed for control and operation, such as
DER Control, Observability Analyser, System Control, Ca-
pacity Management, as well as modules needed for long‐term
planning, such as Security Analysis, Predictive Maintenance,
Resilience Operation, are all deployed into this component,
retrieving and exploiting the required data to optimally func-
tion via the Data Engineering and Data Analytics compo-
nents, respectively. A detailed discussion of each of these well‐
known and established power system modules is outside the
scope of this paper. Nevertheless, interested readers can find a
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comprehensive view of these modules offered by DSOs in Ref.
36. Notice that in Figure 3, the TSOs' and DSOs' modules are
located at their premises. We envision system operators
copying such operation and planning modules into the power
system DT ecosystem to develop and validate new services by
taking advantage of the DT's high‐fidelity models. Once vali-
dated, they can be deployed back at the system operator
control centre premises. In this sense, the power system DT
can become the heart of new developments. Nevertheless, this
differs from the perspective of some operators,44 who expect
the DTs to become the heart of their control centres.

3.6 | Grid as a service

The Grid as a Service (GaaS) component can be seen as the
operators' interface to the external world. In the energy transi-
tion context, communities are organising themselves as LECs,45

while operators of more complex energy infrastructures (e.g.
large industrial, military, or university campuses) are constituting
MGs. Although LECs and MGs are entirely independent of the
operators from the administrative point of view, they are still
connected to the power system infrastructure. Moreover, since
LECs and MGs can provide crucial support services (e.g. fre-
quency regulation and demand response46), cooperation with
them is of interest to system operators. Through deployment
within the GaaS component, modules such as Local Markets
Support enable system operators to provide updated informa-
tion to LECs, thereby promoting smooth local market opera-
tions. This could facilitate, for instance, that assets' nominal
capacities are respected during energy trading (e.g. via peer‐to‐
peer services47) between two independent customers con-
nected in a DSO's operated network. Similarly, modules such as
Customer Interface can be used to coordinate operations within
and between MGs, large customers, aggregators, and charging
point operators, supporting the development of new business
models. Such coordination can be in the form of validation of
their energy schedule, aiming to avoid technical issues in the
hosting grid (e.g. congestion). In the case of communicating and
sharing updated information with the municipal and regional
governments, real‐time data may be of less interest. Neverthe-
less, modules such as System Status and Infrastructure Infor-
mation can be deployed to share global system information in
terms of pre‐defined performance indices (e.g. minimum,
average, and maximum utilisation rate of transformers). Such
governments can use this information to gain better insights
into the city's electricity infrastructure and develop customised
urban plans faster.

From the system operators' perspective, integrating a
dedicated component into the DT for communication and data
exchange with external entities, as previously discussed, en-
hances coordination while safeguarding the integrity of the
TSOs' and DSOs' platforms. Maintaining platform integrity is
crucial when interfacing with external parties as it mitigates the
risk of cyberattacks on the TSOs and DSOs.48 Moreover, as a
separate component, it offers enough flexibility to the system
operators to build new and customised modules on demand.

For instance, a new capacity market module can be developed
to interface the DSO with customers' trading capacity as a
commodity. Such markets are still in their conceptual phase,49

and it is unclear how they would be embedded into existing
markets.

3.7 | System of systems: Multi‐digital‐twin
models

DSOs are responsible for smaller sections of a more extensive
network that interfaces with the national transmission network.
At the same time, TSOs are responsible for national networks
that may go beyond national borders (e.g. electricity inter-
connection in Europe). Naturally, DTs can be developed for all
this infrastructure at different levels by tailoring the DT
ecosystem architecture presented in Figure 3. In this context,
we envision a natural fit to the system of the systems
concept.50 The concept was adapted to the power systems
domain by Ref. 35 in which DTs of lower‐level infrastructure,
such as lines and transformers, are interfaced with DTs
developed for higher levels, such as DTs of regional distribu-
tion networks. A simple example of this concept is presented
in Figure 4. From the DT ecosystem architecture point of view
(see Figure 3), the interface of DTs at lower and higher levels
should occur at the High‐Fidelity Simulation Models compo-
nent by replacing the corresponding lower level model by a
tailored interface to its DT. Such a tailored interface must share
the appropriate data depending on the related DTmodules and
the embedded power systems' life cycle phase (see Section 4
for a more detailed discussion). In this sense, the coupling of
multiple DTs via the proposed ecosystem architecture goes
beyond the co‐simulation concepts already presented for some
DT applications,51 as models are kept intrinsic to each DT.
Nevertheless, to achieve this, data standardisation, interfaces,
and data exchange efforts are fundamental and should simplify

F I GURE 4 Example of a (small‐scale) power system DT frame using
the system of systems concept. The orange blocks represent simulation
models of the physical assets and resources presented by their
corresponding white symbols in the network diagram. The simulation
models are enclosed in DTs represented by yellow boxes (for simplicity,
other DT components as presented in Figure 3 are omitted), while the blue
arrows represent a bidirectional data exchange between the different levels
DTs. The components in the figure follow the same colour coding
throughout the paper.
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and pave the way for DT implementation. A notable example
in this regard is the utilisation of functional mockup units
(FMUs), where simulation models are packaged according to a
standardised approach, encapsulating the model's equations
and its corresponding solver,52 enabling simulations using
different software platforms. Another example of data stand-
ardisation and interfaces is the open platform of Vorto,53

enabling the integration of IoT devices in DTs. However, to
achieve large‐scale power system DT implementation requires
mature system engineering design methodologies. These can be
delivered by working together with the software engineering
and computer science communities.

4 | LIFE CYCLE OF POWER SYSTEM
DIGITAL TWINS

The proposed ecosystem architecture in Section 3 reconciles
the key features of the proposed DT definition presented in
Figure 2 in the power systems domain while highlighting its
software components as the backbone of such a model.
Nevertheless, this ecosystem architecture does not depict how
to embed such DTs into the power system life cycle, thus
overlooking the temporal dimensions. Unlike other systems
with clear end‐of‐life or end‐of‐cycle phases, the life cycle of a
power system does not have a definitive endpoint. As a
fundamental infrastructure that supports society, the long‐term
goal of a power system is to ensure, with high reliability and
resiliency, the supply of energy to end customers. In this
context, the original product life cycle management view for
which DTs were initially proposed7,8 does not fit with the
continuous upgrade and expansion of the power systems'
infrastructure. As a result, existing DT definitions fail to
consider the additional advantages that DTs can offer to the
long‐term planning of the power system.

The relevant life cycle of a power system DT comprises a
continuous cycle of control, operation, and short‐ and long‐
term planning processes performed by the system operators.
These processes range from control commands for frequency
regulation on a horizon of seconds to capacity management on
a horizon of hours, from maintenance recommendations on a
horizon of months to policy‐making and investment planning
on a horizon of decades. Due to the different time resolutions
involved, and considering the DT as an integrated ecosystem, it
is not clear (1) how the modules (defined in the Operation and
Planning component) should interact and (2) how data ex-
change (managed by the Data Engineering component) be-
tween models (available at the High‐Fidelity Simulation
Models component) should occur. We elaborate on these
challenges in the following section.

4.1 | Life cycle aligned with TSOs' and
DSOs' processes

Figure 5 attempts to reconcile the time dimension of power
system DTs with the DSOs needs of integrating multiple

models used for different operation and planning tasks. By
highlighting data (and information) flows between models used
for tasks located at different time horizons (e.g. seconds, mi-
nutes, years, and decades), the envisioned DT architecture and
its key components are linked to the continuous cycle of
processes performed by the system operators. Nevertheless,
integrating data with different time resolutions within these
processes and their underlying simulation models poses sig-
nificant challenges. For example, consider the Dutch house-
hold's demand profile with several time resolutions presented
in Figure 6. Using demand profiles with different time reso-
lutions as input for the DT simulation models can alter their
output due to the inherent information loss, especially
considering the stochastic behaviour loss in lower time reso-
lution data. As a result, important dynamics, such as peak
demands, can be overlooked, impacting the power system's
operational resilience, for instance, by underestimating the
peak consumption. Therefore, selecting the appropriate time
resolution for each simulation model, performing data down-
sampling or upsampling as needed, and ensuring time syn-
chronisation of measurement data and simulation models are
essential for accurate results. A multi‐domain novel generation
modelling (NGM) platform proposed in Ref. 54 supports
multi‐time‐scale operation within the same system. Neverthe-
less, this research area is usually overlooked in the power
system community.

As data flows from modules used in control to long‐term
planning, as depicted in Figure 5, it allows for a data down-
sampling (or data compression) process to be implemented.
For instance, the EMT Models (which run at the second
timescale) could be initialised by making use of the Power Flow
Models (which run at the 5‐ or 15‐min timescales). Similarly,
the Security Analysis module (which runs at the hour timescale
to assess operational feasibility) could utilise the Power Flow
Models. For infrastructure upgrade and expansion, the Ca-
pacity Management module (which runs at the hour timescale)
could utilise a lower time resolution assessment. For instance,
by making use of the Power Flow Models and Thermal Models
and building on top of modules such as DER Control and
Observability Analyser. Integrating and properly interfacing
all these models and modules within the same DT ecosystem
will bring added benefits to system operators. As a result, in-
vestment decisions regarding infrastructure upgrades can be
assessed at the second timescale within the same ecosystem
with minimal technical effort. With these characteristics, we
foresee a shift away from the traditional paradigm of segre-
gated operation and planning tasks, enabling decisions made at
any stage within the power system's operational cycle to be
promptly evaluated across different time resolutions.55

4.2 | Life cycle challenges

The flow of data between components, modules, and models
displayed in Figure 5 poses the risk of facilitating error and
uncertainty propagation throughout the entire power system
life cycle. Due to the intrinsic complexity of power system DT
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architectures, these are usually disregarded. Nevertheless, they
can largely affect decision‐making at different power system's
life cycle phases. In the power systems domain, uncertainty is
usually considered from the stochastic behaviour of the de-
mand and renewable‐based generation, enabling the develop-
ment of complex stochastic and robust mathematical
formulations.56 Although such uncertainty is relevant, in the
context of a power system DT, errors and uncertainties from
measurements, data up/downsampling, and errors and inac-
curacy from models must also be considered. In this sense,

efforts to reduce the gap between simulation and reality have
already been recognised in other domains, such as autonomous
driving.57 Nevertheless, efforts in this direction in power sys-
tems are not widely known. Considering uncertainty propa-
gation among models with different time resolutions increases
the complexity of power system DT developments, raising
several important modelling questions yet to be answered.
Certainly, this is a future research direction that requires much
attention.

5 | THE ROLE OF ARTIFICIAL
INTELLIGENCE AND MACHINE
LEARNING IN FUTURE POWER SYSTEM
DIGITAL TWINS

In the context of AI, ML models have been proven to suc-
cessfully learn from large datasets, finding hidden patterns and
enabling the discovery of new knowledge. As a result, AI and
ML are revolutionising different sectors, from drug produc-
tion58 to algorithms development,59 showing even above hu-
man performance in complex games.60 Similar disruptions are
expected in the energy sector, with AI and ML models
potentially enhancing the performance of several modules that
are the backbone for power system operation and planning.61

Although several of these advancements have been already
recognised,62 they have not yet been framed to a specific DT
architecture. Below, we present our vision (non‐comprehensive
due to space limitation) of how state‐of‐the‐art AI and ML
models can enhance some of DT components and modules

F I GURE 5 Life cycle of the DTmodules related to the continuous cycle of processes performed by system operators. The grey blocks on the top represent
the relevant power system life cycle phases and the y‐axis on the right shows the timescale of the relevant processes. The blue lines/blocks represent data‐related
processes and modules, the green text blocks represent some of the power system operation and planning modules, while the orange blocks represent high‐
fidelity simulation models needed for these modules. The components in the figure follow the same colour coding throughout the paper.

F I GURE 6 A normalised load profile of a Dutch household presented
for several time resolutions. As can be seen, the inherent stochastic
behaviour of the load demand is diminished when using a lower time
resolution representation. As a result, important dynamics, such as peak
demands, can be overlooked. Overlooking important dynamics can impact
the power system's operational resilience, for instance, by underestimating
the peak consumption.
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described in Section 3. The expected enhancements of specific
algorithms, methods, and learning paradigms are divided based
on the relevant system operator's processes and are summar-
ised in Table 2.

� Data Processing and Visualisation: Power system DTs are
expected to collect, store, and process large amounts of data
from different energy resources and assets and in different
time samples (e.g. seconds, minutes, hours), as well as
contextual data (e.g. energy price, weather data). The chal-
lenge is properly displaying and processing such a large
amount of data, enabling system operators to draw con-
clusions and insights easily and enabling service provision
for external businesses and stakeholders. Processing and
visualisation of high‐dimensional data are already part of the
functionalities within the Data Engineering and Data An-
alytics models, and ML models can facilitate them. For
instance, natural language processing (NLP) models can be
used to analyse and extract insights from large volumes of
text data (coming from reports and text file formats)
generated by system operators, technicians etc. Further-
more, they can also help standardise and normalise text
inputs and even generate summaries, insights, and visual-
isations from textual data. Other examples are clustering
algorithms that can group customers by energy consump-
tion behaviour,63 while system states can be grouped into
representative or typical operation modes.64 Later, these
representative groups and states can be used during opera-
tion and planning. Certainly, the data collected and stored by
the DT ecosystem will have errors or be incomplete. ML
models can automatically identify such data, for instance,
using anomaly detection algorithms,65 while incomplete data
can be filled in using ML‐based imputation algorithms,66

such as principal component analysis imputation or deep

learning imputation models. All these data correction pro-
cesses can be automated and executed by the DT ecosystem
in the background using these ML models.

� Modelling: Multiphysics models use detailed mathematical
formulations to simulate the DT's physical system, as dis-
cussed in Section 3.1. These complex mathematical models
are difficult to solve and may require large computational
resources. Therefore, several of the power system DT
modules and models (e.g. power flow, optimal power flow,
state estimation) will benefit from simplified and
complexity‐reduced models. ML models have proven to be
capable of accurately representing physical systems. For
instance, deep learning‐based models can be used to solve
fast power flow formulations,67 while graph neural networks
(GNNs) exploit the natural graph structure of the power
system to accelerate state estimation calculations.68 The
expectation is for deep learning‐based power flow solvers to
outperform classical formulations, which currently show
poor scalability features regarding the network size.76 In the
context of a city‐level distribution network DT, many power
flow models would need to be scripted. Although modern
power flow scripting packages (e.g. PandaPower,77 Power-
GridModel78) already standardise input–output formats, and
due to the large number of MV and LV networks, their
modelling can be a tedious and time‐consuming task. Large
language models (LLM) can accelerate these scripting tasks
by exploiting their automatic programming capabilities.69

For instance, by deploying an LLM within the DT
ecosystem, it can be instructed to learn power flow scripting
and automatically provide the large number of power flow
models of all the MV and LV networks in a city. Although
LLMs are already being proven to automatise and support
several tasks in various domains,79 mature applications in
the power systems domain remain unseen.70

TABLE 2 Some of the expected enhancements that machine learning models can bring to power system DTs.

Component Algorithms/Methods/Learning paradigm Expected enhancements Ref.

Data processing and visualisation NLP Data processing of large volumes of data 63

Clustering Data visualisation of high‐dimensional data 63

Clustering and decision tree Data analysis of operation modes 64

Deep learning Automated and improved anomaly detection 65

PCA imputation and deep learning imputation Imputation of incomplete or bad data 66

Modelling Deep learning Fast power flow formulations 67

Deep learning and GNN Fast state estimation 68

LLM Automated scripting of large and complex power flow models 69

LLM Fast fault and incident reporting 70

Processes automation Deep learning Comprehensive overview of post‐switch states –

Operation RL Decision‐making support for system operators 71

RL Fast control and dispatch optimisation of DERs 72

Planning GAN and VAE Data generation of unseen power system states close to faults 73

GAN and VAE Data augmentation of long‐term demand and renewable generation 74,75
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� Processes Automation: Manually executed processes, such as
network switching and work management,80 can benefit
from the fast calculation of the above‐mentioned
complexity‐reduced power flow models. Within the Opera-
tion and Planning component, a new DT module can be
developed to run hundreds of network reconfiguration
scenarios in the background, providing a good overview of
the post‐switch state of the system. The system operators
can then define the best switching action using this over-
view. Repetitive, tedious, and time‐consuming tasks that
require reporting, such as faults and incidents reporting, can
be accelerated by using LLMs. LLMs can easily be trained
and instructed to generate such reports, reading from the
operator's database system information. LLMs can also
process current written manuals, providing suggestions for
improvement and clarification.

� Operation: Voltage optimisation and control, as well as the
dispatch of different resources (e.g. batteries), generally rely
on the use of optimisation models based on mathematical
programming.81,82 Such optimisation models guarantee
mathematical convergence and global optimality (if con-
vexity is proven). However, they suffer from poor scalability
and significant computational time.83 Reinforcement
learning (RL) models (the type of ML model used for de-
cision‐making) are proven to be capable of solving complex
control problems learning either by interacting with the
system itself or by using historic decisions.71,72 RL models
are currently being researched in various applications in the
power systems domain,84 and although they do not guar-
antee global optimality, their generalisation capabilities
enable them to provide good quality control actions quickly
(once trained). This feature could improve modules
deployed within the Operation and Planning component,
as such RL models can be trained in the background for
various decision‐making problems, taking advantage of the
available data within DTs. In this sense, one of the main
features of such RL models is their capability to learn the
systems' stochastic behaviour from the data itself, reducing
the need to deploy complex stochastic or robust decision‐
making models, among others.

� Planning: Making use of models specialised in data
augmentation and data generation, such as generative
adversarial networks (GANs) and variational autoencoders
(VAEs)85; rarely seen power system states can be inferred,73

for example, states close to faults. Such generated repre-
sentative states can then be used to plan, test, and validate
contingency steps, enhancing DTs' fault identification and
clearance capabilities. Similarly, data augmentation models
can also be used to generate long‐term demand and
renewable generation time‐series data, for example, cus-
tomer's smart metre readings,74 as well as market prices.75

The main advantage of deep learning‐based models such as
GANs and VAE is that they do not make a priori as-
sumptions of the data probabilistic distribution (e.g.
assuming Gaussian distribution). Ultimately, the DTs can

use all the synthetically generated time‐series data to rede-
fine future planning investments, identifying, for instance,
needs in infrastructure upgrades.86

Despite the elevated anticipation surrounding AI and ML
models for DTs, several challenges still need to be addressed.
Large deep‐learning models require a large amount of data
during training, requiring significant training times and often
failing to converge. Depending on the module, such data may
not be available or data ownership can be a limitation. More-
over, deep learning models' transparency, trust, and explain-
ability must be enhanced before they can be fully deployed.87

In this context, we do not envision ML‐based models replacing
system operators. On the contrary, they will improve the op-
erators' performance, but to achieve this, they must evolve
considering system operators in the loop. For instance, using a
co‐pilot approach as used in the aviation industry.5

6 | CONCLUSION

This paper proposes a standard definition and ecosystem ar-
chitecture for power system DTs. The proposed definition
reconciles decades of research on the concept and aligns it
with the need for further deployment of DTs in the complex
domain of power system operation and planning. We argue
that a standardised approach allows system operators and
software developers to collaboratively develop the backbone
of the envisioned DT, that is, a software ecosystem with
advanced data management capabilities. The ecosystem's
backbone facilitates bidirectional real‐time automated data
exchange; ensures data standardisation among components
modules and models; and supports self‐adaptation of all
simulation models, among others. The presented power sys-
tem DT ecosystem architecture enables operators to meet their
objectives from everyday system operation to long‐term
planning, as well as the development and validation of new
services by taking advantage of the DT's high‐fidelity models.
The paper discusses the benefits of connecting all operation
and planning modules within a DT ecosystem, as well as multi‐
DT systems. We propose that the former facilitates the system
operators to account for the propagation of errors and un-
certainties between these models, and the latter enables more
accurate evaluation and long‐term infrastructure planning for
combined systems. Finally, we anticipate that AI and ML
models will play an important role in addressing key bottle-
necks in DT development and implementation. These include
visualising and processing large amounts of data, accurate and
fast modelling of complex systems, and refining future sce-
nario generation. The successful transition of DTs from
buzzword to large‐scale implementation in power systems
depends on the collaboration between system operators and
software engineers. We consider that the first step must be
taken in the direction of standardisation of workflows and data
sharing.
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